Skip to content

Instantly share code, notes, and snippets.

View alonsoir's full-sized avatar
👋
time to learn SCADA.

@alonso_isidoro alonsoir

👋
time to learn SCADA.
View GitHub Profile
import moderngl
import numpy as np
import glfw
# Inicializar GLFW
if not glfw.init():
raise Exception("No se pudo inicializar GLFW")
# Establecer la versión de OpenGL que queremos usar (por ejemplo, OpenGL 3.3)
glfw.window_hint(glfw.CONTEXT_VERSION_MAJOR, 3)
@alonsoir
alonsoir / falco_rules.yml
Created January 20, 2025 11:43
Con esta configuración de Falco, podrás detectar y analizar intentos fraudulentos en tu sistema de códigos QR dinámicos.
# falco_rules.yaml
- list: authorized_devices
items: [device_1, device_2, device_3]
- list: malicious_urls
items: [malicious.com, phishing.com, malware.com]
- rule: High Frequency QR Scans
desc: Detect multiple scans of the same QR code in a short time.
@alonsoir
alonsoir / summarizer.py
Created January 20, 2025 11:14
This automation script makes use of Neural Networks to generate a summary of an article. It makes use of web scraping to scrape the contents of the article and then feed them to a pre-trained model that outputs an Abstract summary.
from transformers import BartForConditionalGeneration, BartTokenizer
import requests
from bs4 import BeautifulSoup
## Function to summarize article
def summarize_article(article_text, max_length=150):
model_name = "facebook/bart-large-cnn"
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
@alonsoir
alonsoir / nato.py
Created January 20, 2025 11:00
encrypt decrypt using nato notification.
import streamlit as st
# NATO phonetic alphabet encoder dictionary
nato_encoder = {
'A': 'Beta', 'B': 'Gamma', 'C': 'Cypher', 'D': 'Epsilon',
'E': 'Zeta', 'F': 'Eta', 'G': 'Theta', 'H': 'Iota',
'I': 'Kappa', 'J': 'Lambda', 'K': 'Mu', 'L': 'Nu',
'M': 'Xi', 'N': 'Omicron', 'O': 'Pi', 'P': 'Rho',
'Q': 'Sigma', 'R': 'Tau', 'S': 'Upsilon', 'T': 'Phi',
'U': 'Chi', 'V': 'Psi', 'W': 'Omega', 'X': 'Alpha',
@alonsoir
alonsoir / fucking_faker.py
Last active January 20, 2025 10:26
generando datos random...
import pandas as pd
from faker import Faker
import random
fake = Faker()
def generate_fake_data(num_entries=10):
data = []
for _ in range(num_entries):
@alonsoir
alonsoir / refactor.sql
Created November 15, 2024 07:45
Visto en Linkedin, una refactorización de una consulta bastante grande.
---
Query original:
SELECT
u.user_id,u.username,u.email, COALESCE(SUM(o.total_amount), 0) AS total_ spent, COUNT(DISTINCT o. order_id) AS total_orders,
ROUND (AVG(o. total_amount, 2) AS avg_order_value,
MAXo. total amount) AS max order_value,
RANK() OVER (ORDER BY SUM(o. total_amount) DESC) AS spending_rank,
SELECT MAX(02. order_date)
FROM orders 02
@alonsoir
alonsoir / scanner.sh
Created November 6, 2024 18:14
Enumerate Subdomains & Emails Using CRT
#!/bin/bash
# Prompt the user for a link
echo "Please enter the link to scan:"
read link
# Output the entered link
echo "You entered: $link"
curl -s "https://crt.sh/?q=%25.$link&output=json" | jq -r '.[].name_value' | sed 's/\*\.//g' | sort -u
from openai import OpenAI
import requests
from dotenv import load_dotenv
import time
import os
import json
load_dotenv()
client = OpenAI()
@alonsoir
alonsoir / summarize.py
Last active October 31, 2024 18:42
Explicación del código summarize_section: Envía cada sección de texto a la API de OpenAI para obtener un resumen de 400 caracteres (o menos de 100 tokens). split_text: Divide el texto en fragmentos de aproximadamente 8,000 tokens cada uno (aproximadamente 5,000 palabras), ajustando el tamaño si es necesario. summarize_document: Procesa cada secc…
# pip install openai
# para probarlo, me bajo el libro Moby Dick, lo divido en 72 secciones y envio cada seccion gpt-4.
# Hay que tener cuidado con los parametros MAX_TOKENS_PER_CHUNK y SUMMARY_TOKEN_LIMIT para no molestar a openAI.
from openai import OpenAI
import requests
from dotenv import load_dotenv
load_dotenv()
client = OpenAI()
@alonsoir
alonsoir / LinkedList.java
Created October 18, 2024 11:54
ejemplo lista enlazada en java
public class ListaDobleEnlazada<T> {
private Nodo<T> cabeza;
private Nodo<T> cola;
// Clase interna Nodo
private static class Nodo<T> {
T dato;
Nodo<T> siguiente;
Nodo<T> anterior;