Skip to content

Instantly share code, notes, and snippets.

@act65
Last active August 31, 2016 03:47
Show Gist options
  • Save act65/a034327ed0fce17abff315c0c2ed0e3b to your computer and use it in GitHub Desktop.
Save act65/a034327ed0fce17abff315c0c2ed0e3b to your computer and use it in GitHub Desktop.
Adversarial examples.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "ImportError",
"evalue": "No module named 'tflearn'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-2-358489b846ed>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mtflearn\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtflearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcore\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0minput_data\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdropout\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfully_connected\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtflearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconv\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mconv_2d\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmax_pool_2d\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtflearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnormalization\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mlocal_response_normalization\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtflearn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mestimator\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mregression\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mImportError\u001b[0m: No module named 'tflearn'"
]
}
],
"source": [
"import tflearn\n",
"from tflearn.layers.core import input_data, dropout, fully_connected\n",
"from tflearn.layers.conv import conv_2d, max_pool_2d\n",
"from tflearn.layers.normalization import local_response_normalization\n",
"from tflearn.layers.estimator import regression\n",
"\n",
"# Data loading and preprocessing\n",
"import tflearn.datasets.mnist as mnist\n",
"X, Y, testX, testY = mnist.load_data(one_hot=True)\n",
"X = X.reshape([-1, 28, 28, 1])\n",
"testX = testX.reshape([-1, 28, 28, 1])\n",
"\n",
"# Building convolutional network\n",
"network = input_data(shape=[None, 28, 28, 1], name='input')\n",
"network = conv_2d(network, 32, 3, activation='relu', regularizer=\"L2\")\n",
"network = max_pool_2d(network, 2)\n",
"network = local_response_normalization(network)\n",
"network = conv_2d(network, 64, 3, activation='relu', regularizer=\"L2\")\n",
"network = max_pool_2d(network, 2)\n",
"network = local_response_normalization(network)\n",
"network = fully_connected(network, 128, activation='tanh')\n",
"network = dropout(network, 0.8)\n",
"network = fully_connected(network, 256, activation='tanh')\n",
"network = dropout(network, 0.8)\n",
"network = fully_connected(network, 10, activation='softmax')\n",
"network = regression(network, optimizer='adam', learning_rate=0.01,\n",
" loss='categorical_crossentropy', name='target')\n",
"\n",
"# Training\n",
"model = tflearn.DNN(network, tensorboard_verbose=0)\n",
"model.fit({'input': X}, {'target': Y}, n_epoch=20,\n",
" validation_set=({'input': testX}, {'target': testY}),\n",
" snapshot_step=100, show_metric=True, run_id='convnet_mnist')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment