Skip to content

Instantly share code, notes, and snippets.

wget -qO - http://packages.confluent.io/deb/3.1/archive.key | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] http://packages.confluent.io/deb/3.1 stable main"
# Starting Confluent with
cd <path to your Confluent Installation>/bin/
./confluent start
@adekunleba
adekunleba / convert_pb_to_tf_serving.py
Last active November 5, 2018 14:57
Convert a frozen tensorflow model to Tensorflow serving format
import tensorflow as tf
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
import argparse
export_dir = 'models/1'
builder = tf.saved_model.builder.SavedModelBuilder(export_dir)
@adekunleba
adekunleba / tensorflow_serving.sh
Created November 5, 2018 15:07
Script to pull a docker tensorflow serving and rum
docker run -p 8501:8501 --mount type=bind,source=/path/to/my_model/,target=/models/my_model \
-e MODEL_NAME=my_model -t tensorflow/serving
docker run -p 8500:8500 --mount type=bind,source=/home/sfx/models/,target=/models/2 -e MODEL_NAME=2 -t tensorflow/serving
#please change the /home/sfx/models absolute path of model on your server
resource_field = {"Message": fields.String,
"Image_Embedding": fields.List(fields.String),
"ID_Embedding": fields.List(fields.String),
"Confidence": fields.String,
"Round Trip Time": fields.String,
"Process First Image Time": fields.String,
"Process Second Image Time": fields.String,
"Generate and Compare Time": fields.String}
resource_field = {"Message": fields.String,
"Image_Embedding": fields.List(fields.String),
"ID_Embedding": fields.List(fields.String),
"Confidence": fields.String,
"Round Trip Time": fields.String,
"Process First Image Time": fields.String,
"Process Second Image Time": fields.String,
"Generate and Compare Time": fields.String}
scala> val examplelist = List(1, 2, 3, 4, 5)
examplelist: List[Int] = List(1, 2, 3, 4, 5)
scala> examplelist.map(x => List(x*x))
res1: List[List[Int]] = List(List(1), List(4), List(9), List(16), List(25))
scala> examplelist.flatMap(x => List(x*x))
res4: List[Int] = List(1, 4, 9, 16, 25)
dataset = generate(tfrecordfiles)
IM_SIZE = 224 # image size
image_input = tf.keras.Input(shape=(IM_SIZE, IM_SIZE, 3), name='input_layer')
# Some convolutional layers
conv_1 = tf.keras.layers.Conv2D(32,
kernel_size=(3, 3),
padding='same',
activation='relu')(image_input)
conv_1 = tf.keras.layers.MaxPooling2D(padding='same')(conv_1)
val conf = new SparkConf().setMaster("local[*").setAppName("simple-app")
val sparkContext = new SparkContext(conf)
//Loading data with Spark Context returns an RDD
val rdd: RDD[String] = sparkContext.textFile("textfile.csv")
//Also you can create an RDD by parallizing an existing Data
val data: Array[Int] = Array(1, 2, 3, 4, 5, 6, 6, 7, 7)
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("simple-app")
.getOrCreate()
val dataSet: Dataset[String] = spark.read.textFile("textfile.csv")
val df: DataFrame = dataSet.toDF()