Last active
February 23, 2022 20:07
-
-
Save alessiot/aca064b64ff416f75a4d30e08b405c37 to your computer and use it in GitHub Desktop.
Visualizing Gradient Descend
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Adapted from [here](https://github.com/SkalskiP/ILearnDeepLearning.py/blob/master/01_mysteries_of_neural_networks/04_optimizers/Comparison%20of%20optimizers.ipynb)\n", | |
"\n", | |
"The functions used are the [six-fump camel function](http://www.sfu.ca/~ssurjano/camel6.html)\n", | |
"\n", | |
"\\begin{equation}\n", | |
"z(x,y) = \\left(4 - 2.1 x^2 \\frac{x^4}{3}\\right)x^2 + xy + \\left(-4+4y^2\\right)y^2\n", | |
"\\end{equation}\n", | |
"\n", | |
"and [Goldstein-Price function](http://www.sfu.ca/~ssurjano/goldpr.html)\n", | |
"\\begin{equation}\n", | |
"z(x,y) = \\left[1 + (x + y + 1)^2\\cdot(19 - 14x + 3x^2 - 14y + 6xy + 3y^2)\\right]\\cdot\\left[30+(2x - 3y)^2\\cdot(18-32x+12x^2+48y-36xy+27y^2)\\right]\n", | |
"\\end{equation}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import tensorflow as tf\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"from mpl_toolkits.mplot3d import Axes3D\n", | |
"from math import sqrt, cos\n", | |
"from scipy.integrate import ode" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# starting point for gradient descent\n", | |
"INIT_PARAMS = [-1, -1]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#Goldstein-Price function\n", | |
"INIT_PARAMS = [-1.5, 1.9]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# output directory (the folder must be created on the drive)\n", | |
"OUTPUT_DIR = \"optimizers_comparison\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# SIX-HUMP CAMEL FUNCTION\n", | |
"def dzdt(t, z): \n", | |
" x = z[0]\n", | |
" y = z[1]\n", | |
" dzdx = 8*x - 8.1*x**3 + 2*x**5 + y\n", | |
" dzdy = x - 8*y + 16*y**3\n", | |
" \n", | |
" return [-dzdx,-dzdy]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#Goldstein-Price function\n", | |
"def dzdt(t, z): \n", | |
" x = z[0]\n", | |
" y = z[1]\n", | |
" df1dx = 2*(x+y+1)\n", | |
" df1dy = 2*(x+y+1)\n", | |
" df2dx = -14+6*x+6*y\n", | |
" df2dy = -14+6*x+6*y\n", | |
" dg1dx = 2*(2*x-3*y)*2\n", | |
" dg1dy = 2*(2*x-3*y)*(-3)\n", | |
" dg2dx = -32+24*x-36*y\n", | |
" dg2dy = 48-36*x+54*y\n", | |
" f1 = (x+y+1)**2\n", | |
" f2 = 19-14*x+3*x**2-14*y+6*x*y+3*y**2\n", | |
" g1 = (2*x-3*y)**2\n", | |
" g2 = 18-32*x+12*x**2+48*y-36*x*y+27*y**2\n", | |
" f = f1*f2 + 1\n", | |
" g = g1*g2 + 30\n", | |
" dzdx = (df1dx*f2 + df2dx*f1)*g + f*(dg1dx*g2+dg2dx*g1)\n", | |
" dzdy = (df1dy*f2 + df2dy*f1)*g + f*(dg1dy*g2+dg2dy*g1)\n", | |
" \n", | |
" return [-dzdx,-dzdy]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# SIX-HUMP CAMEL FUNCTION\n", | |
"tf_fun = lambda x, y: (4-2.1*x**2+(x**4)/3) * x**2 + x*y + (-4+4*y**2) * y**2\n", | |
"np_fun = lambda x, y: (4-2.1*x**2+(x**4)/3) * x**2 + x*y + (-4+4*y**2) * y**2" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#Goldstein-Price function\n", | |
"tf_fun = lambda x, y: (1+((x+y+1)**2)*(19-14*x+3*x**2-14*y+6*x*y+3*y**2))*(30+((2*x-3*y)**2)*(18-32*x+12*x**2+48*y-36*x*y+27*y**2))\n", | |
"np_fun = lambda x, y: (1+((x+y+1)**2)*(19-14*x+3*x**2-14*y+6*x*y+3*y**2))*(30+((2*x-3*y)**2)*(18-32*x+12*x**2+48*y-36*x*y+27*y**2))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def ode_optim(z_init):\n", | |
" t0 = 0.0\n", | |
" tfin = 0.125\n", | |
" solver = ode(dzdt)\n", | |
" solver.set_integrator(\"vode\", atol=1e-8, rtol=1e-6, method=\"bdf\", order=23) \n", | |
" solver.set_initial_value(z_init, t0) \n", | |
" j = 0\n", | |
" while solver.successful() and solver.t < tfin:\n", | |
" solver.integrate(tfin, step=False)\n", | |
" j += 1 \n", | |
"\n", | |
" return solver.y\n", | |
"\n", | |
"\n", | |
"def optimize(tf_function, init_point, iterations, optimizer):\n", | |
" \n", | |
" x_list, y_list, cost_list = [], [], []\n", | |
" \n", | |
" if optimizer == \"ode\":\n", | |
" z_init = INIT_PARAMS\n", | |
" x_list.append(z_init[0]); y_list.append(z_init[1]); cost_list.append(np_fun(z_init[0],z_init[1]))\n", | |
" for t in range(iterations):\n", | |
" z_sol = ode_optim(z_init)\n", | |
" x = z_sol[0]\n", | |
" y = z_sol[1]\n", | |
" z_init = z_sol\n", | |
" x_list.append(x); y_list.append(y); cost_list.append(np_fun(x,y))\n", | |
" else: \n", | |
" x, y = [tf.Variable(initial_value=p, dtype=tf.float32) for p in init_point]\n", | |
" function = tf_function(x, y)\n", | |
" train_op = optimizer.minimize(function)\n", | |
"\n", | |
" with tf.Session() as sess:\n", | |
" sess.run(tf.global_variables_initializer())\n", | |
" for t in range(iterations):\n", | |
" x_, y_, function_ = sess.run([x, y, function])\n", | |
" x_list.append(x_); y_list.append(y_); cost_list.append(function_)\n", | |
" result, _ = sess.run([function, train_op])\n", | |
" \n", | |
" return x_list, y_list, cost_list\n", | |
"\n", | |
"def create_blank_chart_with_styling(plot_size):\n", | |
" # my favorite styling kit\n", | |
" plt.style.use('dark_background')\n", | |
" # determining the size of the graph\n", | |
" fig = plt.figure(figsize=plot_size) \n", | |
" # 3D mode\n", | |
" ax = Axes3D(fig)\n", | |
" # transparent axis pane background \n", | |
" ax.xaxis.pane.fill = False\n", | |
" ax.yaxis.pane.fill = False\n", | |
" ax.zaxis.pane.fill = False\n", | |
" # setting chart axis names\n", | |
" ax.set(xlabel=\"$x$\", ylabel=\"$y$\")\n", | |
" return (fig, ax)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# SIX-HUMP CAMEL FUNCTION\n", | |
"ITERATIONS = 180\n", | |
"GRID_X_MIN = -2\n", | |
"GRID_X_MAX = 2\n", | |
"GRID_Y_MIN = -1\n", | |
"GRID_Y_MAX = 1\n", | |
"LR = 0.02" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#Goldstein-Price function\n", | |
"ITERATIONS = 300\n", | |
"GRID_X_MIN = -2\n", | |
"GRID_X_MAX = 2\n", | |
"GRID_Y_MIN = -2\n", | |
"GRID_Y_MAX = 2\n", | |
"LR = 0.02" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 38, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Definition of optimisers\n", | |
"optimizers = [\n", | |
" (\"ode\",\"ODE SOlver\"),\n", | |
" (tf.train.GradientDescentOptimizer(learning_rate=LR), \"Gradient Descent\"),\n", | |
" (tf.train.MomentumOptimizer(learning_rate=LR, momentum=0.95, use_nesterov=False), \"Momentum\"),\n", | |
" (tf.train.MomentumOptimizer(learning_rate=LR, momentum=0.95, use_nesterov=True), \"Nasterov\"),\n", | |
" (tf.train.RMSPropOptimizer(learning_rate=LR), \"RMSProp\"),\n", | |
" (tf.train.AdamOptimizer(learning_rate=LR), \"Adam\"),\n", | |
"]\n", | |
"\n", | |
"# Definition of colours for subsequent trajectories\n", | |
"paths_colors = [\n", | |
" \"#FFFFFF\",\n", | |
" \"#F2112D\",\n", | |
" \"#F06E1E\",\n", | |
" \"#EED82A\",\n", | |
" \"#A5EC37\",\n", | |
" \"#54EA43\"\n", | |
"]\n", | |
"\n", | |
"# Trajectories covered by optimizers\n", | |
"optimization_paths = [optimize(tf_fun, INIT_PARAMS, ITERATIONS, optimizer[0]) for optimizer in optimizers]\n", | |
"labels = [item[1] for item in optimizers]\n", | |
"\n", | |
"def create_animation(np_function, iterations, paths, colors, plot_name, file_name, dir_name):\n", | |
" for angle in range(iterations):\n", | |
" fix, ax = create_blank_chart_with_styling((10, 10))\n", | |
" \n", | |
" a3D, b3D = np.meshgrid(np.linspace(GRID_X_MIN, GRID_X_MAX, 50), np.linspace(GRID_Y_MIN, GRID_Y_MAX, 50))\n", | |
" cost3D = np.array([np_function(x_, y_) for x_, y_ in zip(a3D.flatten(), b3D.flatten())]).reshape(a3D.shape)\n", | |
" ax.plot_wireframe(a3D, b3D, cost3D, cmap=plt.get_cmap('rainbow'), alpha=0.2, zorder=-10)\n", | |
" \n", | |
" for path, color in zip(paths, colors):\n", | |
" ax.plot(path[0][:angle], path[1][:angle], zs=path[2][:angle], zdir='z', c=color, lw=3, zorder=1, alpha=1.0)\n", | |
" \n", | |
" if angle == 0:\n", | |
" ax.scatter(path[0][0], path[1][0], zs=path[2][0], s=100, c=color, zorder=10, edgecolors=\"k\")\n", | |
" else:\n", | |
" ax.scatter(path[0][angle-1], path[1][angle-1], zs=path[2][angle-1], s=100, c=color, zorder=10, edgecolors=\"k\")\n", | |
" \n", | |
" ax.legend(labels, loc='lower right', prop={'size': 10}, framealpha=0.0)\n", | |
" \n", | |
" ax.set_xlim(GRID_X_MIN, GRID_X_MAX)\n", | |
" ax.set_ylim(GRID_Y_MIN, GRID_Y_MAX)\n", | |
" ax.set_zlim(cost3D.min(), cost3D.max())\n", | |
" \n", | |
" # graph rotation\n", | |
" #ax.view_init(45, 180 + angle*2)\n", | |
" ax.view_init(25, 180 + angle*2)\n", | |
" # addition of a title\n", | |
" ax.set_title(plot_name, fontsize=20)\n", | |
" # saving a file\n", | |
" plt.savefig(\"./{}/{}_{:05}.png\".format(dir_name, file_name, angle))\n", | |
" plt.close()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"create_animation(np_fun, ITERATIONS, optimization_paths, paths_colors, \"\", \"test\", OUTPUT_DIR)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#convert -delay 10 -loop 0 *.png animation.gif" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
}, | |
"toc": { | |
"base_numbering": 1, | |
"nav_menu": {}, | |
"number_sections": true, | |
"sideBar": true, | |
"skip_h1_title": false, | |
"title_cell": "Table of Contents", | |
"title_sidebar": "Contents", | |
"toc_cell": false, | |
"toc_position": {}, | |
"toc_section_display": true, | |
"toc_window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment