Created
October 2, 2016 19:53
-
-
Save akelleh/de5dc8eebec155cd0b55c3a46d2e35cd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"from causality.inference.search import IC\n", | |
"from causality.inference.independence_tests import RobustRegressionTest" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"SIZE = 2000\n", | |
"x1 = np.random.normal(size=SIZE)\n", | |
"x2 = x1 + np.random.normal(size=SIZE)\n", | |
"x3 = x1 + np.random.normal(size=SIZE)\n", | |
"x4 = x2 + x3 + np.random.normal(size=SIZE)\n", | |
"x5 = x4 + np.random.normal(size=SIZE)\n", | |
"\n", | |
"# load the data into a dataframe:\n", | |
"X = pd.DataFrame({'x1' : x1, 'x2' : x2, 'x3' : x3, 'x4' : x4, 'x5' : x5})\n", | |
"\n", | |
"# define the variable types: 'c' is 'continuous'. The variables defined here\n", | |
"# are the ones the search is performed over -- NOT all the variables defined\n", | |
"# in the data frame.\n", | |
"variable_types = {'x1' : 'c', 'x2' : 'c', 'x3' : 'c', 'x4' : 'c', 'x5' : 'c'}\n", | |
"\n", | |
"# run the search\n", | |
"ic_algorithm = IC(RobustRegressionTest, X, variable_types)\n", | |
"graph = ic_algorithm.search()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[('x2', 'x1', {'arrows': [], 'marked': False}),\n", | |
" ('x2', 'x4', {'arrows': ['x4'], 'marked': False}),\n", | |
" ('x3', 'x1', {'arrows': [], 'marked': False}),\n", | |
" ('x3', 'x4', {'arrows': ['x4'], 'marked': False}),\n", | |
" ('x4', 'x5', {'arrows': ['x5'], 'marked': True})]" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"graph.edges(data=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"SIZE = 2000\n", | |
"x1 = np.random.normal(size=SIZE)\n", | |
"x2 = x1 + np.random.normal(size=SIZE)\n", | |
"x3 = x1 + np.random.normal(size=SIZE)\n", | |
"x6 = np.random.normal(size=SIZE)\n", | |
"x4 = x2 + x3 + x6 + np.random.normal(size=SIZE)\n", | |
"x5 = x6 + np.random.normal(size=SIZE)\n", | |
"\n", | |
"# load the data into a dataframe:\n", | |
"X = pd.DataFrame({'x1' : x1, 'x2' : x2, 'x3' : x3, 'x4' : x4, 'x5' : x5})\n", | |
"\n", | |
"# define the variable types: 'c' is 'continuous'. The variables defined here\n", | |
"# are the ones the search is performed over -- NOT all the variables defined\n", | |
"# in the data frame.\n", | |
"variable_types = {'x1' : 'c', 'x2' : 'c', 'x3' : 'c', 'x4' : 'c', 'x5' : 'c'}\n", | |
"\n", | |
"# run the search\n", | |
"ic_algorithm = IC(RobustRegressionTest, X, variable_types)\n", | |
"graph = ic_algorithm.search()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[('x2', 'x1', {'arrows': [], 'marked': False}),\n", | |
" ('x2', 'x4', {'arrows': ['x4', 'x4'], 'marked': False}),\n", | |
" ('x3', 'x1', {'arrows': [], 'marked': False}),\n", | |
" ('x3', 'x4', {'arrows': ['x4', 'x4'], 'marked': False}),\n", | |
" ('x4', 'x5', {'arrows': ['x4', 'x4'], 'marked': False})]" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"graph.edges(data=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.12" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment