Created
April 23, 2021 23:56
-
-
Save allisonmorgan/06f3be704511808e1b6c00431e230767 to your computer and use it in GitHub Desktop.
Logistic regression example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "id": "operational-tomorrow", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import statsmodels.api as sm\n", | |
| "import pandas as pd\n", | |
| "import numpy as np" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "id": "scheduled-somerset", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "gender\n", | |
| "female 0.443131\n", | |
| "male 0.208086\n", | |
| "Name: attrition, dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "data = []\n", | |
| "\n", | |
| "N_men = 700; men_max_career_length = 10\n", | |
| "N_women = 300; women_max_career_length = 5\n", | |
| "\n", | |
| "for i in range(N_men):\n", | |
| " leave = np.random.randint(0, men_max_career_length)\n", | |
| " for each in [0]*(leave-1) + [1]:\n", | |
| " data.append(['male', each])\n", | |
| "\n", | |
| "for j in range(N_women):\n", | |
| " leave = np.random.randint(0, women_max_career_length)\n", | |
| " for each in [0]*(leave-1) + [1]:\n", | |
| " data.append(['female', each])\n", | |
| " \n", | |
| "df = pd.DataFrame(data, columns=['gender', 'attrition'])\n", | |
| "df.groupby(['gender'])['attrition'].mean()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "id": "forced-track", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "gender attrition\n", | |
| "female 0 377\n", | |
| " 1 300\n", | |
| "male 0 2664\n", | |
| " 1 700\n", | |
| "Name: attrition, dtype: int64" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.groupby(['gender'])['attrition'].value_counts()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "id": "rural-python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "0.2627627627627628\n", | |
| "0.7957559681697614\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "women = df[df.gender == 'female']['attrition'].value_counts()\n", | |
| "men = df[df.gender == 'male']['attrition'].value_counts()\n", | |
| "\n", | |
| "print((men[1]/(men[0] + men[1]))/(men[0]/(men[0] + men[1])))\n", | |
| "print((women[1]/(women[0] + women[1]))/(women[0]/(women[0] + women[1])))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "id": "otherwise-repeat", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Optimization terminated successfully.\n", | |
| " Current function value: 0.540770\n", | |
| " Iterations 5\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table class=\"simpletable\">\n", | |
| "<caption>Logit Regression Results</caption>\n", | |
| "<tr>\n", | |
| " <th>Dep. Variable:</th> <td>attrition</td> <th> No. Observations: </th> <td> 4041</td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Model:</th> <td>Logit</td> <th> Df Residuals: </th> <td> 4039</td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Method:</th> <td>MLE</td> <th> Df Model: </th> <td> 1</td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Date:</th> <td>Fri, 23 Apr 2021</td> <th> Pseudo R-squ.: </th> <td>0.03353</td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Time:</th> <td>17:55:50</td> <th> Log-Likelihood: </th> <td> -2185.3</td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>converged:</th> <td>True</td> <th> LL-Null: </th> <td> -2261.1</td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Covariance Type:</th> <td>nonrobust</td> <th> LLR p-value: </th> <td>7.646e-35</td>\n", | |
| "</tr>\n", | |
| "</table>\n", | |
| "<table class=\"simpletable\">\n", | |
| "<tr>\n", | |
| " <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>const</th> <td> -1.3365</td> <td> 0.042</td> <td> -31.467</td> <td> 0.000</td> <td> -1.420</td> <td> -1.253</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>is_female</th> <td> 1.1080</td> <td> 0.088</td> <td> 12.554</td> <td> 0.000</td> <td> 0.935</td> <td> 1.281</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "<class 'statsmodels.iolib.summary.Summary'>\n", | |
| "\"\"\"\n", | |
| " Logit Regression Results \n", | |
| "==============================================================================\n", | |
| "Dep. Variable: attrition No. Observations: 4041\n", | |
| "Model: Logit Df Residuals: 4039\n", | |
| "Method: MLE Df Model: 1\n", | |
| "Date: Fri, 23 Apr 2021 Pseudo R-squ.: 0.03353\n", | |
| "Time: 17:55:50 Log-Likelihood: -2185.3\n", | |
| "converged: True LL-Null: -2261.1\n", | |
| "Covariance Type: nonrobust LLR p-value: 7.646e-35\n", | |
| "==============================================================================\n", | |
| " coef std err z P>|z| [0.025 0.975]\n", | |
| "------------------------------------------------------------------------------\n", | |
| "const -1.3365 0.042 -31.467 0.000 -1.420 -1.253\n", | |
| "is_female 1.1080 0.088 12.554 0.000 0.935 1.281\n", | |
| "==============================================================================\n", | |
| "\"\"\"" | |
| ] | |
| }, | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df['is_female'] = df['gender'].apply(lambda x: 1 if x == 'female' else 0)\n", | |
| "X = df['is_female']\n", | |
| "X = sm.add_constant(X)\n", | |
| "y = df['attrition']\n", | |
| " \n", | |
| "log_reg = sm.Logit(y, X).fit()\n", | |
| "log_reg.summary()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "id": "flush-stamp", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "0.2627627627627629\n", | |
| "0.7957559681697618\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(np.exp(log_reg.params['const']))\n", | |
| "print(np.exp(log_reg.params['const'] + log_reg.params['is_female']))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "handy-cincinnati", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.9.1" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment