Skip to content

Instantly share code, notes, and snippets.

["#ffb400", "#d2980d", "#a57c1b", "#786028", "#363445", "#48446e", "#5e569b", "#776bcd", "#9080ff"]
["#54bebe", "#76c8c8", "#98d1d1", "#badbdb", "#dedad2", "#e4bcad", "#df979e", "#d7658b", "#c80064"]
["#e27c7c", "#a86464", "#6d4b4b", "#503f3f", "#333333", "#3c4e4b", "#466964", "#599e94", "#6cd4c5"]
aws s3 ls s3://first-street-climate-risk-statistics-for-noncommercial-use/ --no-sign-request
aws s3 ls s3://first-street-climate-risk-statistics-for-noncommercial-use/01_DATA/ --no-sign-request
aws s3 ls s3://first-street-climate-risk-statistics-for-noncommercial-use/01_DATA/Climate_Risk_Statistics/ --no-sign-request
aws s3 ls s3://first-street-climate-risk-statistics-for-noncommercial-use/01_DATA/Climate_Risk_Statistics/v1.2/ --no-sign-request
Region = us-west-2
Bucket = first-street-climate-risk-statistics-for-noncommercial-use
Path = 01_DATA/Climate_Risk_Statistics/v1.2/County_level_risk_FEMA_FSF_v1.2.csv
CREATE TABLE county_level_flood_risk_FSF (
fips TEXT ENCODING DICT(32),
name TEXT ENCODING DICT(32),
count_property INTEGER,
count_fema_sfha INTEGER,
pct_fema_sfha FLOAT,
count_fs_risk_2020_5 INTEGER,
pct_fs_risk_2020_5 FLOAT,
count_fs_risk_2050_5 INTEGER,
pct_fs_risk_2050_5 FLOAT,
/opt/omnisci/bin/omnisql -u admin -p HyperInteractive --db omnisci
COPY county_level_flood_risk_FSF FROM 's3://first-street-climate-risk-statistics-for-noncommercial-use/01_DATA/Climate_Risk_Statistics/v1.2/County_level_risk_FEMA_FSF_v1.2.csv' WITH (s3_region = 'us-west-2');
import json
import pandas as pd
import ibis
import requests
import time
satid = 25544
url = "https://api.n2yo.com/rest/v1/satellite/positions/"+str(satid)+"/41.702/-76.014/0/1/&apiKey=someKey"
res = requests.get(url)
satellites = json.loads(res.text)
satellites = json.loads(res.text)
satellites