Created
April 17, 2020 19:43
-
-
Save adameubanks/64e79ae98f48768ada0b78417746624f to your computer and use it in GitHub Desktop.
Euler's Method.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Euler's Method.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyPaq4nKqYUGjqYBroTeTTeo", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/KhanradCoder/64e79ae98f48768ada0b78417746624f/euler-s-method.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "87MX6R19vPo1", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import numpy as np \n", | |
"import matplotlib.pyplot as plt" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "ItHt1o_2m7_Z", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"In the y_actual function where it says return, you can input the function you want to estimate. In this case, I'm using x^2 for simplicity, however you can also use an equation in terms of y and x. The y_derivative function is simply the derivative of the y_actual function, which in this case is 2x " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Zs6uh3CXvscc", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def y_actual(x=0,y=0):\n", | |
" return(x**2)\n", | |
"\n", | |
"def y_derivative(x=0, y=0):\n", | |
" return (2*x)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "GHT0SI9Bnw5j", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Next, I wrote the function for Euler's method.there are many parameters I could have taken in, but I ultimately decided on the x value we want to estimate, the number of steps we want to take, and an initial y value." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "gEhJ4_HBxvkk", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def eulers_method(x, n):\n", | |
" y_hat = 0\n", | |
" h = x/n\n", | |
" for i in range(n):\n", | |
" y_hat += h*y_derivative(h*i,0,0)\n", | |
" return(y_hat)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "KApZv7XFoMy5", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"Finally, I printed the results of Euler's approximation, the actual solution and the percent error. You can see that as the steps increase, the error decreases." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ueHLgZ393HKM", | |
"colab_type": "code", | |
"outputId": "0f757d30-f1ed-4212-9af9-3c0634562f44", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 71 | |
} | |
}, | |
"source": [ | |
"x = 5\n", | |
"steps = 1000000\n", | |
"\n", | |
"print(\"Euler's method approximation: \"+str(eulers_method(x, steps)))\n", | |
"print(\"Actual solution: \"+str(y_actual(x)))\n", | |
"print(\"Error: \"+str(np.abs((y_actual(x)-eulers_method(x, steps))/eulers_method(x, steps))*100)+\"%\")" | |
], | |
"execution_count": 53, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Euler's method approximation: 24.999975000000006\n", | |
"Actual solution: 25\n", | |
"Error: 0.00010000009997499789%\n" | |
], | |
"name": "stdout" | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment