Created
July 31, 2019 15:07
-
-
Save abitrolly/14318e107ea2d41eefe5616aec3d0cb8 to your computer and use it in GitHub Desktop.
Issue - Index Autoconversion in Series.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Issue - Index Autoconversion in Series.ipynb", | |
"version": "0.3.2", | |
"provenance": [], | |
"collapsed_sections": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/abitrolly/14318e107ea2d41eefe5616aec3d0cb8/issue-index-autoconversion-in-series.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "8qhRs7pSRUAx", | |
"colab_type": "code", | |
"outputId": "48e0cf9e-6792-4fdc-96d2-f02cc7962ac4", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"import pandas as pd\n", | |
"\n", | |
"pd.__version__" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"'0.24.2'" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 4 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "cFscTarSRgY1", | |
"colab_type": "code", | |
"outputId": "ccdfa381-d3cc-456b-d968-4c6e4a11d117", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 121 | |
} | |
}, | |
"source": [ | |
"base = pd.Series({4:400, 5:500, 6:600, 7:700})\n", | |
"print(base)\n", | |
"print(base.index)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"4 400\n", | |
"5 500\n", | |
"6 600\n", | |
"7 700\n", | |
"dtype: int64\n", | |
"Int64Index([4, 5, 6, 7], dtype='int64')\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "QEOS451obMVz", | |
"colab_type": "code", | |
"outputId": "a128a56c-da4d-49f2-c295-679f1200251d", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 69 | |
} | |
}, | |
"source": [ | |
"addon = pd.Series({'6': '600'})\n", | |
"print(addon)\n", | |
"print(addon.index)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"6 600\n", | |
"dtype: object\n", | |
"Index(['6'], dtype='object')\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "1Wqq4uy-cc2S", | |
"colab_type": "code", | |
"outputId": "cd347a84-6653-4377-cc50-386b1b05f987", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 139 | |
} | |
}, | |
"source": [ | |
"merged = base.append(addon, verify_integrity=True)\n", | |
"print(merged)\n", | |
"print(merged.index)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"4 400\n", | |
"5 500\n", | |
"6 600\n", | |
"7 700\n", | |
"6 600\n", | |
"dtype: object\n", | |
"Index([4, 5, 6, 7, '6'], dtype='object')\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "T5fGH6xMdbvr", | |
"colab_type": "code", | |
"outputId": "58e05c75-a7f8-44bc-93f3-0d181850af48", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 286 | |
} | |
}, | |
"source": [ | |
"base.plot()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7f93d549ea90>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 19 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4HPXV9vHvwbbcLfcqy3Kv4CZs\nWmimuUMg9A4xyUMgCQmhPAkWJpTQS4hDb4EQwhOCXHDBYLoBm2o1W7hKLnKVi7p03j805BWOwSur\n7K72/lyXrp2dndGen0e6NZ6dOWPujoiIxJZDwl2AiIjUP4W/iEgMUviLiMQghb+ISAxS+IuIxCCF\nv4hIDFL4i4jEIIW/iEgMUviLiMSgxuEuAKBjx46elJQU7jJERKLKsmXLtrp7p4NZNyLCPykpiaVL\nl4a7DBGRqGJmaw92XR32ERGJQQp/EZEYpPAXEYlBCn8RkRik8BcRiUEHDH8zG2hmX1T52mVmvzKz\n9ma20MxWBo/tguXNzB42s2wz+8rMRtX9MEREpDoOGP7unuXuI9x9BDAaKABeA24EFrl7f2BR8Bxg\nPNA/+JoGzKyLwkVE5OBV97DPOOAbd18LTAWeC+Y/B5weTE8FnvdKS4C2ZtatVqoVERHcndlfbajR\n96juRV7nAn8Ppru4+8ZgehPQJZjuAayvsk5OMG9jlXmY2TQq/2dAYmJiNcsQEYlNmZt2kZKaxpJV\n22v0fULe8zezOGAK8M99X/PKu8BX607w7v64uye7e3KnTgd1dbKISMzILywlJTWNiQ+/T+am3fzx\n9GE1+n7V2fMfD3zm7puD55vNrJu7bwwO6+QF83OBnlXWSwjmiYhINVVUOP9ctp6752Wxo6CE88cm\n8puTB9KuZRwX1eD7Vif8z+P/H/IBSAUuAe4KHl+vMv8XZvYyMBbIr3J4SEREQvTF+p1Mf305X+bk\nk9yrHc9NGcOwHvG18r1DCn8zawmcDFxVZfZdwCtmdgWwFjg7mD8XmABkU3lm0GW1UqmISIzYuqeY\nu+dl8srSHDq3bsoD5wzn9BE9MLNae4+Qwt/d9wId9pm3jcqzf/Zd1oGra6U6EZEYUlpewQsfreWB\nN1dQWFLOVcf24Zpx/WnVtPYbMEdES2cRkVj34TdbSUlNY8XmPfyof0emTx5Kv86t6uz9FP4iImGU\nu7OQO+ZkMOfrjSS0a85jF43mlCFdavUQz/4o/EVEwqCotJwn31vFn9/Oxh1+fdIArjquD82aNKqX\n91f4i4jUI3dnUUYeM2ans257AeOHdeV/Jw4moV2Leq1D4S8iUk9WbdnDjNnpLM7aQr/OrfjbFWM5\npn/HsNSi8BcRqWN7i8t45K1snnp/FU0bN+L3EwdzyVFJNGkUvq76Cn8RkTri7qR+uYE752ayaVcR\nZ45K4IbxA+nculm4S1P4i4jUhYyNu5iemsYnq7dzaI94Hr1gFKN7tQt3Wf+h8BcRqUU7C0q4f+EK\n/rZkLfHNm3DHGYdyzuE9aXRI3Z66WV0KfxGRWlBe4byydD13z8skv7CUC4/oxXUnD6Bti7hwl7Zf\nCn8RkRr6bN0Opr+exte5+YxJak/KlKEM6d4m3GX9IIW/iMhByttdxJ/eyOL/PsuhS5umPHTuCKYM\n717nV+fWBoW/iEg1lZZX8NyHa3jwzZUUl5Xzs+P6cs2J/WhZBw3Y6kr0VCoiEgHeX7mVlFlpZOft\n4fiBnbhl0hD6dKq7Bmx1ReEvIhKCnB0F3D4ngzeWbyKxfQuevDiZcYM7R8Uhnv1R+IuI/ICi0nIe\ne2cVM9/JBuC3pwzgyh/VXwO2uqLwFxHZD3dnYfpmZsxOJ2dHIRMP7cbNEwfTo23zcJdWKxT+IiL7\n+GbLHm6dlc67K7YwoEsrXrpyLEf1C08Dtrqi8BcRCewpLuORRSt5+oPVNGvciFsmDeGiI3uFtQFb\nXVH4i0jMc3f+/UUud87NJG93MWcnJ/C70wbRsVXTcJdWZxT+IhLTlufmk5KaxtK1OxieEM9jF41m\nZGLkNGCrKwp/EYlJO/aWcN/CLF76eB3tWsTxpzMP5Seje3JIhDVgqysKfxGJKeUVzt8/Wce9C7LY\nXVTGxUcm8euTBxDfvEm4S6tXCn8RiRlL12xnemoaaRt2MbZ3e26dOpRBXSO7AVtdCSn8zawt8CQw\nDHDgcuBU4KfAlmCxm919brD8TcAVQDlwrbvPr+W6RURClreriDvfyOS1z3PpFt+MR84byaTDukXt\n1bm1IdQ9/4eAee5+lpnFAS2oDP8H3P3eqgua2RDgXGAo0B1408wGuHt5LdYtInJAJWUVPPPBah5e\ntJLScufqE/py9Qn9aBGngx4H/Bcws3jgWOBSAHcvAUp+4C/mVOBldy8GVptZNjAG+Kg2ChYRCcW7\nK7aQMiuNVVv2Mm5QZ/4waQhJHVuGu6yIEcqfv95UHtp5xsyGA8uAXwav/cLMLgaWAr9x9x1AD2BJ\nlfVzgnnfYWbTgGkAiYmJBz0AEZGq1m8v4LbZ6SxI30xShxY8fWkyJw7qEu6yIk4ol601BkYBM919\nJLAXuBGYCfQFRgAbgfuq88bu/ri7J7t7cqdOnapXtYjIPgpLyrl/4QpOuv8d3lu5letPHcj8Xx+r\n4P8eoez55wA57v5x8PxV4EZ33/ztAmb2BDA7eJoL9KyyfkIwT0Sk1rk789M2cdvsDHJ3FjJ5eHdu\nnjCIbvENowFbXTlg+Lv7JjNbb2YD3T0LGAekm1k3d98YLHYGsDyYTgVeMrP7qfzAtz/wSR3ULiIx\nLjtvNymp6byfvZVBXVvz8rQjOKJPh3CXFRVC/cj7GuDF4EyfVcBlwMNmNoLKUz/XAFcBuHuamb0C\npANlwNU600dEatPuolIeenMlz364hhZxjUiZPIQLj+hF4wbYgK2umLuHuwaSk5N96dKl4S5DRCJc\nRYXzr89zueuNTLbtLeac5J5cf+pAOjTgBmw/xMyWuXvywayrk11FJCosz83nlteX89m6nYzo2Zan\nLklmeM+24S4rain8RSSibd9bwj3zs3j503V0aBnHPWcdxpmjEmKmAVtdUfiLSEQqK6/gpU/Wcd+C\nFewpLuOyo3rzq5P706ZZbDVgqysKfxGJOJ+srmzAlrFxF0f17UDKlKEM6NI63GU1KAp/EYkYm/KL\nuGNuBqlfbqB7fDP+csEoxg/rGtMN2OqKwl9Ewq64rJyn31/DI2+tpKzCufbEfvz8+H40j2sU7tIa\nLIW/iITV21l5zJiVzuqtezlpcBdumTSExA4twl1Wg6fwF5GwWLttL7fNTufNjDz6dGzJs5cdzvED\nO4e7rJih8BeRelVYUs5fFmfz2LuraHyIceP4QVx+dG/iGuvq3Pqk8BeReuHuzP16E7fPSWdDfhFT\nR3TnpvGD6RrfLNylxSSFv4jUuRWbdzP99TQ+WrWNwd3a8OC5IxnTu324y4ppCn8RqTP5haU8+OYK\nnv9oLa2aNua2qUM5f2wvGunq3LBT+ItIrauocF79LIe752WybW8J541J5LenDKR9y7hwlyYBhb+I\n1Kov1+9kemoaX6zfyajEtjx72RiG9YgPd1myD4W/iNSKbXuKuXteFq8sW0+Hlk257yfDOWNkDzVg\ni1AKfxGpkbLyCl5Yspb7F66gsKScK4/pzbXj+tNaDdgimsJfRA7aR99sIyU1jazNu/lR/45MnzyE\nfp3VgC0aKPxFpNo25hdy+5wMZn+1kR5tm/PXC0dz6tAuasAWRRT+IhKy4rJynnxvNX9+K5sKd345\nrj8/P74vzZqoAVu0UfiLSEjeytzMrbPSWbutgFOHduH3E4fQs70asEUrhb+I/KA1W/cyY3Y6b2Xm\n0bdTS164Ygw/6t8p3GVJDSn8RWS/CkrK+PNb2Tz53mqaNDJunjCIS49SA7aGQuEvIt/h7sz6aiN3\nzMlg064ifjyyBzeOH0TnNmrA1pCEFP5m1hZ4EhgGOHA5kAX8A0gC1gBnu/sOq/y4/yFgAlAAXOru\nn9V65SJS6zI27iIlNY2PV29naPc2/Pn8kSQnqQFbQxTqnv9DwDx3P8vM4oAWwM3AIne/y8xuBG4E\nbgDGA/2Dr7HAzOBRRCJUfkEpD7y5guc/WkOb5k24/YxhnHt4ohqwNWAHDH8ziweOBS4FcPcSoMTM\npgLHB4s9ByymMvynAs+7uwNLzKytmXVz9421Xr2I1EhFhfPK0vXcPT+LnQUlXDC2F785ZQBtW6gB\nW0MXyp5/b2AL8IyZDQeWAb8EulQJ9E1Al2C6B7C+yvo5wTyFv0gE+XzdDqanpvFVTj6HJ7UjZcoY\nhnZXA7ZYEUr4NwZGAde4+8dm9hCVh3j+w93dzLw6b2xm04BpAImJidVZVURqYMvuYu6el8k/l+XQ\nuXVTHjxnBFNHdNfVuTEmlPDPAXLc/ePg+atUhv/mbw/nmFk3IC94PRfoWWX9hGDed7j748DjAMnJ\nydX6wyEi1VdaXsHzH63lwYUrKCor56rj+nDNif1p1VQn/cWiA251d99kZuvNbKC7ZwHjgPTg6xLg\nruDx9WCVVOAXZvYylR/05ut4v0h4fZi9lempaazM28NxAzpxy+Qh9O3UKtxlSRiF+if/GuDF4Eyf\nVcBlwCHAK2Z2BbAWODtYdi6Vp3lmU3mq52W1WrGIhCx3ZyG3z0ln7teb6Nm+OU9cnMxJgzvrEI+E\nFv7u/gWQvJ+Xxu1nWQeurmFdIlIDRaXlPPHuKh5dnA3AdScPYNqxfdSATf5DB/tEGhB3582MPG6b\nnc667QVMOLQrN08YTEI7NWCT71L4izQQq7bs4dZZ6byzYgv9OrfixSvHcnS/juEuSyKUwl8kyu0p\nLuORt1by9Purada4Eb+fOJhLjkqiSSM1YJPvp/AXiVLuzutfbODONzLYvKuYs0YncMNpg+jUumm4\nS5MooPAXiULpGyobsH2yZjuHJcQz88LRjEpsF+6yJIoo/EWiyM6CEu5bsIIXP15L2xZx3PXjQzk7\nuSeHqAGbVJPCXyQKlFc4L3+6jnvnZ5FfWMpFR/TiupMHEt+iSbhLkyil8BeJcMvWbmd6ahrLc3cx\npnd7bp0ylMHd2oS7LIlyCn+RCJW3u4i73sjkX5/l0rVNMx4+bySTD+umq3OlVij8RSJMaXkFz36w\nhocWraSkrIL/Ob4vV5/Qj5ZqwCa1SD9NIhHkvZVbSElN45stezlhYCdumTyU3h1bhrssaYAU/iIR\nYP32Av44J535aZvp1aEFT12SzLjBXQ68oshBUviLhFFRaTl/fecbZi7+hkPMuP7UgVxxTG81YJM6\np/AXCQN3Z37aZv44J52cHYVMOqwbN08YTPe2zcNdmsQIhb9IPcvO28Ots9J4b+VWBnZpzUs/HctR\nfdWATeqXwl+knuwuKuXhRSt55oM1NI9rxPTJQ7joiF40VgM2CQOFv0gdq6hwXvs8l7vmZbJ1TzFn\nj+7J9acNpGMrNWCT8FH4i9Sh5bn5TE9NY9naHQxPiOeJi5MZ0bNtuMsSUfiL1IUde0u4Z0EWf/9k\nHe1bxHH3mYdx1ugENWCTiKHwF6lF5RXOS59UNmDbU1zGpUcl8auTBhDfXA3YJLIo/EVqyadrtjP9\n9TTSN+7iyD4dSJkylIFdW4e7LJH9UviL1NDmXUXcOTeDf3+xgW7xzfjz+SOZeKgasElkU/iLHKSS\nsgqe/mA1jyxaSWm584sT+vE/J/SlRZx+rSTy6adU5CAszspjxqx0Vm3dy0mDO/OHSUPo1UEN2CR6\nhBT+ZrYG2A2UA2XunmxmKcBPgS3BYje7+9xg+ZuAK4Llr3X3+bVct0hYrNtWwG1z0lmYvpneHVvy\nzGWHc8LAzuEuS6TaqrPnf4K7b91n3gPufm/VGWY2BDgXGAp0B940swHuXl6zUkXCp7CknJmLs/nr\nu6tofIhxw2mDuPyYJJo2VgM2iU51cdhnKvCyuxcDq80sGxgDfFQH7yVSp9ydN5Zv4vY5GeTuLGTK\n8O7cPGEwXeObhbs0kRoJNfwdWGBmDjzm7o8H839hZhcDS4HfuPsOoAewpMq6OcE8kaiycvNuUmal\n8UH2NgZ1bc0/ph3B2D4dwl2WSK0INfyPcfdcM+sMLDSzTGAmcBuVfxhuA+4DLg/1jc1sGjANIDEx\nsVpFi9SlXUWlPLhwJc99tIaWcY2YMXUo549JVAM2aVBCCn93zw0e88zsNWCMu7/77etm9gQwO3ia\nC/SssnpCMG/f7/k48DhAcnKyH1T1IrWoosL5v89y+NO8TLbtLeHcwxO5/tSBtG8ZF+7SRGrdAcPf\nzFoCh7j77mD6FGCGmXVz943BYmcAy4PpVOAlM7ufyg98+wOf1H7pIrXnq5ydTE9N4/N1OxmZ2JZn\nLh3DoQnx4S5LpM6EsuffBXgtuFqxMfCSu88zsxfMbASVh33WAFcBuHuamb0CpANlwNU600ci1bY9\nxdwzP4t/LF1Ph5ZNufcnw/nxyB5qwCYNnrmH/4hLcnKyL126NNxlSAwpK6/gxY/Xcd+CLApKyrn0\nqCSuPak/bZqpAZtEDzNb5u7JB7OurvCVmLNk1TZSUtPI3LSbo/t1IGXyUPp3UQM2iS0Kf4kZG/ML\nuWNuJrO+3ECPts2ZecEoThvWVQ3YJCYp/KXBKy4r58n3VvPo29mUVTjXjuvPz4/rS/M4XZ0rsUvh\nLw3a25l53DorjTXbCjhlSBf+MGkIPdu3CHdZImGn8JcGac3Wvdw2O51FmXn06diS5y4fw3EDOoW7\nLJGIofCXBqWgpIxH387miXdX06SRcdP4QVx2dG/iGuvqXJGqFP7SILg7s7/ayB1zM9iYX8QZI3tw\n4/hBdGmjBmwi+6Pwl6iXuWkXKalpLFm1nSHd2vDIeSNJTmof7rJEIprCX6JWfmEpDyxcwQtL1tK6\nWWP+ePowzhuTSCNdnStyQAp/iToVFc4/l63n7nlZbC8o4fwxifz2lIG0UwM2kZAp/CWqfLF+J9Nf\nX86XOfkk92rHc1PGMKyHGrCJVJfCX6LC1j3F3D0vk1eW5tC5dVMeOGc4p4/ooatzRQ6Swl8iWml5\nBS98tJYH3lxBYUk5Vx3bh2vG9adVU/3oitSEfoMkYn34zVZSUtNYsXkPP+rfkemTh9Kvc6twlyXS\nICj8JeLk7izkjjkZzPl6IwntmvPYRaM5ZUgXHeIRqUUKf4kYRaXlPPHuKh5dnI07/PqkAVx1XB+a\nNVEDNpHapvCXsHN3FmXkMWN2Ouu2FzB+WFf+d+JgEtqpAZtIXVH4S1it2rKHGbPTWZy1hX6dW/G3\nK8ZyTP+O4S5LpMFT+EtY7C0u45G3snnq/VU0bdyI308czCVHJdGkkRqwidQHhb/UK3cn9csN3Dk3\nk027ijhzVAI3jB9I59ZqwCZSnxT+Um/SN+wiZVYan6zezqE94nn0glGM7tUu3GWJxCSFv9S5nQUl\n3L9wBX9bspb45k2488eHcnZyTzVgEwkjhb/UmfIK5x+fruee+ZnkF5Zy4RG9uO7kAbRtoQZsIuGm\n8Jc6sWztDlJS0/g6N58xSe1JmTKUId3bhLssEQmEFP5mtgbYDZQDZe6ebGbtgX8AScAa4Gx332GV\nl2E+BEwACoBL3f2z2i9dIlHe7iL+9EYW//dZDl3aNOWhc0cwZXh3XZ0rEmGqs+d/grtvrfL8RmCR\nu99lZjcGz28AxgP9g6+xwMzgURqw0vIKnvtwDQ++uZLisnJ+dlxfrjmxHy3VgE0kItXkN3MqcHww\n/RywmMrwnwo87+4OLDGztmbWzd031qRQiVzvr9xKyqw0svP2cPzATtwyaQh9OqkBm0gkCzX8HVhg\nZg485u6PA12qBPomoEsw3QNYX2XdnGCewr+BydlRwO1zMnhj+SYS27fgyYuTGTe4sw7xiESBUMP/\nGHfPNbPOwEIzy6z6ort78IchZGY2DZgGkJiYWJ1VJcyKSst57J1V/GVxNmbwm5MH8NNj1YBNJJqE\nFP7unhs85pnZa8AYYPO3h3PMrBuQFyyeC/SssnpCMG/f7/k48DhAcnJytf5wSHi4OwvSN3Pb7HRy\ndhQy8dBu3DxxMD3aNg93aSJSTQdspGJmLc2s9bfTwCnAciAVuCRY7BLg9WA6FbjYKh0B5Ot4f/TL\nztvDxU9/wlUvLKNFXCNeunIsj14wSsEvEqVC2fPvArwWHMdtDLzk7vPM7FPgFTO7AlgLnB0sP5fK\n0zyzqTzV87Jar1rqzZ7iMh5etJKn319N87hG3DJpCBcd2UsN2ESi3AHD391XAcP3M38bMG4/8x24\nulaqk7Bxd/79RS53zs0kb3cxZycn8LvTBtGxVdNwlyYitUAnYct/WZ6bT0pqGkvX7mB4QjyPXTSa\nkYlqwCbSkCj85T927C3h3gVZ/P2TdbRrEcefzjyUn4zuySFqwCbS4Cj8hfIK5++frOPeBVnsLirj\n4iOT+PXJA4hv3iTcpYlIHVH4x7ila7YzPTWNtA27OKJPZQO2QV3VgE2koVP4x6i8XUXc+UYmr32e\nS7f4Zjxy3kgmHdZNV+eKxAiFf4wpKavgmQ9W8/CilZSWO1ef0JerT+hHizj9KIjEEv3Gx5B3Vmzh\n1llprNqyl3GDOvOHSUNI6tgy3GWJSBgo/GPA+u0F3DY7nQXpm0nq0IJnLj2cEwZ1DndZIhJGCv8G\nrLCknJnvfMNj73zDIWb87rSBXHFMb5o2VgM2kVin8G+A3J35aZu4bXYGuTsLmTy8OzdPGES3ePXh\nEZFKCv8GJjtvNymp6byfvZVBXVvz8rQjOKJPh3CXJSIRRuHfQOwuKuWhN1fy7IdraBHXiJTJQ7jw\niF40VgM2EdkPhX+Uq6hw/vV5Lne9kcm2vcWck9yT608dSAc1YBORH6Dwj2Jf5+QzPXU5n63byYie\nbXn60mQOS2gb7rJEJAoo/KPQ9r0l3DM/i5c/XUeHlnHcc9ZhnDkqQQ3YRCRkCv8oUlZewUufrOO+\nBSvYU1zG5Uf35pcn9adNMzVgE5HqUfhHiY9XbWN6ahqZm3ZzVN8OpEwZyoAurcNdlohEKYV/hNuU\nX8QdczNI/XIDPdo25y8XjGL8sK5qwCYiNaLwj1DFZeU89f5q/vxWNmUVzrUn9uPnx/ejeZyuzhWR\nmlP4R6C3s/KYMSud1Vv3cvKQLvxh4hASO7QId1ki0oAo/CPI2m17uW12Om9m5NGnY0uevexwjh+o\nBmwiUvsU/hGgsKScvyzO5rF3V9HkEOPG8YO4/OjexDXW1bkiUjcU/mHk7sz9ehO3z0lnQ34Rp4/o\nzk0TBtOlTbNwlyYiDZzCP0xWbN7N9NfT+GjVNgZ3a8OD545kTO/24S5LRGJEyOFvZo2ApUCuu08y\ns2eB44D8YJFL3f0LqzwH8SFgAlAQzP+sdsuOXvmFpTz45gqe/2gtrZo25rapQzl/bC8a6epcEalH\n1dnz/yWQAbSpMu96d391n+XGA/2Dr7HAzOAxplVUOK8uy+Hu+Zls21vCeWMS+e0pA2nfMi7cpYlI\nDAop/M0sAZgI3A5cd4DFpwLPu7sDS8ysrZl1c/eNNSs1en25fie3pKbx5fqdjO7VjmcvG8OwHvHh\nLktEYlioe/4PAr8D9u0ncLuZ3QIsAm5092KgB7C+yjI5wbyYC/+te4q5Z14WryxbT4eWTbn/7OGc\nMbKHrs4VkbA7YPib2SQgz92XmdnxVV66CdgExAGPAzcAM0J9YzObBkwDSExMrEbJka+svIIXlqzl\n/oUrKCwp58pjenPtuP60VgM2EYkQoez5Hw1MMbMJQDOgjZn9zd0vDF4vNrNngN8Gz3OBnlXWTwjm\nfYe7P07lHw2Sk5P9IOuPOB99s42U1DSyNu/mR/07Mn3yEPp1VgM2EYksBwx/d7+Jyr18gj3/37r7\nhd8exw/O7jkdWB6skgr8wsxepvKD3vxYON6/YWcht8/NYM5XG+nRtjl/vXA0pw7tokM8IhKRanKe\n/4tm1gkw4AvgZ8H8uVSe5plN5amel9WowghXXFbOk+9VNmCrcOdXJ/XnZ8f1pVkTNWATkchVrfB3\n98XA4mD6xO9ZxoGra1pYNFiUsZkZs9NZu62AU4d24fcTh9CzvRqwiUjk0xW+B2H11r3MmJXG21lb\n6NupJS9cMYYf9e8U7rJEREKm8K+GvcVlPPp2Nk++t5q4xofwvxMGc8lRSWrAJiJRR+EfAndn1lcb\nuWNOBpt2FfHjkT24cfwgOqsBm4hEKYX/AWRs3EVKahofr97O0O5tePSCkYzupQZsIhLdFP7fI7+g\nlPsXZvHCkrW0ad6E288YxrmHJ6oBm4g0CAr/fVRUOK8sXc/d87PYWVDCBWN78ZtTBtC2hRqwiUjD\nofCv4vN1O5iemsZXOfkcntSOlCljGNpdDdhEpOFR+ANbdhfzp3mZvLosh86tm/LgOSOYOqK7rs4V\nkQYrpsO/tLyC5z9ay4MLV1BUVs5Vx/XhmhP706ppTP+ziEgMiNmU+zB7K9NT01iZt4fjBnTilslD\n6NupVbjLEhGpFzEX/rk7C7l9Tjpzv95Ez/bNeeLiZE4a3FmHeEQkpsRM+BeVlvP4u6v4y+JsAK47\neQDTju2jBmwiEpMafPi7O29m5DFjdhrrtxcy4dCu3DxhMAnt1IBNRGJXgw7/VVv2cOusdN5ZsYX+\nnVvx4pVjObpfx3CXJSISdg0y/PcUl/HIWyt5+v3VNGvciN9PrGzA1qSRGrCJiEADC3935/UvNnDn\nGxls3lXMWaMTuOG0QXRq3TTcpYmIRJQGE/5pG/JJSU3j0zU7OCwhnpkXjmZUYrtwlyUiEpGiPvx3\nFpRw34IVvPjxWtq2iOOuHx/K2ck9OUQN2EREvlfUhn95hfPyp+u4d34W+YWlXHxkEr8+aQDxLZqE\nuzQRkYgXleG/bO12pqemsTx3F2N6t+fWKUMZ3K1NuMsSEYkaURX+ebuLuOuNTP71WS5d2zTj4fNG\nMvmwbro6V0SkmqIi/EvLK3j2gzU8tGglJWUV/M/xfbn6hH60VAM2EZGDEvHp+d7KLaSkpvHNlr2c\nOKgzf5g0hN4dW4a7LBGRqBax4b9+ewF/nJPO/LTN9OrQgqcuSWbc4C7hLktEpEEIOfzNrBGwFMh1\n90lm1ht4GegALAMucvcSM2s1mCB0AAAFqUlEQVQKPA+MBrYB57j7mlDfp6i0nL++8w0zF3/DIWZc\nf+pArjimtxqwiYjUours+f8SyAC+Pa3mT8AD7v6ymf0VuAKYGTzucPd+ZnZusNw5B/rm7s78tM38\ncU46OTsKmXRYN26eMJjubZtXa0AiInJgITW7MbMEYCLwZPDcgBOBV4NFngNOD6anBs8JXh9nBzgd\np7isgouf/oSf/W0ZLeMa89JPx/Ln80cp+EVE6kioe/4PAr8DWgfPOwA73b0seJ4D9AimewDrAdy9\nzMzyg+W3ft83X7l5N6zfyfTJQ7joiF40VgM2EZE6dcDwN7NJQJ67LzOz42vrjc1sGjANIL57H97+\n7fF0bKUGbCIi9SGUXeyjgSlmtobKD3hPBB4C2prZt388EoDcYDoX6AkQvB5P5Qe/3+Huj7t7srsn\n9+vWTsEvIlKPDhj+7n6Tuye4exJwLvCWu18AvA2cFSx2CfB6MJ0aPCd4/S1391qtWkREaqQmB9dv\nAK4zs2wqj+k/Fcx/CugQzL8OuLFmJYqISG2r1kVe7r4YWBxMrwLG7GeZIuAntVCbiIjUEZ1WIyIS\ngxT+IiIxSOEvIhKDFP4iIjFI4S8iEoMsEk7BN7PdQFa466hDHfmB9hYNgMYXvRry2KDhj2+gu7c+\n8GL/LVL6+We5e3K4i6grZrZU44teDXl8DXlsEBvjO9h1ddhHRCQGKfxFRGJQpIT/4+EuoI5pfNGt\nIY+vIY8NNL7vFREf+IqISP2KlD1/ERGpR/Ue/mbWyMw+N7PZ+3mtqZn9w8yyzexjM0uq7/pq6gDj\nu9TMtpjZF8HXleGo8WCZ2Roz+zqo/b/OMrBKDwfb7yszGxWOOg9GCGM73szyq2y7W8JR58Eys7Zm\n9qqZZZpZhpkduc/rUbvtIKTxRe32M7OBVer+wsx2mdmv9lmm2tsvHKd67nsj+KoO6ubvEeaHxgfw\nD3f/RT3WU9tOcPfvO296PNA/+BoLzAweo8UPjQ3gPXefVG/V1K6HgHnufpaZxQEt9nk92rfdgcYH\nUbr93D0LGAGVO5dU3jDrtX0Wq/b2q9c9/31vBL8f1b75eyQJYXwN3VTgea+0hMq7vXULd1Gxzszi\ngWMJ7rnh7iXuvnOfxaJ224U4voZiHPCNu6/dZ361t199H/b59kbwFd/z+ndu/g58e/P3aHGg8QGc\nGfy37FUz61lPddUWBxaY2bLgHsz7+s/2C+QE86LBgcYGcKSZfWlmb5jZ0PosroZ6A1uAZ4JDkk+a\nWct9lonmbRfK+CB6t19V5wJ/38/8am+/egv/qjeCr6/3rE8hjm8WkOTuhwEL+f//y4kWx7j7KCr/\ni3m1mR0b7oJq0YHG9hnQy92HA48A/67vAmugMTAKmOnuI4G9NKw77IUyvmjefgAEh7OmAP+sje9X\nn3v+/3UjeDP72z7LhHTz9wh1wPG5+zZ3Lw6ePgmMrt8Sa8bdc4PHPCqPOe57J7f/bL9AQjAv4h1o\nbO6+y933BNNzgSZm1rHeCz04OUCOu38cPH+VyrCsKmq3HSGML8q337fGA5+5++b9vFbt7Vdv4f89\nN4K/cJ/Fovbm76GMb59jcFOo/GA4KphZSzNr/e00cAqwfJ/FUoGLgzMPjgDy3X1jPZdabaGMzcy6\nfvv5k5mNofJ3Jyp2TNx9E7DezAYGs8YB6fssFpXbDkIbXzRvvyrOY/+HfOAgtl/YG7uZ2Qxgqbun\nUvmBzQtWefP37VSGaFTbZ3zXmtkUoIzK8V0aztqqqQvwWvD70xh4yd3nmdnPANz9r8BcYAKQDRQA\nl4Wp1uoKZWxnAT83szKgEDg3WnZMAtcALwaHDlYBlzWQbfetA40vqrdfsFNyMnBVlXk12n66wldE\nJAbpCl8RkRik8BcRiUEKfxGRGKTwFxGJQQp/EZEYpPAXEYlBCn8RkRik8BcRiUH/D8YZGZ8l5fnu\nAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "490YxcNshBS6", | |
"colab_type": "code", | |
"outputId": "c1956f85-bdf0-41bb-fe5b-b9859df23442", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 313 | |
} | |
}, | |
"source": [ | |
"merged.plot()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "error", | |
"ename": "TypeError", | |
"evalue": "ignored", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-20-8955a1fd4a87>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmerged\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2740\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2741\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2742\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 2743\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_series\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2744\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1996\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1997\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1998\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1999\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2000\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1799\u001b[0m \u001b[0mplot_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubplots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1800\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1801\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1802\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1803\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 247\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 249\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 250\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;32m/usr/local/lib/python3.6/dist-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_compute_plot_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 365\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 366\u001b[0m raise TypeError('Empty {0!r}: no numeric data to '\n\u001b[0;32m--> 367\u001b[0;31m 'plot'.format(numeric_data.__class__.__name__))\n\u001b[0m\u001b[1;32m 368\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumeric_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mTypeError\u001b[0m: Empty 'DataFrame': no numeric data to plot" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "AdxAfUKbhI8q", | |
"colab_type": "code", | |
"outputId": "4359c94f-7dd9-46ad-fec6-75cb66fdcac8", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 903 | |
} | |
}, | |
"source": [ | |
"pd.show_versions()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"\n", | |
"INSTALLED VERSIONS\n", | |
"------------------\n", | |
"commit: None\n", | |
"python: 3.6.8.final.0\n", | |
"python-bits: 64\n", | |
"OS: Linux\n", | |
"OS-release: 4.14.79+\n", | |
"machine: x86_64\n", | |
"processor: x86_64\n", | |
"byteorder: little\n", | |
"LC_ALL: None\n", | |
"LANG: en_US.UTF-8\n", | |
"LOCALE: en_US.UTF-8\n", | |
"\n", | |
"pandas: 0.24.2\n", | |
"pytest: 3.6.4\n", | |
"pip: 19.1.1\n", | |
"setuptools: 41.0.1\n", | |
"Cython: 0.29.12\n", | |
"numpy: 1.16.4\n", | |
"scipy: 1.3.0\n", | |
"pyarrow: 0.14.0\n", | |
"xarray: 0.11.3\n", | |
"IPython: 5.5.0\n", | |
"sphinx: 1.8.5\n", | |
"patsy: 0.5.1\n", | |
"dateutil: 2.5.3\n", | |
"pytz: 2018.9\n", | |
"blosc: None\n", | |
"bottleneck: 1.2.1\n", | |
"tables: 3.4.4\n", | |
"numexpr: 2.6.9\n", | |
"feather: 0.4.0\n", | |
"matplotlib: 3.0.3\n", | |
"openpyxl: 2.5.9\n", | |
"xlrd: 1.1.0\n", | |
"xlwt: 1.3.0\n", | |
"xlsxwriter: None\n", | |
"lxml.etree: 4.2.6\n", | |
"bs4: 4.6.3\n", | |
"html5lib: 1.0.1\n", | |
"sqlalchemy: 1.3.5\n", | |
"pymysql: None\n", | |
"psycopg2: 2.7.6.1 (dt dec pq3 ext lo64)\n", | |
"jinja2: 2.10.1\n", | |
"s3fs: 0.3.0\n", | |
"fastparquet: None\n", | |
"pandas_gbq: 0.4.1\n", | |
"pandas_datareader: 0.7.0\n", | |
"gcsfs: None\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "kCUt8UTLh-Cz", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment