Created
April 9, 2020 11:49
-
-
Save adam704a/0352135ade89e008c2fb2ad10f720f2d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Overview\n", | |
"This script reads in the formatted workbook that we recieved from Stop Palu + and produces an import file that can be used in the Import Wizard. The template for this import file is here: Cohort Data Import.xlsx" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step 1\n", | |
"Read in file to get the facility names and regions (they don't make this easy)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"cohortfiles = pd.read_excel('../../Other Forms/DONNEES SUIVI DE COHORTE_STOPPALU+_Janv-Juin 2019 vf(1).xlsx', index_col=0, header=None,sheet_name=None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"region = cohortfiles['CS BINTIMODIA'].loc['DRS/DSVCO'][1] \n", | |
"district = cohortfiles['CS BINTIMODIA'].loc['DRS/DSVCO'][5] \n", | |
"facility = cohortfiles['CS BINTIMODIA'].loc['DRS/DSVCO'][10] " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# build a list of health facilities and their districts\n", | |
"regions = []\n", | |
"districts = []\n", | |
"facilities = []\n", | |
"\n", | |
"for tabname, df in cohortfiles.items():\n", | |
"\n", | |
" if \"total\" not in tabname.lower() and \"dps \" not in tabname.lower(): #don't include these\n", | |
" #print(tabname)\n", | |
" regions.append(df.loc['DRS/DSVCO'][1].title())\n", | |
" districts.append(df.loc['DRS/DSVCO'][5].title() )\n", | |
" facilities.append(df.loc['DRS/DSVCO'][10].title())\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"combined = zip(regions, districts,facilities)\n", | |
"facility_df = pd.DataFrame(combined, columns = ['region', 'district', 'facility'])\n", | |
"\n", | |
"# add period\n", | |
"facility_df[\"period\"] = \"2019Oct\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(161, 4)" | |
] | |
}, | |
"execution_count": 30, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"facility_df.shape" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step 2\n", | |
"Initialize the data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# define columns\n", | |
"columns = [\n", | |
"\"Cohorte - CPN 1 Cohorte de janvier\",\n", | |
"\"Cohorte - CPN 1 Cohorte de février\",\n", | |
"\"Cohorte - CPN 1 Cohorte de mars\",\n", | |
"\"Cohorte - CPN 1 Cohorte d'avril\",\n", | |
"\"Cohorte - CPN 1 Cohorte de mai\",\n", | |
"\"Cohorte - CPN 1 Cohorte de juin\",\n", | |
"\"Cohorte - CPN 1 Cohorte de juillet\",\n", | |
"\"Cohorte - CPN 1 Cohorte d'août\",\n", | |
"\"Cohorte - CPN 1 Cohorte de septembre\",\n", | |
"\"Cohorte - CPN 1 Cohorte d'octobre\",\n", | |
"\"Cohorte - CPN 1 Cohorte de novembre\",\n", | |
"\"Cohorte - CPN 1 Cohorte de décembre\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de janvier\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de février\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de mars\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte d'avril\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de mai\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de juin\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de juillet\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte d'août\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de septembre\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte d'octobre\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de novembre\",\n", | |
"\"Cohorte - CPN1 au 1er trimestre ≤ 12 semaines Cohorte de décembre\",\n", | |
"\"Cohorte - SP 1 Cohorte de janvier\",\n", | |
"\"Cohorte - SP 1 Cohorte de février\",\n", | |
"\"Cohorte - SP 1 Cohorte de mars\",\n", | |
"\"Cohorte - SP 1 Cohorte d'avril\",\n", | |
"\"Cohorte - SP 1 Cohorte de mai\",\n", | |
"\"Cohorte - SP 1 Cohorte de juin\",\n", | |
"\"Cohorte - SP 1 Cohorte de juillet\",\n", | |
"\"Cohorte - SP 1 Cohorte d'août\",\n", | |
"\"Cohorte - SP 1 Cohorte de septembre\",\n", | |
"\"Cohorte - SP 1 Cohorte d'octobre\",\n", | |
"\"Cohorte - SP 1 Cohorte de novembre\",\n", | |
"\"Cohorte - SP 1 Cohorte de décembre\",\n", | |
"\"Cohorte - SP 2 Cohorte de janvier\",\n", | |
"\"Cohorte - SP 2 Cohorte de février\",\n", | |
"\"Cohorte - SP 2 Cohorte de mars\",\n", | |
"\"Cohorte - SP 2 Cohorte d'avril\",\n", | |
"\"Cohorte - SP 2 Cohorte de mai\",\n", | |
"\"Cohorte - SP 2 Cohorte de juin\",\n", | |
"\"Cohorte - SP 2 Cohorte de juillet\",\n", | |
"\"Cohorte - SP 2 Cohorte d'août\",\n", | |
"\"Cohorte - SP 2 Cohorte de septembre\",\n", | |
"\"Cohorte - SP 2 Cohorte d'octobre\",\n", | |
"\"Cohorte - SP 2 Cohorte de novembre\",\n", | |
"\"Cohorte - SP 2 Cohorte de décembre\",\n", | |
"\"Cohorte - SP 3 Cohorte de janvier\",\n", | |
"\"Cohorte - SP 3 Cohorte de février\",\n", | |
"\"Cohorte - SP 3 Cohorte de mars\",\n", | |
"\"Cohorte - SP 3 Cohorte d'avril\",\n", | |
"\"Cohorte - SP 3 Cohorte de mai\",\n", | |
"\"Cohorte - SP 3 Cohorte de juin\",\n", | |
"\"Cohorte - SP 3 Cohorte de juillet\",\n", | |
"\"Cohorte - SP 3 Cohorte d'août\",\n", | |
"\"Cohorte - SP 3 Cohorte de septembre\",\n", | |
"\"Cohorte - SP 3 Cohorte d'octobre\",\n", | |
"\"Cohorte - SP 3 Cohorte de novembre\",\n", | |
"\"Cohorte - SP 3 Cohorte de décembre\",\n", | |
"\"Cohorte - SP 4+ Cohorte de janvier\",\n", | |
"\"Cohorte - SP 4+ Cohorte de février\",\n", | |
"\"Cohorte - SP 4+ Cohorte de mars\",\n", | |
"\"Cohorte - SP 4+ Cohorte d'avril\",\n", | |
"\"Cohorte - SP 4+ Cohorte de mai\",\n", | |
"\"Cohorte - SP 4+ Cohorte de juin\",\n", | |
"\"Cohorte - SP 4+ Cohorte de juillet\",\n", | |
"\"Cohorte - SP 4+ Cohorte d'août\",\n", | |
"\"Cohorte - SP 4+ Cohorte de septembre\",\n", | |
"\"Cohorte - SP 4+ Cohorte d'octobre\",\n", | |
"\"Cohorte - SP 4+ Cohorte de novembre\",\n", | |
"\"Cohorte - SP 4+ Cohorte de décembre\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de janvier\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de février\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de mars\",\n", | |
"\"Cohorte - Accouch au CS Cohorte d'avril\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de mai\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de juin\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de juillet\",\n", | |
"\"Cohorte - Accouch au CS Cohorte d'août\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de septembre\",\n", | |
"\"Cohorte - Accouch au CS Cohorte d'octobre\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de novembre\",\n", | |
"\"Cohorte - Accouch au CS Cohorte de décembre\"\n", | |
"]\n", | |
"\n", | |
"cohort_data = {}\n", | |
"for n in columns:\n", | |
" #print(n)\n", | |
" cohort_data[n]=[]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# whats in here again (optional)\n", | |
"#cohort_data" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step 3\n", | |
"Read in file to get the cohort data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"cohorts = pd.read_excel('../../Other Forms/DONNEES SUIVI DE COHORTE_STOPPALU+_Janv-Juin 2019 vf(1).xlsx', header=6, index_col=0, sheet_name=None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>CPN 1</th>\n", | |
" <th>CPN1 au 1er trimestre ≤ 12 semaines</th>\n", | |
" <th>SP 1</th>\n", | |
" <th>SP 1 à 13 SA</th>\n", | |
" <th>SP 2</th>\n", | |
" <th>SP 3</th>\n", | |
" <th>SP 4+</th>\n", | |
" <th>Accouch au CS</th>\n", | |
" <th>FE ayant reçu au moins 3 doses de SP avec respect d'1 mois d'interval entre 2 prises</th>\n", | |
" <th>Couverture en TPI-3</th>\n", | |
" <th>Couverture effective en TPI-3</th>\n", | |
" <th>% TPI-1 à 13 SA</th>\n", | |
" <th>%FE ayant accouché au CS</th>\n", | |
" <th>Taux d'abandon SP1-SP3</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>COHORTES</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2019-01-01 00:00:00</th>\n", | |
" <td>141.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>38.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>52.0</td>\n", | |
" <td>32.0</td>\n", | |
" <td>19.0</td>\n", | |
" <td>22.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.22695</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.156028</td>\n", | |
" <td>0.157895</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019-02-01 00:00:00</th>\n", | |
" <td>138.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>43.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>39.0</td>\n", | |
" <td>34.0</td>\n", | |
" <td>22.0</td>\n", | |
" <td>26.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.246377</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.188406</td>\n", | |
" <td>0.209302</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019-03-01 00:00:00</th>\n", | |
" <td>145.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>33.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>50.0</td>\n", | |
" <td>39.0</td>\n", | |
" <td>23.0</td>\n", | |
" <td>37.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.268966</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.255172</td>\n", | |
" <td>-0.181818</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019-04-01 00:00:00</th>\n", | |
" <td>18.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>18.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>18.0</td>\n", | |
" <td>16.0</td>\n", | |
" <td>12.0</td>\n", | |
" <td>15.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.888889</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.833333</td>\n", | |
" <td>0.111111</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2019-05-01 00:00:00</th>\n", | |
" <td>26.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>26.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>22.0</td>\n", | |
" <td>14.0</td>\n", | |
" <td>9.0</td>\n", | |
" <td>5.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0.538462</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0.192308</td>\n", | |
" <td>0.461538</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" CPN 1 CPN1 au 1er trimestre ≤ 12 semaines SP 1 \\\n", | |
"COHORTES \n", | |
"2019-01-01 00:00:00 141.0 NaN 38.0 \n", | |
"2019-02-01 00:00:00 138.0 NaN 43.0 \n", | |
"2019-03-01 00:00:00 145.0 NaN 33.0 \n", | |
"2019-04-01 00:00:00 18.0 NaN 18.0 \n", | |
"2019-05-01 00:00:00 26.0 NaN 26.0 \n", | |
"\n", | |
" SP 1 à 13 SA SP 2 SP 3 SP 4+ Accouch au CS \\\n", | |
"COHORTES \n", | |
"2019-01-01 00:00:00 NaN 52.0 32.0 19.0 22.0 \n", | |
"2019-02-01 00:00:00 NaN 39.0 34.0 22.0 26.0 \n", | |
"2019-03-01 00:00:00 NaN 50.0 39.0 23.0 37.0 \n", | |
"2019-04-01 00:00:00 NaN 18.0 16.0 12.0 15.0 \n", | |
"2019-05-01 00:00:00 NaN 22.0 14.0 9.0 5.0 \n", | |
"\n", | |
" FE ayant reçu au moins 3 doses de SP avec respect d'1 mois d'interval entre 2 prises \\\n", | |
"COHORTES \n", | |
"2019-01-01 00:00:00 NaN \n", | |
"2019-02-01 00:00:00 NaN \n", | |
"2019-03-01 00:00:00 NaN \n", | |
"2019-04-01 00:00:00 NaN \n", | |
"2019-05-01 00:00:00 NaN \n", | |
"\n", | |
" Couverture en TPI-3 Couverture effective en TPI-3 \\\n", | |
"COHORTES \n", | |
"2019-01-01 00:00:00 0.22695 0 \n", | |
"2019-02-01 00:00:00 0.246377 0 \n", | |
"2019-03-01 00:00:00 0.268966 0 \n", | |
"2019-04-01 00:00:00 0.888889 0 \n", | |
"2019-05-01 00:00:00 0.538462 0 \n", | |
"\n", | |
" % TPI-1 à 13 SA %FE ayant accouché au CS \\\n", | |
"COHORTES \n", | |
"2019-01-01 00:00:00 0 0.156028 \n", | |
"2019-02-01 00:00:00 0 0.188406 \n", | |
"2019-03-01 00:00:00 0 0.255172 \n", | |
"2019-04-01 00:00:00 0 0.833333 \n", | |
"2019-05-01 00:00:00 0 0.192308 \n", | |
"\n", | |
" Taux d'abandon SP1-SP3 \n", | |
"COHORTES \n", | |
"2019-01-01 00:00:00 0.157895 \n", | |
"2019-02-01 00:00:00 0.209302 \n", | |
"2019-03-01 00:00:00 -0.181818 \n", | |
"2019-04-01 00:00:00 0.111111 \n", | |
"2019-05-01 00:00:00 0.461538 " | |
] | |
}, | |
"execution_count": 34, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cohorts['CS BINTIMODIA'].head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# go through each tab and put data in the main dictionary\n", | |
"\n", | |
"for tabname, df in cohorts.items():\n", | |
" #print(\"processing \"+ tabname)\n", | |
" if \"total\" not in tabname.lower() and \"dps \" not in tabname.lower(): #don't include these\n", | |
"\n", | |
" df.reset_index(inplace=True) # the index needs to be numeric for this\n", | |
"\n", | |
" # load data into main dictionary by column\n", | |
" \n", | |
" for index, row in df['CPN 1'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index]]\n", | |
" data.append(row)\n", | |
"\n", | |
" # this indicator starts at row 12\n", | |
" for index, row in df['CPN1 au 1er trimestre ≤ 12 semaines'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index+12]]\n", | |
" data.append(row)\n", | |
" \n", | |
" # this indicator starts at row 24\n", | |
" for index, row in df['SP 1'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index+24]]\n", | |
" data.append(row)\n", | |
" \n", | |
" # this indicator starts at row 36\n", | |
" for index, row in df['SP 2'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index+36]]\n", | |
" data.append(row)\n", | |
" \n", | |
" # this indicator starts at row 48\n", | |
" for index, row in df['SP 3'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index+48]]\n", | |
" data.append(row)\n", | |
" \n", | |
" # this indicator starts at row 60\n", | |
" for index, row in df['SP 4+'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index+60]]\n", | |
" data.append(row)\n", | |
" \n", | |
" # this indicator starts at row 72\n", | |
" for index, row in df['Accouch au CS'].items():\n", | |
" if index < 12: # don't include totals row\n", | |
" data = cohort_data[columns[index+72]]\n", | |
" data.append(row)\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step 4\n", | |
"Put everything together" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# probably loop here\n", | |
"main_df = facility_df\n", | |
"\n", | |
"\n", | |
"#for i in range(36): # onsey twosie, there are 12 * 7 = 84 of these\n", | |
"for i, n in enumerate(columns): #everything\n", | |
" main_df[columns[i]] = cohort_data[columns[i]]\n", | |
" #print(i)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(161, 88)" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"main_df.shape" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step 5\n", | |
"Write out the file. This will be what you import" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"main_df.to_excel(\"cohort import.xlsx\", encoding='utf-8', index=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "rti", | |
"language": "python", | |
"name": "rti" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.10" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment