Last active
August 29, 2015 14:19
-
-
Save ajdawson/98d7dbe0fe36bfd4423d to your computer and use it in GitHub Desktop.
Very basic 9-point smoothing using rolling_window()
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "", | |
"signature": "sha256:f252f73b6db169b03f856ee7c9aba535634f29ece17bc11a768835a1b5d35e19" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%matplotlib inline\n", | |
"import iris\n", | |
"import iris.quickplot as qplt\n", | |
"from iris.util import rolling_window\n", | |
"import numpy as np" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))\n", | |
"print cube" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"air_temperature / (K) (latitude: 73; longitude: 96)\n", | |
" Dimension coordinates:\n", | |
" latitude x -\n", | |
" longitude - x\n", | |
" Scalar coordinates:\n", | |
" forecast_period: 6477 hours, bound=(-28083.0, 6477.0) hours\n", | |
" forecast_reference_time: 1998-03-01 03:00:00\n", | |
" pressure: 1000.0 hPa\n", | |
" time: 1998-12-01 00:00:00, bound=(1994-12-01 00:00:00, 1998-12-01 00:00:00)\n", | |
" Attributes:\n", | |
" STASH: m01s16i203\n", | |
" source: Data from Met Office Unified Model\n", | |
" Cell methods:\n", | |
" mean within years: time\n", | |
" mean over years: time\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ndims = cube.ndim\n", | |
"xcoord = cube.coord(axis='X')\n", | |
"ycoord = cube.coord(axis='Y')\n", | |
"xdim, = cube.coord_dims(xcoord)\n", | |
"ydim, = cube.coord_dims(ycoord)\n", | |
"cyclic = xcoord.circular\n", | |
"\n", | |
"yu_slicer = [slice(None) if i != ydim else slice(0, 1) for i in range(ndims)]\n", | |
"yl_slicer = [slice(None) if i != ydim else slice(-1, None) for i in range(ndims)]\n", | |
" \n", | |
"# For x-dimension we allow a cyclic axis, so the padding is just the adjacent row\n", | |
"# if cyclice=False, but is the row from the opposite end if cyclic=True:\n", | |
"if cyclic:\n", | |
" xu_slicer = [slice(None) if i != xdim else slice(-1, None) for i in range(ndims)]\n", | |
" xl_slicer = [slice(None) if i != xdim else slice(0, 1) for i in range(ndims)]\n", | |
"else:\n", | |
" xu_slicer = [slice(None) if i != xdim else slice(0, 1) for i in range(ndims)]\n", | |
" xl_slicer = [slice(None) if i != xdim else slice(-1, None) for i in range(ndims)]\n", | |
" \n", | |
"# Pad the data:\n", | |
"padded = cube.data\n", | |
"padded = np.concatenate((padded[yu_slicer], padded, padded[yl_slicer]), axis=ydim)\n", | |
"padded = np.concatenate((padded[xu_slicer], padded, padded[xl_slicer]), axis=xdim)\n", | |
"print('Cube had dimensions: {}, padded data has dimensions: {}'.format(cube.shape, padded.shape))\n", | |
"\n", | |
"# Apply rolling window twice, once for each of the x and y dimensions:\n", | |
"if xdim > ydim:\n", | |
" xdim += 1\n", | |
"else:\n", | |
" ydim += 1\n", | |
"rw = rolling_window(padded, window=3, axis=ydim)\n", | |
"print('After 1 application rolling-window data has dimensions: {}'.format(rw.shape))\n", | |
"rw = rolling_window(rw, window=3, axis=xdim)\n", | |
"print('After 2 applications rolling-window data has dimensions: {}'.format(rw.shape))\n", | |
"\n", | |
"# Average over the two new dimensions to get the 9-point smoothing of the original data:\n", | |
"new_data = rw.mean(axis=(1, 3))\n", | |
"\n", | |
"# Create a new cube and copy the data in:\n", | |
"new_cube = cube.copy()\n", | |
"new_cube.data = new_data" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Cube had dimensions: (73, 96), padded data has dimensions: (75, 98)\n", | |
"After 1 application rolling-window data has dimensions: (73, 3, 98)\n", | |
"After 2 applications rolling-window data has dimensions: (73, 3, 96, 3)\n" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# Plot the original cube:\n", | |
"qplt.pcolormesh(cube)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": [ | |
"/network/home/aopp/dawson/miniconda/envs/iris-dev/lib/python2.7/site-packages/Iris-1.8.0-py2.7.egg/iris/coords.py:779: UserWarning: Coordinate 'longitude' is not bounded, guessing contiguous bounds.\n", | |
" 'contiguous bounds.'.format(self.name()))\n", | |
"/network/home/aopp/dawson/miniconda/envs/iris-dev/lib/python2.7/site-packages/Iris-1.8.0-py2.7.egg/iris/coords.py:779: UserWarning: Coordinate 'latitude' is not bounded, guessing contiguous bounds.\n", | |
" 'contiguous bounds.'.format(self.name()))\n", | |
"/network/home/aopp/dawson/miniconda/envs/iris-dev/lib/python2.7/site-packages/Cartopy-0.12.x-py2.7-linux-x86_64.egg/cartopy/mpl/geoaxes.py:1267: RuntimeWarning: invalid value encountered in greater\n", | |
" to_mask = ((np.abs(dx_horizontal) > np.pi / 2) |\n" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
"<matplotlib.collections.QuadMesh at 0x7f7f7d32a110>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEICAYAAAD8yyfzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX2QH0d557+rfdNK2pW8ki1LtszaWBgZG0xicCicYF6O\nQCovvCTh7sglTip1l7tLCHkDcseBk0sl3FUuuVSO4ypHAkngEurIG6lKgJDEB4HgYIIwDjbYIIFl\n2RKSLK9krVba1d4fM7+dbz87z7Ot+c3OrqTvp2pr+zfTPdPT0zPz7aef7gaEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQlwiDK52BsSa510Angvg46udESGEuJi4G8AxACN9HudOAJ/oNzNriHMArlvtTIiL\nh3WrnQGxJpgC8HwAhwF893mkG1qR3HRHbktvoI9z6BkTQizhbQA+BOA/Avhzs++9AP5zGb4DwAEA\nbwLwGIDfNXH3AJgBMAfgBArlDACjAH4VwNcAPI7CZLHeHPPnULz0DwJ4FYDvAPBlAEcBvIXOcReA\nDwL4QwDTAD4L4Nm0fyeAPyqP9VUAP1GT9vcBPAngRwA8D8DfA3iiPPdvAhgu438chdI9WV7P96Ne\nybMafm95fX9RpnvJMnkSQlyCPAzg9QB2AzgD4Ara9x4Av1iG7wBwFsCvoHgxrcdSfghLX0q/DuBP\nAWwBsAnFC/6XzTHfikJ5/iiAIwDeD2AjgBsBnALwtDL+XWUeX1PG/xkUL7JBFKrys+WxhgBcC+Ar\nAF5u0vbU/HoA34RC5a8rz/FFAD9JebfmhTtrrs++dI8DeEH5e2yZPAkhLjFuR6FOx8vfewG8kfa/\nB6nSnUVs970T6UtpAIXi4xfXC1C8KHvHPIWqCT+O4iX2PIp/L6oX5V0APmWOf7C8jttQqGnm5wH8\nDqW9O8g7UFz7H9PvJi/d99K+5fIkLjEudJuc6J8fAvBRFM1nAPi/5bb/7sT/Bgq1mMvlADagUHs9\nBpDaOo8CWCjDM+X/Q7R/BoVC7nGAwgvl751leCcKU0GPQaSeF5wWAJ4B4NcAfHOZzyEUL/mmLAB4\nlH4/LSNP4hJCL91LmzEUdsp1KGy0QGF/3YLCTnpfuW2B0nC4Drv/CIqX5o10jn7ZReF1AK5G8aKb\nB7APxYvUy5vN37tQfBBeB+ApFEr3tcG5n0Lxcu5xpXOeHl9fJk/iEkM9q5c2r0LR6bUHwHPKvz0o\nms8/WMYZwPn13j+O4iXY64w6B+B/o1DOl5fbrkJ/Ns1vBvBqFKLhjQBOA/g0gM+gUOxvQvFBGQRw\nE4Bby3R117GpTHMKwDMB/Fuz/xCAp9PvzwN4FoqyWo/CZMHYc/zDMnkSlxh66V7a/CAK2+IBFD3r\nh1G8ZP4HgH+J4gVh1eFySvdvAPwTipfv4XLbm1F01n0ahdfAXyFVfvaY0TkWAPwZCmV6DEUH4GtQ\nqNx5AN8J4BYUNuNvAPgtABOU1h77Z1Fc63QZ9w9NnLtQeGk8AeB7UXhU/CKAjwH4EooPlC0f/n1u\nmTwJIcSa5u0oXL6EuCCR0hUXGv0MVBBi1dFLV1xo1JkIhBBCCCGW0l5Tbd1lCzj3xPLxhBDiwuQJ\nAJP9HqRN+9gCrm251TfXIM2F4nlsp1oZro1VDJDtMd/w2Ix3jMEgDu/z8tkGXd27JufJrYtdXUPO\nVD259SWXJs/japzn7PJRlpBTVvsGgBbembLpCiFEh7T7XW5jSnT+4nSlGnK/rF683C9rpBK9az0e\nnJ/PO0bhLcFx+RijGee08BQ3Q04YSAft8j4vvf0954Sj8+bWP74P0TV49zuqL15dyFWd/ao8Th/V\ntyZqMGoN9QvnO/e598qqyXV3uJyDlK4QQnRIu1pyLNiX+wXPsW3mkvs1Xkkbn6eqZmxEh9spbMuA\nr4/zc8Q5J5Cq23EKswLdY9Jso7Bn3z1p0ux38sbHskp7Njgew0qej8fq2t4fT73zdVu1w/WZjxfZ\n2SOFXpfe4t3TqJXTpHXI191EXXvl0ZQcFR21eLxriFpTq4SUrrj4icwlQnRMu+/9Ufhf6uhMObmo\nmy677jz9KuoI/qJHtkCG1RdfwzNNPJ6rajuFv0Rhe23etb6MwlcH55mqgpumKnk8vuEEmA04VXua\nOZInjxzalew7d/fG6sdTtMNOrHjECbMK3mHS3EJhLserqUBOm5vyoHOeqL54Suo0hW2LhdV6br30\nVCufxyp/Lz9dqdYmtvBcmrR2vf6J3PO0odYzaVfptm1cFxc3R5aP0goPLh9FiK6QeUEIITqkXfPC\npmBfkyZMrusHG+Fzm/1Nrtxrbtrr4XxTKzvpmLF2Ru4Q4sVdHqfwtwR5I5PC5lurRE8+vi2JtuOa\nRxbD22lxhpFgMYh5KuBTNH/3KerRuuzy9IKO7qYL52tg84JtEl5P4WdVwXV3PJVE43ONrKvyPY7K\nLDJLKwqdvJ57DIGjB8h+c5xuqjVhraebfJLi8b235gXOqmcCsAqfTQdeGjvYk80YnIeotZnT7N8f\npNmGPHI6EJu4dTVpSa+1QS2Q0hVCiE5pdxjwizOHAXc1nDCXqMMvx2E/UrrrnbDtGGEV8biz3XaK\neXC8W8y+rVXwpts+sxjeQtJ73hTCGVKN844X+WAgQz53qMrEud8mBWwXuqG8br2lWmZs67qjSbQR\nknkbSObxNZyiZsVMsrpOqtaZ0UQ+pnAaLoM5Ux5nSL5zvOPHqlbBmb1m/vL9FPbqmFXHntqO1CCf\nxxu8wurawvu4r/VyE8/rGGwyACKXJp3pTI4b399qGLAQQlxwtPu9scolcvPKIXKY9r7ITey4bI6M\n7NKsKCJHfs63Z8e1qnUL6uEyjL7GfB62/1kXrakqeP991Srnr332+xfDJ5DaQM84K66zDdUqPlaX\n5z5P6pZWBlv3nNRWu2t7ZW/ehkrdbkWqdFmRch42UXgcqdsbc5SaD6yItxhDO6vW43SDuHxmTdlw\nK+EEVabByaoCP2ZX6vHs/lyv7OV4Q6uPONuB1L0udyIlrxijYbPc0uPnxMuzxavnuXbgJu5jHSKl\nK4QQHdKu0p0Kjh4N2WMFyeLnaRS2Xzn+orPq5S9wKtj8L6BvyvNLyHPqt+fxvvT2uGzHfYTCPCSX\nBz0AxRKPPR6iMCuXaDjtpsoGf5SMvdaTgRUgq072fjjCxmIAv/XVN1Q/SNXvuHHfYngnDiZpWJ3y\nOa+g80TxRjM9MFhF/y1evBi2Cp/ZRTeFB4vYNPybWwjJAJMp0/exkcyE3pBe27LzBkSwgrStJ/II\ncS/VKlt+HrkhwPX1YZOG88PqOpqIyfPu2O+c38JKl8/j39LY9svPcDS9QQOkdMVFj9f5J8Rq0K7S\nvR7pF3DO7Othv8DPrL78L7/uzxfDh3HFYviIcRJk5cC92cdx2WLY2iJPTJMtbqbeTnnuyY3pBlaK\nx52wVZOeCmZ7sfV55HJjtcJDgj9v0txE4d0UZjuusVGPXDm9GD5zf2VbHLuuKs9didROPQT4BfYR\nfHvtdgC45bp7FsPs2eApZbuPFay1z6b3vlK3g1ThrAfG3bhjMczK+QYaZ33cVExWrYfpRnC8yHbM\n9t7j56o0Y9tSyTa7sYp37inyrBgkBWxtoF5vPYfNc7ZuqpKtyXkYe57LKA98PK5XaSMHiQnem5wo\nevPwNfCzZVuU3Lrjc0at3eg9xHA5tDx3R7tK9/HlowjRNfzCFWK1addP95ML/qTbrNh2pMaUTfTl\n37WhUlncS217sFnteOrJ9qiz+mG18jCeXrsdSHvh+Xgnz1Wf0KNm1BceJ4MQq07+atsP1GMU5rlj\nIjvwZgqzLZDvgZlYZ8dLKpvq08kYxz36r8MHkjSsaFlNWhuq5z/r2WDtPm+EnJ1wJ1fdMnvJCXiM\njsf3+3BSSX2zBCtgW8dSm25VD9hLwuYz8eel/Bw5VEnIJcp0jh5dzza5PrUdb7qyek5G19d3ZMzN\nGb/j09U1zJykPJykOm5Hy32FT0rhW+mc5jwYqnehGDH5PHOEPD8+RjtYmVrPoCkK8/PIjVp7ep6v\no/cMvXAt+ulqCr1LlpGwN7KeqGneJnuXjBARFyLJCzeXqdaz0TfqSBNCiA5p1bxw9cJDyYaZc/W+\nFpvWpQpniLT9t+ITi+GtZDm3zVJuvnLTbSjw9OYOHVZm3CT8LHvvwx/yyWmOml4xdr86/OVrqh3c\nZIk6Rjxs65mPwW471LzafEdqx7h+pGr7WZNNDzsclofAsjq9BXsXw7ZTjJvwfK+iobZ8f6JhxR77\nSdawCcJ2qHITfpZMADPGN4j38TG87cU+HjJd3TCuo2eM72LS4eYMwrBpuF7OnqFzzlXntCYEfu42\nZC5dknPdp06lpo+TR8hExxMFRW6W1ME1NlXZK26YqDo6rXvewemdi+GZ/VUHeuhmxp3P7Gb2qIlH\n+65+XfFwHRjYDaw584IQQoiQVl3GbkiWOQDm19V3RFjne/66HyI3schZnZUvqyxWb1ZV8TBRTxHf\nhnuS3+lUhpVa4bzZzreDqL7AY8+oFN/Xhm6oPecS5jI/pjz14NVU1ier9NtHDidJvE6o5PSmc4jL\nmgc0cHhpS+RUbTg9f3oPvE6xyM+W97EKZ7cw20Hmqeho+LOvekdMmvoJbyJ17OXBU+T22GdGquPN\njfhl5XVuRvZ4zo83+OTEhrTcTl1T32nIxzpwMF1pZN1gde+3TlTP8N6v3lZFetA8F9xJRx3RY6+s\nlPLMcfMOebjKz/Nf8vEqz6aVw/nuvV/siPqmSOkKIUSHtKp0rVO9h1UaU6jcmLyp+uyQUc89idXt\nI0i/ppfR8VjNXR+4XaT2tspuxHbbo8Y7nPOThK+bcdN4drl5cq0Zn0ht4d5Q2b87+G21cYBU4aRD\nW6u8WSXGrQe+D3ysaAAD23dHM5WuN9mMPR4rkqeTrxIrwTHjcmZ/e/lJ1KSjeq0K9/oAPAVsz8vX\nyvfUTk/J9dLae+uOW/yuyjeto/XlUZynOjann0lagGne+BnkQU1sc79958c5Cfbj2sXwgY9WBl6e\nFGn8Zab+j9QPoOHyGJlIVfzOaypJvI0My9Ek/m0jpSuEEB2yoko3d8JrVq2shFhhLXWQr0/D22/E\nF5M0/NXdQh7dkfri4/FEKZHK86YY5C+rHdZ8dKRSvsdHKrXDKuJmfCFJw4qCv9SsIqzteoOjEnMH\nMHhhe394X67SZTjfkTKEo1BYCe7CI0uUYg8uX1tWrFQ9G7PNW06a6Lo974VIUVu7co/oPnreC9a2\nyXk4SWFuNVp7s9cq2Oo8P0Veq+fxwE30DG+vnuFtxtuGj8FlytvtREzbUfVxpJMl5XnVtIGUrrjo\n8V64QqwGrSrdDTjl2kY8VQakXxIvnu1p99Rtuj09D9uO+UHkL1405JT3cRr2uAB8Ncj2UNtTzvbn\n1Juj6nnn/AO+Bwb7N0f+nVymfA+sQmIVkl5bNa45UrpchpGi8PIZjVzzVMgIqa1xnHBVp2cftvE8\njwPr6cF4dlx7PawGI/sqw3XEe06uMS1PzivXHW512TrGPujcD8HHsn7qrJa5LnKebZrreexw5fyT\nKNOlvuD1av2LuHExfDPuS/Z59de+XyJ//35pVel2aYwWIpdoTgYhuqbV2jiKWTPqq/4LbP39PKUb\njVDyFXH9sZbuq9KwTWxqfn+S5sRgpUi37au+jFs3f3kxfMVk+gV+JJn0u/qiRxNes+JihWQVludr\nPOv09kcjj0aTFkIVPowrEk8AVhusXOyxE3/cebonc9W9H5o/5+ZnbrDSACNDVfr5wTwPgWgSc8Zb\nmNLaTbnsPVttEyK/42hKS49o0h9Wh9xq4u0PJ/Mdpi0bLz98Dddif1KX2U899YpJW12siFl1sh3W\nei15/QOM9bXv15OmbdXbqtJt2+B8MRMN/PDYlPkQ9svTk2mi8shtFovusM3xHLYsmTJseZrUZdth\nl4Pn6hexFuulOtKEEKJDWjUv2A4Y7uAacswOQJ5JITIvePEi8wKzgZuos2neJg6RmwodboD6G658\nkhcrAzZcUzWpDg5W6pQHV5wwSzrwKhnX0nBqLquoWcpqg13TbEdP4jjudEDacvOGWY9PV9c5FPWP\neZP5mNo3isr0sDBY5WfA3LZZs7jHYnpaz+upiUpPbJxOTRpbBmklDMrDqY1mSO9gfecZ16MNp1IT\nC5tIzoyO1sZ7YsPmJA2bBJK5oaer8LwpqxFaU4z3zY6uo+1poqm5qtJuPFiVyfj2auIizj+QmoO+\nuKG+s9UOXvE7N6tKYs0gbMrhDjseIBI180cyOtbtvuidFL1H+kVKVwghOqTVqR3/ZuEFyYYmHVxp\n2Ddm5yjiyA2EFeD4bKVGNz5iOnq+TuGnnLBtL9BqDQvk/nJ0slK3Vh18Ds9dDPNX/xlmEiGG3d74\neFGnj/fV5nt1vVnedWq6mupjiEU9l4FVs14birdH60VyPJtlTueJH87nZrOP88p9OybP0zur+8At\noFMbKnvkZfeYjkqabnOW1q0b5XpkR+3yNbCK57mK7Dp8vNLIJIX52vj+AIkrVuJNxquLpPMjpfnZ\nXB8+siNttXFH2Feoky4a7MEuk2y7zZlwB/AnVbKT+Qw57wobr84l9eUDfwdoakchhLiwaNWmO5XM\nHtxMgXr2oMH5YHLyTJckZna0UjEbnqI0XzAR2WPFKoceNmtkbxsgxbVteyVXtm1OpcuujZWa5Lwx\n7L4GpHZhtrF5QyKBVBEk94TKd+LrRlEcozBdW+iswkLGW+ctqn0Hg328agtP5O7Zjm0nPgszVsRm\nYvkJclvj6x6dJ3UbKMNRVqA85sAqfD4vl+80he218Xn5eP+PwrebNB91zsMq3J6Hx/1srt++dTSt\ny2Mbyf2R7Nqzid02HRzB6pQ9KHhazqV21/oJfLz+Hvs7an3nTIHaFCldIYTokFZtumfTTnzQvMRL\neqATvA9Jux+YRFnN0ld79K8pzl6ksCJgdRGpNFY411H4CicOkKodPjYpp7l0tHHqMcBlxfOCmHuS\n1RFr45yujWUyE/xmJWaXKWI43v3BsTk/1+H88VS4rW889zkrb7LV4i+C87DtllZtwldNPM6D15qy\nKyuxWmclz/fOpuFnkMvA8QYBkJbBtRTmMkjnlMGjz6k28BJIPGx3qcdDVfg8UIJtvdaH2BvyHylT\n16Y7a2y/NS3m9UU5yaYrhBAXEq3adIf2oZk67VfRenZCazujfaN8Tl6hO53vI7XxslJgRWJXhmZ1\nyflhhRb1yHMaUktD1s75pBP2FHAbeDXG9sg715DkLVKwfK1WibHK8sraklMO9ho+TeFZZzvbuwFf\nNbLSvdfsY6XI54kUKKvYTzpxdpvffDzON7cWbDl53gtBWW87VWWOPT3YY+HGY+moxwGnXlw1Rxdq\nW1z8PObW89x4Kzi4tl2l2/YDLkQbqF6KNUT70y9xT+g19NsLA4X/4MGMMNtUr6DfO034KMVhJbQV\nlULdaMJsa/w7c029Y29FZY/bTseeAMCrz++hNLspfAWqHuntSG1xO1H5Tl5LaXahUiU7kaqk3ahs\nn7tQqXQuNy4n+9uGe+eZRKqEJulat6Iq3620va6s6/bxPdhs0owiVXo9pXYQwN+U4ZcAeB/F+T4A\nHyrDrwHQs8+/lPK5GWnLZCOdl/Ngywq0bz3qlfh6pPfkRfT7VqTX9+7y/wTSvoOX0u89lGYjqjqy\n3aS5Cana7dlb9yFVzlwvb6LffB8A4COUF27t3YJU4fIHbNDZjsov+dQzgcv2FbbcI9duwrb7C3vt\nws50VCd2oirfTUjLoFeeNwH4rMnbXtp3P4UfKMN7KAwUdeqhjDDb3Zv0GwS02pG28MctHs0SfR68\npqxtLvKLlZtNXEn/vUnDD6HnXmSbPXw8buJxE9OaJDwHeQ5b80KbZoSofL1BDF65R/uijjSGr+d9\nZh+XCR+bXw5sMrLXlltWthOyB7/I7jf7OG9877ke2Y40ri88gIHLnQdDAMAOCvPLk93MbEeadx84\nnn3BvIjC3PnLnWr2nnr3h/NpzWt8bH4W+IWZOxo3GnTTBwOvKf71exx1pAkhRIe0a16IHNqbEDnS\ne25IkarKMby/zfx+I4WnnbAdosl5fTKI58GKgMs0Gmqb+3XPueNRWXv3xKoQvg9zQTyG472bwjYN\nx+M8sNLlMrzJpG/Q8ZqEWbVaFy82m3HzmZWhXTSb6xKn8coQSOsVq0SuY1HLiNN4bmoA8AMUZpMT\nP0u2RcC/Od+c3p7TG3Qz54SbkjM8fYWR0hVCiA5Ze0o3d8goqwDPhpQ7IIPDNs2bKPxmCpNaOWRs\nZ9vZcZ3VxTFne5Q3LtNcJcbkTiqTOzzXmyDG2nQ9Ml1xZshuesyoojE6L89eOMH1gMvQdo6xyovc\noFg18r17wNkO4BipvMlbq/CjNABn0riCHbC215LdZOs9ZtUkKeJJVvJcVmbQQmK7dQbgLHGBY/s1\nlxUfK1LKXqvNpvFUbNuuWzn9E3W/W0RKVwghOqQ7pZvrfZA7fNSzd0UO5V68yAuAv8j/gsLvpCRG\nqcyQK9iYZ9+y5/G+6Gzryh1qm1vWObZawC/raAgt/84ZRgwkTv4PBOrpLB17jMJb6TzjJv0ED6Hm\n62E1aFUQH4PU8jEKT5vrZvPsJCnDq15YhT9pBjPYEeE99jsKGACGKfwQuZLt3kM7rDrmZ4g9abyh\n7gDwJxR+NYVZEdt7z+XL9mu+niaDFJrYdKP+iSielK4QzZm4Yvk4QnRFu+/zx5CnuHJ7x73ho0Cq\nVD2brFWP3lczUmx8XlYO7AfKPdZIbZBXeZN+56q/aFhoE9Wak8baZ72yiuy4nMbzjzY8QHZPFlLT\nJh5PG87ZmaLwJJXvoa8jWf/3ClKgw3x/0rm4k/t9H6k0nuLdLq/ICvTRj1RhXh7RXs8L2Z/XaYEd\nY9sqgKNUvlzUD5G9eTf7/AKguWNSW21k9+d7zGn4ntr0XGe9RQAioj6W86VJn0bd7xZpV+mukFOy\nEP1Qv+C6EKtDu+9z2/PZr/rir2nkq8nqILIBsbr0RkZFNl3HjmWVS6J+vFFs0Vefes3P0nUP22Vn\nPA8Oxl6nd0+iycBz1K1N45UvX/eH0l3sFMBlaheeNwvkLMIq01ZFtpvyFKQTdG1j5p4coN98vNfQ\nqK33mtFlnAe+hrNOnCVw/aV7P2kMv/vJ9srH5oGOM8amO8b2VbruGeqLGeOpHAG/xeJ5dgBpnbf7\nPHL8cXMnzWdyFWwTz6CGyKYrLnq8jiohVgO9dIUQokPaFc5RkznqYPOar5GpwBtays1s21nlNRmi\npo1nXqBz2s4UjjbF+YnWvHI6D07Q+cdMmjGvCc/XZptknvnGa0bWHWO5c1qcFWrvMx2Qj1KYm8zW\nnOC1PvdTmJvw4yZeMjKVfgyZAx9zwlxHOc9AWhc4D1w85D22FK6zXgemgfPG5xyL3CfJBHCW7q+t\nYwls//HmbwbiVaK97W1Ov5lrGmiyMnULSOkKIUSHrKzSzTVue873kYO918nGeYiM455bij2P5zJG\n26fY0RzAGCm4R8lx/SrqgJk2TugT3ANC+Z60nWeM1yqIWghNJvzw9kXq2BvmTGVo/fBZsUVefB5e\nvOg8dnEFht28WG2/nxTfTxs1+S6qf54t+dk3ByflOhYMjOH8sLrmc87Y4dPOGmlj0cQ6GS29Jc9M\nhsvX2TaVrWE4d0BFbp3PnVIyEyldIYTokHaVbmRDZezXz7Nd8RcmcsDOVdTeFziy6c464WC9M1an\nw840jzOmrCbYkd2bAtJeZ85Q21z7bGS39fZFasC792yjNrus7dXDs5V6RGKfR6baeeU5nefmNWQy\nwMqZr+cOnhw8mtaQypHV4LC5B57ZcpLut81bcjzaPhwVotf8cNwaAWCYlLOt5x5nM/oNhpuMAzA3\nP7lWb3XkmnRtIqUrhBAd0u5yPdEY9yYT3jCRfTb3nE0csL00gd0qx141E9iJkikKo6+7t2RQv723\nuQMqmizxQ9d9yKyKy/PAeEN9AaPSnNOcMr95gIVV2MttB1LHE45nbzWr5VdwiycaMk31h+vOXKba\nOsR2ZLp3kTJkFcznGTN9CGfp2J4itvWd6zbX5encYcB9kquIbUsgOUbNvoGiWaTleoRYDjuiTYjV\npFWleyboaQ/tRrk22dx9/dBvV3lTWC2TKmKl8ai3UCJShcO90cORr2aTicu99BbvnvJ1GuXzjzSk\nNnJpHnPC7NtrPRas8u0RzcvgDd3ly7ZDwDkeOyns5lZg0DJi1cl2zlzVG6o3557weSZMfUnswEP1\n223e+Hhs0+X0UT674nwV8Ujx/EnpCrEc3gtXiNWg1e9N9DXmfUu+ck4622Obk6azBeZW8jzOJDfD\nRulyFg6RoriavuBLWhg5Nurca+t3ImqT/npS68foes6m0ZZ4GdQdztp62UbMHfLjThzA92yYdMI2\nD0k+Hbst4KtbJlcZsnqzx8rxELDLAo2T8vXUre2f4JYWm3bCiX4a4L1vcssqpzxWAildcdHjzUom\nxGqgl64QQnRIq43kNuT6kGOsX9JM9hybc5vJuVfebwnlNsEzJuCJspLM48oDEOyKsDnja6PJSLz0\nuRPeBPBQ6GSwiO3wCDoUe5zldczMvlyXMS5TNjVMUfiAScP7ttuVG2qOC6TN5Mg8kBxjhRYMiEwf\nybPJnWXB/R13XNiia8vtNMxJH5kaovN419oGUrpCCNEha8BxwyfbzSx3EpecqdyazjSfQ27HoDNt\npZ3KkZXDHKlbtmE+YKZP3MPK15sGs0mtiMbaeuVuXdG8Drfc4eW0fTt3ABnXND607aRjuJOMVfA9\nFL7NpvHW7gvwBir0q2aj9J5bl80yx+N8Rh2d494gilXouGqqmvtV2xFSukII0SEr6jKW67rB8Vx1\nm7uGUZOJiaM0OfHaHsRBKmKGpoacML5SPHXfGDueB1/pQ2ScnIxs5kyTIddNWiIeuRNeOzPZWBcz\ntvFGJm5vrpdvovBVuUPf+1S9bZO0kuickX02F1bOPNgiV+mGfTkXAVK6QgjRISv6Hcnp+cwl27E6\n6lFf7YHL/5PiAAAb7UlEQVQTkaJme200cTkfjo436a2I3ETtR9NbMt5yQRFNhg7b7dHkMSVs/x5b\nnyr8XDHneTnwCsLYZHZmTmWYQ5Ohsk3UcdLStEtC8TSNPHE/eWbYVYd5FWVuZeTamJPtF6HqldIV\nFz38whVitens2xH5zq2o8r0QoW7zpPfYThbd4O5NW6fVEr4/R43a4UlhrmLvh0jp8j3t104fqXVP\nhd9SBbcDePSvq99NRqhtp/Bkv2u6m+vx6nKTJW2a+KWyAh0399Tzppg+BpcpaqnlKm9W1MkQ42DY\neJP675VplypaSldc9PALV4jVZs1ZSVjZhTYgZ+mRRv6zuXhKzNoYm3g8OPlOlII5D09OwkqB7ZnH\njCJh5cD+lRy2889yFq7yJliPlnr3tkeTpfO+qJayTZXtqVQeV30H8MBfVL+jCdIZd1mgfm3ZVm05\nZdVva86quhwbsY2To45tSzWaoL8uvYWXu8qdQpKJ1PVasAtL6YqLHn7hCrHa6KUrhBAdsgbEdh5N\nB15kEa2gMOrs4+22uTnqhKPzOE3rybdV4bP/LU3CZcCT3Ew7Q4KB1Iww44RtszbpN8rtFOMy8coj\nKrdc8w3jrBB9yETja2WXJntYdhnjJm/rkyrlpG/QqbakCd+kwzpztQjG25ekN2UzxGZFZ7CUXQVl\niOp5E1e5lRx8EiGlK4QQHdKq0m1DfXoGdnts1yAeqUlPPUWqylNmTZSul97mwbm2Dxsn9O+iIagz\njlN+tIKC5zplT5+oPJa9PJGMvZ6csmpS1jaDGVNi5mIHQ7ieYU2msYzWqsthJdukmWWVOwFPshIG\nu39RnGlzTvZEdN26TD3w3gG5Q6lzp5qsDpYRJwMpXSGE6JBWv59jGcMzz4dGUzvm2k09dduGYtvo\nxOPtueotKNMP0ETdr7umCh+i6RyjImRlZ+c6Z9wVhfngVu1719qG0uV9GRPrWD9+Vv/eir+W4aiO\nOPDw2LHciXHapI0pOvm3Z3c1LmLeBOfWtu6ehydyila2DoYvu9sdRWtbObVqu6Uh3lK6QgjRIX2v\n4U4sLDjLk6wITYaMegopV1V5asd+gXPUrZ0oJefYpGYB4GMvrcJsL/uu66rwMTOJubWl9eBJXJYM\nc+W87qAwK5wmZRCVNadp4lFiJg16/49VYVY17L1gxegeXomZmwJcPnbpILZzc9742cidlD03Tu6E\n/DlEypDzzffezG3BU47+o5lA3oOzysW7levlHpOIr9sbkJGpdHPstQPFs9T3O1NKV1z08AtXiNWm\nXWvSFcjzBWzbP67JhCqeWmriiRB5SXjHjuyZnsojGy4AvOxDVfhd3007SJGMW99GUgTs8ZDY43eb\nvHmzfueWm7dET1M/3fNssbz+PcAHfrj6nb0wJZednQm97pxAWv9ZsnnlAWR5rrQySXyTIfKsIFm1\nnna2Iy3HY7SPi2PcnMa7JyF8fzw/aou3JJSlbt/Xa7Y1oF2luwprIAmxHPzCFWK1aVfpRjbdXHXb\nZrxcBRqpBk995abJHZG23gl76c1vTykMG9sm9zpPcBlGE6dfS2Fn1FejyWuaeIrYfd49IQHwuncD\nH/vR6jeXVeLBET0NbNONRqTxPjYSRxPLN6mXOfGiNEw0cZGnaKke7P9kmoT7F66iMKvb7eaeepOl\nJy0w+8xznc2dhCjXl3sFBaRsuuKih1+4Qqw2eukKIUSHtGte2GF+N5HonuRvuymQ2yTz4uV2iuUO\nwsjJT+AczisbJK5lkbM7J4ry5q0CEZk++p0oqEn5Ok3ul9EqEgBwH62wzOYF2+mYmMtyTEZ2X+4g\nDs9UEHXW5tSXBkPNw/ryZH14KhhZk8x7Hbj0JQMveDunsT59fIx+h1l3OPmNlK4QQnRIu0p3+/JR\nlqXfjrS2DeBNFEXOgIpcN6hoEAbl4YWcnn1zbHl4aiPXnchT+006h1ZS6XKcd6fJp25HLcNWSfFv\nz40veoKaTFXZpCOt39ZHBHekeZ291sWQ8u0O5bf3np9nPicPzLHltjXY16Op25w60oQQ4uKgO5ex\nJqyk6s09do6bTRv2zBwlZZXuj1fBCa/srQLw1Bvnx5ZNzgQ8bbg09Ts4gmHXtn3prgm28fK12vLd\n7ISjYec5Azea2GfbaEnkqmjGKx8O32TSeGXAaeywXW/gBWPzGU0i1COqO6uElK4QQnRIu0rXTpSS\ne/TcnlSPNuPl2nIi21CO3bPJEFhbTjc7548GOrBnAx87ct4/z6kUl+xrkqaJbZLDUS/8yyn8lBMH\naDZBUs41NBnSGw0+yVXHTe6jp3TZ1ho9C15rwSpdnvfxYHA8xuu7aPKcWVbQm0FKV1z8rNJaWELU\n0a7S3Yr+p5nrV/X2m6aNXst+VYgXz9ocrS2tDjtRy+ZgX9357e8mvetMbguhiT2TyVW6PMO5maIw\nmeiHibxQclo5ufZvL4793a+ibuLJwPXI2la9YdLRcONkPkcKs2+wVcfRzPs9mvQHABeQ90KTWYyE\nWGmkdMUaol2luxF5X9DorG2+uNv+WnkPb5PraaJ2rH3qVice2ymtfZd9Kvl6vIlsbN769SO19Ntz\n7223PeCsWu3E4z1sWXl2yyZqMnPiInf7Ct6ThcxnbsCbtN4qUE/p5tpQPaVr7+l6Z1+uT3TEBWPT\nbfcVLi52umoZeWYCIVYBdaQJIUSHtKtNbfMsp8kc5eJiUM4NrsFr7p0x5oURmud2wHMut0OzeRAF\nN904fa6rEdNCU3Z+qD48N7jOxKt2zg/WH3Bktmrzbth8Ltk3wE1j6+aYnIjCTTqhmrhlMdF5nDL1\nyhBIy5HLsAmDc1Wmh+bPmX1NjleFB7zVN6wZg+t5zr2yRPvYLOGZoxoipSuEEB3S7mrAh4OdztfY\nEu1jrPrJod+vexM8JZbL4Hz1CbfHmqdP+rZ9J3nHIgtGyR2frCYzHJ+u5vhnpWHvwexovUKKro3z\nNkfh+UBezCfx6sOWOWffEBXCCM4k+zbgVLVvPt3n5m2wPj/2/Hx9ZzBSe6wxOj8AbJifqY3XpHy9\nvNg0/TIY9FIPOtJ9KExT7eM6Pzpb3R+roIe8FYCJqGXFinp6Mr1XE8eW1ouBwjVOqwELIcSFRKtK\n99hCozU9E7yvsfc1L9LkKdicL32baqANEgVglMJxbFkM3zD9ldr0RyZSQ/sMNiyGWQGyOrHlyYpt\nlsI5qg5opsRy70NOPFtuUZmm8erLJMpnjsIfNcbJTTixGGY1GNX5HCJlmdNCAPzy6Vfpxum5lVKV\nVW7ecjlBq7ZtnT2S7DszWhl1e/f08oGTgJSuEEJcWLRq5GTlBTT7EnnKJdeul2sz7CfOSuMpMasg\njpIX+ZGJ6kt9hrpeTyRrsAKnaIEaTwlZFcTHS1Vv/fbljtejqc2xq3uUU3+b1Et7H0eTFgfZ8DOv\n06sjbSjDnGPntiRy85Yer6q/toXgpY/w4h0eTd186lssJ9EGUrpCCNEhrSrdQ9iefM1Gkdcz7NGv\num1DOa22qorsj0dI6Y5hV236M2YcJCtdz045a1Qr24FZ3ebaNj26stM3pV+bYf55lndsjcqjXwXa\nJG+552F16vUhLHe8nPP06zFh61H9++Vr7rHOh1aVbk7lEUKIS5nWbbr8ZWELSPRlXSmPhSYqaLVs\nunlKN/2osYq19vS6OECqYj0FO4PUC+VUEq/ee6H4vbz3gb3OJjZ8Jtee7xEJhdzedv/Y/dkZmdzW\nWKRmcxVxDlG99GzUuZ4I/rOQp45zPSuaeHe0QatKN7oIcXFzIX3ghFhN1JEmhBAd0qp54Qi2Jb8j\nh3sPr4m6knI/1yF9JZV8ThPPxuHm2iO0+BkPc7WdYp77F5sQrJuZFy/tfPOWCW6flVLIbTfHmzXb\n680dTYZP2+HPuU3rNM35d/B6nemRSaLf8s3pVLPnseXTFVK6QgjRIa0q3aNZixbF7hlpvHqXprrf\nPZp9JfO8Lpoo3TbdjnI7I0/QkgfcWQakSpXdx1gBnzJpziSdZ+c/kc1apt+OtK7cyiz9Dn/OJUft\nN1O65z/8ut982t/sztblfZTSFUKIDml9cIRHrsuLZydsQ+k2+co1cWXpihz7bDTQgeN5w3uBPFew\nJjb3XMf1XPpVK5GdMfc8/bp/NYnXhJUaEgzYQRB5aXLIrWPZU0g67wNgZe29UrpCCNEhrSrd/ZjK\nitfGl56/ev0qkshpO+d4uaqh3+vOnYiGvQ+samU77kygiPtlpVRilzSx+zP9TgfJ2PLMUX1NJn/K\n9eBgJThiVGKOh0BUnl6+c+3vaRq/TvU7WKMpUrpCCNEhrSrdR7Cr1a9C21PbeWlytsfnz1NBbfsq\ne1M4cotjnCbItsdooig8mtjR2qDfqUAjcrwXIk+c5P6cqu7PmdNpq2LubJXm3FPkOTJH82Wvt2vV\nZJSjOU9yPD5c7u32qu+m9AAjm2g5pPX1Snd+Li232Zkqr0kZ8HG3pHWZjz26nibWWeercPamSJZt\nMoqc0/U7cZel5Qlv1lbzUAgh1hqtLtezY+GrWR4CbUxI0WwZkZxRX+2qPCbyxmA8T4LIFrjv0NRi\n+NyTG5N4m65OlyJZTE9qY9Aop8Gh5cthyKZZt3w5RL3C7sKU54yapHzPz5HdNNlu0pytL+9z0Uqo\npBTHth1fDCeqbOk651X4vbTvn1OcPzHn+VYKP0jhb1A4HSQIXElhnutoPYX/0KR5BYX3Ujh3bu6z\nFOZbvcnE2+bss1WKfx+nMC+tfq9J81YnDWPnfkrKZ2ExuG5jpXRHx8zipazWS+X82MB1wFpbrkdK\nd+3hvXAjcl64S9JkvHBXC++FK1aRJl6Wb10+yhLqJ99bVdSRJoQQHdKqeQGPnk42jJBxm5uvvB1I\nm6msmPIHLZz/rPH90mQwQLR6rm1C94jK4/h09Rkfn6g6GQ5/qpr8BlNmXSnuXDnNHTVVs2tJJ43T\nabNukExBw8HcpLlN+5Pk3hYpIU7mxTvthKM0ds6ed1L4Zyn8OIVt05yb4GwSYMXFJgR7jP9F4Qco\n/GqT5k4nPZsX9ps03OjhpnlkXmDzgGfGsOR00tl7wvnh/jI+51GThk0sbNK4m8JvCc7D1fIyE29z\nzb4bBoC1Zl4QQggR067S/bOFdAt/pVhFDJuU/NX0FJdRW56Kth1CDHeuhJ0hHnOZ6tbLA6c/ac5p\nv/w9SGms2/xUsuvcX1OH2dNpxycpfKs5nncezo5VMXzZw068qJOElRSfxxbnb1D4HXSAD5uy4vPy\nsVnJDTnbAeARCvMiGVbpciOBz2M7jhg+l6cgHzO/H36oPt6O3VX4x80+vo/8nO2nsO1oepjCB5x4\nNs/mkV6Ey3eH2cflw8qfz2NVq3cezuhlV6e7bqHwMyn8Igo/1xzuBsrQO+yLiOBdPRX9Q1K6Qghx\nwdGu0v0p87ni+W/YZmKVAisXT3FZMcr7+HibKA8fNpf3MgrzFz360nuuLN75Ad+ux+nZLhjloc62\n1GMb6nktZeCdwdeciZTuJmdfpPhYNX6kCm5+S3XhT/4JG+WQXh+rMquiPZvucSdsy3o/hVlknr+j\nxzLMUPhQEO+qKvhKul9cPOziBQC3U/h+CpsiTXjcCUf1ny/BtbOfNb+POfuGnTDgj7zgk06mu/jZ\nYhHMh7rBHO6Dv1CF/9Xb608D1D/rfyClK4QQFxztKl3r+D5GXzP6mC+xAbEi3uVst2luqoKbnllJ\nFPYxPXM6NdKxvde179ohiMepiPijzfa+qHecw6waUvNsqjY+6Bzbnod7wRf+kn6Q0njZ69M0eyjs\nqVurdNlmyIqCVdUnTJrnUZhVFR/L2hw9+6y9bq+VctqJE6XxwkDai56t8mYywulqywimRF3EtnI4\nP1ym3PqxNnOuc3ytPAhjLle1ehUbAKaDfT2s0uUyGXLiBeU2RvuupyjcIgCAP6Uw1/NHTLw5bpn0\nrnsXIKUrRAa5I66E6IB2le7Agm+HZdFphzTyl/pKJ2w6LpN9rEjGnThAqgL4nJ7CsvBHOxoG6Xlt\nsNKwLwK22fHQR+5ltsrlUQonPeKkSF5gFMWW+miJcre2Yk/pcjxrN6WWSHKtXhho1irg81q1wvD9\n8s5jnU6aTArjeXR4gi8iMsfzvYs8MHKOzeU5Y5UuVzJWsNHF8W/PpmtVK78s2Ha71dmOtFXMzyCP\ngremdM9zxcKX0HtLLqxFm27kMC3EarF2RyiLS5B2le6eBV815n7p2XZ7vdnnKVXGvvi93nb+Gtov\nnhePH15rZ+R4nkKxKpp/cw8096hHKs+zw9qymXLSs7iIJi3h+8Dprfrje8wtjshu6ilI3h6NXuIy\nZLVvy42PwU42ttPcMy16vsoWb1IYS8515z4z0VPs+r/ywafNPr6IE0E8hjPuyfAJk2bI2Ue2WmvL\nvro+GsileUkLdz/q4Tp/wOyr8+54YC0q3ZW0nXnuURFNlHfkBuWxcfkoS2jinuTNqhQx1SBNk7Ju\n0nzuamk5b0CIJWputklX1+2+cCOseSGHJhfUYCpva2LMYX+DNCuMOtKEEKJD2jUv/IT5tHpNxFyV\nF3nZeBNxMJHCyW0uemqZj23FwbATL2pms/uXZzaIOrgYLncrKHIERjTa2Tbbe9gy4I45Pie3VnNt\nrZEZw3ODCpW3t7OJyrN4hT/sbLdkDmZJ4HxHZoMTqMfLpz22p2hzrydqSjhmCK7zlwen5cueojCb\nHYD8d0Xdpf7mWjQvCCGECGlX6d6aaUSyamnICTeZe5o/rJH68lyFIvOUJ5Ds19PrjGGsguYvOrv9\neJOuAKlw4TKNBJsnuCKx4nVcRTZ8z3XQ6285H/h+ZVW53AIxcL49kWbrRKv2Ws/1ytLvImdRes/l\nK+e40bGj63FUr31b8fvBO411T/VWtbCXUPfuuVdKVwghLjhaXQ0Y996T/r71tlYPL0QzhtGOvVZc\nMth3WYu0PPfCp1s8nBBCrCW+BWjhndnyS1cIIS5ansCSschCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFWi4F49/oF4HQ3ORFCiIuHJwBM1u1Y5qWLBeCX\nAAyXP4fK8FD5e9jZ5sVp6xg1VzFokgzRtt7v3jY+ZC/+4DLbzveY3nm8YwzV/I6OkXvMoYVy2zww\nNI91g3PFz+F5DA4VfwAwODSHoaF5DK4rf2O+/JvDEJZuK04zv7it2l8ff2WO0fs9t3ic+BjReVfq\nGDXx5+cxOFdumz+HwTmgvC0YmAcwV/6h/D/v/M6J4/3uJ010DC9O9LtpGhTbz84Bc3PA2TLO3Fy5\nrYxytvzj33Plf1C4bn9OnLr9dxX/at+v6+o2CiGEWBn00hVCiA7RS1cIITpEL10hhOgQvXSFEKJD\n9NIVQogO0UtXCCE6RC9dIYToEL10hRCiQ/TSFUKIDtFLVwghOkQvXSGE6BC9dIUQokP00hVCiA7R\nS1cIITokYz5dIYQQ54k7ibkQQgghhBBCCCGEEEKIS4tdAP4WwD8BuB/AG8z+nwFwDpVReT2APwBw\nH4AvAnhLN9lcxMvvXQAOAPhc+fcKSvNsAH9fxr8PwGhHee0RlfFPAHig3P5fTLprAJxEcQ+6xMvv\nB1CV777yPwD8MwD3oijbewG8uMvMws/v8wH8A4p8fgbA8yjNzwN4CMCDAF7eWU4Lzje/a/WZew6K\n5+o+AB8CME5pVvOZWw/gHgB7UZTXr5TbJwH8FYAvA/gogC0mXWfP25UAbinDmwB8CcCe8vcuAB9G\n8YD1Xrp3oqgAADBW7rtmpTNJePl9O4Cfrok/BODzAG4uf1+G7l3tvDy/GEUl6K0DfLlJ90EUL7qu\nX7pRnejxqwDeWoZvKdMAwLNQfPy6xMvv3QC+vdz+ShQvDgC4EcUDOQxgCsDD6LZOnG9+78TafOY+\nA+Bby+0/DOAXy/BaeOY2UF4+DeB2AP8VwJvK7W8G8A6TJut5a+NCHkdRAYHiLf8AgJ3l71+jTPZ4\nDMBGFIuGbwRwBsB0C/nIpS6/V5W/61zoXo7iS/uF8vcTKJR7l3h5/jEUX+HeStDfoDSvAvBVFF/q\nronqBFCU8/ejehHsLdMARX7HUH1IusAr38cAbC63bwHwaBn+HhR5PwtgP4qX7vM7yitw/vldq8/c\nbgCfKLd/DMBry/BaeOZOlf9HUJTbEwC+G8Dvltt/F8Uz1mPVnrcpAF9D8TX7HgC/Xm5npQsA7wNw\nGMUN+NEO82eZQpXft6N4gD4P4LdRNR1+EsDvoVDsnwXwc11n0jCFIs/jKJqRd6H4Et8N4NYyziYA\nn0LxtX47ule6zBSqMu7xbShUTh3fi6LptlpMocrv0wA8AuDrKNT3rjLObwJ4PaV5N6oXRtdMwc8v\nq9m19syNA/gkivcEULQyex+CN2L1n7l1KD4UJ1AoXKB48fYYoN+r9rxtQmGPe1V58nsATJT79gHY\nWoZ/AMAfofh6XI7CJnZtV5kkOL8AcAWKghwA8EsoXrwA8LMovmCTKBTYpwC8pNOcVtg8fwHAb5Th\n56HIJ1A03b+vDN+F1Xvp2vz2eBeAn6qJ/ywUqnE16gOwNL8fA/DqMvx9KEw5QP1L9zVdZNCQm9+1\n+szdAOAj5ba3AThSbl9Lz9xmFKLmxUhfugBwrPy/Ks/bMIrCe2P5+2YAh1C8bPehaoZtB/A/UVSC\nHr+NKsNdYfNrmULVtHkdgPfSvreiqBRdU5fnvwTwIvr9MIBtAD6OquyfAHAUwL/rJpuLeGU8hKK5\nudNsvxqFre8FK5+1Wuryy03wAQBPluG3IO2M+jCA21Y0d0s5n/xeCM/cM1AINWDtPHM9/lN5/gdR\n9T3sKH8Dq/C8DaBoCvx6EIfNC28A8DtleCOKHs2bVix3S/Hyu4PCPwXg/5Thy1A0ccZQvDD+CkUn\nRZd4ef43AH6hDD8DRbPS4nUQriRRnXgFqg6eHltQmHWsIu4KL7//iOqj9lJUJpFeR9oICsX4FSw/\npL5Nzje/a/WZ63X8riv331n+3oLVfea2oTIvjqF4qb4UhZnhzeX2t2BpRxrQ0fN2Owoj915U7kC2\ngHpNBaBw/XgfCiX5T+i+6evl9/dQGO8/D+BPUajyHq9H4bryBdQX9EpTl+dXoFAPv1/m67MA7qhJ\nuxovXS+/APAeAP/axH8rClvj5+hvWyc5LfDqxK2oXIf+HsBzKc1/QNGyeBCVx0BXnG9+1+oz9wYU\nrZsvAfhlk2Y1n7mbUXzA9qJ4J/RsypMoTDieyxiwOs+bEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nRBucpPB3oPDx3OXEFUII0Scnyv8vRTGf7WrN0yCEEJcEJ1DMUvYVFEOfhRBCrCBnUUwo0uXcAUK0\nRtezsQvRL2dQzMO6mnPCCiHEJcMJFGtYfQrFOmVCCCFWkF5H2mUoZqH6kVXMixBCXPTwRN1Xo5g2\n9DtXKS9CCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh1gD/HxLpZ3GzZjQ0AAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f7f7d30cf90>" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"# Plot the new cube:\n", | |
"qplt.pcolormesh(new_cube)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 5, | |
"text": [ | |
"<matplotlib.collections.QuadMesh at 0x7f7f7d0a9f90>" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEICAYAAAD8yyfzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXuMJll53p++d89Mz859dmf2MruwsMvFXsItKCTB3oQY\ny3IwvkkhsjeWlZtkjGMbcELMhlh2EllxIkdBSmIDdi6OYkeOIyWOgRiwAsRA2GWxd4GFBfY6u3Pv\nme6Z7q+n80dVTz319ve+/XZ99dXX0/P8pJk+VXXOqVOnzlf1nPe85xQghBBCCCGEEEIIIYQQQggh\nhBBCCCGEEOIGYWLUBRDbng8AeBWAT466IEIIsZP4OIAzAKYHzOcBAH80aGG2EVcB3DXqQoidw/io\nCyC2BScAvA7A8wC+dwvpJodSmu7I9vTGBjiHfmNCiA38PIDfA/APAPx3c+xDAP5xGX4TgKcAvAvA\nswA+bOLeC2AJQA/AAgrlDAAzAH4ZwDcBPIfCZDFr8vxZFA/9ZwC8FcB3A/gKgNMA3kPneBDAbwP4\nLQAXAHwewLfR8WMAfqfM6+sAfqJP2t8EcB7AjwF4LYBPAzhbnvtXAUyV8T+JQuleLK/nh9BfybMa\n/lB5ff+jTPedm5RJCHED8jiAtwO4G8AygCN07IMA3l+G3wRgBcAvoXgwzWIjP4qND6VfAfC7APYB\n2IPiAf+LJs/3olCePw7gFID/AGA3gJcBWARwRxn/wbKMbyvj/zSKB9kEClX5+TKvSQB3AvgagDeb\ntOtqfhbAn0Gh8sfLc/wpgJ+kslvzwgN9rs8+dM8BeEO5PbdJmYQQNxhvRKFO58vthwC8k45/EHWl\newWx3fcB1B9KYygUHz+43oDiQbme5yKqLvw8iofYayn+51A9KB8E8CmT/zPldbwehZpmfg7Ar1Pa\njwdlB4pr/6+03eSh+yE6tlmZxA3G9W6TE4PzowD+AEX3GQD+S7nvXzjxX0ChFrMcBrALhdpbZwx1\nW+dpAGtleKn8e5KOL6FQyOs8ReG1cvtYGT6GwlSwzgTqnhecFgBeAuCfA3h1Wc5JFA/5pqwBeJq2\n70iUSdxA6KF7YzOHwk45jsJGCxT2130o7KRfLPetURoO98MeP4XiofkyOseg3EbhcQC3onjQrQJ4\nAsWD1CubLd8HULwQfhjAJRRK9/uDc19C8XBe52bnPOt8a5MyiRsMjaze2LwVxaDXvQC+vfx3L4ru\n84+UccawtdH751A8BNcHo64C+LcolPPhct9xDGbTfDWA70MhGt4J4DKAzwD4LArF/i4UL5QJAK8A\n8JoyXb/r2FOmWQRwD4C/Y46fBPAi2n4YwMtR1NUsCpMFY8/xx5uUSdxg6KF7Y/MjKGyLT6EYWX8e\nxUPmXwH4aygeEFYdbqZ0/zeAP0Hx8H2+3PduFIN1n0HhNfAR1JWfzTM6xxqA/4ZCmZ5BMQD4NhQq\ndxXA9wC4D4XN+AUA/wbAXkpr8/4ZFNd6oYz7WybOgyi8NM4C+AEUHhXvB/BRAF9G8YKy9cPbVzcp\nkxBCbGveh8LlS4jrEildcb0xyEQFIUaOHrrieqOfiUAIIYQQYiMtdtX2r9VdEYUQYkdxFsCBQTNp\n0z621rzXt9JiMbqi1yBNE7doPk9UT1MUjs4z5eyP8uYycN5eXiOiSWvOLnmz2iDvJshwso0Zu/bf\nIMimK4QQHbJNlC4zatWbVbBNyplVhlk16ZVhiAo0K9Y9ZcjKssml2XS85E6TJfmzHQSvWUTlbKKO\nvfM06Vg1aaJNynzDqHMpXSGEuO7Yhkq3TdpWzVn7KsNSas6PlhG3TdTfHhOPt/cl03DZPDV5Lti+\nRGG+Bquqek7YLiDJ5b45iMcsUPiKEyer4rlsS+bYqhPPS2/h+uFy2jReW8gq1UEVddsK32NbPVKk\ndIXIsbB5FCG6ol2lO7Zm9+xg+FVv5UFCts6bbVZvnDxSb7ud9Ied/Xb7Zmd/pHQZVnlPm2O8gOKT\nFLaK+BL6w9dt1/E6TuFbKMzltreEz8uejYPaXa3S9dTpZScM5NStTcPbXu8hq1r5GqLeBzOZiLOV\nMnhkO5RdeJesSemK6x3vgds29kEvxAjRQ1cIITqkXfPCnLEnDNP7y+tONDFpZGth0Ly9Qax+2+tE\ng1ieSYG733eaNCco/OIqOHdz1eeenvVGmoDVXlWg5cvVV3uWnzMrFbJ54QsU5g/XWAXK5hJepvyE\nicfbtYE06sv2qLLOmRt8isLcTc+6jHF33FaVZ0a46JwfqNeDl97apfm8nnnAdu29ceAmaaac/W0z\n6MBgU/rltyTzghBCXHe0+7me3cGxtt+MXU3LZKIBFA/2Eotq28uP683Wr+fYHzn88/aeSi7N762k\n1LyRVVcwcy28Ol0pyNVdVfjKnsVamvMsQVnZsUKzA2QnKPzSKjh+om783X+4koZ7xquyztCn2yao\ngSwaV72LV6tRzF4vN6Ni+XJVB0sX6Ws9l803Oi+TEOJq5C++fcNk/hwXjsLcJuyAKseboTD/Luzg\nG+Mp3WiQz/vNRYO9bSvQQc+TffbM9NmX/c1vgpSuEEJ0SLtK97DZnnTC2bdS1saWcWtpWgbvnJEL\nkIdXH0BdAfIxFmnWzYzf2vzJx+iNzKrkBCnYq5Ximx6vf+x3uqYgq0qYZDU5vauWZuFgVdirh0ii\ns7C07eVEZTQ/clflZ3YQp2vRWIlzeBcqtc1K94r5YvzCeFW2JSq3jcfX1yOFv7y3qrdF1K976Wp1\nwxZJES/N7a8iRXZTvj9Z/2JP6VoRn5nybMvm2ZUvOXEioingnttc1p0t+m0xkSpn+nWArC2+IVK6\nQgjRIe0q3eNmu82pqdlRVSay+3pK2ebl2bt4xJnta4D/do7Mh94IMqsYW2+ewonga3DUvrXpTjvz\nZlep+VjFNzNXqeOlE6R0X1yp2ZtuZUMncGy6kusHSVbsN24O+2h7jtQt23RXTWWzXfoc3SC29y5s\n6EpU8LUuO7ZjAJgYryq1N1uVYYnbsvVUYdu2Z6u1M8g5nqc07RgAiW1X8UWTMM45Ydv+Oc2sE46e\nPJyfp65tPK/naq+Tf0OZ6e3M44k4CaR0xY7nSt9RESFGQ7tK9274vnz81j1k0t3iHGNFkLVPZe3A\nFxNhu81vcJ5Ket6keYHC3mIvVjx6b21+M9t647e4p/atOuY89lQnmhv3DcGTNfso2YEDebBv77n+\nYZJIR1FXumy75XhWefM2q3Aup1WtrMSXSDbyNSwZ1dpzro/V7YSRWFyGmelKEY/fVDWEqz0jQfk+\nsoLkexe1S+83F/mCe37hVjF6vw22b/J4AlBv2/y+Y6Vt26U3XsLnZC8PWwZuvtwrsNfJ5dnqCqgf\n3WJ8h3aV7qiXwhWiD9b0IcQoaVfpvhK+rShSbPdUr7kjtz9ThUkJsb0OqI+oz9CrlVWIVWK9mqqp\nfojn6HV4avlgLc3CWRqFv0Q/Xp7lZEc1eTaW54PZxA7sqRMLv+lPmGO0vedQJat45D+C65RV5hGc\nrKk8trXuoouLVKsXnjb3fsaxMfP9ZUU+jWUsUAOco/JYmyzDD+tl8mzgvG279Mqz/3AVXpyrp7ly\nsMr76nlSwdybsvbMhG1+g5pkge2br/3zcJs95IRtPCZayIkVaFQ27gnwQkonbUTnXDdROJo7kF3c\nvgHtKt2sO4bYcUw2mK1iH8DDYmHD00dclzRZuGgbPpM0kCaEEB3SrnB+Y3BsllaLma13rw7eXPXP\n613Mi333A/XuMA+68H7bLWW4u3gKlUnh9HS9r7RwtOrreO5FpxfraS4+RdvsZsKmBh5si2jSzWEz\nxIn6oT33VHV9cFcV5npbNpMEuAvO8dj8cyiYwLCnNoGh6tpbMwHfL2+AzOIN7LGLVzTYxSYEa2rg\na+XzcP1YezFPsOBr3T9etdEre+veFIt7q3a1dJTMXmeqG7l80dilL1NjcN2l6is0je8m9zoycfAC\nR7ygUbFNJpslMoNcoWs4Zxqmt4BPNCGJFam3nIBt/5z3vBPPpuG8gw+5uCaJFpDSFUKIDml1accX\nrX2pUUJWRaxaWUnNG+s8qxBOz2rFOvV7iolVjLX/saK9SOGzJCdPm5GEkzhyLfzNZ2htxSdJHdSF\noT9ZI3pre9OaWeneWpcXd9xeSW9WpzzwZeuJjx3F89fCx9B/0BOo369676O6J9EgVOSOxgNUy47S\n5ftm8+JjfO+XjPTx1K23vzhGy106ZbN+w55y5nLaRXu8vHk698S4fx9nnF6FhXsM9Wvof50AsLhc\nlfX8KfITO0fxrDk/O4mI8RbBz35fb18Vcdos2DRNvfH5XUVhnx27C9DSjkIIcX3Rqk33Rfhao3Rs\n25urKVjfpustdOK5klnqDu6+mxm/0Vl5nAuUbs3GfKyy6z1/c6WATz9n/GwukgrwFtY2Nro5cvli\nexvb63aZN3jGRWsONk11H3hCA6vbfWZoeT5hx83a3O0kBVZf3tRfztuqUe+YVaCLtUkUk06aet6e\nMuSwvR5WinxOdmuMbMd8TpZR1pbN98FbHMi2f0+he6oXqC8idO5Y9TtZOFb9fhYu1P3Clk6RBGV3\nTHblsq5kh6vfQ8ZeDQDz01Vb3kc+ebb9TvZ5Ptg5IE2R0hVCiA5pVemyjQ/wHc/tG5jVCr+BvVFv\nGy+yR3p4tt/IzrjoTKg4Gag8fps+P370WvjUsfokjHM0R/LcYpX3xGRVV/yWBoBDNCujtzdnCPOm\n1/IU3INmtgen4cVnslN15xyla9sHqyc+ZpUqnHvkKV17bK7mqVGpN6vY5hPKbtX8hDx1G5HxjNho\nO+5fNs/TxG57v81ooSBPhW9YOpMkaf13Rgp0b/3+8BDHld32fhccO1rXmp6fNz9f7O95n9N+ba/Y\n6wm3gZSu2PFkH35CdEGrSncfzrmLXHtvvOJYlSZr//PsuN75LZ7SjRS1N43Y2oM8Ncgj/6dRV7qn\nyC58bhcp3UC58JvesxnakeVp137e34PElttTt5EfddbOXi+nb5PNENlNPTUaeRX0amn8n00Tpevd\nr+i6vfJEfup8zCubtR17vumRvfmcs4o+t2XbDmb2Vtvca+Pf8BFqh4A/dT06T6YHBsTjDYPSqtK1\nZgMhtgP2xSPEKGlV6c7jomtPid4+04l41q7i2WGj83i2GW9xFqBu36x9voWUglWG3qjoObNiDatb\nfotzPFtmT/1Ho/CequE6ZAWwhF01+zzXAaverLqNlkKsl7Nqjpw+GlH3Rt4je7GnErN2UyY6T2Z/\ncZ7+irbJehYbe5H9fw/RGsPsr7zoKFrbllkFe37z9rfFaeZcdVxvL9yL9NRoNGa0r5ben/Xotd82\nkNIdEac2LM20OdmuOdPEnmkHRDNkVykbBTeqTbfJw8JOEMkQfXGjzTT2CyIZooHxUaGBNCGE6JBW\nzQt20ZOsW1bGpBB1s71Bukh5e2u/bhhEOlN9FmKMpx1S1ocO1j8dcXBv/y8gcJdsj+ma8wQLnoAQ\nXY/XNeZuYKTypmvdrsokYgcsjpFb+NHa1Gxa83bV3NPe1ns9q5P9m+PqxNaV6sSqr/I4P64fOyDk\nuYl55iy77Q2q2TR877y2bHsS0fV5zFyp8rsy09+ksTjhTzf2JgdZU8NJVK6RXG5eWMoqXZ5i732x\nw5onvOdGNHCbXVQp+xxpgpSuEEJ0SKtK1y560mSAy1PH9k3kpcmqW4bV6KEXzLL336IwC1o6zaQx\ngR4/Vind+dsrNXh6onrT27c29xIiVcSw+mIXHk8pAL4bX/TtslvIxrt/saqEGUf5h4QtjtRylB/l\nsUaXOuZ9UTk4J6ef211Xk8sz/QfS5q7QwOulq0FBK1apDJPGNN+bcY7xdHD7HT7vK9XJL2h7ts69\nu83+2hKHVQ/o7OFKEVv3R8+VMBpU9iaCcFvODnZ5CyzZPKLBsux09SZI6QohRIe0qnTvxDdq21k1\n6qmvSOVl1a0Hv+n3P0uq8+smIn+HidUGv0DtostnquDeC9V59h6pbKP7bqnbjtnGlXXKzyiC6Pti\nXIds12Y1CwAzbKrnQ5FZkcW2tzylFeRXnPBlE4/yGGvigsvpKbzbqNbds1W7qKlRro8LJm9HdU56\ncQBMcvP1FKxdxvBKcMw5T2r5RNuWeaXTar0m7D9P35m7sz4G0HNs8N6HB4qi9betR4vxeONE2R7y\njnAZE0IIEdOq0j1hla4zwhqNbE+u9reRTTQYQFw1V9ebqN4xtfOwerPrtz2B/vE8O5qNd6n//v2n\n6zbd/btpm22WpDyWg4/scf3U7IL2y6x8LKOwgPo1ePchWmB9JojnncfrVQDAXgpznTRxx40Wie85\nh6gnE36llz/z4tU1sNFe2y8vm8arqyiNVz/Rp3IOOOkp3vx5s6jMgUrFcu+Me1N2/IeJplkznt01\nWgrA733beLnlBJogpSuEEB3SqtLd/4SZypd9QQzqBufYCa3b58ysM9LMSsF+RudbzjG+NmtXZBWS\nHY1mhUH5sc1xg/mS6807p1WJbbocRvbZjNK1rc+7D2fgw/XGytJWltfSvU8e2W2uRzZh2vvI94FV\nYrYnweWOfj+chnsz1sbswfeLle4BE88rD9XNmFH787vJB53Ss49DejGqK2S3vVL//XLvbszLLmrv\nTY8NiJSu2Pm0+81rIQai/ebINtDbUSlFLwwAx4J4z1CcZ0ya5yl8ksLryugI6kpklrZvgv8BO6uS\nWJmsn/MgledOUzY+xmW7hcp2EHXFxHnciaoe7wbwVQrztz/vAfAQHXuM0q+n6VfX/erUhrlsR2j7\nCCoVepTCtq4P0vYRVArsAO0/iLqinaTzTKCqg5tQr4NHKc1rUNXJnwPwCO1f9zy505yHy8bh3eYa\neHsWVT3OovJyOUjnBIC7qKyvp7LdS/HsNdxO8V6N6j7eTee5C/X7eBBVu9qNql1Not7G7XXz/Vqv\n69tp/wFs7B15vRavpwVg9/OFKl24Dbj52aJAz91yE25+sgifum0PDj1eSfRTL96DQ18qts++Yg77\nHy56zZfuGcfuh4q8evcCk5+rzrF2HzC23v5fCeALZfhVFH4l6veHt+9FvV1xmJ9j9G3ZNmj1a8Br\nH2uYMjs44x3zukr24ekNGPAD5guo8wkK843ghmnPw/2o2yh8O4W5K9wvj37YH4M3aNKmucbiuYJF\n3fnsYBebEfgB87yJ570seYDtqLPfli1rXuAyPOOEgfp94Dbmfe0ZqJsEOI1X1zYPz30s2w74nLeb\nY3c7YTZD1OdG1PPz6jfbliO3OaZJm9+i5By7v/jT4Ew1ZF4QQogOade88ITZHnRFvWjQxVNZHLbu\nL567FLPHbLMi5XNGqx9y3rudsD1/RhFEzu5ZvHuS7VV49W6Vi9cNjc7DXWFuS4+aeF4vw+thkFM/\nAP+eWvg87OHEE2ZYkQP+tQZdcXdQNtuT8Oo6GlTjeNFv5piTnuvGDiZ67n583VFb5mNR+29C9ok3\nxHEAKV0hhOiQdp/n2bWvm9gMbRrv7cw2PqsEPbtn5DJzF4X5+ryFcIB6WVlVcTmt2pl0jkXO7kxk\n//PO49nFo14Fx4smiHhqndPb62FFS4MfFx6Dyxy1gynPlcsqXb7HXG573f0GUIH6vbdt3rNlEyvG\nLZFWD8UcpZkK3B+nuP17yj25aFAN2y65rFwHjosjAF/dnnfCQDx5pF+cLNlnzVbSDYiUrhBCdEh3\nSndQdWvfptmRYTjHOL9oVJRHvtm+xTZH67x/3jkWXY+nwiMF0GRRmUGVrmdzjEb+vTTWK4Fspaxu\nHw1seXN0jNeSP8L34FFgiu29fE+tFwnD7YLKeoba+Wlz3Qfp+uapjfLM9wumvXlNdoXu95Kxma+w\nOibb7V6+Njs+4XlGcLuyCtRT+JFdPKNum3gitK10s7+TlpHSFTueKevSJMQIaV/pejk2sRlGPree\nAvTCNg/PdzSyA0cLgxAr9BafstOKPTJqPbJrewrWpsn42Ubn8WzhFk+5s2KzXgkPVcFHSME+FZyG\nP7DDnYoLRmGxGfcAqbQpz6cUdTXJdld2ZKh/dAk4Q9d6gNJwFdhPP/J2TalSHZ4xCpQdEy5QXbGi\nPhDde2+xc6tA+bzck408gTLqNvrG6qBKt8mYhiU7RtKAdpWupluKbYgdGxVilLT7mDwZ5JhVX/wG\njmZ9rTrxLjthm7c3chktu5ec7cP2tylOk/yUSvpL694IcnSdmdlY0ewn7xrs9XjqmJX/V1Hji6f7\nH7JqcoXCUxTmTx3aNDWle75/2OK5uS4EcTwTPivyF5s0x9k+yqYQagdzti1TnXJ5pmj/vFGtU1wg\nT6laG7fnjxupVm8xnsiO2+aMSibb04vSDTrfwCClK3Y8UrpiO6GBNCGE6JB2tWk0SSDa700n9brM\ngD91Mvp2lNdliLo2nAd3jbMmgGi6JJNxE4u6Odk0memj2QGyaJEer4tIrnZnjHmBx9XYU8ms0lyD\nL4fNDpzGmgB42zMH2Dzs4Nc6U2ab03B52LxgzzMVTQ9PsOKErZvZVGYabWQqYKLBN8/clzUhDHPB\npqybZDa/BkjpCiFEh7T7DI+UZbQ/s0hItBScN3AUuaZ5529hUICnb65Q3imlEWEH+TKKwF6zN8Uy\nmmLsTXTITkphSFraiQWsOlewdTi7BWe/zZuVqVWtmQE7C9uPOf1xCh+1PYnEANeKuT+Z6p6yvRzv\nHnO8yP3LG0iOfpuZ6b2GlQZK1x0kzE56kNIVQoidSbvPcPvG4+3slFGOFy2o4i1unL2i7FRbb5k5\nPqd5m9rFSdZZurR5HMAsZtLEXYXLmVXHWRubd6/svfds5tGUXidssYq0X3Giy/FsxF6+QP7TY6x0\nOb8TVLi9dlF1JrnAkVc/u5z9gOl1ZXp9QM6ma9NQuT3VGnwQvBGc32TQEKa88Y4miwM1REpXCCE6\npN1neGSzjCZHeIp4wonTL49+aSyZJeOCt3bWhumqiAA3TaQaeBJGtJiOB98vTh9Nn/YmpTRQ5Fbw\n3UrhSHVyUTmeZ6sF/NsVnceL59l6Lbyi5Hww3ZjVJN/jSA1OOeG5oO15+dWuIdszSqjZ6JzWRj0o\nbL9Oq+jsb7jlskrpih3PEL+mLcSWaVXprli/QO9t0cR+kvVEGJQ2/Acd1TcVLazjECkfVgt8LLKH\nukT3x7PjDjg98oCZcnoHL1dI+60nAyszz3wX+eYOE0+B1rDLNDr3OFKDrGij8QGPnnPODYulUzhr\nn21bxWYYxTmbIqUrdjxdPXCFyNCqXrRvvOyIIpMeXcyUvG013MTveKt5WUgV2RlGS1y/TvK5yE8x\nq9wzvZQmdmxje76V7J67osVRnNPyw5WV8lHkfIAjf15PXUfLNDbqcSRpom6bqEHvNxwp8oxNtUn5\nLd55oryzdcDxNvg7D4iUrtjx2A97CDFK9NAVQogOaXcgraExm7sDNQfudAZNTpqM16RrkXHZSk67\n5cHIOZOvN7DBZohoYKTVux99v827VjPhhQeHjkeL7jjMkUliF7nDRQvZcBVas4M3iYLNBnbZyNqn\n2Mhc0sSNMKLNLq83qAYEE32SCz4NakZoMomiSZo2TBJZpHSFEKJDOlt2fGDDdDZN299AyrhINanF\n6G3sLCwyaac0Oj0EDkeKxFW90aBl9IUJD6/e7H5W8jyZINkr2OucZ8VM2slOqPB6Wqx07TcvD1C5\n57zv6CWVU9sDOLWFmBqotxVnQkTUXAZ1Z+uK6JxtDPoxUrpCCNEhQ3UZa/sNUc/cCUd46jZSs5nz\ntLF8nAcrEuNGxTZez52nFZqoW2bQ+oiux7Gf76V6WzBK11v0OzuGwEs7zlu7dPCV6Azeb2YU6s+e\nl8s2FfWMHAZV2qOi7bqX0hVCiA4Zqk3Xe0tGbzlXHWffjIOqp6wdLbtYevbzIN6SloFNdo5UVs3e\nS+ovekvXpm1Htt+MUm1ic8/2ELKfBXLU1/FjwBn6/s9iVplRuDbZgup9wzKNma8lm+vOTLVt2zba\nxF7cpo3Z5uU9E1LLUV5nSOmKHQ8/cIUYNZ29O6JFNTL2nQ1vuUFtQt5bO5vvoG99ez3RRzhLrHKZ\n8mxsAd70zZ7j/QDUFbXnIRDSRO1nvUu8Beipt3DgTuDCk9X2UjDy7hWHBW3NXzr7C8pOg28yvbeB\nOub7PajqzarWbH7MUMcqRoSUrtjx8ANXiFGzra0koU0q+7kRj0EVW+TV4CmhaKFx3uZpTqTY5swn\n3JeiT7qvxwmWEWS/1Ogz5weoDHuzo/MZ1WrrYNaJ1+RekafH3ruBpa9X296MNHsba4vXcK8iq3QH\n9W+OYL/3ZH4rQW8zw6BKM+ur7x2L0ni9tu2IlK7Y8fADV4hRo4euEEJ0SGfmhaFOlGDDfdT1a+L6\nxF1eL++omzzjhG1ZZp3wGWc/gCUalfcGHJZMV2uR01OYo9l1YN3vr0XXw/Xo1YcdMMzmnWlLVDd2\nYIevO/rSgzuddZgLLLWZnx14zZhpBlxzNzpWmzpsys/1ywOVkekk+jbbVunSJCGlK4QQHdLq+zdS\ns03cUtLqeNAJDZ4qA3xl5qkyoL5YS0YpR+dhH1NznRf4u2jeV1fNdubDD1bpzrd5PZHS3e3Ei/L2\nCOJ4g4bzZnsXhRu5iTFNJoV0RfK7gN43/iKVyD2tFWc/4LffqaDeeEBzipczbfB14tQgXUtqWEpX\nCCE6pNV3bNqdqAlNFpWxasc71sSm6y1DaNN46i2rqG+j8DP1JHNfrcKs3qLvdHnfB6tNBLALn/NX\nez3VG9Vbtg6y8bweC8fbUwXt4u89swCORyM3scyXk+31tOlONuikHWvT9aYyk7K0bYxdGXkMYYHC\n9jJr7dJzUYzGQfheRa6m3rHoy8t9yjUIUrpCCNEh7VqThql0LRnn+UgheSotSuOpr8jm6KWxdeXF\nu4vCZmnHo6ercG2aK0+oMNfjqTxeonDDIi6eAo3UX0a1Zusg6x3CZeBP5dwP4BPVtqf2rfdCTSGT\nck7ZlG28SLlnlG6kYNtcStTiLb7kLLRv4UPcG4uK5i0AVOtxAfW52Uz09eoGSvcapzePkkFKV+x8\nPrF5FCGOr+7UAAAWv0lEQVS6ol2le8Rsj3o6XnZ6btY26dmErXLJpMl6PHCd2jc7+fDuJeWxQLZf\na2fnUdraotQczyoKnpacrbcmXh+D+vN66d8M4GPVpueba22TtQXJPeUefavGs/tnpw5n1W2ThYKy\n0+hZ3bLqZa8a0wPzPBYiDxnedheTj34zTZZ0TX4G6hotzWyU0hU7n49tHkWIrhiu0mWaLMU4qFKO\nri5j342ORV4SXt5e2G57ivx2k+YYhe+sgnOsQoxqnePtCSeetbV6iqKJ10dUB1nbb+be8fW8DTUT\nwxGqH1ZY1mvDrZNI6TLRNTAZpZqd8TeoP3BW6bK6Ne3fWxKzFjZl8T495XrOAPX7E/2GGe85lPRV\nbgMpXbHzkU1XbCP00BVCiA5p17xwbPMoAPJyPWuSaCL/m3zNIDsolhk4irp+mYkFQH2Ai7paB9jM\nY00+Xrc0Ok+TQZuMS16T6dN22yvb3RQ2k0peT+aFp8kN6MCBerxa95XDTQbSou5vpo1lv7IRuTJm\nBtki8wKbFC44+wEc9cyMTcrGdXDQpPFMD00WJ5J5QQghdiajUboRg6rgYQ6+tbm0IzvbR/E4HHyx\nt1YeVhpWvWXUbVZVZQd6PBUfKdjs5AjvPDzoyKoXqDm5H3+C9lslxdtcj9HkiMy1ZusqO6U9O904\nc56s0uVBNavcs1PFGe/3zGmySjfbc80ipSuEENcv20/pekRvm2HafpmsPTMxNbWRw7/9JpqnhI5S\n2KoDbxJEE7v2oF/2zS4H2cSNj6/NKl1uB5FbF6tbbxpwpEAz5bTbWbdErx6zabKTKDyly9h64+eA\np/btb5Hz9np0kSujZ9PN1ptliBO7pHSFEKJDupsc0fZCzZk30Si8H+yx7Gh0dmIAnGPeyHCTEXnL\noEp3UHWctU163If6tFWG6yDyRMgukJSx+w/TZj6oHdjCv6GLTt72d8/2Xq9dRkqXe3SseqMxAO93\nYu9P9rqHiJSu2Pl4D1whRkC7+vMg/LdH9kxt+NUNkqbJdOXsdMusr6aneq3N3LODsSKxi9ccDI5l\nyjaoavXiZM8TxWP4Xt8Ef9oq1wfXG1BvCxlvDBuvTZtu2zbzJrZNnsfLbcez9UbniZSup3qbqP3s\neIClyXMgSbtKd0RyXYiQ6KEgRMe0q3RvCnKMzpR5WI9opLEV5btOUrmsUfpV2r/hQ51e2fghY9Vs\n1o7rlK1VpRvl7dQHUK+TVaddTJvF2se4J8D2P09hAbmveGaXAm2y5GIDm7nXdux2b2Kc9vsFmqAv\nOU6uXr0W5vodiz7xk4XTePckm28TW3jEtvbTbXuwTOxsOmovY9GkEiE6RgNpQgjRIe2bF5zcbReR\n8bqI3v7rCe7GRXhdvNUJv+L2TVRfnRpjUwF3yaI1SPmU0ZdOqcvsdV/tvfKum6/TXtsq9f16FF41\nzXQ1YY+a2FX1eXfVvkkLzO+u6m0y231t0fRhmXDO65kDimP969Grw+KY08ai+pzgYFWnE7vI7GDs\nXBMNbHITq1WamSvL18I1M4btsWS6/VlTTsS2Ni8IIYQIGWsxr7XzvelUxEjhMPZNncp7QPEevfW9\nN3hGebWBPc8cKbj5KwvXwrsuVQMeCzfV78nyRP97FKmTK6jScP2uor/CstuRavXSNFFszATJkxks\n145Nk38dH4vqoEnZvHYxbea5slLMtjHvt5Gt30Gpqd5ACloV3C/9xvz6523vI6tjHvBjokHCqBfJ\nea9z0+Qy0MIzU0pXCCE6pFWr6emJ+uoqTZRh9m3c1Zu+KxXLZOuNFejSzK5r4emZShEsme+uXkn4\niUWqldMv1xTw1pVYth1EPR7vfrNCimyOkbrlPNosty3PdE1tj/oT2nUySjWuw/6q1csX8Otjw32c\nWO0bjkj/nvtGezaXdhOkdIUQokNaVbrnsM89lrWXMU0UThMVPQo1G5FVuouo1C2nmSGboVW2Vvmu\nE9ldWdF6SreJbbNpj6eJrZ+JVBbTpKeWUfhWzVpb5VbxyrnRbrq5io7qJmN3tXm0m8a/nuw9bUJ1\nT6V0hRDiuqNVpXvKrJidGZUFRq90B1VObePVG9two3g8Or5EarjIo1KqdVttlfeyUceDKt36/uH1\nRJrcx6yyGyZtnqeJmszmV9/vq8xpxyOEe2Cx90J/RZ61zTfxpujyGSClK4QQHdKu9wIOpd6MllGr\n1kF9e5uQHaXmN3P22qI0rHw9dbto1DHbgT2la881TH/pJvEyNBmFb0Ib9seMZ0QTNRnl5+dllW6l\naDl95KWRUeHZ62lil7YMc5ynVaXbVXdMbD+2m4lGiO2KzAtCCNEhLZsX7Kdnc2RMBW1MehiWEm/b\nob1J99NTmnZQrDahgswIi7Vw3a3MM0lEbmHD7J4NS1U3mUTR5N63eX8B3x0tuxBNk0G1/EBa/3jT\ndkpvogzZAbImbmZd9tKldIUQokNaVboncTQVLztA1uaiJ5Y23WeaxmuTuluX7/7VROkuO25mTZZf\n3G52/0HbSL5NbF0RZwcjm9R11i3Lyy/rmua5j0VpmtBkane02NEw26mUrhBCdEirSvcZ3OIea7Kk\nX3bRE6bZm3owx+roPIOSnXJad/mqlKqdHLHoqFtPKRdlyC32MijdTUYYTOVl9lvaWOSJadOuPehv\nZsYsVZn5bbU9bbfJVOis0m17zEZKVwghOqRVpfskbkvFa6J6swy6zFw2fX1/N/a6jUs7Vup2AfPX\nwt5kBiA3pXdDGa4OpqomxgdTiaNiULXD97i2DKapz16P7nGPehW0f2Iyqah7gaIOjnnweethUozT\ndpH43NKMzKBTuJuo8GiyRnZx+yZI6QohRIe0qnS/gpcObPtqQpMFMrz9wxyNZqLR/qxdm+21565W\ny2peuUwK9rKvYHsrVX5Xg68ojntfTiQmp4IegqPSIvWWVWVePL42S3StjHfdfK32PFfP05dAOfk5\nCtuieR/H5I+F2iLPOsc4jS2+9/HR6KOkHnwN8+bYrBPmNPbWcxkuOun3mDS8kizXwWx14eMzdaU7\nM0cfvZylzzYFat2q5UHRNGAhhOiQVj9MiW+u1N4srAg821Cx7SiKQAll7IRdqdYsTT75wva/nlF1\nSxfJ++DU3uqAVS5LFJ7KldX75LgbZ8OxteSJiB41R74l2dvD8VbMsVUnHnPRbHvXx+rL1jXnwWU4\n7+QFAE9R+BSFWR0fMmmOU3i/c35btrMUZvFmr5vhJsdth+vGfgFqzolnueyE+bq5rgGAOhIb6mSd\n/WabFTKniVR07VjZYO6YArbbhymtlBfbgKXNo2yg+0XXhos6YNuPJiaN3ZtH2YB9mG4DNJAmhBAd\n0qqmufpw/VW0zBKduyC2i+sNCnAX1ZoaHNMDD37YwZ1ocGWrZAeeavHYPGAHgLyutTdIAtRV7NNO\nYWw3u/8n0urYLl3GvGDj9BK9sHPBscgk4g0WeYNQCya9Z2qw8fi8XI88cGTvCV/TirPfdggfpfBp\nCvN9uMek4XJ7JglbvycT8aKeEddH1DX3PjjN9W7rmgcT2dzBedlPMN5NYX70nHDOCdTLynV4cxBv\nX7tdPyldIYTokHYf4Z8x2/xm4jeHVVKe0p0ltTRpisrb9Da8usoO/wEsNFl5RG42ngI1XJ10XvWc\nl1UUl9AfrhtbNi7DY056ex6ev+JdT/b+eIMsQP1avbq2KtFzG7IdFO9+8bVGio+3ud5fMPE8RTzj\nxLHxOMzXY1VeTRJzIuqWWJXnuWx5A1IA8JwTDu3+XLbsKGwmL9uYuRCLVXCBznnqQD3J03SMlSpf\n9zfMabgeuR3dZ+LxPbYucQMipSuEEB3SrsvYvcZNiN8++5xwdGyPs3+z/Dw8ZccqJFKgTTzLMsoH\nqCsPz+3H2mf5jf4QhfnNbOvm1RT2XIAi9xnPId0qf3ZP8pRY5G4V2Xu9+8X3itNbBXvaibfBy23J\nCTP2pnhpLgR58Y04QmEyWlq15fUcPeUP1K+1x+VmY+8Zk4hlub1WD893L+tK46lru3Tsi6vgGB17\nBUV5PDgNF8eu1dWvCM+OAdvNZUwIIURMu0rXWlHH6C3FCsl+1YePHaYwK2Wbhp2c2Rk6sk16NkjP\nlmi3Pd9Ca3P0Rr3Z/scjzkDd9vQkhVmVRSPlS+xhT8s5jhk72J+lsDdF03o4cF3zvfKmewJ1geQ5\n71tYkUbO+5y3Z7u1NnJ3hJ4VqFV5HNGzR0bqz1O91jbK6pbVHE14CYdfmthauTwnnTBQrxPveqyC\n5Tr1uof2erjR8fWwxLcPgTsofGsVHKO81iJ1zT8um3e/dAcBKV0hEkSmCiE6puW5R4/Xs1yjN9ZZ\nevuc5Tc4UHvLsarikXZ6kQGo/5BYffEL06ovtoN5Vx7ZbaMFOzJE9ky+Hva5fTbKkNUtJyK1tGaU\nLtuOPXVr7cCZVmLVPteP56NqxYSnbu1ov6duWbhssM96tkUOR+qLw5G6dbwP0gMCZ5ywxZtru8tG\nJMgroHbdfJ7nTRqu1KzSzVxr5DDOx1iBHjHxqJ2POZ4ePXMeLmrvVucAUK+rDe4mA9Gy0t1p80fF\nziA7ACTE8GnXpju21kdhbBF+bh82xzzbYjTbjWeq8EvPmzXTL49+2N+x5wngzZIC6rbbb1CYRWuT\ntRMsbBbz5qJHvYJMDyE6FnlteN4dXL/WPuuq4AtOGDASxzmRpU2/1CZk1bHX4GwZPNeGrMrzbNw2\nb8/7IOpJcO+X7dq8so/dpjRRG4+qZ53IZ3w9vLYdvRcGfeBGeCsKRTRZIKPJ76xJmic3j9IKTRy7\nmywS0qST083ibmjnzXU90uShv7h5lA00uZGZ+egW+wBOsA073xpIE0KIDmn3PWBVldeji/BW248m\nBnimgjbWjm2yRk7GZSyamsppsp2ZaEou403PZey9Oucci75S4OUXzQRNw5lw9/e0sz+rdJu4ZWW7\n2U1okleUZlAXuOxCuYxnXrD1yeYFbwAzgG83X44dFPbcJK15rZ954SxaQUpXCCE6ZLiTI2pEstd7\nu0aSzXtrZgcVBiW5+o2bpklZovpoOz8v78zU2Gxelqz09crjDRTZc2bbWxNj/YoTbpJvG+rWi9eE\nNhe/sb8Zzs8bYIsGKLz0xmUyPeGkH9PAthtIE0IIEdLy2N5HzfZfajd7IRoxBfnqiq1hn2XtMWSH\nCq/gUTdnmEXyzpv9QWa7V96xaCAhc91ZH8y28brMUbd20O6nd/6IQesg6vJmafOejOJF0WTEu4l5\nLYLzO+Psz2LvobfGQ3e+ZS3bdIUQYsdyFhuNxEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIUbEWHx4dg243E1JhBBi53AWwIF+BzZ56GIN+AUAU+XmZBme\nLLennH1enLby6HMVEybJJO1b317fx1mux5/YZN9W8/TO4+Ux2Wc7yiOb5+RauW8VmFzF+ESv2Jxa\nxcRk8Q8AJiZ7mJxcxcR4uY3V8l8Pk9i4rzjN6rV91fH+8YeTx/p271o+cR7ReYeVR5/4q6uY6JX7\nVq9iogeUtwVjqwB65T+Uf1ed7Uwcb3uQNFEeXpxou2kaFPtXekCvB6yUcXq9cl8ZZaX8x9u98i8o\n3O94Jk6/4w8Wf/o+X8f77RRCCDEc9NAVQogO0UNXCCE6RA9dIYToED10hRCiQ/TQFUKIDtFDVwgh\nOkQPXSGE6BA9dIUQokP00BVCiA7RQ1cIITpED10hhOgQPXSFEKJD9NAVQogO0UNXCCE6JLGerhBC\niC3iLmIuhBBCCCGEEEIIIYQQQtwG4A8B/AmALwF4R7n/QQBPAfhC+e+7yv1/GcDnAHyx/PsdIyjL\nW8r9swD+U1mWPwXwng7KAgA/AeDRcv8/NeluB3ARwE93UJb/jKpOnij/rvNzAL4K4DEAb26xLE3L\n820APl3G/yKAmSGX5XUA/rgsw2cBvLbcP4r265VlmO03Ks+3o7gXXwTwewDmTbphtOFZAP8XwEMo\nrvWXyv0HAHwEwFcA/AGAfZRmmG14pNwM4L4yvAfAlwHcC+B9AP5en/j3lWkA4OUoHoajKssDKBot\nAMyh+KHfPuSyfAeKRrL+Pd/DJt1vo3j4tNlgvbIwvwzgvWX4ZSga9xSAEwAeR7suh1stzySAhwG8\nstze32J5vLJ8HMBfKfe/BcXDBxhN+/XK8gCG136j8nwWwJ8v9/8NAO836YbRhgFgV/l3EsBnALwR\nwD8D8K5y/7sB/JMyPOw2nGJYJ3wOxcUBxdvtUQDHy+1+bmoPlWmA4o01B/d760Mvy7MAdqP4qPlu\nAMsALgy5LH8bxVt6/YvOL1CatwL4Oop6aZN+ZTlGx8cA/BCqH/BfLcMrAL6BosG+boTleTMKVfVI\nuX0WwNUhluU4irZxU7l/H4Cny/Ao2q9XlmG236g8dwP4o3L/RwF8P6UZVhsGgMXy7zSKaz4L4HsB\nfLjc/+Hy/MDw2/C24QSAb6J4K74PxcU+DODXUJf96/wAii7BKMvy7wE8j6JR/fiQyzKPoov4IIo3\n9ccBvKaMswfAp1C8zd+H9lWCLcse2vcXUKiXdX4VwNtp+9+h/sPqujw/CeA3APw+gM8D+NkOynIH\ngCcBfAuFmr2tT/yu2q8tC6vZLtovl2cewP9B8VADih7k+oN+2G14HMVLYAGFwgWKB+86Y7TdZRse\nGXtQ2LjW3zRHUFTCGIBfQPGwY16O4u1z5wjL8tcB/A6Kt+ZhFLaftstjy/IIgH9Zhl+LQhUARXf6\nB8vwgxjOQ9eWZZ0PAPgp2u7XYN82wvL8DIp6OoBCWX4KwHcOuSwfBfB9ZfgHUZiEmC7br1eWLtpv\nv/K8FMD/Kvf9PIBT5f4u2jBQqP7PoDDVnTXHzpR/u2rDI2MKxU14p3P8BKquIQDcisI+9IYRl+Vf\no2i46/waqkYzrLL8TwB/kbYfB3AIwCdR2OSeQNGQTgP4u0MuC1DYx55DvXv/HtQHZX4fwOtbLMtW\ny/PDAD5E2+9F8SAeZlm4mz4G4Dxtd91+vbIMu/165WFeguIBCAy/DTP/EEUbeAyVjf2Wchvopg2P\njDEUXb9fMftvofBPAfiPZXgfim6+VTejKMs7APx6Gd6NYpT2FUMuy98C8I/K8EtQdBkt3sBf22UB\nCq+SPzT71gchplEop69h82nkwyzPPhRmhTkUD+WPoPJAGVZZ/h+ql+P9qMwdo2i/XlmG2X6j8qwP\n/o6Xxx/ok7btNnwIlVlwDsUD/n4UZoZ3l/vfg40DacNqwyPljSgGNR5C3SXrN1AMfjwM4HcBHC3j\nvxeF/ekL9O/QiMoyg8Im9giKBttmd6hfWb4LhXL4zfKcnwfwpj5p226wXlkA4IMA/mafNH8fhQp/\nDNXI+SjL83YUbkuPoPphDassb0Fha193Ufo0gFeV8UfRfr2yDLP9RuV5Bwql/2UAv+ikbbsNvxLF\ny+chFL/ldbv+ARTml34uY8Nsw0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDXMxcp/N0o/EL7rYEg\nhBCiBRbKv/ejWBd1GOsKCCGEKFlAseLY11BMmRZCCDFEVlAsmtLmegJCdEbnq6YLMSDLKNZuHeY6\nsUIIIUoWUHwb61MovnclhBBiiKwPpO1HscLYj42wLEIIsePhxbtvRfH1iO8ZUVmEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBBCbAP+P1G/33xpOCoQAAAAAElFTkSuQmCC\n", | |
"text": [ | |
"<matplotlib.figure.Figure at 0x7f7f7d24b0d0>" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment