Skip to content

Instantly share code, notes, and snippets.

View ahmedazizkhelifi's full-sized avatar
🍉

KHELIFI Ahmed Aziz ahmedazizkhelifi

🍉
View GitHub Profile
Sum from 0 to +inf:
$$\sum_{j=0}^{+\infty} A_{j}$$
Double sum:
$$\sum^k_{i=1}\sum^{l+1}_{j=1}\,A_i A_j$$
Taylor expansion of $e^x$:
$$ e^x = \sum_{k=0}^{n}\, \frac{x^k}{k!} + o(x^n) $$
Product:
$$\prod_{j=1}^k A_{\alpha_j}$$
Double product:
$$\prod^k_{i=1}\prod^l_{j=1}\,A_i A_j$$
Simple integral:
$$\int_{a}^b f(x)dx$$
Double integral:
$$\int_{a}^b\int_{c}^d f(x,y)\,dxdy$$
Triple integral:
$$\iiint$$
Quadruple integral:
To insert a mathematical formula we use the dollar symbol $, as follows:
Euler's identity: $ e^{i \pi} + 1 = 0 $
To isolate and center the formulas and enter in math display mode, we use 2 dollars symbol:
$$
...
$$
Plain:
\begin{matrix}
1 & 2 & 3\\
a & b & c
\end{matrix}
Round brackets:
\begin{pmatrix}
1 & 2 & 3\\
Given : $\pi = 3.14$ , $\alpha = \frac{3\pi}{4}\, rad$
$$
\omega = 2\pi f \\
f = \frac{c}{\lambda}\\
\lambda_0=\theta^2+\delta\\
\Delta\lambda = \frac{1}{\lambda^2}
$$
$$
\sin(-\alpha)=-\sin(\alpha)\\
\arccos(x)=\arcsin(u)\\
\log_n(n)=1\\
\tan(x) = \frac{\sin(x)}{\cos(x)}
$$
#Other Symbols
## Angles:
Left angle : $\langle$
Right angle : $\rangle$
Angle between two vectors u and v : $\langle \vec{u},\vec{v}\rangle$
$$ \vec{AB} \, \cdot \, \vec{CD} =0 \Rightarrow \vec{AB} \, \perp\, \vec{CD}$$
$$
\frac{arg 1}{arg 2} \\
x^2\\
e^{i\pi}\\
A_i\\
B_{ij}\\
\sqrt[n]{arg}
$$
def maxi(a,b):
return max(a,b)
import pdb
pdb.set_trace()
print(maxi(1,2))
print(maxi(1,a))