examples inspired by this book
examples inspired by this book
| import csv | |
| import requests | |
| import bs4 | |
| import argparse | |
| # parser = argparse.ArgumentParser(description='Process a list of search terms.') | |
| # parser.add_argument('terms', metavar='N', type=str, nargs='+', | |
| # help='comma separated list of terms to search for') | |
| # args = parser.parse_args() |
| #!/usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| import os | |
| import re | |
| import time | |
| import json | |
| import logging | |
| import requests |
| """ Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
| import numpy as np | |
| import cPickle as pickle | |
| import gym | |
| # hyperparameters | |
| H = 200 # number of hidden layer neurons | |
| batch_size = 10 # every how many episodes to do a param update? | |
| learning_rate = 1e-4 | |
| gamma = 0.99 # discount factor for reward |
In this article, I will share some of my experience on installing NVIDIA driver and CUDA on Linux OS. Here I mainly use Ubuntu as example. Comments for CentOS/Fedora are also provided as much as I can.
| import cv2 | |
| cap = cv2.VideoCapture(0) | |
| cap.set(3, 640) # WIDTH | |
| cap.set(4, 480) # HEIGHT | |
| face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
| eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_eye.xml") | |
| while(True): |
| require(RCurl) | |
| require(jsonlite) | |
| myticker<-"FB" | |
| url.histprice<-function(x){ return(paste0("http://globalquote.morningstar.com/globalcomponent/RealtimeHistoricalStockData.ashx?ticker=",x,"&showVol=true&dtype=his&f=d&curry=USD&range=1900-1-1|2014-10-10&isD=true&isS=true&hasF=true&ProdCode=DIRECT"))} | |
| url.keyratios<-function(x){return(paste0("http://financials.morningstar.com/ajax/exportKR2CSV.html?t=",x))} | |
| #Retrieve historical prices | |
| json.histprice<-getURL(url.histprice(myticker)) | |
| json.histprice<-sub("NaN","\"NA\"",json.histprice) |
| #!/usr/bin/env bash | |
| # https://developers.supportbee.com/blog/setting-up-cucumber-to-run-with-Chrome-on-Linux/ | |
| # https://gist.github.com/curtismcmullan/7be1a8c1c841a9d8db2c | |
| # https://stackoverflow.com/questions/10792403/how-do-i-get-chrome-working-with-selenium-using-php-webdriver | |
| # https://stackoverflow.com/questions/26133486/how-to-specify-binary-path-for-remote-chromedriver-in-codeception | |
| # https://stackoverflow.com/questions/40262682/how-to-run-selenium-3-x-with-chrome-driver-through-terminal | |
| # https://askubuntu.com/questions/760085/how-do-you-install-google-chrome-on-ubuntu-16-04 | |
| # Versions | |
| CHROME_DRIVER_VERSION=`curl -sS https://chromedriver.storage.googleapis.com/LATEST_RELEASE` |
| #!/bin/bash | |
| # install CUDA Toolkit v8.0 | |
| # instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network)) | |
| CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb" | |
| wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG} | |
| sudo dpkg -i ${CUDA_REPO_PKG} | |
| sudo apt-get update | |
| sudo apt-get -y install cuda |