Last active
February 25, 2020 03:34
-
-
Save Yukishita26/4751e295149416867673f815a57a7969 to your computer and use it in GitHub Desktop.
Comparation of GPR and KRR
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"from sklearn.datasets import load_boston\n", | |
"boston = load_boston()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.model_selection import train_test_split\n", | |
"from sklearn.kernel_ridge import KernelRidge\n", | |
"from sklearn.model_selection import cross_val_score\n", | |
"from sklearn.preprocessing import MinMaxScaler\n", | |
"\n", | |
"input_x = pd.DataFrame(boston['data'], columns=boston['feature_names'])\n", | |
"input_y = boston['target']\n", | |
"mms = MinMaxScaler().fit(input_x)\n", | |
"train_x, test_x, train_y, test_y = train_test_split(mms.transform(input_x), input_y, test_size=0.2, random_state=0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 271, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.gaussian_process import GaussianProcessRegressor\n", | |
"from sklearn.gaussian_process.kernels import RBF\n", | |
"from sklearn.gaussian_process.kernels import WhiteKernel\n", | |
"\n", | |
"krr = KernelRidge(kernel='rbf', alpha=1.0, gamma=1.0)\n", | |
"gpr = GaussianProcessRegressor(alpha=1.0, kernel=RBF(length_scale=1.0), optimizer=None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 272, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 44 ms\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=1.0, kernel='rbf',\n", | |
" kernel_params=None)" | |
] | |
}, | |
"execution_count": 272, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"krr.fit(train_x, train_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 273, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 51 ms\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"GaussianProcessRegressor(alpha=1.0, copy_X_train=True,\n", | |
" kernel=RBF(length_scale=1), n_restarts_optimizer=0,\n", | |
" normalize_y=False, optimizer=None, random_state=None)" | |
] | |
}, | |
"execution_count": 273, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"gpr.fit(train_x, train_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 274, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0.8363809363920776, 0.649983463876857)" | |
] | |
}, | |
"execution_count": 274, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"krr.score(train_x, train_y), krr.score(test_x, test_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 275, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0.8146886102829334, 0.6398643616279389)" | |
] | |
}, | |
"execution_count": 275, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"gpr.score(train_x, train_y), gpr.score(test_x, test_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 277, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"238.8410776079586" | |
] | |
}, | |
"execution_count": 277, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"((krr.predict(train_x) - gpr.predict(train_x))**2).sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 302, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"krr = KernelRidge(kernel='rbf', alpha=1.0, gamma=1.0)\n", | |
"gpr = GaussianProcessRegressor(alpha=1.0, kernel=RBF(length_scale=1.0/np.sqrt(2.0)), optimizer=None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 303, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 11 ms\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=1.0, kernel='rbf',\n", | |
" kernel_params=None)" | |
] | |
}, | |
"execution_count": 303, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"krr.fit(train_x, train_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 304, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Wall time: 20 ms\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"GaussianProcessRegressor(alpha=1.0, copy_X_train=True,\n", | |
" kernel=RBF(length_scale=0.707), n_restarts_optimizer=0,\n", | |
" normalize_y=False, optimizer=None, random_state=None)" | |
] | |
}, | |
"execution_count": 304, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"%%time\n", | |
"gpr.fit(train_x, train_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 305, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0.8363809363920776, 0.649983463876857)" | |
] | |
}, | |
"execution_count": 305, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"krr.score(train_x, train_y), krr.score(test_x, test_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 306, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0.8363809363920777, 0.6499834638768573)" | |
] | |
}, | |
"execution_count": 306, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"gpr.score(train_x, train_y), gpr.score(test_x, test_y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 307, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"1.5646977168968247e-25" | |
] | |
}, | |
"execution_count": 307, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"((krr.predict(train_x) - gpr.predict(train_x))**2).sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment