Skip to content

Instantly share code, notes, and snippets.

@akshay-sihag
Last active July 27, 2017 17:24
Show Gist options
  • Save akshay-sihag/2d874eb248c16e7217911ab4e3e2966e to your computer and use it in GitHub Desktop.
Save akshay-sihag/2d874eb248c16e7217911ab4e3e2966e to your computer and use it in GitHub Desktop.
Jupyter Notebook
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"### cargamos librerias necesarias\n",
"%matplotlib inline\n",
"import sys\n",
"sys.path.insert(0, 'C:\\\\betting_2\\\\')\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"from betting import direcciones\n",
"# sys.path.insert(0, '/home/andres/betting_2/')\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>competicion</th>\n",
" <th>distancia</th>\n",
" <th>full_description</th>\n",
" <th>latest_taken</th>\n",
" <th>minuto</th>\n",
" <th>minuto_exacto</th>\n",
" <th>negocio</th>\n",
" <th>odds</th>\n",
" <th>operador</th>\n",
" <th>player</th>\n",
" <th>resultado</th>\n",
" <th>sentido</th>\n",
" <th>simbolo</th>\n",
" <th>superficie</th>\n",
" <th>unico</th>\n",
" <th>volume_matched</th>\n",
" <th>positivos</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Argentinian Primera B Nacional</td>\n",
" <td>0</td>\n",
" <td>central cordoba v chacarita_20150801</td>\n",
" <td>1.438379e+09</td>\n",
" <td>1430</td>\n",
" <td>1430</td>\n",
" <td>1</td>\n",
" <td>2.50</td>\n",
" <td>11001</td>\n",
" <td>central cordoba</td>\n",
" <td>-20.00000</td>\n",
" <td>1</td>\n",
" <td>1_match odds_central cordoba v chacarita_20150...</td>\n",
" <td>NaN</td>\n",
" <td>1125369425</td>\n",
" <td>1602.77</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Argentinian Primera Division</td>\n",
" <td>0</td>\n",
" <td>ca temperley v velez_20150801</td>\n",
" <td>1.438380e+09</td>\n",
" <td>1430</td>\n",
" <td>1430</td>\n",
" <td>1</td>\n",
" <td>2.76</td>\n",
" <td>11001</td>\n",
" <td>ca temperley</td>\n",
" <td>15.45016</td>\n",
" <td>1</td>\n",
" <td>1_match odds_ca temperley v velez_20150801001000</td>\n",
" <td>NaN</td>\n",
" <td>1128486276</td>\n",
" <td>4856.55</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Brazilian Division 2</td>\n",
" <td>0</td>\n",
" <td>paysandu v mogi mirim_20150801</td>\n",
" <td>1.438381e+09</td>\n",
" <td>1430</td>\n",
" <td>1430</td>\n",
" <td>1</td>\n",
" <td>1.40</td>\n",
" <td>11001</td>\n",
" <td>paysandu</td>\n",
" <td>-17.85000</td>\n",
" <td>1</td>\n",
" <td>1_match odds_paysandu v mogi mirim_20150801003000</td>\n",
" <td>NaN</td>\n",
" <td>1119825143</td>\n",
" <td>21249.30</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Brazilian Division 2</td>\n",
" <td>0</td>\n",
" <td>abc v bahia_20150801</td>\n",
" <td>1.438381e+09</td>\n",
" <td>1430</td>\n",
" <td>1430</td>\n",
" <td>1</td>\n",
" <td>2.68</td>\n",
" <td>11001</td>\n",
" <td>abc</td>\n",
" <td>-9.35000</td>\n",
" <td>1</td>\n",
" <td>1_match odds_abc v bahia_20150801003000</td>\n",
" <td>NaN</td>\n",
" <td>1123429513</td>\n",
" <td>9585.03</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Mexican Primera Division</td>\n",
" <td>0</td>\n",
" <td>queretaro v pachuca_20150801</td>\n",
" <td>1.438381e+09</td>\n",
" <td>1430</td>\n",
" <td>1431</td>\n",
" <td>1</td>\n",
" <td>2.52</td>\n",
" <td>11001</td>\n",
" <td>queretaro</td>\n",
" <td>-9.90000</td>\n",
" <td>1</td>\n",
" <td>1_match odds_queretaro v pachuca_20150801003000</td>\n",
" <td>NaN</td>\n",
" <td>1119969182</td>\n",
" <td>2708.27</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" competicion distancia \\\n",
"0 Argentinian Primera B Nacional 0 \n",
"1 Argentinian Primera Division 0 \n",
"2 Brazilian Division 2 0 \n",
"3 Brazilian Division 2 0 \n",
"4 Mexican Primera Division 0 \n",
"\n",
" full_description latest_taken minuto minuto_exacto \\\n",
"0 central cordoba v chacarita_20150801 1.438379e+09 1430 1430 \n",
"1 ca temperley v velez_20150801 1.438380e+09 1430 1430 \n",
"2 paysandu v mogi mirim_20150801 1.438381e+09 1430 1430 \n",
"3 abc v bahia_20150801 1.438381e+09 1430 1430 \n",
"4 queretaro v pachuca_20150801 1.438381e+09 1430 1431 \n",
"\n",
" negocio odds operador player resultado sentido \\\n",
"0 1 2.50 11001 central cordoba -20.00000 1 \n",
"1 1 2.76 11001 ca temperley 15.45016 1 \n",
"2 1 1.40 11001 paysandu -17.85000 1 \n",
"3 1 2.68 11001 abc -9.35000 1 \n",
"4 1 2.52 11001 queretaro -9.90000 1 \n",
"\n",
" simbolo superficie unico \\\n",
"0 1_match odds_central cordoba v chacarita_20150... NaN 1125369425 \n",
"1 1_match odds_ca temperley v velez_20150801001000 NaN 1128486276 \n",
"2 1_match odds_paysandu v mogi mirim_20150801003000 NaN 1119825143 \n",
"3 1_match odds_abc v bahia_20150801003000 NaN 1123429513 \n",
"4 1_match odds_queretaro v pachuca_20150801003000 NaN 1119969182 \n",
"\n",
" volume_matched positivos \n",
"0 1602.77 0 \n",
"1 4856.55 1 \n",
"2 21249.30 0 \n",
"3 9585.03 0 \n",
"4 2708.27 0 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"### cargamos datos simulacion de excel\n",
"file = os.path.join(direcciones.temporales,'futbol_inicio_local.xlsx')\n",
"datos = pd.read_excel(file,sheetname='analisis')\n",
"datos.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"competicion\n",
"UEFA Europa League -963.979790\n",
"Peruvian Primera Division -877.488580\n",
"Ligue 2 Orange -873.938775\n",
"Colombian Primera A -703.340270\n",
"Ekstraklasa -628.498520\n",
"Slovenian Prva Liga -608.525270\n",
"League Two -602.921530\n",
"Spanish Cup -560.771250\n",
"Regionalliga Nord -558.019610\n",
"J League -525.123140\n",
"Brazilian Division 2 -505.845305\n",
"The Championship -503.653435\n",
"Erste Liga -492.458380\n",
"Brazilian Cup -491.172380\n",
"J2 League -461.705645\n",
"Paraguayan Primera -444.584580\n",
"Ligue National -442.187660\n",
"Belgian Second Division -441.555175\n",
"Scottish Premiership -424.481040\n",
"Segunda B -416.859580\n",
"Swedish Cup -403.361375\n",
"Primera Division -385.368765\n",
"Friendlies -372.960595\n",
"AFC Champions League -369.986295\n",
"Barclays Premier League -355.253000\n",
"Greek Super League -349.106390\n",
"Uruguayan Primera -337.596390\n",
"Dutch Eredivisie -328.929990\n",
"Croatian Division 1 -310.522405\n",
"Chilean Primera -295.914270\n",
"Ukrainian U21 League -292.731635\n",
"International Friendly -285.122650\n",
"3 Liga -273.304220\n",
"Turkish Cup -262.076740\n",
"National League North -250.823620\n",
"Lega Pro -250.778985\n",
"Austrian Bundesliga -236.957800\n",
"U19 Internationals -235.574340\n",
"Primeira Liga -235.469700\n",
"U20 International -235.199280\n",
"Finnish Cup -228.736225\n",
"UAE Premier League -228.117495\n",
"Belarusian Premier League -226.836920\n",
"National League South -226.370115\n",
"UEFA U19 Championship -217.232470\n",
"Brazilian Goiano -213.493570\n",
"Capital One Cup -202.858190\n",
"Saudi Premier -190.695890\n",
"Argentinian Primera B Nacional -187.414810\n",
"Veikkausliiga -183.405300\n",
"Name: resultado, dtype: float64\n",
"competicion\n",
"Liga 1 118.702860\n",
"Slovakian Cup 121.174260\n",
"Israeli State Cup 121.653105\n",
"Brazilian Primeira Liga 124.123090\n",
"Venezuelan Primera 125.478000\n",
"U19 Championship Qualifications 125.614460\n",
"Icelandic U19 League 125.810240\n",
"Calcutta Premier Division 130.006120\n",
"Brazilian Baiano 131.829130\n",
"EFL Trophy 133.475490\n",
"Copa Colombia 134.130880\n",
"Division 2 141.069030\n",
"Taca de Portugal 147.264650\n",
"Ukrainian Persha Liga 151.496455\n",
"Friendly 156.263485\n",
"Superettan 156.514390\n",
"Ykkonen 158.622340\n",
"Southern Premier 159.931885\n",
"Brazilian Paulista A1 162.577205\n",
"Swiss Super League 167.247980\n",
"Azerbaijan Premier 170.558225\n",
"Johnstones Paint Trophy 180.004080\n",
"Romanian Liga II 195.326755\n",
"Airtricity Premier Division 198.734255\n",
"FIFA World Cup 2018 200.654230\n",
"Singapore Cup 206.614575\n",
"Argentinian Primera B Metropolitana 207.255670\n",
"U21 Euro Championships 218.473120\n",
"Sao Paulo Youth Cup 236.392490\n",
"Polish 1 Liga 236.568495\n",
"UEFA U19 Championship Qualifiers 245.910275\n",
"Italian Cup 255.861720\n",
"French Ligue 2 270.963030\n",
"Mexican Liga de Ascenso 277.929890\n",
"Colombian Primera B 285.043360\n",
"Argentinian Primera Division 303.792570\n",
"Airtricity First Division 304.618860\n",
"Russian Youth League 314.695025\n",
"Copa Libertadores 321.470460\n",
"SPFL Development League 322.874020\n",
"Serie A 326.606525\n",
"Belgian Jupiler League 386.244770\n",
"Campeonato 396.667635\n",
"Chinese Super League 406.751075\n",
"Costa Rican Primera Division 418.986085\n",
"Premier Division 425.343700\n",
"Norwegian 1 Division 437.029060\n",
"AFC Cup 494.213420\n",
"UEFA Champions League 504.646070\n",
"MLS 798.859025\n",
"Name: resultado, dtype: float64\n"
]
}
],
"source": [
"### resultados por liga\n",
"res_liga = datos.pivot_table(index='competicion',values='resultado',aggfunc=np.sum).sort_values()\n",
"print(res_liga.head(50))\n",
"print(res_liga.tail(50))\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total : -3806.41357\n",
"apuestas : 14450\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x1b4765e84a8>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecFdX5x/HPg7AIKkWMEKVpEEVFEQsYja5GpJiAMRo1\nv8SSmJjYS4wYjWLsLbHFbhRjYovGFgs2TIzBEgSVAIsNBXURlKIiUs7vjzPjzNyye+/evvt9v177\nmjPnzp179u7ufXbmnPMcc84hIiIS167SDRARkeqj4CAiImkUHEREJI2Cg4iIpFFwEBGRNAoOIiKS\npuDgYGa9zexpM5thZq+Z2XFBfXczm2Rms83scTPrGnvOlWY2x8ymmdmQWP2hZtYQPOeQQtsmIiIt\nY4XOczCzXkAv59w0M1sX+C8wDjgcWOScu9jMTgW6O+fGm9lo4Bjn3D5mNgy4wjk33My6Ay8DQwEL\nzjPUObekoAaKiEjeCr5ycM596JybFpQ/BWYCvfEBYmJw2MRgn2B7W3D8C0BXM+sJjAQmOeeWOOcW\nA5OAUYW2T0RE8lfUPgcz6w8MAaYAPZ1zjeADCNAzOGxj4L3Y0+YFdan184M6EREps6IFh+CW0t+A\n44MriNT7VdnuX1mx2iAiIsXRvhgnMbP2+MDwZ+fcA0F1o5n1dM41Bv0SC4L6+UCf2NN7B3XzgfqU\n+meyvJ4SQomItIBzLqd/yIt15fAn4H/OuStidQ8ChwXlw4AHYvWHAJjZcGBxcPvpcWCEmXUNOqdH\nBHUZOedq7uuss86qeBvaUrtrue1qt9peinbno+ArBzPbBfg/4DUzewV/++g3wEXA3Wb2E2Au8IPg\nQ/0RMxtjZm8An+FHNeGc+8TMzsGPWHLA2c53TIuISJkVHBycc/8G1sry8F5ZnnNMlvpbgVsLbZOI\niBRGM6TLqL6+vtJNaJFabTfUbtvV7vKr1baXqt0FT4KrBDNztdhuEZFKMjNcmTukRUSkFVFwEBGR\nNAoOIiKSRsFBRETSKDiIiEgaBQcREUmj4CAiImkUHEREJI2Cg4iIpFFwEBGRNAoOVeSgg+C++yrd\nChER5VaqKmYwbhzcf3+lWyIirZFyK9Ww9kVZm09EpDAKDlVmrWwrY4iIlJGCQ5VRcBCRaqDgUGV0\nW0lEqoGCQ5WYPNlvdeUgItVAwaGC4gOu9tjDb9vpJyIiVUAfRRXinA8El1+erP/Tn5JBQ0SkEhQc\nKuTZZ/32xBPh44+Tjz35ZPnbIyISp+BQAZ9+Gt1GAujRI/n40qXlbY+ISCoFhwr4178y1+++u992\n7Fi+toiIZKLgUAFrr525/u67/bZz5/K1RUQkEwWHCvjZzzLXb7ghjBwJkybBypXlbZOISJyCQwU0\nNvpt6kglgGXL4KKLYP/9y9smEZE4ZWUtsi+/9H0GK1ZAXV3mY8zgnHPgjDP8/l57QffucM89/rFQ\nlX6LIlKjyp6V1cxuNrNGM3s1VtfdzCaZ2Wwze9zMusYeu9LM5pjZNDMbEqs/1MwaguccUoy2ldu/\n/+23K1ZkfnzNGr/t1Cmqe/JJHxhERKpFsW4r3QKMTKkbDzzpnNsceBo4DcDMRgPfcM5tBhwJXBfU\ndwfOBHYEhgFnxQNKLVi+HPbc05fffDPzMdOn++3Xv16eNomItERRgoNz7jngk5TqccDEoDwx2A/r\nbwue9wLQ1cx64oPLJOfcEufcYmASMKoY7SuXRYui8ogRmY+5/Xa/3XHHzI/HryDM1PcgIpVRyg7p\nDZ1zjQDOuQ+BnkH9xsB7sePmBXWp9fODupoRn+m8eHHysUcfhYYG2Hlnv7/ZZpnPsf/+sGRJ1F9x\n773Fb6eISHPKOVopW/dqTp0jteCcc6LyqlXJx8aMgc03953M++3X9HnWWcd3bIuIVEopVw9oNLOe\nzrlGM+sFLAjq5wN9Ysf1DurmA/Up9c9kO/mECRO+KtfX11NfX5/t0JJ77jn41reyT26LW7YM1luv\n6WOUtltEimHy5MlMDtcDyFPRhrKaWX/gIefc4GD/IuBj59xFZjYe6OacG29mY4CjnXP7mNlw4HLn\n3PCgQ/plYCj+iuZlYPug/yH1tapmKOusWTBoUObHwiYuXx7Ner78cnjjDbjqqqbPqyGtIlJslRjK\n+lfgeWCgmb1rZocDFwIjzGw2sGewj3PuEeBtM3sDuB44Kqj/BDgHHxReAM7OFBiqzcKFyf3zzoMX\nX0zWbbVVVD7hBB9QcrXXXi1vm4hIS2kSXIGefRbid7RGjPBrMvTpAyefDJdemrwKCDXXfDPfad23\nr1J4i0hxlP3KoS0LJ7WFjjwymuB22WWFnXvYMHjqKfgkdZCwiEiJaTn7Ai1bFpW33hq+//3kVcFx\nx6U/57rrcjt3OJx1/fXV7yAi5aUrhwKNGxeVDz3Ub+O3kTJ1PB9xRG7n7ts3KuvqQUTKSX0OBQoD\nwYIF8LWvpdeH1qzxa0ZD7lcBr70G22wT7VfJtywiNUp9DmUyd67fjh6dDAyZZOqUbs7gwcn91Il1\nIiKlouCQ4oYboFs3P0P5lFPgs8+yH9u/v9+edlr6YzfdlF537rnNT4BrSocO2bO9iogUk4JDissv\n97mNOnb0w1DPPLP553TokF43ZEhUvusuvz39dFi6NL/2pK43/dFH+T1fRKQlFBxSzJyZ3L/yyuaf\ns8466XVhCozrrms+l1JTdt3Vz6gOteT2lIhIvhQcmvGtb/kP5Hg67lRbb51eFybOO/JIaF/ggOFN\nN43Kuq0kIuWg4NCMMWP89uSTk/Xhf/NffJH5v/liJs+Ln/+LL4p3XhGRbBQcYsKhopdcEtXNn++3\nEycmjw3XY+jYMfO5hg6F//2vuO0zU3AQkfJQcIhZECQVP/DAqO699zIf2xyz7NlaW+KRR2CnnRQc\nRKQ8FBxievXy2z6x1SYef7wybUk1erSfRNfU0FoRkWJRcMjit7/16Ss+/dTv77Zb+jGnn17eNv3n\nP3DsseV9TRFpmxQcAmF/Q89gpevf/Q569Igej3cwh7efRo0qT9vinIPXXy//64pI29Lmg8OCBb5z\nOcx7tHJl9NgPfhCV40NIx4712wEDSt++uOOOg4aG9LQaobPOgr/8pbxtEpHWqc0n3ksdhrrrrtGs\n5DlzYOBAX95hB3jpJf+fe7t2/qoidRW4Umtu6dCwE7zYo6REpHVQ4r0C3HdfVO7e3W+PPhpefhmm\nToVXXvF1665b/rblQsn5SufLL6tngIJIqSk4pIhnV91gA5g2DX76U7+//fbw6qu+HGZkLafvfCcq\n//3vmY9pbPQBLN8cTtK83XarTD+TSCW0+eCw8cZNP77ttslbOJWcZ3D33VF5v/386KVQ2FeyerWf\ngPfrX5e3ba3dk0/CCy9UuhUi5dOmg4NzUb9B585w3nmZj9tuu6h8ww1+W4n/IDt1So5Uig+vDec/\nbLCB315/ffna1RacdFKlWyBSXq1mDempU/1/zPl48UU/Cumhh2DnnZNDV+PiHcFhn0OnTi1rZ6Hi\nbQxvdwE895zfVuJ2V1vw2mtRubExGvIs0lq1iiuHVat8f0BjY1SXyz334cP99jvfyR4YQqkT3ioV\nHMJZ3JBML54pbbiUxrPPVroFIqXXKoLDu+/67Ykn+uGnAF27Rvfkly71cwQKGf167rnJ/TPOaPm5\niuWf/4zKq1dXrh21bvp0uOeepo857LCo/OabJW2OSFVoFcEhTJ99xx1+XkIYBD75xG9POgmuuirZ\npxAGkauuyv11pkzx29/+trhJ9fL1/PPpdR98UP52tBZDhiQnPGZy661Rzq3f/KbkTRKpuJoODg88\nACecACNHJut32MFv99kHzj8fbr7Z7597Lixe7Mv/+Iffdu6c++ttv73fVjIwgO8fueaaZN0hh6Qf\n9/TT5WlPW3HEEZVugUj51HSH9BFHZJ6lPHVqVI73FaxYAZts4q8oPvzQ133967m/Xvv2/hZW794t\na28xjRrlEwM2RRPimrdmTfPHXHaZ326xhd/271+y5ohUjZq+cogHhmeeye05ffv62zIXXeT399or\nv9fs06c61nHu1MkHquuu8/v77Ze+VvXhh5e/XbVizRo/8iw+NDjbIIZwfsPixXDFFcnJiE255x7f\n1yVSi2o2t9LTTzv23NPv7703PPZYlDwvHzX47QOwZAl06+bLzvkUH4MGpaf0rtXvr9SefBJGjPCj\n1ML1wa+6CrbcEr797eh9W2ut6Oriscfg3nvhxhtze1+/+U0/KEI/A6kWNZ1bycxGmdksM2sws1Oz\nHRcGhmXLfL4bsyi1BcD99yeP/9GPStHaykntK/n882TdnnvChRdG+8uXJ8fqt3Xh6K4wMIAPrPHh\nwatWJW87jRyZOalhttt38RnsIrWmqoKDmbUDrgZGAlsBB5vZFk09J54Ab/Bg31l7wQUwblzyuD//\nOeqoDp15ZjFaXRkdOkTld97xM6TXWScaSTNkSHINis6dYZttkinJ27L4+5et/v330x8/77zkjPmZ\nM/1zJk0qbvtEKq2qggOwEzDHOTfXObcSuBMYl+3g+BoLoeefh/Hjo/1NN43Ku+8elb/4As4+u+D2\nVoVNNvH3t1euhHPO8d/b2mtnzgN14oltO0AsXgz//W/m3x3wV1jgU5P06xfVH3WU366zju+rCPud\nZszw29QRc83dSpoxw2d5FalW1RYcNgbei+3PC+rSrFoFdXXNn3Dw4OgP9RvfiOo7dmxxG6tGavro\nadN8v0vHjv4r0wfgH/8IP/lJedpXjQ46yF9BjhmTrP/Tn/z2hBP8NlzTI3TFFX679trJ+htvzPw6\n8cCcaUb11lvnN8emKbvvnpwQKVIMNTuU9ZxzJnxVrq+vp76+Pu2Y887znYuhX/zC58T5/vdL375y\nCJPtheLzLzp2jOZ0pLr9dn+brS2K3yrq0wfeew9uuQVGj/a3KMM1w+OOOcYPY4Zk2hTnst9Oiv9s\nfvMbuPRSf8sz7le/gpNPbtn3EffPf8Ill2Re51zatsmTJzN58uSWPdk5VzVfwHDgsdj+eODUDMe5\nllqzxrnZs1v89KoybZpz/iPKf61aFT32zW/6ulDfvslj26pBg6L34LDDnPvXv5xbscK5pUuT70+2\n92revKj+oYeSx82aFR339ttNnwecO/TQwr+fL7/05zruOL9/ySXO7b134eeV1in47Mzp87jabiu9\nBAwws35mVgccBDxYzBcwi5b+rHXbbpvcj3dAx/P/HHVUlH+qrYuPLOrUyS8LW1eXeyLF+HHf/W7y\nsS22gNmzYaut4OOPm7912aWL3xbS9xD+LofrmU+cqM5xKY6qCg7OudXAMcAkYAZwp3NuZtPPatvm\nzk3vDIVkf8y115avPdUuHhziH6Ltc7zBmukDP8ztBXDllX646+mnZ+/0Dttw773+n5VC+r/eeSe5\nH07q0yxuKVRVBQcA59xjzrnNnXObOecubP4ZbVvfvn5yVuromEMP9dtMI5bClCFmlV3ZrhLefjsq\nN5dddeed0xdNypSLKz4iLsx5Fa4/HhcGhXAmdrz/I5c0Hk1ZvtxPjAzNnet/L0RaquqCgxTHD3/o\nt+efH9X9+99+26FDNAls2bLytquSch3RE+asOvNM+PnPk4+lpk7p1y9zOpUXX/QBOlwzBHxQWLIE\nfve79OMzdYSHw2pzMWcOvPVWsk6pO6QQCg6tVHg/O77u8eab+3vs774bfRh9/nn521Yp4bDT9dfP\n/PhNN/nRbb/8pd/PZSnYMClfqjff9FcZYfZf8HNwunWLhsXGPfVUcn/FCv/8XFNv3HSTTwkSlykp\npUiuaja3Ui22u9xS/6N1zv/32rWrH8LZp49P8RD/77Y1GzbM/0c/e7bvG9h7bxg7Nv24lSv9+hjZ\nst7OnOnv6cc7pxsafAd1Q0NUd/LJfrZ+LvNxIBkIPv7Y5326/vr0q5e45pJA6s9E4mo6t5KURjjG\nvksX3/kaLoT04x9Xrk3l9uKLfltXB1dfnTkwgL/t1lQ69EGD0kc3DRwIv/+9L3fp4keOrb129jQd\nmXz0UVQOfz5HHpn9eH3wSykpOLRil14alf/+96jcubNf2Qz8FURbEQ49LdVInn328Vdmxx7r+3TC\nlQe//W0/MzvuyivTn7/hhn47aVJyFnu2JWDDLMTxBIvxW2bhynXgrzB0m0nyoeDQivXqFZV79ozK\nnTpF/+V+73vlbVMlDRiQvY+gWNZbLxqauscefvvkk7Dvvsnj3n0383/+zvmhyfHO8+bWj/jud6M+\npvHjowAVBv5wguwdd+T1rUgbp+DQimXrbG5sjMrbbFOetlSDTz/1ifNKLcz2Gx8tlDqS6Be/8NvB\ng/2a5KFM6b+bG5K65ZbR8NiNNvIBavZsv+9cNGLtuOMKHzIrbYeCQyuWaXhkqunT28696xtvjJaH\nLaXwtlU8SV9q30MYpF59NTm0NTXhXzbZfmbhEOYLLoCNN/ZDZ594Inr8lltyO7+IgkMrtvnmfrvR\nRtmPueuu9OVFW7MJE0r/Gvvv77dhpzKkd/xnmkwHyUSRcalXgeEtw3CyY5jALxy91LWr73hP7dA+\n4ojs7RaJU3BoxcaM8f9hzp+frE+9lZS6al5r9qtflf41wj6C+MzpsLM5lJr6uznxDuoZM2DBAl8O\nBxacdx5MmRIds846PjPsFk0ulSWSnYJDGxRfTrWtCG/DpKbNLoXdd/eT2IYNi+rMkukycpn7sMEG\n0ZVAvIP6pJPSj+3YMfl666wTBZDQzjvDr3+d/twvvkiObBMBBQdppZYsSXbuhnMIynULLdOH/9e/\n7tNcZBo1tO++yRFlzvk2h4n14oEil6yr4W2reH/G/vsnVwGcOtWnT5kyBU45JXnlIaLg0IbNm+e3\n8eVTK2HlyuLPt+jWzS+yE14lxTOnVtKAAelzHsDPQ3noofT6vn39KKPXXvP7Bx6Y2+vE07eDD5ad\nO/u+izlz4P/+D7bf3i+VGw65/e9//frY//lP7t+PtF4KDm3QY4/B8cf70SzPPw+LFvl1kSvlkkua\nnpFcyHnDNS/at4cddyz+axRTOMQ49b14+OGofPfdUXnw4NzP3aWLnwR3/fV+Nvdf/+rr4/M+2rXz\nS82Wo9Neqp+CQxs0ciRcfrkvf/aZXwNg6NDSDGnNJbNoqYeXzpjhE9vlk8qiEsJRZakLM6XOkQhN\nm9b0+cKJdwcc4LfNDTwIs/ZqsSABBYc272tfi8rt2hX/9kvnztEErVRh4Jg7129Llcpj6VJ/i+n5\n50tz/mIZOjT3YxsaovQZ2YSz4MPJePE+jUz+8pfsj1XLbTkpHwWHNi51qdF48rdU8+c3nwU0LswJ\nlGmJ0j32iDpN113Xb2+4Ifdz5yP1/nu1Sx2NNG5c+jGbbNL8ecKUGuGw2TDXU3MGDPD9H3/7W1S3\n2WYwa1Zuz5fWQcFBEuL3tFNlu72RzWef+W14b3zZMj9CBqJ8PxAFiWKtSpd6BVLr99DD20F77hnV\n5bKsaRgcwv/6N9gg83HbbAMXXxztL17sA1J4O+rcc6N6aTsUHCQh7IuIO/FEf8Ww225+P9e+idRU\nEF26+BEy8XkWzsGf/+zLl16a/JDK18MP+5nDqYvePPqo3265ZcvPXQ3ik+pyEfaxhMvCZptb8eqr\nyaurhQuTP+Mw99NLL+X3+lLbFBykSeuvnx4wwo7L5hx9dFSOzzmIL03a0OAnjIUfXJmGc+bqkUf8\niJ/4bOK45jpwq0Wm4PuHP0R9CPl4881oqHKPHv4qKtP5M6UQTxX2XZhlvwqR1kPBQRIf9vE1ACCZ\nHygUn0iVzYIFUUczJEcKxRMChh844X/Fudwuyebaa5t+vJBzl1PqzwDghBN8tlXIL7Ns/GpjrbXg\nrLN8edWqZMDedVe/zTSDOpNFizJnkJXWQ8FBEqNk4vfrswWBXD6cmhoZM2oU9O7ty+GwyVJ0djqX\nDEr5dKZXykcfJVN9p9ppJzj99MJfZ621kreSTjjBb88+O3lc6nof8fcwvM0orZOCg3y1OE3o8MP9\nSJVs96iHDYOJE3M7d319VI4HjO7dMx8f76jOR7h+AfjgFd6CCTtzm/rArSYbbND06KoXXoDTTivu\na37ta7DDDn6+S2pCwPD9y9Rf85//+LWupXVScJC0/6hvvTUaqRKKj5QBOOwwn5KhOfEhl/FFhsJ0\nEKFCP7zjI2k++yzKghrO/B4ypLDzt1bPPx914G+1VfbjUn/+oR49it8mqQ4KDpKTRx5Jr8vlv8bT\nTstttblw7Qnwnaj5ePddGD48WRf+BzxmjN9mW4e5rdt55/Sfz7PPph83fnz2c+jqoXVScJCcpN56\ngvQOyQ8+8InbwlTRn3/uJ0+9/HJ0zOOPR+XwfvbJJycnyg0YkN+H+XPPpdeFfRlN/Tcsme2wg19J\nLj75LpwzERo9Oirvskt52iXlpeAggP9jT706+NWv/Id7qKHBD6kMDRyYPP6uu/xw0bBvoVMnv+3Q\nwfdjQDIDbDj+fu214aKLkud66im/9nE8mGTS0OAzjKYKO0vDfpO2shRqMXTu7K8U7r8fxo6N6kIH\nHuj7J0KaOd06mavBvxozc7XY7loQ73/4/HO4+WY49tjow/XDD6MPdUh+6F52WXKltfhjzvn1qrfd\nNsoJtGiRv2cdjpAJh1nGbb998soDfEB4+20/6ilVY6MPTh99FI3F79vXT5DL5faWJC1c6K8Et9zS\n517adls/0uz22/3vRUh/jrXBzHDO5TZuzznX4i9gf+B1YDUwNOWx04A5wExg71j9KGAW0ACcGqvv\nD0wJ6u8A2jfxuk5K4/33nfN/6s6tWePc6tXOLV0aPb5oUfR46o/h6quzPxYHzh1/vC8/8IBzn3yS\nfCz+tcUWzn32mS/Pn+/cffelHxP/+vJLv122rHjviaSbNSu3n7VUl+CzM6fP90JvK70GfA9IdGGZ\n2SDgB8AgYDRwjXntgKuBkcBWwMFmFq5yexFwmXNuILAY+GmBbZMWiF8VmPn/8sPJVxAlyYP0+/nH\nHJPba+y9d7Qi29ixfmGebGbNilZO23jjpldy69LF38K6++78JopJ/uK3G6V1Kig4OOdmO+fmAKmX\nKeOAO51zq5xz7+CvIHYKvuY45+Y651YCdwbHAuwJ3BuUJ+KDjlSZujr/v+KUKS3/AH788ewTqDLd\nnjjiiNzOG94XP+CA2pjwVsvatfNpT8K8WJlWt5PaVqoO6Y2BeG7M+UFdav08YGMz6wF84pxbE6vf\nqERtk2ZkGraaauVKePHF0rclH1oDubzq6qL5MHfdVdm2SPE1m23GzJ4A4skQDHDA6c65AtKkpb9U\nPgdPiOVhrq+vpz4+FVcKMmIEPPNM08ekrvAWP/6996L0GOUyfTr061fe15TkLPrVq33add3Sqx6T\nJ09mcgvTDjQbHJxzI1pw3vlAPH1Y76DOgL6p9c65RWbWzczaBVcP4fFZTaj1JP1VrH37ZNqLTIYO\n9RlbQw0NfjtgQOEZO1euhJkzs48uevhh+M53fLlfPz/bOt4vIuUTv30XJjbUyKXqkfqP89mpybOa\nUMzbSvH//B8EDjKzOjPbBBgAvAi8BAwws35mVgccBDwQPOdpIEzacGisXqpQXZ2/5xy6/nq/nTMn\nPT9Pvtq398NP4+Id4fvsE03KeucdBQaRUigoOJjZvmb2HjAceNjMHgVwzv0PuBv4H/AIcFQwkmo1\ncAwwCZiB77QOp9CMB04yswZgfeDmQtompVVXB19+Ge2HOYyKpWtXn0zvm9/0+337JoOA0mGIlJYm\nwUmLOOdHrPzznz6r56BBUX2xvf++H6LaqxesWeNf49prfb9H6nrLUn7Dh/tssSH9aVavfCbBKThI\ni2UaLlrKH4uZz/FUrLWmpTgWLvT/IIRWrqydhZXamnyCg3IrSVH07OlHDJVatnUgpHJSByBkWj1Q\nao/iuxRFY2Pph6/OmBEl85PqFe+LktqlKwcpmlKPGtpyy+TiQVI9vvjCp07fdNP0OTBSmxQcpGji\n6zVL29Kxo1/XoVMnBYfWQsFBWmyttTKvpSBt14wZyTU/pHZptJIULBy1pB+JmPk5KXPnVrolkomG\nskpZKThISL8L1U1DWUVEpCAKDlKwpUuTeZZEdOVQ+xQcpGDrrZdM3SxtV7j4z8iRlW2HFE7BQUSK\nZsECv33jjcq2Qwqn4CAiRTNqlN9+61uVbYcUTsFBRIqmf3+/VQ6s2qfgICJF07kz/Oxn0K1bpVsi\nhVJwEJGi2nxzP4JNapuCg4gUVdeuCg6tgYKDiBRV166weHGlWyGFUnAQkaLq1g2WLKl0K6RQCg4i\nUlS6cmgdFBxEpKi6dfPB4aST4JRTKt0aaSllZRWRompshF69on39qVYPZWUVkYrp2rXSLZBiUHAQ\nkaJae+3kfmNjZdohhVFwEJGSGjfOb5cuVaCoJQoOIlJSH37ot127+r6It96Cn/+8sm2S5ik4iEhJ\nzZ0LH3wQ7R9yCNx4I1x5ZeXaJM3TaCURKbrddoN//Sva/8534OGH04/Tn3F5lW20kpldbGYzzWya\nmd1rZl1ij51mZnOCx/eO1Y8ys1lm1mBmp8bq+5vZlKD+DjNrX0jbRKRynnoquZ8pMEh1K/S20iRg\nK+fcEGAOcBqAmW0J/AAYBIwGrjGvHXA1MBLYCjjYzLYIznURcJlzbiCwGPhpgW0TkQrp0EFXBbWu\noODgnHvSObcm2J0C9A7KY4E7nXOrnHPv4APHTsHXHOfcXOfcSuBOIBjLwJ7AvUF5IvC9QtomIpWX\na4CYOxfeew8WLYLnny9tmyQ3xbx18xPgjqC8MfCf2GPzgzoD3ovVzwN2MrMewCexQDMP2KiIbROR\nKjZoEKy7rh/2etNNuuqoBs0GBzN7AugZrwIccLpz7qHgmNOBlc65OzKcIlc5dZKEJkyY8FW5vr6e\n+vr6Al5aRErljjvg4IN9edNN/VDWM86Ac8+FNWugXTtYvtx/3XRTZdva2kyePJnJkye36LkFj1Yy\ns8OAnwF7OudWBHXjAeecuyjYfww4Cx8AJjjnRqUeZ2YfAT2dc2vMbDhwlnNudJbX1GglkRpiwb9+\nTzwBI0aDKCKMAAATAUlEQVT4K4P11oP586FLF2jfHlavjo7Xn3dplHO00ijgFGBsGBgCDwIHmVmd\nmW0CDABeBF4CBphZPzOrAw4CHgie8zRwQFA+NFYvIjVu4EC/3W476NvXl9dbD5Yt8+XUYLByJSxc\nWL72SbqCrhzMbA5QBywKqqY4544KHjsNP+JoJXC8c25SUD8KuAIfmG52zl0Y1G+C76DuDrwC/Cjo\ntM70urpyEKlxW2wBf/87bLSRT/Mdt/XW8PrruoIotnyuHDQJTkQqYscd4eqrYfjw7Mfoz7y4lLJb\nRKpet24we3alWyHZ6MpBRCrCcvj/dcoUGDas9G1pK3TlICI15+qrfT9EfD0IrUVdOQoOIlIRW2+d\n3D/6aJg5Ey64oDLtkSQFBxGpiB13zFzfPjY195NPytMWSafgICIVccMN8N3v+nKfPlF9OA9i113h\n44/L3y7xFBxEpCLat4cHH4RddoExY6L6sWP9kqIDBsBdd1WufW2dRiuJSFUKRzPpT714NFpJRGqe\ncmlWlq4cRKQqzZnjczJ9/jl06lTp1rQOunIQkZrXo4ffdu4M997b9LFSfLpyEJGqFZ9FrT/5wunK\nQURECqLgICI14csvK92CtkXBQURqQrgwkJSHgoOIVK01a2DLLX35o4/K//qNjeV/zWqh4CAiVcsM\nZszw5YsvLu9rn3oq9OpV3tesJgoOIlITvvnN3I5burTlr3HwwdEIqXIHo2qj4CAiVW/ffaN5D5kM\nHgwrV8Kbb0LXrn7iXEvceWfLntcaKTiISNW7/37Yb7/Mj736Krz+OjQ0wDXX+LpPPy3ea69eXbxz\n1ZL2zR8iIlJd3ngD+vWDDh18ZldILh7U0iuHuJ49fYf0smV+veu2RlcOIlL1dtvNb6dN89vNNoMr\nrvDloUPTjy80OMydG41UaqtDaBUcRKTqnXqq3263HVx4oS+Hq8S9/Xb68YUGh/79o/JvfwuPP17Y\n+WqRgoOIVL2VK6Pyaaf57ZIl8MUXcMwx6cdffXXxXnviRBg1qu3N0FZwEJGqt8466XV//COsu27m\n4ydO9IEjH2vWpNdtu21U7tgRpk/P75y1TMFBRKreDjtkrl+9GnbaKfNjM2cm9//5z+zDYRsb4de/\nTq9PnVvxv/813c7WRMFBRKreeutlf6xv36jctWtU/t73kseNGAEff5z5HL16wWWX+fJjj2V/3UWL\nmm9rc5yDG28s/DylpuAgIlVvrbWS+927R+Xly6NyQ0NUnjs3+Zxc+wx23DEqp962igefltpjD/j5\nz6MO9WpVUHAws9+Z2XQze8XMHjOzXrHHrjSzOWY2zcyGxOoPNbMGM5ttZofE6oea2avBY5cX0i4R\nad3iH+D/+EdU3nDDZOf1qlXpz83UtxDXpYvfdurkZ1zHHXJI889vyqpV8Oyzvrz++i0/TzkUeuVw\nsXNuW+fcdsA/gLMAzGwM8A3n3GbAkcB1QX134ExgR2AYcJaZhbH4WuCnzrmBwEAzG1lg20SkFXnh\nhagcjlgKbbYZHHusL7ePTe19993086y1FixcmPk1xo/3z3/lFX9MpnQaHTrk1t5ttkmuZAfw0EO5\nPbcaFBQcnHPxSerrAGFMHQvcFhzzAtDVzHoCI4FJzrklzrnFwCRgVHDFsZ5z7qXg+bcB+xbSNhFp\nXXbaKepHqK9PPvb443DlldH+n//st08/HXVMt4t92v3yl35rBn36RDOgL7jAb4cM8WtXn39+ejty\nvXJ47bXk/r33lqav4dBDk997sRTc52Bm55rZu8AP8VcFABsD78UOmxfUpdbPj9XPy3C8iMhXbrsN\nFixIr+/cObn/ox/57fnn+/Ugpk9P9hf87W9Red48WLwYHngg/by9e/vtihXw8sv5tXXDDZP7++8P\njz6a3zlycdttcPzxxZ+H0WxwMLMngr6A8Ou1YPtdAOfcGc65vsBfgGOznaaIbRaRNmrddeFrX/Pl\nd96J6tdeO/Px4ezpIUOa7wBesiS97oAD/O2lujqfyymUqS8jVZjyA3zwacqwYXDKKc2fsykdO8LJ\nJxd2jrhmE+8550bkeK6/4vsdJuCvCPrEHusd1M0H6lPqn2ni+KwmTJjwVbm+vp761OtMEWnV+vWD\nc87x6S2yBYdsxo1LX/dhq63SjzOL5kbEh7V26OCHpDZlyhS/Xb06Sg4Yeuop+Pa3o/0XX/Rfl1yS\nW/uz+f3voyG5AJMnT2by5MktO5lzrsVfwIBY+Vjg7qA8BvhHUB4OTAnK3YE3ga6xcrfgsSnATvir\njEeAUU28rhMRWbHCueeey/yY//hOfs2f79xmm2V+LBf5HB8et3ChcxttlHzukiXRds2aqH7VqubP\n++mnzp1/vi9fe23yvDvv3FybcC7Hz/dC+xwuDG4xTQP2Ao4PPrkfAd42szeA64GjgvpPgHOAl4EX\ngLOd75gGOBq4GWgA5jjnHkNEpAl1dbDLLpkfy5RzaaON/GpvLdWStR0WLYL334/233gjmj/x+efJ\ntSdymYH93HPwm9/AXXdFHeuhnXfOv33ZFDpaaX/n3DbOuSHOuXHOuQ9ijx3jnBvg/FDXqbH6W51z\nmznnBjrnbovV/9c5Nzh47PhC2iUiMjIYDH/EEcn6LbZIP/bcc3M7Z3zE0+23Zz9uxYqonDqr+hvf\n8OcZMMCnA4/3R/z8580HoHB47N13pz/20UdNPzcfmiEtIq1Sx45+G677EDrooPSrjdTRTrn48Y/9\nB3+moa3zgrGXY8ZEZUj2U7zxBgwcmEz/MWUKnHACvPVW9tcNg95990V148b57fTp6TmlWkrBQURa\npfA/7E6d/HbIkKj+j3/05euug4cf9kNBczVxYlTeYAO4+eZo3zmfmymcfNejB/zgB7582GG5nf/q\nq/3VRSazZ2eu33xzv331VT90txgUHESkVerZ02/DIHHPPdFjYcBYtQr22Sd5u6g5BxyQ3I/3Jxx/\nPIwe7b8gmQX2lluaPm/q7a9Mpk5Nr7v0Un9b7L//bf75+VBwEJFWafBg+OwzX3bO3+MPhZPb4jma\nchUGllB8zsNVV/lt2OeQLUU4wN57R+X99otmZ2czfz788Ifp9Xvt5YfWZupLKYSCg4i0Wtn6Ejp3\n9gEj21oQzYl3Mod9G5k0FRziS4/ed5+/RRX3wQfJ/f32y3yecEGilvSbNEXBQUQkT/GU4U0Fh7Dv\nIdNKdhDN8r7mGr+N90tstFGys3vs2PTnH3hgcy1tOQUHEZE8mUUdv/EV5LbbLiqff36U0C+8vZUq\nTMkRphm/PGWxgvhw2U02ico33eS3v/1tfu3Oh4KDiEgL9O+fXvfKK1H5llvg6KN9+Vvfyn6e0aOj\n/ofUxYTC7LLnnhtdZdx9N/z0p3DDDen9DE8+6bf5rp+dibnmEoRUITNztdhuEWk9Dj7Yr/ewzTZ+\nfgEk12/o08ffVjLzGV233z73c/fsGWWfdS4679FH+6GuTTHzcyX+8IdMjxnOuZwSoTabeE9ERNJd\ncokPANlSeYdXDcuX558YcN48nxoEkhPncu10vvxy38G9fHnus79T6baSiEgL9O7tO4SfeSaZAiPM\n7hrOZM43MIAfmjphAgwf7r9C+YxIOuMMOO+8/F87pOAgItJCYR/BrFlRn0B4xRAOMW2pLbf06TRe\nfDGqyyU4pC4y1FIKDiIiLRSORvryS7jwQl/+5S+T/QQtNWdOel0uwaHQ1w0pOIiItFCXLn67YgXM\nnVvcc2+6aXpdLsEhde3qXNe8TqXgICLSQnV1PknesmU+4V4xhQn7IErZ0dxIJfDLqF56qS+vt15y\nvYh8KDiIiBTgzTfh+98v/nnbtYv6LZYv99tc8ycde6zP0NqlS/pyqDm/fsueJiIicQcfDH/5S3HP\n+fTTfhuuHLfnnrk9r67OJx6cPx8eeggeeCD/19Y8BxGRIvjii5YNW23K+uvDtGnw9a+3fBTSUUf5\nbb7zhnXlICJSgIYGv507t/jBAfytpWIMT/3yy/yOV3AQESlAuGrb1Knpaz1Uk9tuy+94BQcRkQLE\nV5HLZ0W5cth336ic75DWKvtWRERq18KFlW5B0qhRUfmvf83vuQoOIiJFEk6KqxY/+lFUfvbZ/J6r\nlN0iIgUKU1asXl19t5aS6TSUsltEpGweeACWLKm+wAB+kl7YaZ4PXTmIiLRyixb59R3yuXKowjgn\nIiLF1KMHvP9+fs/RlYOISBuRzzKhRblyMLOTzWyNma0fq7vSzOaY2TQzGxKrP9TMGsxstpkdEqsf\namavBo9dXox2iYhIyxQcHMysNzACmBurGw18wzm3GXAkcF1Q3x04E9gRGAacZWbBWkpcC/zUOTcQ\nGGhmIwttW7WZPHlypZvQIrXabqjdtqvd5VerbS9Vu4tx5fAH4JSUunHAbQDOuReArmbWExgJTHLO\nLXHOLQYmAaPMrBewnnPupeD5twH70srol6/8arXtanf51WrbqzI4mNlY4D3nXMraQ2wMvBfbnxfU\npdbPj9XPy3C8iIhUQLPzHMzsCaBnvApwwBnAb/C3lJo9TYtaJyIiFdHi0UpmtjXwJPA5/sO/N/5K\nYCfgd8Azzrm7gmNnAbsDewD1zrlfBPXXAc8AzwbHDwrqDwJ2d879Mstra6iSiEgLlHyGtHPudaBX\nuG9mbwNDnXOfmNmDwNHAXWY2HFjsnGs0s8eB84JO6Hb4q47xzrnFZrbEzHYCXgIOAa4s9JsTEZGW\nKWb6DEdw+8g594iZjTGzN4DPgMOD+k/M7Bzg5eD4s4OOafDB5FZgbeAR51yRl+sWEZFc1eQkOBER\nKa2aSp9hZqPMbFYwUe7UKmhPbzN72sxmmNlrZnZcUN/dzCYFE/0ej83lyHtyYInb387Mpga3ATGz\n/mY2JWjHHWbWPqivM7M7g3b/x8z6xs5xWlA/08z2LlO7u5rZPcFrzjCzYbXwnpvZiWb2ejDZ8y/B\n+1qV77mZ3WxmjWb2aqyuaO9xqSa9Zmn3xcF7Nc3M7jWzLrHHMr6X2T5rsv28StX22GPln2jsnKuJ\nL3wgewPoB3QApgFbVLhNvYAhQXldYDawBXAR8Oug/lTgwqA8GvhHUB4GTAnK3YE3ga5At7Bchvaf\nCNwOPBjs3wUcEJSvBY4Myr8ErgnKBwJ3BuUtgVfwtyf7Bz8fK0O7bwUOD8rtg/etqt9zYCPgLaAu\n9l4fWq3vObArMAR4NVZXtPcYeAHYMSg/AowsYbv3AtoF5QuBC5p6L2nisybbz6tUbQ/qewOPAW8D\n65frPS/pH3GRf1mHA4/G9scDp1a6XSltvD/4RZwF9AzqegEzg/J1wIGx42fihwkfBFwbq782flyJ\n2tobeAKoJwoOH8X+iL56v4NfzGFBeS1gQaafAfBoeFwJ290FeDNDfVW/5/jgMDf4420PPIgfkLGg\nWt9z/Idj/EO2KO9x8Nz/xeoTxxW73SmP7Qv8uan3kiY+azL8jTxWyvc8qLsHGEwyOJT8Pa+l20rZ\nJtZVBTPrj4/6U/B/QI0AzrkPieaJ5Ds5sJTCme0OwMx6AJ8458KVZuPv71ftc86tBpYEl7eVaPcm\nwEIzuyW4JXaDmXWmyt9z59z7wGXAu8FrLQGm4kfyVft7HtqwSO9xJSe9/gT/XzM03b607yfL38hG\npWysVXCicS0Fh6plZusCfwOOd859SvCBG5Ot178iQ3LNbB+g0Tk3LaUNubankkOJ2wNDgT8654bi\nR8ONp/rf8274tDL98B8o6wCjmnxSyilK0a4CVdV73BwzOx1Y6Zy7o5DTFKs9zb6QWSf8ROOzcjm8\n2K9fS8FhPtA3th9OuquooEPqb/hL1QeC6kbzuaQwnzdqQVA/H+gTe3r4PZT7e9sFGGtmbwF3AHsC\nV+BzYIW/E/E2fNVuM1sL6OKc+5js308pzcP/J/VysH8vPlhU+3u+F/CWc+7j4Erg7/ifQ7caeM9D\nxXqPy/49mNlhwBjgh7HqvNrtnFtE9p9XKXwD3xcy3fw8st7AVDPbMN+2N3F8dqW4V1mKL/x917CT\nqA7fSTSoCtp1G/D7lLqLiO5RjifquBtD1Ik0nMydSGG5W5navzvJDukDXXSv8hdB+SiiztGDSO8c\nrcPf7ilXh/SzwMCgfFbwflf1e47PHPAafh6P4TvVj67m9xz/wfRaKX6v8bdfdwrei0eAUSVs9yhg\nBtAj5biM7yWZP2viHdJpP69StT3lsbeB7uV6z0v6R1yCX9ZR+BFBc/Azqyvdnl2A1cEvzyv4e8ij\ngPXxqUVm4zPPdos95+rgF286fkZ5WH9Y8H01AIeU8XuIB4dN8CMaGoI/gg5BfUfg7qB9U4D+seef\nFnw/M4G9y9TmbfEz6acB9wV/CFX/nuMD2UzgVWAifiRMVb7nwF+B94EV+H6Sw4MPm6K8x8D2+GA5\nB7iixO2egx8MMDX4uqa595IsnzXZfl6lanvK428RdEiX4z3XJDgREUlTS30OIiJSJgoOIiKSRsFB\nRETSKDiIiEgaBQcREUmj4CAiImkUHEREJI2Cg4iIpPl/XV3QM+s6WYwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1b472d56550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"### equity por niveles de volumen\n",
"condiciones = np.logical_and(datos['volume_matched'] >10000,datos['volume_matched'] <=5000000)\n",
"df = datos[condiciones].copy()\n",
"#condicion_operador=np.logical_or(df['operador'] ==11001,df['operador'] == 11002)\n",
"#df = df[condicion_operador].copy()\n",
"#df=df[df['operador']==11006]\n",
"#df=df[df['odds']<2.3]\n",
"#df=df[df['odds']>1.25]\n",
"#df=df[df['volume_matched']<400000000]\n",
"df = df.sort_values(by='odds')\n",
"df.index = range(len(df))\n",
"print('total : '+str(sum(df['resultado'])))\n",
"print('apuestas : '+str(len(df['resultado'])))\n",
"df['suma'] = df['resultado'].cumsum()\n",
"df['suma'].plot()\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x1b474e2d208>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4VNXVx/HvQooFUBQBBcReYkOMisFyLSgWbGkqEY2a\nGEVjYmI3ApYQNcYefVWi2AuaoAYVjV4jYkEURZCisQAqNkDAgJT1/rHPZMqdmTtzp9/7+zzPfc6Z\nPWfO7MPorDm7rG3ujoiISCatKl0BERGpbgoUIiKSlQKFiIhkpUAhIiJZKVCIiEhWChQiIpJVwYHC\nzHqY2XNmNtXMppjZr6PyTmY2zsxmmNnTZrZ2wmuuN7NZZjbZzHonlB9vZjOj1wwutG4iIlI4K3Qe\nhZl1A7q5+2Qzaw9MAg4Hfg585e5Xmtm5QCd3P8/MDgJOd/dDzGw34Dp372tmnYDXgT6ARefp4+4L\nC6qgiIgUpOA7Cnf/zN0nR/uLgXeBHoRgMSo6bFT0mGh7V3T8q8DaZtYVOBAY5+4L3X0BMA4YUGj9\nRESkMEXtozCzjYHewCtAV3efByGYAF2jw7oDsxNeNicqSy2fG5WJiEgFFS1QRM1Oo4EzozuL1Dat\nTG1cVqw6iIhI8bUuxknMrDUhSNzt7mOi4nlm1tXd50X9GJ9H5XOBngkv7xGVzQXqUsqfz/B+SlAl\nItIE7p73j/Ni3VH8DZjm7tcllD0GnBDtnwCMSSgfDGBmfYEFURPV00B/M1s76tjuH5Wl5e7N8m/o\n0KEVr4OuT9en62uef01V8B2FmfUDBgFTzOxNQhPTBcAVwENmdiLwEfCT6At+rJkdbGbvAUsIo6Nw\n9/lmdilh5JMDwz10aouISAUVHCjc/SVgtQxP75/hNadnKL8TuLPQOomISPFoZnaVqaurq3QVSkrX\nV9t0fS1TwRPuKsHMvBbrLSJSSWaGV7AzW0REmikFChERyUqBQkREslKgEBGRrBQoREQkKwUKERHJ\nSoFCRESyUqAQEZGsFChERCQrBQoREclKgaLCpk4FM/jDHypdExGR9BQoKmzKlLC97LLK1kNEJBMF\nigrbYINK10BEJDsFigpbbz3o2RM6dKh0TURE0lOgEBGRrBQoREQkKwUKERHJSoFCRESyUqCokIMP\nDvMnRESqnQJFBbz1Fjz5ZNifPbuydRERaYy5e6XrkDcz81qsd0yvXvDxx/HHPXvCggXwzTeVq5OI\nNH9mhrvn3ZahO4oKOOaYStdARCR3ChRVQM1PIlLNFChERCQrBYoqcvHFla6BiEhDChQlNH165iGw\nI0bAI4+EXE8LF4aySy+FV14pX/1ERHJRlEBhZiPNbJ6ZvZ1Q1snMxpnZDDN72szWTnjuejObZWaT\nzax3QvnxZjYzes3gYtStUlasgHHjsh9z1FHw5Zdhf9GisP3uu9LWS0QkX8W6o7gDODCl7DzgWXff\nCngOOB/AzA4CNnP3LYBTgFui8k7AxcAuwG7A0MTgUmuuuw7OPDO3Y2NBAmCzzUpTHxGRpipKoHD3\n8cD8lOLDgVHR/qjocaz8ruh1rwJrm1lXQqAZ5+4L3X0BMA4YUIz6VcL22+d+7Oqrh+0668Caa5am\nPiIiTVXKPoou7j4PwN0/A7pG5d2BxAGhc6Ky1PK5UVlNatu2YdlVV8HMmTBrVnJ5Yj+FiEi1KWdn\ndqap1C0m49E558BWW8EXX8CAlHuljh3Ddt11ob6+7FUTEcmodQnPPc/Murr7PDPrBnwelc8FeiYc\n1yMqmwvUpZQ/n+nkw4YN+99+XV0ddXV1mQ4tu5NPhpEjG5bvvDNMmgTdu0Pv3g2fX7AgbG++Garo\nckSkRtXX11NfhF+eRcv1ZGYbA4+7+/bR4yuAr939CjM7D1jH3c8zs4OBIe5+iJn1Ba51975RZ/br\nQB/Cnc7rwM5Rf0Xqe1V1rqfUIbE33ghDhkC/fjBhAgwcCI89lvl155wDV1xR+nqKSMtS0VxPZnYf\nMAHY0sw+NrOfA38C+pvZDGDf6DHuPhb4wMzeA/4POC0qnw9cSggQrwLD0wWJWtKmTdjmOvopRrmg\nRKSaFKXpyd2PzfDU/hmOPz1D+Z3AncWoUzX4wQ/gkktgn31yf02HDqWrj4hIU2hmdpGlTrLr168y\n9RARKRYFiiJ79dX4fmx+BIT+h9gsbBGRWqJAUUK33hq2q1aF7cyZjb+mfXu4806YO7dk1RIRyYsC\nRQlsuCEccABstBGsXJn769yhS5eQ/mPzzUtXPxGRfGgp1CKLDXGNVe+776Bdu+RjMg2PTXx94jlE\nRIpBS6GW2OWXQ//+obP62mubdo6jjw7bXPNA3XRT095HRKSYdEeRozPPhFGj4jmZMr19tjuKCRNg\n992zv8/BB8OTT8Yf1+DHIyJVSncUZRDLx5TJ++9nfu6AA9Kn7Ug1dmxomhIRqRYKFE00e3bDVB3Z\n0m48/TSssUZu5/7Xv5peLxGRYlOgaKKNNmpYtmoV3HZbcnNRpqVQs/n227A9/PDsx4mIlEMps8c2\naz17wrJljR/Xpg38/e9Ne4/99mva60REikmBIgf33RcmwM2e3fix6RxxRH7HX3MNPPNM095LRKTY\nFChyMGhQed/vN7/J3jEuIlJO6qPIw7EJOXLT3V2MHAkvvli++oiIlIMCRQ4GDoRHH4V774Wf/jT9\nMa+/HrZ33VW+eomIlIMCRRb77RdGLT3zTHz0Uqa04bvsUtq6fP1100ZQiYgUSoEii+eeC9ulS+Nl\nZ5yRObVG797Fm0n93nvw8cfxx4n7IiLlpECRo3ffje+vtlp8/9JLS/N+Tz0Ff/5zmKjX3Fx5JXzw\nQaVrISK5UqDI0YwZ8f0TTghf4gAXXwyffFK69x0wIGxjdyrNIffTuefCkUdWuhYikisFiizWXTd9\nebt28LOfwfLl4fFrr4VtqxL+a86bF3+P2PvWmkcfhSFDwv5bb1W2LiKSOwWKHMV+2ccsWQLz54f9\n2K/jvfYq3vu5wzbbpH8un8WQqskJJ4QZ7SJSW5p9oHj7bXjjjaa99uuvYZ994Isv4mtJxGy6Kfzk\nJ8llbdo07X0yOfFE+N3vQkbZgw6Kv0cp71xK7bTTKl0DEclXDX/l5Gb33WHnnRuWZ+tXWL4cdt01\n7J96KnTunP64Bx8svH65SOw8FxEpt2YfKGKZWEeOTE7f3b17uNuAMHLpiiviTUnLlsE774T9730v\n+/l32CG+n2kyXiGuvjo0e7VtW/xzl9rUqXDhhemf+9GPylsXEWm6Zr3C3aJFDRcbir3MLKTb2GOP\nhutUL14M3bqFIZzrr59LfWDMGDjssDwuIgc77xxvNmvbNqyW16ZNqF8tBI6TTw4BOvZv3rEjzJkD\nxxwTmqAOOaSy9RNpabTCXQKzcPew5ZYNn9t333hgMAtLjyZKHAabS5CIyXVRonwUO/CIiDRFswsU\nJ58ctvvvD599FvYT8y89/3x8v3v35PWpAbbeOv/3HD8+vF+xDR0a+kHSLZJU7Z59NtxNiEjta3aB\n4r77kh/HOqK7dGl47NixDcvWXx86dAjDX3PVr5/yMCV65RXo379przULKwWKSPVoFoHigw9gu+3C\nUNYVK+LlZ5wB//53+PL55puGr4tN/kr0xRelq2dLsfvuyY/zDaKJn6GIVF7VBQozG2Bm081sppmd\n29jxb70V5jRMnQqTJ4fkeZ98EjpQr78+TFo75JCQInzYsPjrnngivl+LTTv33QcLFlS6FoVZuVJB\nQaQWVFWgMLNWwI3AgcC2wDFmlrbX4Pbbw1yH3/42PtFto43CaKUNNkg+tlMnOOooGDw4PP7qq+QR\nNx9/HILI6NHFnzRXDEuXhhFPiQYNCtc/a1Zl6pSvWH9Rom23Dc18IlLdqipQALsCs9z9I3dfDjwA\nHJ7uwF/8AiZOhM8/D3Mevvii8fxBm2wS7jTS5XDaZBP48MN4HqVqGTX8/vvhGqHhHcSsWelHdlXS\n//1f+vLU4A0heCxdGgJGpuapyZPj811EpDKqLVB0BxIXGZ0TlTVw772h03PKlPBlmWn2dGNGjAhB\nYfDg6mzKmTQpvr/22vH93r3D9re/LW99GvOrX+V+7Fprhe20aZmP2Wmn3BeFuuOO+DlFpHhaV7oC\nTTVjxjCGDw/7dXV11NXV5X2OTTeFAw+MPx46FDbcsDbyEa23Xkiwt912la5J7mKz5GOGDAn5tD74\nIGSWTXTJJfDLX4b9XJMgvvBCeI+//S1MVLzxxsLrLFLL6uvrqa+vL/g81RYo5gKJXcs9orIGhg8f\nVvCbvf9+8uPWreGUU6BXr4JP3eIdc0z4dX/77fGylStDE+HSpaETu1Wr8G9+8skNA8XQofkPk20d\n/dd8113hTvPGG0OT1qRJ0KdPYdcjUotSf0QPj/26zlO1BYqJwOZm1gv4FDgaOKacFWjVquFs7UrK\n1LmemLeqGvXpE5oEEwMFhHxazz0XX2YWwgz01CG1qdxDgMk2A/6AA+D11+GRR5L7bt57T4FCpBBV\n1Ufh7iuB04FxwFTgAXd/N/urmrcbboCzz878fDUtKZo46z1Tnbt1C9tBg/I791/+Amuumf2Ytm1h\n440blr/4Yn7vJSLJqipQALj7U+6+lbtv4e5/qnR9Kq1z57DGdOIorHbt4vuXXRay1lZDJ+4FFzR+\nzHrrhW1qssZsVq4MQ5jz8fXX8fXM85llLyINVV2gkPw99FDDjuJKSO1TSO3rcc/cdLRwYbh7Ajju\nuLC9/HI44oiwf/318WO//jp7PWL/FrHgolX1RAqjQFFjUtfL7p528HDlrLNOfH/HHZOH9yZKXIzp\nww/DENnx48Pj2BofK1bA9tvD8OHxoLNkSfyuJJP//jdsb7st7+qLSBoKFDXs3HPDxMNq8tRTYRb8\n738fHvfpE+4knnkmfsyjj4aZ8O7hL7baYGzFwHT9G506hW1ioNx///ybpEQkfwoUNawJU0fK4pFH\n4KqrkssS07AfeWTyXUFjdwjpzJoVRn4l5uwSkdJQoKgxL70UtiNGhCVSm4MTTsg9a2+sI3/PPcM2\nl8y0nTqF43784yZVT6TFq7Z5FNKIH/wgbGPt+IsXV64uxWKWOQXL6NGw+urJx7ZrB7Nnh+GwO+6Y\n/dydOsXXxqiVBIoi1UZ3FDUulqbi0EMrW49SefddePPNhhPm2rSB73+/8Wy/ickIldJcpGl0R1Hj\nli0L26a089eSo48uvON66tR4U1W1ZAcWqQW6o6hRG26Y/PjRR+Gvf61MXarF6NEwZkz6fotTToGb\nbip/nUSaAwWKGuQeTzMes2hR+KJsDlpF/1Weempux199Ndx/f0g9D7D55mGyXrrz3nFHdeXyEqkF\nChRSVZYsCVlgp0xJno2dze9/D8ceG39sljmdSJs2yZMCAfr1C4FWRNJToJCCvPdecc8XS/y33XYh\nYNxwA9x8c3HfA0K6kT9FmcQmTIhP9hORhhQoJMmCBWGUUS5efBG22KLxFOGFOP305FXz5syJd+Cn\nOv74hmXTpsHjj4clWhNTejz8MJx/fjyX1MSJxauzSHOjQFHjTj4ZTjyxeOtTnHpq7ms3xBYKypTP\nqZimTYNnn23YN5OoR4/05X/8Y9i+8Ua8bOHCsI3Nsbj1Vhg3Dr77rvC6ijQ3ChQ17tZbYeTIpr02\nXRbWTL/W0+ncGTaK1iO8/PLSDjldujRsZ89OLv/yy/j+ZZelr0O6lSBj648PGRK23/9+CLiPPFJw\nVUWaHQWKZuTNN3NLaRGz3nrx1BnffdcwM20+LrooNN+kfpEXy9lnh6CQeH2vv974CCb3+B3SjjuG\nO4mXXmqYEv2qq2CffZIn5blX/0qCIuWgQNGMLFjQsMwsvoBPOrGU3BdcAJtumrxKXVPEclEVW6tW\n6ScVpiYfbMw//wkffZQ8SiqTp55KTmYo0lIpULQAjfUh3Hpr+PJcsSJ9sGlM4p3IJpvk//pCxEZJ\nJabqyCaX5rEzzgjNavk0w4k0ZwoUzVismebxxzMf8913Ydby6NEhyV7qazO5917YcsuG+ZNiSQur\nUeISsrHRTulMmgRffQX33FP6OonUAgWKZirxiz61PT7Rhx827fyvv97w3E88ETqFy6V/fxg4MLdj\n33kHHnsMfvMbOO002GOPzMcefXTYJnZsm8H8+U2vq0gtU1LAFmjZsnh7f2x4aL6uvTZsE1OAl2NZ\n1tYJ/8WOG5f767bdNmwPOCD8TZiQ+dglS2DvvcMyrLHsvACffhpfaU+kJVGgaMZat06fWnvevPBl\nmOrTT5v2Hu75jbYqRPv28PbbyWXduze+LkVj1lgjvh9L/3HLLclLuIq0VGp6aoZiX9qJQSKxTb5j\nx/SvS+yU7ts38/kr3QSz/fbJj+fMCaOZmurll2G33cK8kqFD4+UrVsCMGaG/Iuaee0o3BFikWilQ\ntBBjxsT3zRoGi549m3auYud6KpeddoovJRsLimPHwgcfxP9tYte26aZhO20aHHdcaVOWiFQjBYpm\nIjZzuRyuu65871Uqa6wBTz7ZsLx//5C/KtGcOWEbS38+d25p6yZSbRQomomXX87tuGnTQprtVavg\nm2/i5fk0p0yenF/dasUZZ8BZZzUs79AhbH/4w/LWR6RaKFA0E7nOII4lxlu8OP4FmM78+ek7qAcP\nzr9uteL660NzVOy6U6//1VfLXyeRaqBA0UzsvXfD5HfTpzeciZw4qQ5g1Kj055sxI2wT71R22gnu\nvjv++PTTk1+TujxrrbrjDvjHP0IeqSuuiJe3bx+22QKsSHNUUKAwsx+Z2TtmttLM+qQ8d76ZzTKz\nd83sgITyAWY23cxmmtm5CeUbm9krUfn9Zqahu3naa6+QnwhCU9JWWzU8JrVs8ODkSWu33ZY8xyD2\nC/uAAxo2OR10UHzfHbp0Kaz+1WK77eDww8NqeOeck/xc374h5YlIS1LoHcUU4EjghcRCM9sG+Amw\nDXAQ8FcLWgE3AgcC2wLHmNnW0cuuAK529y2BBcBJBdatxTELdxaQfm2GL74Ix8RSbMc89lj4Ajzv\nvLC+xcqV8ee+/TZs080nqKuDk1rQp9ShQ8gplXpXJtLcFRQo3H2Gu88CUluzDwcecPcV7v4hMAvY\nNfqb5e4fufty4IHoWIB9gVjShFGEACRFcOKJYRtb+jOdl1+GESPCfuICP9msuSbcfnthdasVixbl\nN4RYpDkpVR9FdyBxHM3cqCy1fA7Q3czWA+a7+6qE8mbS4l15I0eGVBSxIbSZJtzFJE7USzezuyWK\n9U+ItESN9gOY2TNA18QiwIEL3T1LXtK85ZUEYtiwYf/br6uro66urohVqV2rrw4XXpj9mHXWgY8/\nzvz8wQfD735X3Ho1N0uXhpns6tiWalZfX099uiUe89RooHD3pqSNmwsk3qj3iMoM2Ci13N2/MrN1\nzKxVdFcROz6jxEAhyS67rLDXb711WK1ul13SP3/ttXDmmYW9R63r1y800ZVy+VeRQqX+iB4+fHiT\nzlPMpqfEO4LHgKPNrK2ZbQJsDrwGTAQ2N7NeZtYWOBqIJYR4DvhxtH98QrkU0UcfwZQpjR/Xpk18\nv1u3+NrYe+6pIAG59+OINAeFDo89wsxmA32BJ8zsSQB3nwY8BEwDxgKnebASOB0YB0wldHhPj053\nHnCWmc0E1gVGFlI3acgdhgzJ7dgddwzrS0D5MsPWikcfrXQNRMrLvAbvnc3Ma7HelXTTTckT5HL9\n57v3Xrj4Yli4MGRRvf76kOqipXrttTCc+PLLw2P9Zyi1xMxw97x/+mlmtmQ1aBD88pchSDzwQMsO\nEgC77lp4H5BIrVGgaCHGj4/vT5uW32vPjebP59K3ISLNj9JktBBvvRXf32ab/F9/+eXxiXsi0rIo\nUEhOYsuDSnD66Rr5JC2HAoVIE2y2Gay2WqVrIVIe6qNoIdIlCRQRyYUCRQsxbhz84heVroWI1CIF\nChERyUqBogVpLGusiEg6ChQtyB//GHI9SXF8+23IIPvss5WuiUhpadRTC9K2bTy5nxRmq63gmmvi\nq90plYc0Z8r1JFKA9deHL79UoJDaoFxPIhVw1FGVroFI6SlQiBRgzTUrXQOR0lOgECnAoEGVroFI\n6SlQiBTADPr0qXQtREpLgUJERLJSoBARkawUKEREJCsFChERyUqBQqRIunWDFSsqXQuR4lOgECmS\nefNgwYJK10Kk+BQoREQkKwUKERHJSoFCpIi+/BJeegmWLKl0TUSKR2nGRYpsjz3gnHNCCvLFi0M6\ncpFapkAhUqCFC2HEiLA/aVLYLlsGV14Z9g89FPbfX6nIpXap6UmkAJ98Au+/D1Onhsf//nfYxgIG\nhCAhUssKChRmdqWZvWtmk83sETPrmPDc+WY2K3r+gITyAWY23cxmmtm5CeUbm9krUfn9Zqa7Hal6\nvXqF7T33hO0++4Tt+PGVqY9IKRR6RzEO2NbdewOzgPMBzOx7wE+AbYCDgL9a0Aq4ETgQ2BY4xsy2\njs51BXC1u28JLABOKrBuIiW3ww7JTUrpmpd0RyG1rqBA4e7Puvuq6OErQI9o/zDgAXdf4e4fEoLI\nrtHfLHf/yN2XAw8Ah0ev2Rd4JNofBRxZSN1EKuGCCxqWWcLCk3/+c9hedlkYISVSC4rZR3EiMDba\n7w7MTnhublSWWj4H6G5m6wHzE4LOHGDDItZNpOTefhtmzsz8/KpVcPbZYf8Pf4Bbby1PvUQK1Wg/\ngJk9A3RNLAIcuNDdH4+OuRBY7u73F1CXvBb8HjZs2P/26+rqqKurK+CtRQq3/fbpyw8/HJ55pmH5\nE0+kvwMRKZb6+nrq6+sLPo95gWP2zOwE4BfAvu6+LCo7D3B3vyJ6/BQwlBAMhrn7gNTjzOwLoKu7\nrzKzvsBQdz8ow3t6ofUWKRUzOPPMcMfw3//CCy/ARRdBfT2stlroxzCDtdYK8yxEysXMcPe8fpRD\ngfMozGwAcDawVyxIRB4D7jWzawjNTZsDrxGaujY3s17Ap8DR0R/Ac8CPgQeB44ExhdRNpJJ23RW+\n+SbMschm3rwQPDp3Lk+9RJqi0CGoNwBtgWcs9Ni94u6nufs0M3sImAYsB06LbgFWmtnphNFSrYCR\n7j49Otd5wANmdinwJjCywLqJVETsZvfYY8M2Nrci1ZIlITV5167w2WflqZtIUxQUKNx9iyzPjQBG\npCl/CtgqTfkHwG6F1Eekmq2KhmosXZpcruYnqXaamS1SZptvnvxYCQSl2ilQiJTBggUwfHjYH6Pe\nN6kxChQiJfbBBzBlCnz4YXi8884VrY5I3hQoREpsdjTFdNSo5PLLLy9/XUSaQoFCRESyUoZWkRL7\n+c/T53Xq1ClsV1+9vPURyZcChUiJde8O114bHx4LYR2Lbt1Cs1T79pWrm0guFChEyqRVq/hkvA02\nqGxdRPKhPgoREclKdxQiFfT88zBxIqy5Jtx9d/ISqiLVouDssZWg7LHSXLRuDStXxh/rP2sppaZm\nj1XTk0gFLVoUUpGPVApMqWJqehKpoDXWCNsNNoABAypbF5FMdEchIiJZKVCIiEhWChQiVWCtteCN\nN2DYsLBMarVwh6lTK10LqTQFCpEqsOeecP/98J//VLomye68E7bbrtK1kEpToBCpAmaw775w881h\nTkWu5s4tfj1uuCH+WIsqCShQiNSMMWNgr72Sy3r0yLwmd1O9+WZxzye1T4FCpEY8+CC8+GLD8q++\nKn9dpGVRoBCpUo8/DitWNCyfNy80Ef3jH+Hx0KHlrZe0PAoUIlXqsMPg3nszP3/jjWGbLpgUYuZM\neO45OPFEGD26uOeW2qSZ2SJVbPnyhmVmsP768OyzYf+WWwp/n5tugg03DPsvvQT77dfwmB12gMmT\nQ7p0aVkUKESq3KJF0KZN+ue23BK6di38Pf7wB9h++8zPn3YaTJkCixdDx47x8pUrQzDTKn3Nm34b\niFS5jh3DPItS+/vfw/aII+Jljz0WtptuGraffJL8mmOOieerkuZLgUKkBrz+evryWbNg4UIYOxZm\nzIiXv/9+fjO858+PpziPdZIDDBwYyn//+/Sv+/zz3N9DapeankSqWGMd1e6w227JjwE++qjxc69c\nCU8/Hdb0htCBHXt9piDToUPj562Ea66Bk0+u3vrVOt1RiFSR5cvh22/h178Oj089tfHX3Hdf095r\n+nT48Y9h0KDw+F//ij+Xqd+jbdumvVexvPdeuHtKddZZme96pHAFBQozu8TM3jKzN83sKTPrlvDc\n9WY2y8wmm1nvhPLjzWymmc0ws8EJ5X3M7O3ouWsLqZdIrYqNcop9UffpE3+uW/R/1ymnxMuOPBIO\nOSTz+dzDwkiZnttkE3jnnfA4sa+hsX6HFStC+pBc7lyK6de/Dtfbq1fIQbX77tC/f3ju1lvLW5eW\npNCmpyvd/WIAMzsDGAqcamYHA5u5+xZmthtwC9DXzDoBFwN9AAMmmdkYd18I3Ayc5O4TzWysmR3o\n7k8XWD+RmrL++nDttXDmmXDRRbDVViGrLEC/fjB+PBxwQBiqCvDoo+nPs956Ybv55iHR4PTp4VzZ\nDBwY358wAZYubXhM376wbFnom+jcGT79NL/ry4cZfPdd8oivH/4wPL7uujACa9Gi8Pfss6WrhxQY\nKNx9ccLDtYBV0f5hwF3RMa+a2dpm1hXYBxgXBQbMbBwwwMxeADq4+8To9XcBRwAKFNLinHlmfP/g\ng0NW2ZiePTM3R/XqBZ99FgLDBhuEx48+Cr17Jw9fPfRQ+Oc/w3DXRFtvHd/fYIP07/GXv8BOO4Xn\n27QJ2WXr6/O5uvwsX54cKMxCENx449K9ZyXdd1/I3VWMuTHFVHBntpldBgwGFhACAUB3YHbCYXOi\nstTyuQnlc9IcL9Jivfgi/OAHcNxx4XGmJiQIHbm77hp+cU+YEIKFGey4Y+isXm21+LEff9zw9fPm\nQZcujddp//3D2hnVaN11K12Dwl17LUycGH4QdOkSmiC7dIkH/kpptI/CzJ6J+g5if1Oi7UAAd7/I\n3TcC7gXOyHSaItZZpEXYY4/kWdDHHZe5qSlmwoSmvVcuQWLmzOoNEgAHHpj8+IUXqmsRqFzEmv+W\nLIFXXoF/6q0JAAANdUlEQVTbbgt3mFtt1fAOcPLk8l1fo3cU7t4/x3PdB/wTGEa4U+iZ8FyPqGwu\nUJdS/nyW4zMaNmzY//br6uqoq6vLeKxILVu6NNwRnHBC5txPDz8Mf/tb9vN8+y20awezo3v6F17I\nb/W6LbbI/dhK+MUvkh/HOtofeij8Iu/WLWzPPx923jn8e1abbt3C3eEf/5hcbhb6pbbbLvRjdemS\nPN8lk/r6euqL0DZYUNOTmW3u7u9FD48Apkf7jwFDgAfNrC+wwN3nmdnTwOVmtjbhbqY/cJ67LzCz\nhWa2KzCR0JR1fbb3TgwUIs1Zu3Zh+9e/hmGg6Sxc2Ph5Uu8GTj+9sHpVk912azhSa5NNwvahh0Kn\ne+wv1klfrkBxwQUhMP3wh4WdZ/jwMGv+88/hiy9CIHzlleyvSf0RPXz48Ca9d6F9FH8ysy0Jndgf\nAb8CcPexZnawmb0HLAF+HpXPN7NLgdcBB4a7+4LoXEOAO4HVgbHu/lSBdRNpVjp2TB4um2qXXUL7\nNoShrx9+GH8uNpEOYNttw51Ez57xu4tKmjs3zI/YcMPwl615a/RoePLJxu+eIPx77bBDcgZc99Cc\n17dv4fXO1YgRoa8oNVCYhUmPic2Ljz8e/m67reF5unSJj3aDkOfrl78sTZ1TFTrq6UdZnkv7e8Xd\n7yQEhNTySUCWtGQikqvNNovvm4WRSjGxL6YRI+BnPyvN+w8cGJZUzWV00hVXhJxSq60Wckm1axfP\nZLtyZeiYnzAh/D35ZGH1MgujxqplHfBVq+Kfh3sIEtVIM7NFmpFYevDBg+NlDz8Mr70Wf7zddtC6\ndWlnWT/xRO5rWaxaFWZVv/9+6Ef54INQZwh3BXvtFQLJllvmV4eXXoK33879+D/9Kb/z5+Ott9KX\nv/NOWCf92GNho41K9/6FUqAQaYZOPDG+37dvPPsrhLH6y5eHWd133VXY+8yYAaNGwdVXh6Vax48P\nX/QAZ5+d2zkefhhefTXsm0GnTqF5DGDaNJgzJ/Qz/OY3IaAkpjnP5v3387uW888PE/xKZZ11wuil\nPfeEH0VtMQMHhiC+334hhcqqVcnNhIkqOeJMSQFFmonOneMJ/vbaC0aOzH5869bxORpNFesTmTMn\nfNnPmRP6HPLx+edwzz1w990Nn0udO3DVVeEv1auvwuWXh3keHTpA+/bxtOnl8tVX8LvfhUmI7mE2\n/Pjx8ef/859wrfPmhe0jj4Tsv7ms5TFlSjx4VoIChUgz8M03oW2/bdt4R2jiXUVM4p1FMdx1Vxh9\ns/vuyeWVmL8wY0YY6bRoUUjvEbuzKZcxY8Ld1fz5odmrY8cwFyZm3XXDX+IM+FxXC6x0n4oChUgz\nkEt67UxNGoWIjVSqBtdck5wgsXPn8Cu/XGJB+Nhjw1Dm2N1dujulmEKWlf3445AHbK+9woio2PyK\nLl1C01YxVj6MUaAQkZJYe+3yvVe6IDhiRP7DR7/7rumd/GuvHfJq/fSnyeWjRjWekLEpvvgibC+5\nJD634vPPQ+d469bJWYYLpUAhIiXRPyWnw3ffhQSH660Xfm1vuGH4FVwqsYmKqTp3ht/+Fq68MsyE\njs3YhjDqqn374tYjcQRaKaQmpfjss+K/hwKFiJTFjBlhPYl+/cJ8iblzQ99KqXz/++nLL7kEzjsv\ndCp/+mn4Yo19uaauKDh+PEyalJzRF8KdymWX5ZYjK5MBA5KTNebr2GPh66+b/vp8KFCISNlstFHy\nCnXLlmUf9VPIF+n3vpe5X2bNNUPHdyzNB8CQISEDb7du4a6iffuQjh0aBorbbguzpAtJg1Lo5MH2\n7UPAKwcFChEpidS2+nQyNQ9ByF+V7fliO/DA0CG+ZEkYNbV4cTxQNAeFjERToBCRkjj33DDPonv3\n8Pfaa/FlV3OR68S6YnkqTXa5ffaB558vbz2qkQKFiJREr15hNvLMmeHLNpe02NVm0KDk5qla8OCD\nYf3wl18OTWxrrRW2hVCgEJGSOPTQ5LTo990XvnhTlWJ+R0sWSzm/995hFNeSJeGvEAoUIlISrVvQ\nt8vixfDuu/nnlyqFYcNCOvrYankxl1zS9HO2oI9SRMrlkUeSZ0nXqlWrwhDUxHTgMWecEfJpffxx\n+OUeWxCp0oYOLf45FShEpOiOOqrSNSiO0aNh3LgwhLdLl5AWo1u3+PO33x6G/HbuDHfcASedVLm6\nlpIChYhIBiNHhlUA+/QJ6TE++yxM1Bs7NgTDnXeOH9ujR+XqWWoKFCIiGfToEQ8APXuGPwh5pIYM\nST72gAOab8e8AoWISJ7KNSO6WmiFOxERyUqBQkREslKgEBGRrBQoREQkKwUKERHJSoFCRMpijz2a\n91yD5sy8Bgf+mpnXYr1FRColrEdhuHveK1PojkJEpAX45JOmv1Z3FCIiLYRZBe8ozOx3ZrbKzNZN\nKLvezGaZ2WQz651QfryZzTSzGWY2OKG8j5m9HT13bTHqJSIihSs4UJhZD6A/8FFC2UHAZu6+BXAK\ncEtU3gm4GNgF2A0YamZrRy+7GTjJ3bcEtjSzAwutWy2qr6+vdBVKStdX23R9LVMx7iiuAc5OKTsc\nuAvA3V8F1jazrsCBwDh3X+juC4BxwAAz6wZ0cPeJ0evvAo4oQt1qTnP/D1XXV9t0fS1TQYHCzA4D\nZrv7lJSnugOzEx7PicpSy+cmlM9Jc7yIiFRYo9ljzewZoGtiEeDARcAFhGanRk/TpNqJiEjFNXnU\nk5ltBzwLfEsIBD0Idwi7ApcAz7v7g9Gx04G9gX2AOnf/VVR+C/A88EJ0/DZR+dHA3u5+aob31pAn\nEZEmaMqopyavR+Hu7wD/WxTQzD4A+rj7fDN7DBgCPGhmfYEF7j7PzJ4GLo86sFsR7kbOc/cFZrbQ\nzHYFJgKDgeuzvLfuUEREyqSYCxc5UROTu481s4PN7D1gCfDzqHy+mV0KvB4dPzzq1IYQWO4EVgfG\nuvtTRaybiIg0UU1OuBMRkfJRCo8KMLORZjbPzN7O8PzeZrbAzN6I/i4qdx2bysx6mNlzZjbVzKaY\n2a8zHJd2Qma1y+X6avzza2dmr5rZm9H1DU1zTFszeyD6/F42s40qUdemyPH6jjezzxM+vxMrUddC\nmFmrqO6PpXku789Pa2ZXxh3ADURzTTL4t7sfVqb6FNMK4Cx3n2xm7YFJZjbO3afHDkickGlmuxEm\nZPatUH3z1ej1RWry83P3ZWa2j7t/a2arAS+Z2ZPu/lrCYScBX0ef30+BK4GjK1LhPOV4fQAPuHva\nHzk14kxgGtAxzXN5f366o6gAdx8PzG/ksJrssHf3z9x9crS/GHiXhnNiMk3IrHo5Xh/U6OcH4O7f\nRrvtCD8mU9unDwdGRfujgf3KVLWiyOH6oIY/vyhbxsHA7RkOyfvzU6CoXn2j2+N/mtn3Kl2ZpjCz\njYHewKspT2WaeFlTslwf1PDnFzVbvAl8BjyTkDEh5n+fn7uvBBYk5nmrdjlcH8BRUbPoQ9EXby2J\nZcvI1AGd9+enQFGdJgG93H0n4EbgHxWuT96iZpnRwJnRL+9mpZHrq+nPz91XRXXvAeyWQ6CrqV/f\nOVzfY8DG7t6bMFdsVOo5qpWZHQLMi+56jdw+m0aPUaCoQu6+OHZ77O5PAm1q7Bdba8KX6N3uPibN\nIXOBngmPY5M1a0Jj11frn1+Mu39DmBA7IOWpOUSfX9TO39Hdvy5z9QqW6frcfb67L48e3g7sXO66\nFaAfcJiZ/Qe4H9jHzFL7QvP+/BQoKidjtE9sr48mIVqN/Y/4N2Cau1+X4fnHCJMqSZyQWa7KFUHW\n66vlz8/MOkcTYjGzNQiTYlM76h8Hjo/2fww8V74aFiaX67OQpDTmcEKncE1w9wvcfSN335TQQf2c\nuw9OOSzvz0+jnirAzO4D6oD1zOxjYCjQFnB3vxX4kZmdCiwH/gv8tFJ1zZeZ9QMGAVOidmAn5ATr\nRXR9mSZk1oJcro8a/vyADYBRZtaK8EPywejzGg5MdPcngJHA3WY2C/iKGhnxFMnl+n5tIeHpcuBr\n4ISK1bZICv38NOFORESyUtOTiIhkpUAhIiJZKVCIiEhWChQiIpKVAoWIiGSlQCEiIlkpUIgUgZkN\nNbOz0pT3MrMplaiTSLEoUIiUniYrSU1ToBDJgZmdFS1083ZssSIzu9DMppvZOGCrhGN3jjKPvkRY\n4jdW/r1o0Zw3ouc3K/+ViORPKTxEGmFmfQi5cXYBVgNeMbPxwE+AHQnpV94grAUPIRfUae7+kpld\nmXCqXwHXuvv9UWLB1cp1DSKF0B2FSOP2AP7u7kvdfQnwKHBIVLbM3RcREh0SJZxb291fil57d8J5\nXgYuNLOzCWmsl5XvEkSaToFCJH9G9n6HtFmB3f1+YCCwFHjazOqKXzWR4lOgEGnci8ARZra6ma0F\nHAH8EzjSzNqZWQdCAMDdFwLzzewH0WsHxU5iZpu4+wfufgPhDmSHsl6FSBOpj0KkEe7+ppndCUwk\n3EncFpU9CLwFfAj8O+ElJwJ/M7MlwNMJ5T8xs+MI6as/BYaXofoiBVOacRERyUpNTyIikpUChYiI\nZKVAISIiWSlQiIhIVgoUIiKSlQKFiIhkpUAhIiJZKVCIiEhW/w+wGsOInSLQLwAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1b474ecf748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.index = df['odds']\n",
"df['suma'].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment