Skip to content

Instantly share code, notes, and snippets.

View adraguidev's full-sized avatar
馃彔
Working from home

Adrian Aguirre adraguidev

馃彔
Working from home
View GitHub Profile
@adraguidev
adraguidev / SVM.py
Last active August 8, 2020 23:35
SKLearn
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = svm.SVC()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
@adraguidev
adraguidev / beautifulsoup.py
Last active September 16, 2021 18:19
Scrapping
import requests #pip install requests
from bs4 import BeautifulSoup as bs # pip install beautifulsoup4
#Load our first page:
r = request.get("URL")
#Convert to a beautiful soup object
soup = bs(r.content)
#Print our html
#crear un h2oframe desde pandas
df_medicine = h2o.H2OFrame(df)
#Convertir H2Odataframe a un Dataframe de Pandas
df_python=h2o.h2o.as_list(df_medicine, use_pandas=True)
type(df_python)
#Encoding
from collections import defaultdict
from sklearn import preprocessing
@adraguidev
adraguidev / clarans.py
Created August 10, 2020 01:45
Metodo CLARANS
#importamos las librerrias
from pyclustering.cluster.clarans import clarans;
from pyclustering.utils import timedcall;
import pyreadstat
#cargamos la data
filesav = 'datos/democracias_latam.sav'
df, meta = pyreadstat.read_sav(filesav )
df.head(25)
@adraguidev
adraguidev / esenciales.py
Last active August 10, 2020 04:40
Metodo Jerarquico
import pandas as pd
import numpy as np
np.random.seed(123) #generamos semilla
variables = ['X', 'Y', 'Z'] #variables
labels = ['ID_0', 'ID_1', 'ID_2', 'ID_3', 'ID_4'] #valores
X = np.random.random_sample([5, 3])*10 #Le damos valores
df = pd.DataFrame(X, columns=variables, index=labels) #Creamos nuestro dataframe aleatorio