次のように分割表が与えられたとき,
| 成功 | 失敗 | 合計 |
|---|---|---|
| a | c | |
| b | d | |
| n |
| library(DiagrammeR) | |
| library(DiagrammeRsvg) | |
| library(magrittr) | |
| library(rsvg) | |
| ##佐藤俊哉『宇宙怪人しまりす 統計よりも重要なことを学ぶ』(朝倉書店)より | |
| g <- grViz("digraph{ | |
| graph[rankdir = TB] | |
| node[shape = rectangle] | |
| A[label = 'かぜの\n重症度'] |
| library(readr) | |
| library(dplyr) | |
| library(ggplot2) | |
| ## data is available from | |
| ## https://www.data.jma.go.jp/risk/obsdl/index.php | |
| dat = read_csv("./Downloads/data.csv", skip = 6, | |
| col_names = c("date","Temp","hinshitsu","kinitsu")) |
| #佐藤俊哉『宇宙怪人しまりす 統計よりも重要なことを学ぶ』(朝倉書店)より | |
| X = matrix(c(58, 22, | |
| 62, 38), byrow = TRUE, nrow = 2, ncol = 2) | |
| print(X) | |
| res_chisq = chisq.test(X, correct = FALSE) | |
| print(res_chisq$p.value) | |
| #[1] 0.1375639 | |
| x = X[,1] |
| #include <chrono> | |
| #include <iostream> | |
| #include <fstream> | |
| #include <mutex> | |
| class TimerLogger { | |
| public: | |
| TimerLogger(const std::string& label, const std::string& filename = "timelog.csv") | |
| : label_(label), filename_(filename) { | |
| start_ = std::chrono::high_resolution_clock::now(); |
| data { | |
| int<lower=0> N; | |
| int<lower=0> D; | |
| int<lower=0> R; | |
| matrix[N,D] Y; | |
| } | |
| parameters { | |
| row_vector[D] mu; | |
| matrix[D,R] W; | |
| real<lower=0> sig2; |
| using Distributions | |
| using CairoMakie | |
| #https://docs.makie.org/stable/ | |
| xv = 0:0.1:20 | |
| f = Figure() | |
| ax = Axis(f[1, 1]) | |
| l1 = lines!(ax, xv, pdf.(Gumbel(0,1), xv)) | |
| l2 = lines!(ax, xv, pdf.(Gumbel(1,1), xv), linestyle=:dash) | |
| l3 = lines!(ax, xv, pdf.(Gumbel(0,2), xv), linestyle=:dot) |
| using Random | |
| using Distributions | |
| using CairoMakie | |
| using FileIO | |
| beta = [1, 2] | |
| rng = Random.default_rng(1234) | |
| X = [ones(10) randn(rng, 10)] | |
| y = X * beta + randn(rng, 10) |
| makeLmat <- function (h){ | |
| x = seq(0,1,by=h) | |
| N=length(x) | |
| invh2 <- 1/(h^2) | |
| res = diag(invh2, N) | |
| res[cbind(1:(N-1),2:N)] <- -0.5*invh2 | |
| res[cbind(2:N,1:(N-1))] <- -0.5*invh2 | |
| return(list(L=res,x=x)) | |
| } |
| library(ggplot2) | |
| library(dplyr) | |
| library(mvtnorm) | |
| set.seed(1) | |
| x1 = rnorm(10, 0, 1) | |
| x2 = x1+rnorm(10, 0, 0.1) | |
| y = x1+x2 + rnorm(10, 0, 1) | |
| print(cor(x1,x2)) |