This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ['Tokyo', 'New York', 'Mexico City', 'Mumbai', 'São Paulo', 'Delhi', | |
| 'Shanghai', 'Kolkata', 'Los Angeles', 'Dhaka', 'Buenos Aires', | |
| 'Karachi', 'Cairo', 'Rio de Janeiro', 'Ōsaka', 'Beijing', 'Manila', | |
| 'Moscow', 'Istanbul', 'Paris', 'Seoul', 'Lagos', 'Jakarta', | |
| 'Guangzhou', 'Chicago', 'London', 'Lima', 'Tehran', 'Kinshasa', | |
| 'Bogotá', 'Shenzhen', 'Wuhan', 'Hong Kong', 'Tianjin', 'Chennai', | |
| 'Taipei', 'Bengalūru', 'Bangkok', 'Lahore', 'Chongqing', 'Miami', | |
| 'Hyderabad', 'Dallas', 'Santiago', 'Philadelphia', | |
| 'Belo Horizonte', 'Madrid', 'Houston', 'Ahmadābād', | |
| 'Ho Chi Minh City', 'Washington', 'Atlanta', 'Toronto', |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ['Tokyo', 'New York', 'Mexico City', 'Mumbai', 'São Paulo', 'Delhi', | |
| 'Shanghai', 'Kolkata', 'Los Angeles', 'Dhaka', 'Buenos Aires', | |
| 'Karachi', 'Cairo', 'Rio de Janeiro', 'Ōsaka', 'Beijing', 'Manila', | |
| 'Moscow', 'Istanbul', 'Paris', 'Seoul', 'Lagos', 'Jakarta', | |
| 'Guangzhou', 'Chicago', 'London', 'Lima', 'Tehran', 'Kinshasa', | |
| 'Bogotá', 'Shenzhen', 'Wuhan', 'Hong Kong', 'Tianjin', 'Chennai', | |
| 'Taipei', 'Bengalūru', 'Bangkok', 'Lahore', 'Chongqing', 'Miami', | |
| 'Hyderabad', 'Dallas', 'Santiago', 'Philadelphia', | |
| 'Belo Horizonte', 'Madrid', 'Houston', 'Ahmadābād', | |
| 'Ho Chi Minh City', 'Washington', 'Atlanta', 'Toronto', |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class TSP(): | |
| cities = None | |
| santa = None | |
| variables_dict = None | |
| x = None | |
| path = None | |
| sec_constraints = 0 | |
| execution_time = 0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ID | y | X0 | X1 | X2 | X3 | X4 | X5 | X6 | X8 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 | X21 | X22 | X23 | X24 | X26 | X27 | X28 | X29 | X30 | X31 | X32 | X33 | X34 | X35 | X36 | X37 | X38 | X39 | X40 | X41 | X42 | X43 | X44 | X45 | X46 | X47 | X48 | X49 | X50 | X51 | X52 | X53 | X54 | X55 | X56 | X57 | X58 | X59 | X60 | X61 | X62 | X63 | X64 | X65 | X66 | X67 | X68 | X69 | X70 | X71 | X73 | X74 | X75 | X76 | X77 | X78 | X79 | X80 | X81 | X82 | X83 | X84 | X85 | X86 | X87 | X88 | X89 | X90 | X91 | X92 | X93 | X94 | X95 | X96 | X97 | X98 | X99 | X100 | X101 | X102 | X103 | X104 | X105 | X106 | X107 | X108 | X109 | X110 | X111 | X112 | X113 | X114 | X115 | X116 | X117 | X118 | X119 | X120 | X122 | X123 | X124 | X125 | X126 | X127 | X128 | X129 | X130 | X131 | X132 | X133 | X134 | X135 | X136 | X137 | X138 | X139 | X140 | X141 | X142 | X143 | X144 | X145 | X146 | X147 | X148 | X150 | X151 | X152 | X153 | X154 | X155 | X156 | X157 | X158 | X159 | X160 | X161 | X162 | X163 | X164 | X165 | X166 | X167 | X168 | X169 | X170 | X171 | X172 | X173 | X174 | X175 | X176 | X177 | X178 | X179 | X180 | X181 | X182 | X183 | X184 | X185 | X186 | X187 | X189 | X190 | X191 | X192 | X194 | X195 | X196 | X197 | X198 | X199 | X200 | X201 | X202 | X203 | X204 | X205 | X206 | X207 | X208 | X209 | X210 | X211 | X212 | X213 | X214 | X215 | X216 | X217 | X218 | X219 | X220 | X221 | X222 | X223 | X224 | X225 | X226 | X227 | X228 | X229 | X230 | X231 | X23 |
|---|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def preprocessing(): | |
| # Read input data | |
| train = pd.read_csv("train.csv") | |
| categorical = ["X0", "X1", "X2", "X3", "X4", "X5", "X6", "X8"] | |
| # Convert categorical data | |
| for c in categorical: | |
| group_by = train.groupby(by=c)["y"].mean().reset_index().rename(columns={"y": "{}_converted".format(c)}) | |
| train = pd.merge(train, group_by, how='inner', on=c) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| param_grid = {'learning_rate': [float(v) for v in np.arange(0.01, 0.25, 0.01)], | |
| 'colsample_bytree': [float(v) for v in np.arange(0.8, 1.01, 0.1)], | |
| 'subsample': [float(v) for v in np.arange(0.5, 1.01, 0.1)], | |
| 'n_estimators': [int(v) for v in np.arange(100, 3000, 100)], | |
| 'reg_alpha': [float(v) for v in np.arange(0.01, 0.5, 0.05)], | |
| 'max_depth': [int(v) for v in np.arange(3, 14, 1)], | |
| 'gamma': [int(v) for v in np.arange(0, 10, 2)] | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def get_grid_iterable(): | |
| param_grid = {'learning_rate': [float(v) for v in np.arange(0.01, 0.25, 0.01)], | |
| 'colsample_bytree': [float(v) for v in np.arange(0.8, 1.01, 0.1)], | |
| 'subsample': [float(v) for v in np.arange(0.5, 1.01, 0.1)], | |
| 'n_estimators': [int(v) for v in np.arange(100, 3000, 100)], | |
| 'reg_alpha': [float(v) for v in np.arange(0.01, 0.5, 0.05)], | |
| 'max_depth': [int(v) for v in np.arange(3, 14, 1)], | |
| 'gamma': [int(v) for v in np.arange(0, 10, 2)] | |
| } | |
| grid_iter = [] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Read input data | |
| X, y = preprocessing() | |
| # Create dataframe to collect the results | |
| tests_columns = ["test_nr", "cv_mean", "cv_min", "cv_max", "cv_median", "params"] | |
| test_id = 0 | |
| tests = pd.DataFrame(columns=tests_columns) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from sklearn.metrics import r2_score | |
| def xgb_r2_score(preds, dtrain): | |
| labels = dtrain.get_label() | |
| return 'r2', r2_score(labels, preds) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Imports | |
| import numpy as np | |
| import pandas as pd | |
| import xgboost as xgb | |
| from interruptingcow import timeout | |
| from sklearn.model_selection import KFold # import KFold | |
| from sklearn.metrics import r2_score | |
| import json | |
| from preprocessing import preprocessing, xgb_r2_score # The preprocessing and the r2 evaluation | |
| from generate_grid import get_grid_iterable # The grid |