Skip to content

Instantly share code, notes, and snippets.

View ahmedazizkhelifi's full-sized avatar
🍉

KHELIFI Ahmed Aziz ahmedazizkhelifi

🍉
View GitHub Profile
<table>
<thead>
<tr>
<th>Id</th>
<th>Label</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
Id Label Price
01 Markdown $1600
02 is $12
03 AWESOME $999
def staySafe(Coronavirus):
	if not home:
		return home
<pre><code class="lang-python"><span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">staySafe</span><span class="hljs-params">(Coronavirus)</span></span>
<span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> <span class="hljs-symbol">home:</span>
<span class="hljs-keyword">return</span> home
</code></pre>

This is a blockquote.

This is part of the same blockquote.

Quote break

This is a new blockquote.

<blockquote>
<p>This is a blockquote.</p>
<p>This is part of the same blockquote.</p>
</blockquote>
<p>Quote break</p>
<blockquote>
<p>This is a new blockquote.</p>
</blockquote>
$$
sign(x) = \left\{
\begin{array}\\
1 & \mbox{if } \ x \in \mathbf{N}^* \\
0 & \mbox{if } \ x = 0 \\
-1 & \mbox{else.}
\end{array}
\right.
$$
$$
\underbrace{\ln \left( \frac{5}{6} \right)}_{\simeq -0.1823}
< \overbrace{\exp (2)}^{\simeq 7.3890}
$$
First order derivative : $$f'(x)$$
K-th order derivative : $$f^{(k)}(x)$$
Partial firt order deivative : $$\frac{\partial f}{\partial x}$$
Partial k-th order derivative : $$\frac{\partial^{k} f}{\partial x^k}$$
#limit
Limit at plus infinity : $$\lim_{x \to +\infty} f(x)$$
Limit at minus infinity : $$\lim_{x \to -\infty} f(x)$$
Limit at $\alpha$ : $$\lim_{x \to \alpha} f(x)$$
Max : $$\max_{x \in [a,b]}f(x)$$
Min : $$\min_{x \in [\alpha,\beta]}f(x)$$
Sup : $$\sup_{x \in \mathbb{R}}f(x)$$
Inf : $$\inf_{x > s}f(x)$$