This section introduces the usage of the LaTeX2Markdown tool, showing an example of the various environments available.
There are infinitely many primes.
predict' :: DecisionTree -> V.Vector Double -> Double | |
predict' (Leaf value) _ = value | |
predict' (Branch feature splitValue left right) featureVector = | |
if featureVector ! feature < splitValue | |
then predict' left featureVector | |
else predict' right featureVector |
================================================================================================= | |
Compiled Naive Piecewise Flattened Contiguous Flattened | |
------------------------------------------------------------------------------------------------- | |
(Intercept) -11560.208*** -8697.547*** -11962.803*** -18324.924*** | |
(1436.562) (1105.108) (2250.144) (3568.027) | |
num_trees 54.382*** 44.813*** 44.427*** 64.475*** | |
(6.300) (4.846) (9.868) (15.647) | |
depth 2479.344*** 1975.124*** 2441.172*** 3651.876*** | |
(233.106) (179.322) (365.123) (578.972) | |
num_features 0.058*** 0.074*** 0.166*** 0.268*** |
library("nlme") | |
library("data.table") | |
library("memisc") | |
library("functional") | |
kColumns <- c("algorithm", "num_trees", "depth", "num_features", "time_ns") | |
preprocess <- function(filename) { | |
# Could use read.table, but fails for some reason | |
df <- data.table(read.csv(filename, col.names=kColumns)) |
\documentclass[12pt]{amsart} | |
\usepackage{amsthm, amsmath, amssymb} | |
\usepackage{setspace} | |
\usepackage{listings} | |
\onehalfspacing | |
\theoremstyle{plain}% default | |
\newtheorem{thm}{Theorem}[section] | |
\newtheorem{lem}[thm]{Lemma} | |
\newtheorem{prop}[thm]{Proposition} |
library('ProjectTemplate') | |
load.project() | |
## Linear Regression | |
mod <- lm(Y ~ ., data = zip.train.filtered) | |
# Round predictions | |
category_f <- function(x) { if (x > 2.5) 3 else 2 } | |
predictions.lm.test <- as.character(sapply(predict(mod, zip.test.filtered), | |
category_f)) |
GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help | |
Loading package ghc-prim ... linking ... done. | |
Loading package integer-gmp ... linking ... done. | |
Loading package base ... linking ... done. | |
Prelude> :cd /Users/tulloch/Code/haskell/machinelearning/ | |
Prelude> :load "MachineLearning/HopfieldDemonstration.hs" | |
[2 of 3] Compiling MachineLearning.Hopfield ( MachineLearning/Hopfield.hs, interpreted ) | |
[3 of 3] Compiling MachineLearning.HopfieldDemonstration ( MachineLearning/HopfieldDemonstration.hs, interpreted ) | |
Ok, modules loaded: MachineLearning.HopfieldDemonstration, MachineLearning.Hopfield, MachineLearning.Util. | |
*MachineLearning.HopfieldDemonstration> main |
import numpy as np | |
from collections import namedtuple | |
import logging | |
logging.basicConfig(level=logging.DEBUG) | |
class BarrierFunction(object): | |
def __init__(self, n): | |
pass |
import numpy as np | |
from collections import namedtuple | |
import logging | |
logging.basicConfig(level=logging.DEBUG) | |
class BarrierFunction(object): | |
def __init__(self, n): | |
pass |
import numpy as np | |
import cvxopt | |
class Kernel(object): | |
"""Implements list of kernels from | |
http://en.wikipedia.org/wiki/Support_vector_machine | |
""" | |
@staticmethod | |
def linear(x, y): |