Skip to content

Instantly share code, notes, and snippets.

View alexlib's full-sized avatar
:octocat:
Working

Alex Liberzon alexlib

:octocat:
Working
View GitHub Profile
import numpy as np
from math import pi, log
import pylab
from scipy import fft, ifft
from scipy.optimize import curve_fit
i = 10000
x = np.linspace(0, 3.5 * pi, i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
import numpy as np
from math import pi, log
import pylab
from scipy import fft, ifft
from scipy.optimize import curve_fit
i = 10000
x = np.linspace(0, 3.5 * pi, i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import numpy as np
from math import pi, log
import pylab
from scipy import fft, ifft
from scipy.optimize import curve_fit
i = 10000
x = np.linspace(0, 3.5 * pi, i)
y = (0.3*np.sin(x) + np.sin(1.3 * x) + 0.9 * np.sin(4.2 * x) + 0.06 *
np.random.randn(i))
@alexlib
alexlib / gist:95823675e368f85c3039
Last active August 29, 2015 14:25 — forked from quaquel/gist:19d3a7b3f89688d0b8d4
interactive legend plugin demo
{
"metadata": {
"name": "",
"signature": "sha256:85727c0bce75a8d3d004db29359002b5a426d858c8ee70ed110deb1936a51942"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
@alexlib
alexlib / generate.sh
Last active August 29, 2015 14:27 — forked from fyears/generate.sh
pyside+qml+pyinstaller
pyinstaller -F -w --noupx main.spec
@alexlib
alexlib / gist:841920aa1f08dd89153a
Created October 10, 2015 08:32 — forked from andrewgiessel/gist:5684769
fit a sigmoid curve, python, scipy
# good discussion here: http://stackoverflow.com/questions/4308168/sigmoidal-regression-with-scipy-numpy-python-etc
# curve_fit() example from here: http://permalink.gmane.org/gmane.comp.python.scientific.user/26238
# other sigmoid functions here: http://en.wikipedia.org/wiki/Sigmoid_function
import numpy as np
import pylab
from scipy.optimize import curve_fit
def sigmoid(x, x0, k):
y = 1 / (1 + np.exp(-k*(x-x0)))
@alexlib
alexlib / .travis.yml
Created October 11, 2015 17:28 — forked from snim2/.travis.yml
Travis-CI recipe for testing LaTeX projects compiled by a Makefile
install:
- sudo apt-get install texlive-latex-recommended texlive-latex-extra texlive-fonts-recommended
- sudo apt-get install chktex
script:
- make
- chktex -W # Print version information.
- chktex -q -n 6 *.tex chapters.*.tex 2>/dev/null | tee lint.out
# If lint output is non-empty report an error.
- test ! -s lint.out
@alexlib
alexlib / bobp-python.md
Created November 12, 2015 17:42 — forked from sloria/bobp-python.md
A "Best of the Best Practices" (BOBP) guide to developing in Python.

The Best of the Best Practices (BOBP) Guide for Python

A "Best of the Best Practices" (BOBP) guide to developing in Python.

In General

Values

  • "Build tools for others that you want to be built for you." - Kenneth Reitz
  • "Simplicity is alway better than functionality." - Pieter Hintjens