Created
May 6, 2022 10:57
-
-
Save alonsosilvaallende/44726a87bb32b662ec37917c4ca370fd to your computer and use it in GitHub Desktop.
Bayesian-Survival-Analysis.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Bayesian-Survival-Analysis.ipynb", | |
"provenance": [], | |
"authorship_tag": "ABX9TyPgOkK2v82DFaS3noZLBx/w", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/alonsosilvaallende/44726a87bb32b662ec37917c4ca370fd/bayesian-survival-analysis.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "_t1TK5hWLq44", | |
"outputId": "41d223c6-4b9c-4215-e09c-ccd02b336781" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", | |
" import pandas.util.testing as tm\n" | |
] | |
} | |
], | |
"source": [ | |
"import statsmodels.api as sm" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df = sm.datasets.get_rdataset(\"mastectomy\", \"HSAUR\")" | |
], | |
"metadata": { | |
"id": "_z_cmiRlLuxy" | |
}, | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import pandas as pd" | |
], | |
"metadata": { | |
"id": "xXe812x-MISN" | |
}, | |
"execution_count": 8, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df = df.data" | |
], | |
"metadata": { | |
"id": "y5YwJAcjMhZb" | |
}, | |
"execution_count": 13, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.head()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
}, | |
"id": "_Jwtafp9M1jY", | |
"outputId": "d5e59fbc-9d6b-4b19-f623-a93dc93b773d" | |
}, | |
"execution_count": 14, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" time event metastized\n", | |
"0 23 True no\n", | |
"1 47 True no\n", | |
"2 69 True no\n", | |
"3 70 False no\n", | |
"4 100 False no" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-a86742d1-86f1-4d4d-a90d-7ce3c7ac0182\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>time</th>\n", | |
" <th>event</th>\n", | |
" <th>metastized</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>23</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>47</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>69</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>70</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>100</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a86742d1-86f1-4d4d-a90d-7ce3c7ac0182')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-a86742d1-86f1-4d4d-a90d-7ce3c7ac0182 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-a86742d1-86f1-4d4d-a90d-7ce3c7ac0182');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 14 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.shape" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "PF4Ew34JNFG1", | |
"outputId": "2e6cc229-a226-482e-9ece-91ddf67ba8d5" | |
}, | |
"execution_count": 15, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(44, 3)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 15 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df['event'].mean()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "dFSLF5NxNNl5", | |
"outputId": "106ddc01-9368-4425-8a9b-5a808b785089" | |
}, | |
"execution_count": 16, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0.5909090909090909" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 16 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"n_patients = df.shape[0]\n", | |
"n_patients" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "nJJRA-xoNlOM", | |
"outputId": "cc6fe1cd-ecce-4400-ce02-6487d5743110" | |
}, | |
"execution_count": 17, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"44" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 17 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import numpy as np" | |
], | |
"metadata": { | |
"id": "zLf-jyG8NuHD" | |
}, | |
"execution_count": 19, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"patients = np.arange(n_patients)\n", | |
"patients" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "5K8_KtpgNqtJ", | |
"outputId": "0d3e14c3-9b58-4100-8222-754373bc1e7f" | |
}, | |
"execution_count": 23, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", | |
" 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n", | |
" 34, 35, 36, 37, 38, 39, 40, 41, 42, 43])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 23 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.index" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "8Q1oWmrFNxSf", | |
"outputId": "dd0389ec-076a-4f45-cebb-734f549fd86c" | |
}, | |
"execution_count": 21, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"RangeIndex(start=0, stop=44, step=1)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 21 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import matplotlib.pyplot as plt" | |
], | |
"metadata": { | |
"id": "w-OB4Av2NWwq" | |
}, | |
"execution_count": 22, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 1000 | |
}, | |
"id": "zhtwtl8UQ1pU", | |
"outputId": "572e06a6-11fd-4dd6-b00b-5bae60ebe496" | |
}, | |
"execution_count": 42, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" time event metastized\n", | |
"0 23 True no\n", | |
"1 47 True no\n", | |
"2 69 True no\n", | |
"3 70 False no\n", | |
"4 100 False no\n", | |
"5 101 False no\n", | |
"6 148 True no\n", | |
"7 181 True no\n", | |
"8 198 False no\n", | |
"9 208 False no\n", | |
"10 212 False no\n", | |
"11 224 False no\n", | |
"12 5 True yes\n", | |
"13 8 True yes\n", | |
"14 10 True yes\n", | |
"15 13 True yes\n", | |
"16 18 True yes\n", | |
"17 24 True yes\n", | |
"18 26 True yes\n", | |
"19 26 True yes\n", | |
"20 31 True yes\n", | |
"21 35 True yes\n", | |
"22 40 True yes\n", | |
"23 41 True yes\n", | |
"24 48 True yes\n", | |
"25 50 True yes\n", | |
"26 59 True yes\n", | |
"27 61 True yes\n", | |
"28 68 True yes\n", | |
"29 71 True yes\n", | |
"30 76 False yes\n", | |
"31 105 False yes\n", | |
"32 107 False yes\n", | |
"33 109 False yes\n", | |
"34 113 True yes\n", | |
"35 116 False yes\n", | |
"36 118 True yes\n", | |
"37 143 True yes\n", | |
"38 145 False yes\n", | |
"39 162 False yes\n", | |
"40 188 False yes\n", | |
"41 212 False yes\n", | |
"42 217 False yes\n", | |
"43 225 False yes" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-966d628c-32a9-4a8c-a6da-69e41347ea65\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>time</th>\n", | |
" <th>event</th>\n", | |
" <th>metastized</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>23</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>47</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>69</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>70</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>100</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>101</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>148</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>181</td>\n", | |
" <td>True</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>198</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>208</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>212</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>224</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>5</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>8</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>10</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>13</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>18</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>24</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td>26</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>26</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td>31</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>21</th>\n", | |
" <td>35</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>40</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>23</th>\n", | |
" <td>41</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td>48</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25</th>\n", | |
" <td>50</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>26</th>\n", | |
" <td>59</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>27</th>\n", | |
" <td>61</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>28</th>\n", | |
" <td>68</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>29</th>\n", | |
" <td>71</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>30</th>\n", | |
" <td>76</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31</th>\n", | |
" <td>105</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>32</th>\n", | |
" <td>107</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>33</th>\n", | |
" <td>109</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>34</th>\n", | |
" <td>113</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>35</th>\n", | |
" <td>116</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>36</th>\n", | |
" <td>118</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>37</th>\n", | |
" <td>143</td>\n", | |
" <td>True</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>38</th>\n", | |
" <td>145</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>39</th>\n", | |
" <td>162</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>40</th>\n", | |
" <td>188</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41</th>\n", | |
" <td>212</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>42</th>\n", | |
" <td>217</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>43</th>\n", | |
" <td>225</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-966d628c-32a9-4a8c-a6da-69e41347ea65')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-966d628c-32a9-4a8c-a6da-69e41347ea65 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-966d628c-32a9-4a8c-a6da-69e41347ea65');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 42 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df[df['event'] == False]" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 614 | |
}, | |
"id": "AKATW9y4OSyM", | |
"outputId": "afb1461a-1a8c-4eb5-eb29-d9661c92322e" | |
}, | |
"execution_count": 30, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" time event metastized\n", | |
"3 70 False no\n", | |
"4 100 False no\n", | |
"5 101 False no\n", | |
"8 198 False no\n", | |
"9 208 False no\n", | |
"10 212 False no\n", | |
"11 224 False no\n", | |
"30 76 False yes\n", | |
"31 105 False yes\n", | |
"32 107 False yes\n", | |
"33 109 False yes\n", | |
"35 116 False yes\n", | |
"38 145 False yes\n", | |
"39 162 False yes\n", | |
"40 188 False yes\n", | |
"41 212 False yes\n", | |
"42 217 False yes\n", | |
"43 225 False yes" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-33f5e9a4-106e-4276-a0ab-0ce4afced32c\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>time</th>\n", | |
" <th>event</th>\n", | |
" <th>metastized</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>70</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>100</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>101</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>198</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>208</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>212</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>224</td>\n", | |
" <td>False</td>\n", | |
" <td>no</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>30</th>\n", | |
" <td>76</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>31</th>\n", | |
" <td>105</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>32</th>\n", | |
" <td>107</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>33</th>\n", | |
" <td>109</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>35</th>\n", | |
" <td>116</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>38</th>\n", | |
" <td>145</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>39</th>\n", | |
" <td>162</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>40</th>\n", | |
" <td>188</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>41</th>\n", | |
" <td>212</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>42</th>\n", | |
" <td>217</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>43</th>\n", | |
" <td>225</td>\n", | |
" <td>False</td>\n", | |
" <td>yes</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-33f5e9a4-106e-4276-a0ab-0ce4afced32c')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-33f5e9a4-106e-4276-a0ab-0ce4afced32c button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-33f5e9a4-106e-4276-a0ab-0ce4afced32c');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 30 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(8, 6))\n", | |
"\n", | |
"ax.hlines(\n", | |
" df[df['event'] == False].index, 0, df[df['event'] == False]['time'], color=\"C0\", label=\"Censored\"\n", | |
")\n", | |
"ax.hlines(\n", | |
" df[df['event'] == True].index, 0, df[df['event'] == True]['time'], color=\"C3\", label=\"Event\"\n", | |
")\n", | |
"ax.scatter(\n", | |
" [0 for i in df[df['metastized'] == 'yes'].index],\n", | |
" patients[df.metastized.values == 'yes'],\n", | |
" color=\"k\",\n", | |
" zorder=10,\n", | |
" label=\"Metastasized\",\n", | |
")\n", | |
"ax.set_xlabel(\"Months since mastectomy\")\n", | |
"ax.set_yticks([i for i in df.index])\n", | |
"ax.set_ylabel(\"Subject\")\n", | |
"ax.legend(loc=\"center right\");\n", | |
"plt.show()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 388 | |
}, | |
"id": "pkBbKDqoN-dN", | |
"outputId": "d3361c3a-b838-4325-9044-58a9e0795fd2" | |
}, | |
"execution_count": 44, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 576x432 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFzCAYAAAD47+rLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhU9dn/8fdNVAiLRXGplSahVqyyBUEvcUO0LkXq3haMiFoLtliqrVYpKtin9FFr+/iotTYWFWseREUFlypaRX5at2AREFRcAMEFpIIie7h/f5wzcUxmspCcczKTz+u65mLmzFnujGm/OWe+n3ObuyMiIiK5oU3SBYiIiEjDaeAWERHJIRq4RUREcogGbhERkRyigVtERCSHaOAWERHJITskXUBD7Lbbbl5SUpJ0GSIiIrGYM2fOJ+6+e6b3cmLgLikpobKyMukyREREYmFmS7O9p0vlIiIiOUQDt4iISA7RwC0iIpJDNHCLiIjkEA3cIiIiOUQDt4iISA7RwC0iIpJDNHCLiIjkEA3cIiIiOSTygdvMCszs32b2SPh6kpm9ZmbzzOx+M+sYdQ0pFRUVlJSU0KZNG0pKSqioqIjr0CIiIs0ijjPuXwCL0l5f7O593L03sAy4MIYaqKioYOTIkSxduhR3Z+nSpYwcOVKDt4iI5JRI71VuZl2BE4GJwC8B3P2z8D0DCgGPsoaUcePGsX79+q8sW79+PSPH/IoZ674VRwkiIpKnpo4aENuxoj7jvgH4NbAtfaGZ3QF8BHwHuCnThmY20swqzaxy1apVTS5k2bJlGZev/8/KJu9bREQkLpGdcZvZEGClu88xs6PS33P3c82sgGDQ/hFwR83t3b0cKAfo379/k8/Ki4qKWLq0drOV4uKiWP9SEhERaYooz7gPA04ysyXAPcDRZnZ36k13rwqXnx5hDdUmTpxI+/btv7Ksffv2TJw4MY7Di4iINIvIBm53H+vuXd29BBgKPA0MN7NvQ/V33CcBb0RVQ7qysjLKy8spLi7GzCguLqa8vJyysrI4Di8iItIsIp2cBkEcDLgN2Bkw4AUz25lgUtoK4KCoaxAREckXccXBXgFecfdtwAigHcGM8pcJvuOOnOJgIiKSD5KIgz2W9v7LQNcoa0hRHExEROqTC5OVE4mDAZjZjsBw4PFMGyoOJiIiUlsicbDQLcBsd/9/mbZXHExERKS2ROJgZjYe2J3w8nkcFAcTEZF8EGsczN3PMrPzgeOBYeFktVgoDiYiIvkg7jgYwF8JvvNeb2YLgPvc/bdR1yEiIpIPIh+4+TIOlhq4+wOfArOAQe7+SQw1VMfBUjPLU3EwQGfdIiKSM5KIg/07fC/KQ9eiOJiISOuWLxORE4uD1UdxMBERkdqSjIPVSXEwERGR2hLrDhY3xcFERCQfxB4Hi+p49VEcTERE8kHkTUbS4mAHha8nmNkmoBh438xuj7oGERGRfJFEHOwAYIS732NmtwKvxVCD4mAiIpIXzL3J876y7zyIg03myzjY94FVwNfdfauZDQAmuPvxde2nf//+XllZ2aRaSkpKMk5Oa7/rngz5/YNN2reISGukib3RMbM57t4/03txx8G6AGvcfWv4ejmwd6YNFQcTERGpTXEwxcFERCSHxBoHA/4X6GxmqT8YugIrIqyhmuJgIiKSD+KOg5UBzwBnhKuNAKZHVUM6xcFERCQfRHmpvB0wG2hLMKN8S/jWQ8AkM5sMfEiMPblFRERyXZSXyjcBR7t7H6A78KmZHQpcA/R197bAXcCwCGuoloqDLV26FHevjoNVVFTEcXgREZFmEdkZtwc5s3Xhyx3DRxWw2d3fCpc/CYwFJkVVR4q6g4lIS6TJsdJYkcbBzKzAzOYCKwkG6ZeBHcwslU07A/hmlm0VBxMREakh0huwVB/ErDPwIPBzoBNwHcF33zOBIe5eWtf2Ud6Apbi4mCVLljRp3yIiIs0pyRuwAODuawhmk5/g7i+4+xHufjDB5LW36t66eSgOJiIi+SCygdvMdg/PtDGzQuBY4A0z2yNc1ha4DLg1qhrSKQ4mIiL5IMoz7mJghZltAD4Ftrr7I8BN4bK1QDcg85fPIiIiUkuUA/ccYE93LyT4Xru9mR0C9AUOdPd2wPXAFRHWUE1xMBERyQdxx8E8fKRafH4N+CCqGtIpDiYidVEsS3JFpP24zayA4Mz728Cf3f0lMzsfeCy8XP4ZcEiWbUcCIyFoENJUioOJiEg+SCIO9lvg2nAQvxTYz93Pr2t7xcFERKQ1aUlxsO8Bfdz9pfCtqcChcdSgOJiIiOSDKJuMdCXo/LUDwffbHYDRQJGZLSK4l3kJsD7bPppTKvY1btw4li1bRlFRERMnTlQcTEREckqUZ9y7EgzaBmwDCoBPgB8CW8PlW4A/RliDiIhIXolyVvk8oA+AmbUHngsW+4PAg2a2M7AUuC2qGtKl4mCpmeWpOBigs24REckZsc8qT3v7FOCf7v5ZlDWkZIuDXTZqFIc//kQcJYhIC1L897uSLkFku0Q6Oc3dq8IGIl2Bg82sZ9rbw4Ap2baNqzvYB1980eR9i4iIxCWWOBiAmV0FrHf3681sN+BNYG9331jftoqDiYhIa5JIHCxbk5Hw7TOARxoyaDcXxcFERCQfxN5kxMwMGAscY2aLzGxMhDVUU3cwERHJB1FOTks1GVlnZjsCz4VNRvYHngXOcfdtqTafIiIiUr8kmoz8FDjT3beF68Vys3DFwUREJB9EOjktQxzsMjNbDfwJOBVYBYxx98V17SfKyWl7d+jA86ee1qR9i7R2ilaJNK/E7lWeJQ7WFtgYFnQbcHumbRUHExERqS32OBhwPvA9d38vnKi2xt2/Vte2ioOJiEhr0tLiYA8Bg8LVBgJvRVVDOsXBREQkH8QeBwOKgJvD5Y8Cf4iwhmqKg4mISD6IcuBOxcEKgU5A+zAOthk4290L3b2Du98bYQ0iIiJ5JYk4WCIUBxMRkXyQRBzsTmAAsAn4J3C5u2+qaz9RTk5rv+ueDPn9g03at0hrM3XUgKRLEMlrLS0ONhb4DnAQsCtwWaZt44qDrf9PLPd/ERERaRaJdAdLW3YUcIm7D6lrW8XBRESkNWlRcTAz2ytcZsApwIKoakinOJiIiOSDKJuMFAPPmlkbwIAXwu5gT5vZ7sA3gJ2BXSKsoVpqAtq4ceNYtmwZRUVFTJw4URPTREQkp8QeB3P3o4FzgceATe6+rq6diIiIyJdij4OFM83/AJxJ0GgkFoqDiYhIPojyUnmmONhLZvYLYIa7fxh8zR2PcePGVQ/aKevXr+eyUaM4/PEnYqtDJNeo85dIyxLpwO3uVUBpOEntQTM7EvgBcFR925rZSGAkQFFRUZNrUXcwERHJB3HHwQz4KbAxXFwEvOvu365rW8XBRESkNWlJcbA57v51dy9x9xKCXHedg3ZzURxMRETyQezdwcxskpm9ZmbzgHZm1jHCGqqVlZUxYsQICgoKACgoKGDEiBGamCYiIjklie5gF7t7H3fvDdwIXBhhDdUqKiqYPHkyVVVVAFRVVTF58mQqKiriOLyIiEiziD0O5u6fQfWd0wqJqWNYtlnlI8f8ihnrvhVHCSItlpqGiOSOSJuMmFmBmc0FVgJPuvtL4fI7gI8Imo3clGVbNRkRERGpIZZZ5ak4GPBzd18QLisgGLRfcfc76tpes8pFRKQ1SaytZ4q7rwGeAU5IW1YF3AOcHkcNmlUuIiL5IO442Jtm9u1wmQEnAW9EVUO6srIyysvLKS4uxswoLi6mvLxcs8pFRCSnxNodDHgU+NjMdiaYlLYCOCjCGkRERPJKrHEw4GBgBNCOYEb5y8CPIqyhWqrJyNKlS3H36iYjioOJiEguSSIO9lhqHTN7GegaVQ3pFAcT+ZLiXyK5K5E4WPjejsBw4PEs2yoOJiIiUkOScbDbgC/c/aL6tlccTEREWpMWFwczs/HA7sAv4zg+KA4mIiL5Ie442Btmdj5wPDDM3bdFdfyaFAcTEZF8EHt3MOCvBBGw9WY2P+zTLSIiIg0QZY47FQdbF05Eey7sDtafYCCfBQxy908irKFaKg6WmlmeioMBOusWEZGckUQc7N8AwY3T4qM4mLR2ioCJ5IfE4mAN2FZxMBERkRqivFSeaiRSmoqDmVnPVBysAduWA+UQxMGaWktRUVGWOFiRzkRERCRnJNYdLG6Kg4mISD6IPQ4W1fHqoziYiIjkg9jjYGY2wcw2he+/b2a3R1iDiIhIXom1O1gYBzsAGOHuBkwGXomwhmrqDiYiIvkg9jgYcDRwZrh8MjAB+EtUdaQoDiaNoQmLItJSxRoHA94B1rj71nCV5cDeWbZVHExERKSGWONgwHcasa3iYCIiIjXEHQcbAHQ2s9QfDF2BFXHUoDiYiIjkg7jjYIsIBvAzwtVGANOjqiGd4mAiIpIPojzjLiWIe20kiIN9HnYHuwO4LYyEnQTcG2ENIiIieSXKgXsBMNDd2wG7A982swOAq4Eh7t4WuAL4RYQ1VFMcTERE8oEFqa0YDmQ2HbgZuB/o7O5uZt8EnnD3A+ratn///l5ZWdmk45eUlGScnLZ3hw48f+ppTdq35Jbiv9+VdAkiInUysznu3j/Te7FMTjOzEqAv8BLwOnBy+NYPgG9m2SaWONgHX3zR5H2LiIjEJfIzbjPrCDwLTHT3B8zsO8CNQBdgBjDG3bvUtY8oz7iLi4tZsmRJk/YtIiLSnBI74zazHYFpQIW7PwDg7m+4+3Hu3g+YQnBTlsgpDiYiIvkgyjjYN4H3gf7Aj83sF+HyQWb2YnhHtX8BT0RVQzrFwUREJB9Eeee0A4E9gfnh62vDaNjFQEdgPfA0cESENYiIiOSVKJuMTAcs9TqcVf4usBS43d2nmtkw4PtR1ZAuFQdLNRpJxcEAnXWLiEjOiCUOFs4qnw30JGgq8gTBoN4GONTda88aS6M4mGwvRb9EJBclGgcLZ5VPAy5y98+AnwIXu/s3CS6bT8qyneJgIiIiNUR6xh3OKn+E4CYrfwqXreXLG7AYsNbdd65rP4qDiYhIa5LIGXc4KE8CFqUG7dAHwMDw+dHA4qhqSKc4mIiI5IMoL5WfCgwHLjCzDWa23MwGEwzcj5nZBuAxghnmkVMcTERE8kGUcbAXgH7u/qqZdQLmAEvc/ZjUCmb2R2BthDWIiIjklSjjYB8CH4bPPzezRQQzyhdC9aX0HxJcLo+c4mAiIpIPojzjrlajyUjKEcDH7h7Ld9zjxo2rHrRT1q9fz2WjRnH447HcvE2aSNEuEZFk4mApwwjuVZ5tO8XBREREaog9DhYu3wFYQfAd+PL69qM4mIiItCYtLQ4G8F3gjYYM2s1FcTAREckHScTBACYA+5nZ62Z2XYQ1VFMcTERE8kHscTAzGwSsA4rdfZOZ7RFhDSIiInkliTjYT4Br3H1T+N7KqGpIpziYiIjkgyS6g80GpgMnABuBS9z9lbq2V3ew1ksRMBFpjeqanBZ5jrtmHCycUb4rcAhwEHCvmX3La/wFYWYjgZEARUVFTa5DcTAREckHkQ7cYRxsGlDh7g+Ei5cDD4QD9ctmtg3YDfhKWNvdy4FyCM64m1pLUVFRxjPuouJindWJiEjOSCIO9hAwKFynO7AT8ElUdaQoDiYiIvkgiTjY3sAlYXewucCfa14mj4LiYCIikg+iHLhTcbB2wB7AemAJUAVc5e6F7t7e3a+JsAYREZG8kkQcLBGKg4mISD5IIg72S+Ac4DOgEviVu39a1/aKg+UmTfoTEdk+LS0O9hfgvwAP//0jcF6G7RQHExFpZlu2bGH58uVs3Lgx6VIEaNeuHV27dmXHHXds8DaJdAdLe78EeMTde9a1H3UHExFpHu+99x6dOnWiS5cuBOEfSYq7s3r1aj7//HO6dev2lfdaVHcwM9srbbVTgQVR1ZBOcTAREdi4caMG7RbCzOjSpUujr34kEQe7zszmm9kHwJ8ILpdHrqysjBEjRlBQUABAQUEBI0aM0MQ0EWl1NGi3HNvz3yL2OJi7DwcGA/OBZcDHEdZQraKigsmTJ1NVVQVAVVUVkydPpqKiIo7Di4hI6KOPPmLo0KHss88+9OvXj8GDB/PWW28lXVZGJSUlfPJJ5PcIa5Qk4mALgf8Bfk3QbCQW48aNq46Cpaxfv57LRo3i8MefiKuMvKeZ5CJSF3fn1FNPZcSIEdxzzz0AvPbaa3z88cd07949lhq2bt3KDjtEPjc7MlGecVcLJ6H1BV4ys5OBFe7+Wj3bjDSzSjOrXLVqVV2rNohmlYuIJO+ZZ55hxx135IILLqhe1qdPH4444gj+8Ic/cNBBB9G7d2/Gjx8PwJIlS9h///35yU9+Qo8ePTjuuOPYsGEDADfeeCMHHHAAvXv3ZujQoQD85z//4ZRTTqF3794ccsghzJs3D4AJEyYwfPhwDjvsMIYPH86qVas4/fTTOeiggzjooIN4/vnnAVi9ejXHHXccPXr04PzzzyeOyHRjNehPDjNrm+qfXdeyLNtWx8GArcBvgOPq205NRkREovejv77QrPubOmpAne8vWLCAfv361Vo+c+ZMFi9ezMsvv4y7c9JJJzF79myKiopYvHgxU6ZM4bbbbuOHP/wh06ZN46yzzuKaa67hvffeo23btqxZswaA8ePH07dvXx566CGefvppzj77bObOnQvAwoULee655ygsLOTMM8/k4osv5vDDD2fZsmUcf/zxLFq0iKuvvprDDz+cq666ikcffZRJkyY16+fTHBp6reAF4MAGLPuKmt3BzKwX0A14LfxCvivwqpkd7O4fNaryRpo4ceJX7pwGmlUuItJSzJw5k5kzZ9K3b18A1q1bx+LFiykqKqJbt26UlpYC0K9fv+oIb+/evSkrK+OUU07hlFNOAeC5555j2rRpABx99NGsXr2azz77DICTTjqJwsJCAJ566ikWLlxYffzPPvuMdevWMXv2bB54IGhmeeKJJ7LLLrtE/8M3Up0Dt5l9neB76UIz6wukpr/tDLTPuiGZ42DuPp9golpqnSVAf3eP/Jv/1OzxcePGsWzZMoqKipg4caJmlYtIq1bfGXJz69GjB/fff3+t5e7O2LFjGTVq1FeWL1myhLZt21a/LigoqL5U/uijjzJ79mwefvhhJk6cyPz58+s8docOHaqfb9u2jRdffJF27do15cdJRH3fcR8PXE9wZvzHtMfFBJe865IxDmZm/2Vm88xsLrBn+BARkVbg6KOPZtOmTZSXl1cvmzdvHjvvvDO3334769atA2DFihWsXLky6362bdvG+++/z6BBg7j22mtZu3Yt69at44gjjqhOC82aNYvddtuNnXfeudb2xx13HDfddFP169Tl9COPPJL/+7//A+Af//gHn35a5x25E1HnGbe7TwYmm9np7j6tkftOxcFeNbNOwByC7mDPufuVAGY2Bvg5cEHWvTQTNRkREUmemfHggw9y0UUXce2119KuXTtKSkq44YYb6Ny5MwMGBFcAOnbsyN133119742aqqqqOOuss1i7di3uzpgxY+jcuTMTJkzgvPPOo3fv3rRv357Jkydn3P7GG29k9OjR9O7dm61bt3LkkUdy6623Mn78eIYNG0aPHj049NBDm+WW282tQbc8NbPfA9e5+5rw9S4EzUGuaPCBzKYDN7v7k2nLxgJF7v7TurZVk5FkaNKeSP5ZtGgR+++/f9JlSJpM/02a45an30sN2gBhN6/BDS0qPQ4Wvp5oZu8DZcBVWbZRHExERKSGhs4qL0iPf5lZIdC2nm0I1/1KdzAAdx8HjAvPuC8ExtfcTnEwERGR2hp6xl0B/NPMfmxmPwaeBDJ/cZCmZhwsy35Pb2ixTaEmIyIikg8aNHC7+7XA74D9w8d/uft1dW1TR3ewfdNWOxl4o7FFb4+ysjLKy8spLi7GzCguLqa8vFwT00REJKc05mati4Ct7v6UmbU3s07u/nkd66fiYJvMbBSwGhgJ3GBmxcA2YA1w9HbWLiIi0uo06IzbzH4C3A/8NVy0N/BQPZtl7A5G8J12B3cvBO4Czml01dshFQdbunQp7l4dB1N3MBERySUNPeMeDRxMOCvc3Reb2R51bZCtO5i7z0xb7UXgjEZXvR3UHazhNFlPRKJUUFBAr169ql8PHTqUyy+/vNn2P2vWLHbaaScOPfTQZttnS9LQgXuTu29ONfw2sx2ABs/0rhkHS3MeMDXLNiMJLq03SwBecTARkZahsLCw+k5lUZg1axYdO3Zs9QP3s2b2G4J7lh8L/Ax4uCEbZoqDhcvHEXQLy3itWnEwEZHW4/HHH2fSpEncd999QDD4Xn/99TzyyCPMnDmT8ePHs2nTJvbZZx/uuOMOOnbsSElJCSNGjODhhx9my5Yt3HfffbRr145bb72VgoIC7r77bm666SaOOOKIhH+65tXQgfty4MfAfGAU8Bjwt/o2yhYHM7NzgCHAMR5Ts1N1BxMRqW3p8LObdX8NORHasGFDdbcvgLFjx3L66aczcuRIvvjiCzp06MDUqVMZOnQon3zyCb/73e946qmn6NChA9deey1/+tOfuOqq4N5du+22G6+++iq33HIL119/PX/729+44IIL6NixI5dcckmz/mwtRYMGbnffBtwWPhqkjjjYCcCvgYHuvj7b9s1N3cFERFqGbJfKTzjhBB5++GHOOOMMHn30Ua677jqeffZZFi5cyGGHHQbA5s2bq+9nDnDaacEtq/v161fdjjPf1dfW8153/6GZzaf2d9oO/Ae4wd2nZ9g8WxxsErAbsNLM3gKecffIm4yIiEhtLemrwqFDh3LzzTez66670r9/fzp16oS7c+yxxzJlypSM26RafhYUFLB169Y4y01MfXGwX4T/DgG+X+NxEnAJcG2WbbPFwY4GegLPAmVxDdqKg4mItGwDBw7k1Vdf5bbbbmPo0KEAHHLIITz//PO8/fbbAHzxxRe89dZbde6nU6dOfP55XbcZyW31tfVMxbmWmtnXCSJhDrzi7h8BS80s47XmOuJgT0LQ2i1OioMFWtJf1yLSOtX8jvuEE07gmmuuoaCggCFDhnDnnXdWt+PcfffdufPOOxk2bBibNm0C4He/+x3du3fPuv/vf//7nHHGGUyfPj0vJ6c1tK3n+QRdvJ4GDBgI/Nbdb2/QQYI42GygZ2pmuZnNAi5x94z9OmvEwfplmhHeGG3atCHTz2rAe2cNb9K+c4kGbpHWTW09W57GtvVs6KzyS4G+7r463GEX4F9AvQN3tjhYfRQHExERqa2h3cFWA+lfGHweLqtTA7qDxUbdwUREJB/UN6v8l+HTt4GXzGw6wXfcJwPz6tk2YxwsKYqDiYhIPqjvUnmn8N93wkdKpvhXTdniYF0I8uA7Ac+b2XPufkyjqhYREWml6ptVfnUT9p2Kg71qZp2AOQRxsKOACe5+jZldDuzShGM0WCoOlppZnoqDATrrFhGRnNGgyWlm9gwZmoq4e9Ze2tniYASX2Y8KV5sMzAIua0zR26M1xcE02U5EJH81dHLaJQQzyy8FrgTmAhljXJnU6A62ZyofDnwE7Jllm5FmVmlmlatWrWroobJSdzARkZbBzDjrrLOqX2/dupXdd9+dIUOG1Lnd3Llzeeyxx7brmGvWrOGWW27Zrm0Bzj//fBYuXLjd2wMsWbKEnj17Nmkf0PB7lc+pseh5M3u5IdvWjIOl33jF3d3MMka9FAcTEclPHTp0YMGCBWzYsIHCwkKefPJJ9t5773q3mzt3LpWVlQwePLjRx0wN3D/72c+2p2T+9rd6+2rFpkFn3Ga2a9pjt7BRyNcasF2mONjHZrZX+P5ewMrtrL1RFAcTEWm8iooKSkpKaNOmDSUlJc12m+jBgwfz6KOPAjBlyhSGDRtW/d4XX3zBeeedx8EHH0zfvn2ZPn06mzdv5qqrrmLq1KmUlpYydepUXn75ZQYMGEDfvn059NBDefPNNwF4/fXXOfjggyktLaV3794sXryYyy+/nHfeeYfS0lIuvfRS1q1bxzHHHMOBBx5Ir169mD59evWxTzzxRPr06UPPnj2ZOnUqAEcddRSVlZXMmDGD0tJSSktL2W+//ejWrRsAc+bMYeDAgfTr14/jjz+eDz/8sHp5nz596NOnD3/+85+b5bPD3et9AO8B74aPt4CZwOH1bGPAXQRNSNKX/wG4PHx+OXBdfcfv16+fN4e7777bi4uL3cy8uLjY77777mbZr4hIrli4cGGD17377ru9ffv2TjDHyQFv3759k/+/s0OHDv7aa6/56aef7hs2bPA+ffr4M8884yeeeKK7u48dO9b//ve/u7v7p59+6vvuu6+vW7fO77jjDh89enT1ftauXetbtmxxd/cnn3zSTzvtNHd3v/DCC6tr3LRpk69fv97fe+8979GjR/W2W7Zs8bVr17q7+6pVq3yfffbxbdu2+f333+/nn39+9Xpr1qxxd/eBAwf6K6+88pWf4wc/+IHffPPNvnnzZh8wYICvXLnS3d3vueceP/fcc93dvVevXv7ss8+6u/sll1zylRpSMv03ASo9y5hYX477IOB9d+8Wvh4BnE4wO7y+i/0PAycSxMGOCpfdRjAxbX8zuwJ4JdyfiIi0MNkm9Y4bN67JaZzevXuzZMkSpkyZUuvS98yZM5kxYwbXX389ABs3bsw4T2nt2rWMGDGCxYsXY2Zs2bIFgAEDBjBx4kSWL1/Oaaedxr777ltrW3fnN7/5DbNnz6ZNmzasWLGCjz/+mF69evGrX/2Kyy67jCFDhmS9z/l1111HYWEho0ePZsGCBSxYsIBjjz0WgKqqKvbaay/WrFnDmjVrOPLIIwEYPnw4//jHP7b/QwvVd6n8r8BmADM7Evhvgpngawm/f67DdUA/4G13L3X3UuAcgvuTdwTGAM+5+3+2v/yGU3cwEZHGyTapN9vyxjrppJO45JJLvnKZHIJBddq0acydO5e5c+eybNmyjPdXv/LKKxk0aBALFizg4YcfZuPGjQCceeaZzJgxg8LCQgYPHszTTz9da9uKigpWrVrFnDlzmDt3LnvuuScbN26ke/fuvPrqq/Tq1YsrrriC3/72t7W2feqpp7jvvvu49dZbq+vt0X//ZFYAABfRSURBVKNHdb3z589n5syZzfERZVTf5LSCtIH1R0C5u08DpplZ7S7oadx9djibPF13gmYjAE8CTxDMUo9cvsTBNJFOROKSdVJvUVGz7P+8886jc+fO9OrVi1mzZlUvP/7447npppu46aabMDP+/e9/07dv31rtOteuXVs9qe3OO++sXv7uu+/yrW99izFjxrBs2TLmzZtHnz59am27xx57sOOOO/LMM89U/5wffPABu+66K2eddRadO3euNSlt6dKljB49mieeeILCwkIA9ttvP1atWsULL7zAgAED2LJlC2+99RY9evSgc+fOPPfccxx++OHNdqJY3xl3gZmlBvdjCLqDpTS0QUm61wly3AA/AL6ZbUXFwUREkhX1pN6uXbsyZsyYWsuvvPJKtmzZQu/evenRowdXXhmc3w0aNIiFCxdWT0779a9/zdixY+nbty9bt26t3v7ee++lZ8+elJaWsmDBAs4++2y6dOnCYYcdRs+ePbn00kspKyujsrKSXr16cdddd/Gd73wHgPnz51dPbLv66qu54oorvlLbnXfeyerVqznllFMoLS1l8ODB7LTTTtx///1cdtll9OnTh9LSUv71r38BcMcddzB69GhKS0szdqjcHnW29TSzccBg4BOgCDjQ3d3Mvg1MdvfD6tx5cMb9iLv3DF9/B7iR4LanM4Ax7t6lviL79+/vlZUNjo1nVFJSkvEvx+LiYpYsWdKkfYuI5IrGtvWsqKhQj4eINWtbT3efaGb/BPYCZvqXo3wb4OeNLc7d3wCOC4vqTjB5LRYTJ078yi1PQXEwEZH6lJWVaaBuYeq93O3uL2ZY9lZ925nZ7cBJQMe0ZYMIJri1A7oCf2lMsU2h7mAiIpIPGnrL0+1RRJD7a2tmy83sxwQDdVegPcH35Znn2YuIiEhGkQ3c7v5d4CDgdXfv6u6TgKXAr9y9O/Ag8EFUx69JcTARkUBzTZKSptue/xbbMzO8KS4CnjCz6wn+aDg0rgMrDiYiAu3atWP16tV06dKF9N4REj93Z/Xq1bRr165R28U9cP8UuNjdp5nZD4FJwHczrWhmI4GR0DyZQcXBRESCCNby5ctpjpitNF27du3o2rVro7apMw7WVBniYGuBzmGkzIC17r5zfftRHExERFqTuuJgUU5Oy+QDYGD4/GhgcVwHVncwERHJB5EN3Gb2DvAO0CNtVvkHwGNmtgF4jLSoWNTKysooLy+nuLgYM6O4uJjy8nLFwUREJKdE+R33ucA64K7UpXKC77QBMLM/EjQrERERkQaKbODO0mQEgPD77R8SXC6PRSoOlppZnoqDATrrFhGRnBH3rPKUI4CP3T2277hzOQ6mCJiIiKTEPTktZRgwpa4V1B1MRESkttjPuMM2oacB/epaz93LgXII4mBNPW7WvrLFxTqjFRGRnJHEGfd3gTfcfXmcB1UcTERE8kHccTCACcB+Zva6mV0X1fFrUhxMRETyQaxxsLCt5zqg2N03mdkeER5fREQk78QdB/spcI27bwrXWRnV8WtSHExERPJB3JPTugNHmNlEYCNwibu/EseBW1ocTBPiRERke8Q9cO8A7AocQtCr+14z+5Zn6HSi7mAiIiK1xT1wLwceCAfql81sG7AbUCuorTiYiIhIbXHHwR4CBgGYWXdgJ+CTOA6sOJiIiOSDuONgewOXhN3B5gJ/znSZPAqKg4mISD6I8oz7XILvsV93967uPgmoAq5y90J3b+/u10R4fBERkbyTSHewJCgOJiIi+SCJ7mAXmtnZQCXwK3f/NI6DxhkH02Q3ERGJStyT0/4C7AOUAh8Cf8y2orqDiYiI1BbrGbe7f5x6bma3AY/Usa7iYCIiIjXEesZtZnulvTwVWBDXsRUHExGRfBDZGXcYBysB2pjZcmA8cJSZlQJdgL2AnlEdv6aysjKef/55ysvLqaqqoqCggBEjRmhimoiI5JRY42DuPhwYDMwHlgEf17WD5lRRUcHkyZOpqqoCoKqqismTJ1NRURFXCSIiIk2WRBzsf4BfA9OjOnYmUcwq13fjIiISt7i/4z4ZWOHurzVgXc0qFxERqSG2WeVm1h74DXBcQ9bXrHIREZHa4jzj3gfoBrxmZkuArsCrZvb1OA6uWeUiIpIPYhu43X2+u+/h7iXuXkLQ4vNAd/8ojuOryYiIiOSDuONgJcDJwDZgz/ARS1tPERGRfBDld9znAuuAu9y9J4CZ7ezuV4bPxwA/By6IsIZqajIiIiL5INY4mLt/lvayAxBLL25ovjiYJrKJiEiSYu8OZmYTgbOBtcCgOtYbCYyEYEZ4UykOJiIi+cDcozvpDc+4H0ldKq/x3lignbuPr28//fv398rKyibVUlJSkjEOVlxczJIlS5q0bxERkeZkZnPcvX+m9+Ju65muAjg9roMpDiYiIvkg7jun7Zv28mTgjbiOrTiYiIjkg7jjYJeZWTFBHGwNcHRUxxcREclHccfB3geedvetZnYtcA5wWYQ1VFMcTERE8kHccbCZaS9fBM6I6vg1NTYOptiXiIi0RElOTjsP+Ee2N9UdTEREpLbYc9wAZjYO2EowszwjdQcTERGpLfYzbjM7BxgClHmUIfIaFAcTEZF8EHcc7ATg18BJ7r6+vvWbk+JgIiKSDyK7c1p6HAxYQRAH+x2wG8El+reAZ9y93iYjzXHnNBERkVxR153T4o6D/Ysgw/1X4BJ312gsIiLSCHHHwRYBmFlUh22QH/31hUSPLyIi+WHqqAGxHzPJOFidmjsOJiIikg8SiYM1RHPHwdIl8ReSiIhIc2ixZ9wiIiJSmwZuERGRHBJ3d7DNwG3ATsDzZvacux8TVQ0iIiL5Jsoz7nOBg4DX3b2ru08CegET3L0NwUCuOJiIiEgjxBoHA04GjgqfTwZmEVNbz3SKg4mItD75MjE57u+493T3D8PnHwF7ZltRcTAREZHaEouDububWdaYl+JgIiIitcV9xv2xme0FEP67Mubji4iI5LS4B+4ZwAgz+wXwb6CLmV0Ucw0iIiI5K7KB28ymAC8A+5nZcjP7MXANcApwHbAQ2B8YYmbfjqoOERGRfBLlrPJhmZab2R+BE9z9x+HrZ4HTCAZzERERqUMSk9MWABPNrAuwARhMzHluxcFERPJPa5l4HPvA7e6LzOxaYCbwBTAXqKq5npmNBEYCFBUVxVqjiIhIS2XuzZq0anwBZr8Hlrv7LdnW6d+/v1dW6iZrIiLSOpjZHHfvn+m9RHLcZraHu680syKC77cPSaIOERGRXJNUd7AXzGwj8CbwAbAxoTpERERySuwDt5ntHR53F3cvBD4BhsZdh4iISC5K6ox7B6DQzHYA2hOcdYuIiEg9kphVvsLMrgeWEcTBZrr7zDhrUBxMRKTlaC0xruaSxKXyXQjae3YDvgF0MLOzMqyn7mAiIiI1xB4HM7Mf8NU7p50NHOLuP8u2jeJgIiLSmtQVB0viO+5lwCFm1t7MDDgGWJRAHSIiIjkniRz3GqAL8B/AgQJgXgJ1iIiI5JwkJqe9CXwdwMwKgBXA/XHXISIikouSioOlHAO84+5LE65DREQkJyRyy9M0Q4EpcR906fCz4z6kiEiLV/z3u5IuQRogsTNuM9sJOAm4L8v7ioOJiIjUkFh3MDM7GRjt7sfVt67iYCIi0pq0tDhYyjASuEwuIiKSyxIZuM3sG8CpwFgzW2Rmut+diIhIAyQ1Oe2/CS6T/y38rrt9QnWIiIjklNgHbjP7GnAkcA6Au28GNsddh4iISC5K4oy7G7AKuMPM+gBzgF+4+xdxFaA4mIg0hOJR0hIl8R33DsCBwF/cvS/wBXB5zZUUBxMREaktie5gXwdedPeS8PURwOXufmK2bRQHExGR1qRFxcHc/SPgfTPbL1x0DLAw7jpERERyUVKzyvcB/h229dwIfCuhOkRERHJKUgP3ZqDI3T9J6PgiIiI5KekmI4n40V9fSLoEkWY3dZTuYyTSGiR1y1MHZprZHDMbmWkFzSoXERGpLZEmI2a2t7uvMLM9gCeBn7v77Gzra1a5iIi0Ji1qVjmAu68I/10JPAgcnEQdIiIiuSb2gdvMOphZp9Rz4DhgQdx1iIiI5KIkzrj3BJ4zs9eAT4Bd3f3xBOoQERHJObHPKnf3d4E+ZvZLoD+wc9w1iIiI5KpE4mBm1hU4EZgI/DLu4ysOJvlGUTCR1iOpONgNwK+BbdlWUBxMRESktiT6cQ8BVrr7HDM7Ktt67l4OlEMQB2vOGnR2IiIiuSqJM+7DgJPMbAlwD3C0md2dQB0iIiI5J4nuYGPdvWvY1nMo8LS7nxV3HSIiIrkoiUvl7YDZQFuCGeVb4q5BREQkVyVxqXwTcLS79wG6A5+a2SEJ1CEiIpJzkshxO7AufLlj+Ij1humKg7VOmpQoIvkgkTiYmRWY2VxgJfCku7+UYR3FwURERGpIpDtY9cHNOhM0Gfm5u2e9X7m6g4mISGvS4rqDpbj7GuAZ4IQk6xAREckVSXQH2z0808bMCoFjgTfirkNERCQXJXHGXQq8b2YbgU+Bz939kQTqEBERyTlJDNwLgIHu3g7YHfi2mR2QQB0iIiI5J4k42IfAh+Hzz81sEbA3sDCuGpYOPzuuQ0kLUfz3u5IuQUSkWSQ6Oc3MSoC+gOJgIiIiDZBYHMzMOgLPAhPd/YG61lUcTEREWpMWFwczsx2BaUBFfYO2iIiIfCmJOJgBk4BF7v6nuI8vIiKSy5Lqxz0cuNDMNpjZXDMbnEAdIiIiOSeJWeXPmdlAgkYjd7l7adw1iIiI5KrYB24Ad58dzihPhOJgzU9xKxGReCQaB6uL4mAiIiK1JXLG3RDuXg6UQxAHa8596+xQRERyVYs94xYREZHaNHCLiIjkkKRuwDILeBvoYWZrzezHSdQhIiKSa5K4AUsB8E2gO9AWWAK8EHcdIiIiuSiJyWkHA2+7+7sAZnYPcDLqDlaLJtGJiEhNSVwq3xt4P+318nDZVygOJiIiUpviYCIiIjkkiTPuFQTfcad0DZeJiIhIPZIYuF8B9jWzbma2EzAUmJFAHSIiIjkniSYjW83sQuAJoAC43d1fj7sOERGRXJRUk5HHgMeSOLaIiEgu053TREREcogGbhERkRyigVtERCSHaOAWERHJIRq4RUREcogGbhERkRyigVtERCSHaOAWERHJIRq4RUREcoi5N2vjrUiY2SpgaTPucjfgk2bcn2Smzzk++qzjoc85Hvqcodjdd8/0Rk4M3M3NzCrdvX/SdeQ7fc7x0WcdD33O8dDnXDddKhcREckhGrhFRERySGsduMuTLqCV0OccH33W8dDnHA99znVold9xi4iI5KrWesYtIiKSk1rdwG1mJ5jZm2b2tpldnnQ9+cTMlpjZfDOba2aV4bJdzexJM1sc/rtL0nXmGjO73cxWmtmCtGUZP1cL3Bj+fs8zswOTqzy3ZPmcJ5jZivB3eq6ZDU57b2z4Ob9pZscnU3XuMbNvmtkzZrbQzF43s1+Ey/U73UCtauA2swLgz8D3gAOAYWZ2QLJV5Z1B7l6aFuW4HPinu+8L/DN8LY1zJ3BCjWXZPtfvAfuGj5HAX2KqMR/cSe3PGeB/wt/pUnd/DCD8/42hQI9wm1vC/3+R+m0FfuXuBwCHAKPDz1O/0w3UqgZu4GDgbXd/1903A/cAJydcU747GZgcPp8MnJJgLTnJ3WcD/6mxONvnejJwlwdeBDqb2V7xVJrbsnzO2ZwM3OPum9z9PeBtgv9/kXq4+4fu/mr4/HNgEbA3+p1usNY2cO8NvJ/2enm4TJqHAzPNbI6ZjQyX7enuH4bPPwL2TKa0vJPtc9XvePO7MLxEe3vaVz36nJuBmZUAfYGX0O90g7W2gVuidbi7H0hwaWu0mR2Z/qYHEQbFGJqZPtdI/QXYBygFPgT+mGw5+cPMOgLTgIvc/bP09/Q7XbfWNnCvAL6Z9rpruEyagbuvCP9dCTxIcOnw49RlrfDflclVmFeyfa76HW9G7v6xu1e5+zbgNr68HK7PuQnMbEeCQbvC3R8IF+t3uoFa28D9CrCvmXUzs50IJpfMSLimvGBmHcysU+o5cBywgODzHRGuNgKYnkyFeSfb5zoDODuciXsIsDbt8qM0Uo3vUk8l+J2G4HMeamZtzawbwcSpl+OuLxeZmQGTgEXu/qe0t/Q73UA7JF1AnNx9q5ldCDwBFAC3u/vrCZeVL/YEHgz+N8kOwP+5++Nm9gpwr5n9mKDD2w8TrDEnmdkU4ChgNzNbDowHriHz5/oYMJhgstR64NzYC85RWT7no8yslOCy7RJgFIC7v25m9wILCWZJj3b3qiTqzkGHAcOB+WY2N1z2G/Q73WC6c5qIiEgOaW2XykVERHKaBm4REZEcooFbREQkh2jgFhERySEauEVERHKIBm6ROpiZm9ndaa93MLNVZvbIdu6vs5n9LO31Udu7ryz7/4aZ3d9c+4uDmZWY2ZlN2P4cM/tGc9Yk0pJp4Bap2xdATzMrDF8fS9Pu2tQZ+Fm9a20nd//A3c+Iav8RKQG2e+AGzgE0cEuroYFbpH6PASeGz4cBU1JvhD2EHwqbULxoZr3D5RPCphSzzOxdMxsTbnINsE/Y2/kP4bKOZna/mb1hZhXhnaUws2vCnsXzzOz6mkWZ2cC0PtH/NrNO4dnrgvD9c8zsATN7POxxfF3atieY2atm9pqZ/TNc1iGs+eVwf7U654VXCJ41s+nhz3WNmZWF28w3s33C9b5vZi+F+3nKzPbMVnP4mRwRLrvYzArM7A9m9kr4s49KO/5l4XFeC499BtAfqAi3LzSzY8J9zw9/nrbhtkvM7L/D9SrN7EAze8LM3jGzC8J17jKzU9KOV5HpcxBJlLvroYceWR7AOqA3cD/QDphLcHetR8L3bwLGh8+PBuaGzycA/wLaArsBq4EdCc4uF6Tt/yhgLcH9l9sALwCHA12AN/nyJkmdM9T2MHBY+LwjwR3rqvdPcCb6LvC1sPalBPd83p2g21K3cL1dw39/D5yVOh7wFtChxjGPAtYAe4U/2wrg6vC9XwA3hM93Sav9fOCPddRc/XmGy0cCV4TP2wKVQDeC5jX/AtrXqHsW0D983i782bqHr+8iaGIBwZ3Pfho+/x9gHtAp/Dw+DpcPBB4Kn38NeA/YIenfQz30SH/ojFukHu4+j2BAHEZw9p3ucODv4XpPA13MbOfwvUc96Nf8CUHDhGwtTV929+UeNLKYGx5rLbARmGRmpxHc6rGm54E/hWfznd19a4Z1/unua919I8HtOYuBQ4DZHvSRxt1TPaiPAy4Pb0M5i2AQLMqwz1c86Km8CXgHmBkunx/WDsEfIk+Y2XzgUqBHI2o+juDe1HMJ2j12IbgX+HeBO9x9fY260+0HvOfub4WvJwPpXepSvQnmAy+5++fuvgrYZGad3f1Zgn4GuxP8956WpUaRxGjgFmmYGcD1pF0mb4BNac+ryN4boNZ64WBxMMGZ/hDg8Zobufs1BGezhcDzZvadJtQAYMDp7l4aPorcfVE9+9yW9npb2v5vAm52914E9/du14iaDfh5Wh3d3H1mhvW2R3qtNX+OVO13AWcR3BP79mY6rkiz0cAt0jC3E1wSnl9j+f8DyiD4/hf4xGv0Fq7hc4LLs3WyoFfx19z9MeBioE+GdfZx9/nufi1B57tMg2AmLwJHWtDVCjPbNVz+BPDztO/Y+zZwf5l8jS8n8aU6PmWrueZn8gTwUwtaP2Jm3S3oOPckcK6Zta9Rd/r2bwIlZvbt8PVw4NlG1n4ncBGAuy9s5LYikWtV3cFEtpe7LwduzPDWBOB2M5tHcDl7RIZ10vez2syeDyeQ/QN4NMuqnYDpZtaO4Az0lxnWucjMBhGcLb4e7m+vDOvVrGGVmY0EHjCzNgSX8Y8F/gu4AZgXLn+P4Gx/e0wA7jOzT4GnCb6jzlbzNqDKzF4jGDT/l+CS+6vhHxGrgFM86DZXClSa2WaCry1+E25zq5ltAAYQnCnfZ2Y7EPxxcGtjCnf3j81sEfDQ9v3oItFSdzARkTThGf184EB3X5t0PSI16VK5iEjIzL4LLAJu0qAtLZXOuEVERHKIzrhFRERyiAZuERGRHKKBW0REJIdo4BYREckhGrhFRERyiAZuERGRHPL/AaT3Ch8y96ihAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df['time'].max()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "hCF9YGIsSkKO", | |
"outputId": "9998a32d-d432-402e-bd0a-328f318147df" | |
}, | |
"execution_count": 48, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"225" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 48 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"interval_length = 3\n", | |
"interval_bounds = np.arange(0, df.time.max() + interval_length + 1, interval_length)\n", | |
"n_intervals = interval_bounds.size - 1\n", | |
"intervals = np.arange(n_intervals)" | |
], | |
"metadata": { | |
"id": "QG25KHeYOQ_3" | |
}, | |
"execution_count": 45, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"interval_bounds" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "GuX7MT7ZSVHu", | |
"outputId": "b434e733-1657-4937-c6d4-34d9cc9b5d6b" | |
}, | |
"execution_count": 46, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,\n", | |
" 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75,\n", | |
" 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114,\n", | |
" 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153,\n", | |
" 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 189, 192,\n", | |
" 195, 198, 201, 204, 207, 210, 213, 216, 219, 222, 225, 228])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 46 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"n_intervals" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "MK1FCeqJSXLE", | |
"outputId": "91dcabaa-07e3-4610-ce44-74d3e5c84eb3" | |
}, | |
"execution_count": 49, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"76" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 49 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"len(interval_bounds)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "sUEtOYu3StwT", | |
"outputId": "ef32b5d2-cf86-456e-8e84-19291085003a" | |
}, | |
"execution_count": 50, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"77" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 50 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"intervals" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "6sPjyvt7Svre", | |
"outputId": "1586b1d9-447e-45e5-9e9b-6df99e7d9849" | |
}, | |
"execution_count": 51, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", | |
" 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n", | |
" 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n", | |
" 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n", | |
" 68, 69, 70, 71, 72, 73, 74, 75])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 51 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(8, 6))\n", | |
"\n", | |
"ax.hist(\n", | |
" df[df.event == 0].time.values,\n", | |
" bins=interval_bounds,\n", | |
" lw=0,\n", | |
" color=\"C3\",\n", | |
" alpha=0.5,\n", | |
" label=\"Censored\",\n", | |
")\n", | |
"\n", | |
"ax.hist(\n", | |
" df[df.event == 1].time.values,\n", | |
" bins=interval_bounds,\n", | |
" lw=0,\n", | |
" color=\"C7\",\n", | |
" alpha=0.5,\n", | |
" label=\"Uncensored\",\n", | |
")\n", | |
"\n", | |
"ax.set_xlim(0, interval_bounds[-1])\n", | |
"ax.set_xlabel(\"Months since mastectomy\")\n", | |
"\n", | |
"ax.set_yticks([0, 1, 2, 3])\n", | |
"ax.set_ylabel(\"Number of observations\")\n", | |
"\n", | |
"ax.legend();" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 388 | |
}, | |
"id": "4uiOxAKHS0BD", | |
"outputId": "fe491faf-04ba-49c6-853d-ef0d420ccddf" | |
}, | |
"execution_count": 52, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 576x432 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAFzCAYAAAD18ZqMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3debhV9X3v8fdXoOKMokltDUKoWoUeUcEh4oC3YqqtCkkTjWMSpxanJO2TxKQFb2qq18RaTVulT0gwMVrjFI0TJUFRG0UxyKBRUiUVr1GEXASnCHzvH3uBRzgHNsg65xf2+/U8+zl7/fYavnttth/XsH+/yEwkSVJZNuvuAiRJ0poMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUA9u7uA9nbcccfs379/d5chSVKXmD59+quZuVNHrxUV0P379+fxxx/v7jIkSeoSEfGrzl7zFLckSQUyoCVJKpABLUlSgYq6Bi1Jqtc777zD/Pnzeeutt7q7lJbSu3dvdtllF3r16tX0Mga0JLWQ+fPns80229C/f38iorvLaQmZycKFC5k/fz4DBgxoejlPcUtSC3nrrbfo27ev4dyFIoK+ffuu91kLA1qSWozh3PU2ZJ8b0JKkLvXrX/+aE044gYEDB7Lffvtx9NFH8+yzz3Z3WR3q378/r776ards22vQktTCFlz9rY26vp3OO3etr2cmo0aN4rTTTuPGG28E4Mknn+Tll19m991336i1dGbZsmX07Fl+/HkELUnqMlOmTKFXr16cc845q9r23ntvDjnkEC6//HKGDRtGW1sbY8eOBWDevHnsueeenHnmmQwaNIiRI0fy5ptvAnDVVVex11570dbWxgknnADAokWLOP7442lra+PAAw9k5syZAIwbN45TTjmFgw8+mFNOOYUFCxbwsY99jGHDhjFs2DAefvhhABYuXMjIkSMZNGgQZ5xxBpnZlbvnPWoL6IjoHRHTIuLJiJgTERfXtS1J0u+G2bNns99++63RPmnSJObOncu0adOYMWMG06dPZ+rUqQDMnTuXMWPGMGfOHPr06cMtt9wCwKWXXsrPf/5zZs6cyTXXXAPA2LFj2WeffZg5cyZf//rXOfXUU1dt46mnnmLy5MnccMMNXHDBBXzuc5/jscce45ZbbuGMM84A4OKLL2b48OHMmTOHUaNG8T//8z9175JO1XmM/zZwRGYujYhewEMRcU9mPlLjNiVJv4MmTZrEpEmT2GeffQBYunQpc+fOpV+/fgwYMIAhQ4YAsN9++zFv3jwA2traOOmkkzj++OM5/vjjAXjooYdWBfgRRxzBwoULee211wA49thj2WKLLQCYPHkyTz311Krtv/baayxdupSpU6dy6623AnDMMcew/fbb1//mO1FbQGfjvMDSarJX9ei+cwWSpG43aNAgbr755jXaM5Mvf/nLnH322e9pnzdvHptvvvmq6R49eqw6xX3XXXcxdepU7rzzTi655BJmzZq11m1vtdVWq56vWLGCRx55hN69e7+ft1OrWq9BR0SPiJgBvAL8Z2Y+2sE8Z0XE4xHx+IIFC+osp1ZTpkxZ4yFJeq8jjjiCt99+m/Hjx69qmzlzJttuuy0TJkxg6dLGcd2LL77IK6+80ul6VqxYwQsvvMCIESO47LLLWLx4MUuXLuWQQw7h+uuvB+D+++9nxx13ZNttt11j+ZEjR3L11Vevmp4xYwYAhx56KD/4wQ8AuOeee/jNb37z/t/0Bqr1NrbMXA4MiYg+wG0RMTgzZ682z3hgPMDQoUM9wpakTVhEcNttt3HhhRdy2WWX0bt3b/r378+VV15Jnz59OOiggwDYeuut+f73v0+PHj06XM/y5cs5+eSTWbx4MZnJ+eefT58+fRg3bhyf+cxnaGtrY8stt2TixIkdLn/VVVcxZswY2traWLZsGYceeijXXHMNY8eO5cQTT2TQoEF85CMfoV+/frXti3WJrrpDLSL+HngjM7/R2TxDhw7N39XxoDs6Yh4xYkQ3VCJJnXv66afZc889u7uMltTRvo+I6Zk5tKP567yLe6fqyJmI2AI4EvhFXduTJGlTUucp7p2BiRHRg8b/CNyUmT+ucXuSJG0y6ryLeyawT13rlyRpU2ZPYpIkFciAliSpQAa0JEkFMqAlSV1m3rx5DB48+D1t48aN4xvf6PQXuL9TNuZ7KX+8LUlSbTZ2r4ebYv8PmUlmstlmXXtM6xG0JKkIhx9+OF/84hfZf//92X333XnwwQeBRq9hf/M3f8PgwYNpa2tb1UXn9OnTOeyww9hvv/046qijeOmll9a6njlz5rD//vszZMgQ2tramDt3LgBXXHEFgwcPZvDgwVx55ZVA40h/jz324NRTT2Xw4MG88MILHQ6HCXDJJZew++67M3z4cJ555pmNtj88gpYkFWPZsmVMmzaNu+++m4svvpjJkyczfvx45s2bx4wZM+jZsyeLFi3inXfe4bzzzuNHP/oRO+20E//xH//BV77yFSZMmNDpeq655houuOACTjrpJH7729+yfPlypk+fzne+8x0effRRMpMDDjiAww47jO233565c+cyceJEDjzwwPcMh5mZHHvssUydOpWtttqKG2+8kRkzZrBs2TL23XffDofT3BAGtCSpy0TEWttHjx4NvHdYycmTJ3POOefQs2cjsnbYYQdmz57N7NmzOfLII4HGUfbOO++8an0dreeggw7ikksuYf78+YwePZrddtuNhx56iFGjRq0a6Wr06NE8+OCDHHvssey6664ceOCBQOfDYS5ZsoRRo0ax5ZZbAo0hLTcWA1qS1GX69u27xghRixYtYsCAAQCrhpbs0aMHy5Yt63Q9mcmgQYP42c9+1uHrHa3nU5/6FAcccAB33XUXRx99NNdee+1aa20/PGVnw2GuPCVeB69BS5K6zNZbb83OO+/MT3/6U6ARzvfeey/Dhw/vdJkjjzySa6+9dlXQLlq0iD322IMFCxasCuh33nmHOXPmrHXbzz33HB/+8Ic5//zzOe6445g5cyaHHHIIt99+O2+88Qavv/46t912G4cccsgayx511FEdDod56KGHcvvtt/Pmm2+yZMkS7rzzzg3aLx3xCFqS1KWuu+46xowZw+c//3kAxo4dy8CBAzud/4wzzuDZZ5+lra2NXr16ceaZZ3Luuedy8803c/7557N48WKWLVvGhRdeyKBBgzpdz0033cT3vvc9evXqxe///u9z0UUXscMOO3D66aez//77r9rWPvvss+q0+EojR47k6aefXmM4zH333ZdPfvKT7L333nzgAx9g2LBh73PvvKvLhptshsNNSlK9HG6y+xQz3KQkSdpwBrQkSQUyoCVJKpABLUktpqR7j1rFhuxzA1qSWkjv3r1ZuHChId2FMpOFCxfSu3fv9VrOn1lJUgvZZZddmD9/PgsWLOjuUlpK79692WWXXdZrGQNaklpIr169VvXapbJ5iluSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoEMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVCADWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgQxoSZIKZEBLklQgA1qSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoEMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVCADWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgQxoSZIKZEBLklQgA1qSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoEMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVKB1BnREDIyIzavnh0fE+RHRp/7SJElqXc0cQd8CLI+IPwLGAx8CflBrVZIktbhmAnpFZi4DRgFXZ+bfAjvXW5YkSa2tmYB+JyJOBE4Dfly19aqvJEmS1ExAfxo4CLgkM5+PiAHA9+otS5Kk1tZzXTNk5lPA+e2mnwcuq7MoSZJa3ToDOiIOBsYBu1bzB5CZ+eF6S5MkqXWtM6CBbwOfA6YDy+stR5IkQXMBvTgz76m9EkmStEozAT0lIi4HbgXeXtmYmU/UVpUkSS2umYA+oPo7tF1bAkds/HIkSRI0dxf3iA1ZcUR8CLgO+CCNQB+fmf+8IeuSJKnVNNMX93YRcUVEPF49vhkR2zWx7mXAFzJzL+BAYExE7PV+C5YkqRU001HJBGAJ8Inq8RrwnXUtlJkvrbxOnZlLgKeBP9zwUiVJah3NXIMemJkfazd9cUTMWJ+NRER/YB/g0fVZTpKkVtVMQL8ZEcMz8yFY1XHJm81uICK2pjEi1oWZ+VoHr58FnAXQr1+/ZlcrYMqUKR22jxixfrcNdLSe9V1H3TbWey3dgqu/1WH7Tuedu1Hml/S7871pJqD/CphYXXcOYBFwejMrj4heNML5+sy8taN5MnM8jWEsGTp0aDazXkmSNnXN3MU9A9g7Iratptc4Cu5IRASNXsiezswr3leVkiS1mE4DOiJOzszvR8TnV2sHoInQPRg4BZjV7pr1RZl59/uoV5KklrC2I+itqr/bdPDaOk9FV9esY0OKkiSp1XUa0Jl5bfV0cmY+3P616kYxSZJUk2Z+B311k22SJGkjWds16IOAjwA7rXYdelugR92FSZLUytZ2Dfr3gK2redpfh34N+HidRUmS1OrWdg36AeCBiPhuZv6qC2uSJKnlNdNRyRvVeNCDgN4rGzPT4SYlSapJMzeJXQ/8AhgAXAzMAx6rsSZJklpeMwHdNzO/DbyTmQ9k5mcAj54lSapRM6e436n+vhQRxwD/F9ihvpIkSVIzAf0P1UAZX6Dx++dtgc/VWpUkSS2umYB+NDMXA4uBTWtsP0mSCtXMNeiHI2JSRHw2IravvSJJkrTugM7M3YGv0viZ1fSI+HFEnFx7ZZIktbBmjqDJzGmZ+Xlgf2ARMLHWqiRJanHrDOiI2DYiTouIe4D/Al6iEdSSJKkmzdwk9iRwO/C/M/NnNdcjSZJYR0BHRA/g1sz8QhfVI0mSWMcp7sxcTmPISUmS1IWaOcU9IyLuAH4IvL6yMTNvra0qSZJaXDMB3RtYyHv7307AgJYkqSbrDOjM/HRXFCJJkt7VzM+sdo+In0TE7Gq6LSK+Wn9pkiS1rmY6Kvl34MtUo1pl5kzghDqLkiSp1TUT0Ftm5rTV2pbVUYwkSWpoJqBfjYiBNG4MIyI+TqM3MUmSVJNm7uIeA4wH/jgiXgSeBxwsQ5KkGjVzF/dzwJ9GxFbAZpm5pP6yJElqbc3cxX1BRGwLvAH8U0Q8EREj6y9NkqTW1cw16M9k5mvASKAvcApwaa1VSZLU4poJ6Kj+Hg1cl5lz2rVJkqQaNBPQ0yNiEo2Avi8itgFW1FuWJEmtrZm7uD8LDAGey8w3IqIvYPefkiTVqJm7uFdERH/g5IhI4KHMvK3uwiRJamXN3MX9r8A5wCxgNnB2RPxL3YVJktTKmjnFfQSwZ2au7ElsIvBUrVVJktTimrlJ7JdAv3bTHwLm1lOOJEmCtRxBR8SdNPrf3gZ4OiJWDpixP7D64BmSJGkjWtsp7m90WRWSJOk9Og3ozHxg5fOI+CAwrJqclpmv1F2YJEmtrJm7uD9B45T2XwKfAB6thpyUJEk1aeYu7q8Aw1YeNUfETsBk4OY6C5MkqZU1cxf3Zqud0l7Y5HKSJGkDNXMEfW9E3AfcUE1/Eri7vpIkSVIzXX3+bUSMBoZXTePt6lOSpHo1cwRNZt4K3FpzLZIkqeK1ZEmSCmRAS5JUoE4DOiJ+Uv29rOvKkSRJsPZr0DtHxEeAYyPiRiDav5iZT9RamSRJLWxtAf33wN8BuwBXrPZa0hiGUpIk1WBtfXHfDNwcEX+XmV/rwpokSWp5zfwO+msRcSxwaNV0f2b+uN6yJElqbc0MlvGPwAXAU9Xjgoj4et2FSZLUyprpqOQYYEhmrgCIiInAz4GL6ixMkqRW1uzvoPu0e75dHYVIkqR3NXME/Y/AzyNiCo2fWh0KfKnWqiRJanHN3CR2Q0TcDwyrmr6Ymb+utSpJklpcs4NlvATcUXMtkiSpYl/ckiQVyICWJKlAaw3oiOgREb/oqmIkSVLDWgM6M5cDz0REvy6qR5Ik0dxNYtsDcyJiGvD6ysbMPLa2qiRJanHNBPTf1V6FJEl6j2Z+B/1AROwK7JaZkyNiS6BH/aVJktS6mhks40zgZuDaqukPgdvrLEqSpFbXzM+sxgAHA68BZOZc4AN1FiVJUqtrJqDfzszfrpyIiJ5A1leSJElqJqAfiIiLgC0i4kjgh8Cd9ZYlSVJrayagvwQsAGYBZwN3A1+tsyhJklpdM3dxr4iIicCjNE5tP5OZnuKWJKlG6wzoiDgGuAb4bxrjQQ+IiLMz8566i5MkqVU101HJN4ERmflLgIgYCNwFGNCSJNWkmWvQS1aGc+U5YElN9UiSJNZyBB0Ro6unj0fE3cBNNK5B/yXwWBfUJklSy1rbKe6/aPf8ZeCw6vkCYIvaKpIkSZ0HdGZ+uisLkSRJ72rmLu4BwHlA//bzO9ykJEn1aeYu7tuBb9PoPWxFveVIkiRoLqDfysyraq9EkiSt0kxA/3NEjAUmAW+vbMzMJ2qrSpKkFtdMQP8JcApwBO+e4s5qWpIk1aCZgP5L4MPth5yUJEn1aqYnsdlAn7oLkSRJ72rmCLoP8IuIeIz3XoP2Z1aSJNWkmYAeW3sVkiTpPZoZD/qBrihEkiS9q5mexJbQuGsb4PeAXsDrmbltnYVJktTKmjmC3mbl84gI4DjgwDqLkiSp1TVzF/cq2XA7cFRN9UiSJJo7xT263eRmwFDgrdoqkiRJTd3F3X5c6GXAPBqnuSVJUk2auQbtuNCSJHWxTgM6Iv5+LctlZn6thnokSRJrP4J+vYO2rYDPAn0BA1qSpJp0GtCZ+c2VzyNiG+AC4NPAjcA3O1uu3TITgD8HXsnMwe+/VEmSWsdaf2YVETtExD8AM2mE+b6Z+cXMfKWJdX8X+Oj7L1GSpNaztmvQlwOjgfHAn2Tm0vVZcWZOjYj+76s6SZJa1NquQX+BxuhVXwW+0uhEDICgcZPYRunqMyLOAs4C6Nev3xqvT5kyZWNsplMjRozosL3O7a7vujurse7t1rnu9d3vb0yb1tmK1mhacPW3Opx1p/POba64TUBn+2D24EEdtg+ePWe95t9Y/ybr1Nm/pY7ea3e9z5L+rXa2vzrbB3XWvrHW3dl66qxlY2xzpbVdg16vXsY2VGaOp3GUztChQ3Mds0uS1BK6JIQlSdL6MaAlSSpQbQEdETcAPwP2iIj5EfHZurYlSdKmppm+uDdIZp5Y17olSdrUeYpbkqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVCADWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgQxoSZIKZEBLklQgA1qSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoEMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVCADWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgQxoSZIKZEBLklQgA1qSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoEMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVCADWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgQxoSZIKZEBLklQgA1qSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoEMaEmSCmRAS5JUIANakqQCGdCSJBXIgJYkqUAGtCRJBTKgJUkqkAEtSVKBDGhJkgpkQEuSVCADWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgQxoSZIKZEBLklQgA1qSpAIZ0JIkFciAliSpQAa0JEkFMqAlSSqQAS1JUoFqDeiI+GhEPBMRv4yIL9W5LUmSNiW1BXRE9AD+BfgzYC/gxIjYq67tSZK0KanzCHp/4JeZ+Vxm/ha4ETiuxu1JkrTJqDOg/xB4od30/KpNkiStQ2RmPSuO+Djw0cw8o5o+BTggM89dbb6zgLOqycHA7FoKUrN2BF7t7iLk51AIP4cybMqfw66ZuVNHL/SscaMvAh9qN71L1fYemTkeGA8QEY9n5tAaa9I6+BmUwc+hDH4OZWjVz6HOU9yPAbtFxICI+D3gBOCOGrcnSdImo7Yj6MxcFhHnAvcBPYAJmTmnru1JkrQpqfMUN5l5N3D3eiwyvq5a1DQ/gzL4OZTBz6EMLfk51HaTmCRJ2nB29SlJUoGKCGi7BO0+ETEvImZFxIyIeLxq2yEi/jMi5lZ/t+/uOjc1ETEhIl6JiNnt2jrc79FwVfX9mBkR+3Zf5ZuWTj6HcRHxYvWdmBERR7d77cvV5/BMRBzVPVVvWiLiQxExJSKeiog5EXFB1d7y34duD2i7BC3CiMwc0u5nDF8CfpKZuwE/qaa1cX0X+OhqbZ3t9z8DdqseZwH/1kU1toLvsubnAPBP1XdiSHUvDdV/l04ABlXL/Gv13y+9P8uAL2TmXsCBwJhqX7f896HbAxq7BC3RccDE6vlE4PhurGWTlJlTgUWrNXe2348DrsuGR4A+EbFz11S6aevkc+jMccCNmfl2Zj4P/JLGf7/0PmTmS5n5RPV8CfA0jV4nW/77UEJA2yVo90pgUkRMr3p1A/hgZr5UPf818MHuKa3ldLbf/Y50vXOr06cT2l3i8XOoWUT0B/YBHsXvQxEBre41PDP3pXHaaExEHNr+xWzc5u+t/l3M/d6t/g0YCAwBXgK+2b3ltIaI2Bq4BbgwM19r/1qrfh9KCOimugRVPTLzxervK8BtNE7ZvbzylFH195Xuq7CldLbf/Y50ocx8OTOXZ+YK4N959zS2n0NNIqIXjXC+PjNvrZpb/vtQQkDbJWg3iYitImKblc+BkTQGK7kDOK2a7TTgR91TYcvpbL/fAZxa3b16ILC43ak/bWSrXc8cxbsD+NwBnBARm0fEABo3KU3r6vo2NRERwLeBpzPzinYvtfz3odaexJphl6Dd6oPAbY3vBz2BH2TmvRHxGHBTRHwW+BXwiW6scZMUETcAhwM7RsR8YCxwKR3v97uBo2nclPQG8OkuL3gT1cnncHhEDKFxSnUecDZAZs6JiJuAp2jceTwmM5d3R92bmIOBU4BZETGjarsIvw/2JCZJUolKOMUtSZJWY0BLklQgA1qSpAIZ0JIkFciAliSpQAa0Wl5EZER8v910z4hYEBE/3sD19YmIv243ffiGrquT9f9BRNy8sdbXFSKif0R86n0sf3pE/MHGrEkqnQEtwevA4IjYopo+kvfXM1Ef4K/XOdcGysz/m5kfr2v9NekPbHBAA6cDBrRaigEtNdwNHFM9PxG4YeUL1bi0t1eDJzwSEW1V+7hqMIX7I+K5iDi/WuRSYGA1lvDlVdvWEXFzRPwiIq6vek8iIi6txsGdGRHfWL2oiDis3bjEP4+Ibaqj0dnV66dHxK0RcW81bu7/abfsRyPiiYh4MiJ+UrVtVdU8rVrfGiPHVUf8D0TEj6r3dWlEnFQtMysiBlbz/UVEPFqtZ3JEfLCzmqt9ckjV9rmI6BERl0fEY9V7P7vd9r9YbefJatsfB4YC11fLbxER/6ta96zq/WxeLTsvIv6xmu/xiNg3Iu6LiP+OiHOqea6LiOPbbe/6jvaD1O0y04ePln4AS4E24GagNzCDRu9SP65evxoYWz0/AphRPR8H/BewObAjsBDoReNocXa79R8OLKbRZ/BmwM+A4UBf4Bne7TCoTwe13QkcXD3fmkaPb6vWT+PI8jlgu6r2X9Hop3gnGiP+DKjm26H6+3Xg5JXbA54Ftlptm4cD/w/YuXpvLwIXV69dAFxZPd++Xe1nAN9cS82r9mfVfhbw1er55sDjwAAag7b8F7DlanXfDwytnveu3tvu1fR1NAZYgEbPX39VPf8nYCawTbU/Xq7aDwNur55vBzwP9Ozuf4c+fKz+8AhaAjJzJo3gO5HG0XR7w4HvVfP9FOgbEdtWr92VjfGBX6XRmX9nQ3NOy8z52RiAYUa1rcXAW8C3I2I0jW4LV/cwcEV1dN4nM5d1MM9PMnNxZr5FoxvKXWkMfD81G+MWk5krxzweCXyp6lLxfhph16+DdT6WjXF63wb+G5hUtc+qaofG/3DcFxGzgL8FBq1HzSNp9Kc8g8bQgn1p9G39p8B3MvON1epubw/g+cx8tpqeCLQfhW1lX/6zgEczc0lmLgDejog+mfkAjf7/d6Lxed/SSY1StzKgpXfdAXyDdqe3m/B2u+fL6bx/+zXmq0JhfxpH7n8O3Lv6Qpl5KY2j0y2AhyPij99HDQABfCwzh1SPfpn59DrWuaLd9Ip2678a+FZm/gmN/qp7r0fNAZzXro4BmTmpg/k2RPtaV38fK2u/DjiZRj/OEzbSdqWNyoCW3jWBxqncWau1PwicBI3rs8Crudp4tatZQuO06lpFY/zb7TLzbuBzwN4dzDMwM2dl5mU0Rn7rKOw68ghwaDRGXSIidqja7wPOa3cNfJ8m19eR7Xj3ZrqVow51VvPq++Q+4K+iMcwgEbF7NEZU+0/g0xGx5Wp1t1/+GaB/RPxRNX0K8MB61v5d4EKAzHxqPZeVukS3j2YllSIz5wNXdfDSOGBCRMykcRr6tA7mab+ehRHxcHUj1z3AXZ3Mug3wo4joTeOI8vMdzHNhRIygcfQ3p1rfzh3Mt3oNCyLiLODWiNiMxun3I4GvAVcCM6v252kcvW+IccAPI+I3wE9pXEPurOYVwPKIeJJGOP4zjVPlT1T/s7AAOD4bo6kNAR6PiN/SuNxwUbXMNRHxJnAQjSPfH0ZETxr/E3DN+hSemS9HxNPA7Rv21qX6OZqVpJZTHaHPAvbNzMXdXXwxn9oAAAA/SURBVI/UEU9xS2opEfGnwNPA1YazSuYRtCRJBfIIWpKkAhnQkiQVyICWJKlABrQkSQUyoCVJKpABLUlSgf4/qqTVb1CKb9QAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df['time']" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "gvZx4ODsTPPA", | |
"outputId": "da20249e-ca28-4a61-b3cf-dc4d55821e37" | |
}, | |
"execution_count": 54, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0 23\n", | |
"1 47\n", | |
"2 69\n", | |
"3 70\n", | |
"4 100\n", | |
"5 101\n", | |
"6 148\n", | |
"7 181\n", | |
"8 198\n", | |
"9 208\n", | |
"10 212\n", | |
"11 224\n", | |
"12 5\n", | |
"13 8\n", | |
"14 10\n", | |
"15 13\n", | |
"16 18\n", | |
"17 24\n", | |
"18 26\n", | |
"19 26\n", | |
"20 31\n", | |
"21 35\n", | |
"22 40\n", | |
"23 41\n", | |
"24 48\n", | |
"25 50\n", | |
"26 59\n", | |
"27 61\n", | |
"28 68\n", | |
"29 71\n", | |
"30 76\n", | |
"31 105\n", | |
"32 107\n", | |
"33 109\n", | |
"34 113\n", | |
"35 116\n", | |
"36 118\n", | |
"37 143\n", | |
"38 145\n", | |
"39 162\n", | |
"40 188\n", | |
"41 212\n", | |
"42 217\n", | |
"43 225\n", | |
"Name: time, dtype: int64" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 54 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"last_period = np.floor((df.time - 0.01) / interval_length).astype(int)\n", | |
"last_period" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "BQXxkVztS-jw", | |
"outputId": "25f95ae1-57bb-43e3-c7f2-69c47acdd283" | |
}, | |
"execution_count": 53, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0 7\n", | |
"1 15\n", | |
"2 22\n", | |
"3 23\n", | |
"4 33\n", | |
"5 33\n", | |
"6 49\n", | |
"7 60\n", | |
"8 65\n", | |
"9 69\n", | |
"10 70\n", | |
"11 74\n", | |
"12 1\n", | |
"13 2\n", | |
"14 3\n", | |
"15 4\n", | |
"16 5\n", | |
"17 7\n", | |
"18 8\n", | |
"19 8\n", | |
"20 10\n", | |
"21 11\n", | |
"22 13\n", | |
"23 13\n", | |
"24 15\n", | |
"25 16\n", | |
"26 19\n", | |
"27 20\n", | |
"28 22\n", | |
"29 23\n", | |
"30 25\n", | |
"31 34\n", | |
"32 35\n", | |
"33 36\n", | |
"34 37\n", | |
"35 38\n", | |
"36 39\n", | |
"37 47\n", | |
"38 48\n", | |
"39 53\n", | |
"40 62\n", | |
"41 70\n", | |
"42 72\n", | |
"43 74\n", | |
"Name: time, dtype: int64" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 53 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"death = np.zeros((n_patients, n_intervals))\n", | |
"death[patients, last_period] = df.event" | |
], | |
"metadata": { | |
"id": "j1u0zNw7TKPw" | |
}, | |
"execution_count": 55, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"death" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "PJTERZB6TXMZ", | |
"outputId": "06f5913c-7cc4-49c7-e048-1861b137696b" | |
}, | |
"execution_count": 56, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([[0., 0., 0., ..., 0., 0., 0.],\n", | |
" [0., 0., 0., ..., 0., 0., 0.],\n", | |
" [0., 0., 0., ..., 0., 0., 0.],\n", | |
" ...,\n", | |
" [0., 0., 0., ..., 0., 0., 0.],\n", | |
" [0., 0., 0., ..., 0., 0., 0.],\n", | |
" [0., 0., 0., ..., 0., 0., 0.]])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 56 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"exposure = np.greater_equal.outer(df.time.to_numpy(), interval_bounds[:-1]) * interval_length\n", | |
"exposure[patients, last_period] = df.time - interval_bounds[last_period]" | |
], | |
"metadata": { | |
"id": "zcDab4MkTYIB" | |
}, | |
"execution_count": 57, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"exposure" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "cjurt1o_TkFp", | |
"outputId": "85492bd2-6c16-4032-92e6-36ac4aa4d1e8" | |
}, | |
"execution_count": 58, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([[3, 3, 3, ..., 0, 0, 0],\n", | |
" [3, 3, 3, ..., 0, 0, 0],\n", | |
" [3, 3, 3, ..., 0, 0, 0],\n", | |
" ...,\n", | |
" [3, 3, 3, ..., 0, 0, 0],\n", | |
" [3, 3, 3, ..., 0, 0, 0],\n", | |
" [3, 3, 3, ..., 3, 3, 3]])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 58 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"exposure[0]" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "x948UHVjTlKi", | |
"outputId": "009ca131-47bd-4ece-8351-36e5a2684519" | |
}, | |
"execution_count": 59, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([3, 3, 3, 3, 3, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", | |
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", | |
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", | |
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 59 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import pymc3 as pm" | |
], | |
"metadata": { | |
"id": "n-yNhS5dTrJi" | |
}, | |
"execution_count": 60, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from theano import tensor as T" | |
], | |
"metadata": { | |
"id": "4lHzqAiAVgMS" | |
}, | |
"execution_count": 62, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df['metastized'] = (df['metastized'] == 'yes')" | |
], | |
"metadata": { | |
"id": "Io-eGq4wW6OT" | |
}, | |
"execution_count": 67, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"coords = {\"intervals\": intervals}\n", | |
"\n", | |
"with pm.Model(coords=coords) as model:\n", | |
"\n", | |
" lambda0 = pm.Gamma(\"lambda0\", 0.01, 0.01, dims=\"intervals\")\n", | |
"\n", | |
" beta = pm.Normal(\"beta\", 0, sigma=1000)\n", | |
"\n", | |
" lambda_ = pm.Deterministic(\"lambda_\", T.outer(T.exp(beta * df.metastized), lambda0))\n", | |
" mu = pm.Deterministic(\"mu\", exposure * lambda_)\n", | |
"\n", | |
" obs = pm.Poisson(\"obs\", mu, observed=death)" | |
], | |
"metadata": { | |
"id": "bJuWDtYpT4KR" | |
}, | |
"execution_count": 68, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"n_samples = 1000\n", | |
"n_tune = 1000" | |
], | |
"metadata": { | |
"id": "6oax6yKUT-Wo" | |
}, | |
"execution_count": 69, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"RANDOM_SEED = 8927" | |
], | |
"metadata": { | |
"id": "YZbp6-6BXmcV" | |
}, | |
"execution_count": 71, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"with model:\n", | |
" idata = pm.sample(\n", | |
" n_samples,\n", | |
" tune=n_tune,\n", | |
" target_accept=0.99,\n", | |
" return_inferencedata=True,\n", | |
" random_seed=RANDOM_SEED,\n", | |
" )" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 259 | |
}, | |
"id": "RIvb3jf8XZ0E", | |
"outputId": "b996dd29-8b20-406d-92aa-fc175227c226" | |
}, | |
"execution_count": 72, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"WARNING (theano.tensor.blas): We did not find a dynamic library in the library_dir of the library we use for blas. If you use ATLAS, make sure to compile it with dynamics library.\n", | |
"Auto-assigning NUTS sampler...\n", | |
"Initializing NUTS using jitter+adapt_diag...\n", | |
"WARNING (theano.tensor.blas): We did not find a dynamic library in the library_dir of the library we use for blas. If you use ATLAS, make sure to compile it with dynamics library.\n", | |
"Sequential sampling (2 chains in 1 job)\n", | |
"NUTS: [beta, lambda0]\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
"<style>\n", | |
" /* Turns off some styling */\n", | |
" progress {\n", | |
" /* gets rid of default border in Firefox and Opera. */\n", | |
" border: none;\n", | |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", | |
" background-size: auto;\n", | |
" }\n", | |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", | |
" background: #F44336;\n", | |
" }\n", | |
"</style>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" <progress value='2000' class='' max='2000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" 100.00% [2000/2000 06:13<00:00 Sampling chain 0, 59 divergences]\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
"<style>\n", | |
" /* Turns off some styling */\n", | |
" progress {\n", | |
" /* gets rid of default border in Firefox and Opera. */\n", | |
" border: none;\n", | |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", | |
" background-size: auto;\n", | |
" }\n", | |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", | |
" background: #F44336;\n", | |
" }\n", | |
"</style>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" <progress value='2000' class='' max='2000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" 100.00% [2000/2000 06:30<00:00 Sampling chain 1, 56 divergences]\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 765 seconds.\n", | |
"There were 59 divergences after tuning. Increase `target_accept` or reparameterize.\n", | |
"There were 115 divergences after tuning. Increase `target_accept` or reparameterize.\n", | |
"The number of effective samples is smaller than 25% for some parameters.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"idata.posterior[\"beta\"].mean()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 131 | |
}, | |
"id": "TK9keOQYbflC", | |
"outputId": "55d036c8-2817-494d-c49f-4af7425735ca" | |
}, | |
"execution_count": 79, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<xarray.DataArray 'beta' ()>\n", | |
"array(0.83397291)" | |
], | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2 {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'beta' ()>\n", | |
"array(0.83397291)</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'beta'</div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-eb22abaa-c508-4a9c-8e5b-d042fe9cdc12' class='xr-array-in' type='checkbox' checked><label for='section-eb22abaa-c508-4a9c-8e5b-d042fe9cdc12' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>0.834</span></div><div class='xr-array-data'><pre>array(0.83397291)</pre></div></div></li><li class='xr-section-item'><input id='section-73edc51d-522d-4487-99f1-a44edfa7b320' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-73edc51d-522d-4487-99f1-a44edfa7b320' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-3b32b842-42c7-423c-a503-c27a50bda188' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-3b32b842-42c7-423c-a503-c27a50bda188' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 79 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"np.exp(idata.posterior[\"beta\"].mean())" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 131 | |
}, | |
"id": "GP9xQ3alXe3O", | |
"outputId": "6337192f-72f4-4ca2-bdec-05a564277479" | |
}, | |
"execution_count": 78, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<xarray.DataArray 'beta' ()>\n", | |
"array(2.302448)" | |
], | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2 {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'beta' ()>\n", | |
"array(2.302448)</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'beta'</div></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-895f8e53-fab3-4705-8a06-1c99931b8d0c' class='xr-array-in' type='checkbox' checked><label for='section-895f8e53-fab3-4705-8a06-1c99931b8d0c' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2.302</span></div><div class='xr-array-data'><pre>array(2.302448)</pre></div></div></li><li class='xr-section-item'><input id='section-a99dda9b-3b17-4fc5-a313-3916e3a2d277' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-a99dda9b-3b17-4fc5-a313-3916e3a2d277' class='xr-section-summary' title='Expand/collapse section'>Coordinates: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'></ul></div></li><li class='xr-section-item'><input id='section-71e6f0b1-c21e-461d-9426-aff80f305d45' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-71e6f0b1-c21e-461d-9426-aff80f305d45' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 78 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import arviz as az" | |
], | |
"metadata": { | |
"id": "18Gold9ja3IP" | |
}, | |
"execution_count": 74, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"az.plot_posterior(idata, var_names=[\"beta\"]);" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 287 | |
}, | |
"id": "1iOzGYCEa-ry", | |
"outputId": "aa6b0e6a-dce0-4372-f589-5ba322970d29" | |
}, | |
"execution_count": 75, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEOCAYAAAAqksTuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hUVf7H8fdJ7z2BkJAOhBZa6L2L/GzYV1TEspZVF3HVtSwBd5FFFrGhggtYVkUBC1It9N57QguBBEhCei8z5/dHIBrpKXMzyff1PPOQuXPn3u8dMp+cOXPuPUprjRBCCMuwMboAIYRoTCR0hRDCgiR0hRDCgiR0hRDCgiR0hRDCgiR0hRDCgiR0hSGUUnFKKa2UsquFbQ04vz35fRb1nvySioZgADAB+X0WVkB+SYUQwoIkdIXRWiulVimlCpVSZ5RSk37fTaCU8ldKfaiUSlFKlSil4pVSj/3u8TgqWrkAZee7LPTvHp+olNqplMpVSp1TSv2qlOphsaMT4g9q3J8mRA19B8wB3gCGA68BZiBOKeUBrAecgTgg8fw6HyilHLXW7wIfA8HAw0AfwPSH7QcBbwHJgCswGlirlOqitd5Xt4cmxMUkdIXRZmutp5z/eeX5oB2vlJoBPA2EAu211kfOr/OzUsoLmKCU+kBrnayUSj7/2BatdfnvN661fuTCz0opW2A5cAB4BHi27g5LiEuT7gVhtK//cP8rwA1oB9wAbAESlVJ2F27ACsAXaHO1jSulhpzvvsgAyoEyoCXQqhaPQYhrJi1dYbTUy9wPAgKAKCqC8lJ8r7RhpVRnYCkVIf0wcIaK7oePAadq1itEjUjoCqM1AY7/4T5ACpABpHH5boCEq2z7dipat6O01pXBrZTyBrKrVa0QNSShK4x2FzDld/fvAfKBfVT0vz4NnNRap11hGyXn/3UG8n633IWKlu3vRzMMAkKo+FJOCIuT0BVGe/T8ELFtVIxMeASI01rnKKXeAu4G1p3/OYGKEQjRQF+t9S3nt3Hw/L/jlVLLAJPWejsVof1XYJ5Sai4VfbmvUdGKFsIQSmaOEEb43fja9sC7QA8gB5gNTNBam8+v5w38A7iVin7ebCrCd6HWesb5dWyBd4A7AT8qfq/V+ceeBp4DmgL7gb8DrwJorQfU/ZEKUZWErhBCWJAMGRNCCAuS0BVCCAuS0BVCCAuS0BVCCAuS0BVCCAu62jhdGdoghBDXT13uAWnpCiGEBUnoCiGEBUnoCiGEBUnoCiGEBUnoCiGEBUnoCiGEBUnoCiGEBUnoihqRq9QJcX3kIubiuiWczeN/W5JYd+QcpzILcXOyo10zTwa3DuDWjkF4uzoYXaIQ9dbVrqcrzRhRqcxk5t/L4pmzIREHOxv6RPkTGeBKXnE5O05kkZCah5ujHX8ZFMWjfSOwtbnsSTlCNHSX/eWX0BXXJL+knEc+2cbm45n8qXsILwxvhZdL1RbtwdO5TP8pgZ8PpdE7ype37+mEn5ujQRULYSgJXVF9RaUm7v/vFnadyubNO2IY1Tn4iut/ve0Ur32/Hz83Rz5/pDvhfq4WqlSIekNCV1SP1ppx83fz/Z7TvHdvZ0bGBF7T8/Yl5/Dg3K3YKMW3T/aiuY9LHVcqRL0iF7wR1fPJxhN8t/s0zw1pec2BC9A+2JP5j/WgtNzEQ/O2kVNYVodVCmE9JHTFZR1JzeNfSw8xpHUATw2Muu7nt2jizkf3x5KUUcBTX+zEZJYPTkJI6IpLMps1Ly3ah5ujHf++PQabao5E6Bnpy6Rb2rH+6Dk+WnuslqsUwvpI6IpL+mLrSXYkZfHqyDb41nAEwj1dmzOyfSDTVx5m96nsWqpQCOskoSsukltcxrSVCfSK9GVU56Aab08pxeRR7Qlwd+SFBXsoM5lroUohrJOErrjIR2uOkV1YxisjW6NU7Zzg4Olsz6Rb2nE4NZ+P1yXWyjaFsEYSuqKK1Nxi/rs+kVs6NqNtM89a3faQNk0Y1qYJb/9ymFOZhbW6bSGshYSuqGLGz0cwmTXjh7aqk+3H3dwWgP+sTKiT7QtR30noikqJ5wr4evsp7useSohv3ZzM0MzLmYd6h/P9ntMcPJ1bJ/sQoj6T0BWVPlh9FDsbxZMDI+t0P4/3j8TDyZ6pK+LrdD9C1EcSugKA5KxCFu1M4d5uIQS4O9Xpvjyd7XlyQCSrE9LZkZRZp/sSor6R0BUAfLTmOErBY/0iLLK/+3uG4uPqwPur5IQJ0bhI6ArScouZv/0Ut3cOppmXs0X26eJgx9jeYfwan8aB0zkW2acQ9YGErmD2uuOUm8w8MaBu+3L/6P6eYbg72jFTWruiEZHQbeQyC0r5fPNJbukYRKivZa976+lsz309Qlm2/4yM2xWNhoRuIzdnfSJFZSaetHAr94IHeoailOJ/W04asn8hLE1CtxHLKSrjk40nGNGuKS2auBtSQzMvZ4a1acJX205SXGaipKSE8ePHExAQgKurKyNHjuTEiRNX3U5ubi5//etfCQsLw8XFhdatWzNjxowqsxWvWbOGgQMHEhAQgKOjIxEREYwfP57cXBkvLCxHZgNuxD7bdIK8kvJqXSu3Nj3QM4xl+8/yw57T/DL7nyxYsIC33noLf39/4uLiGDp0KPv27cPJ6fJD2caMGcPatWuZPHkyUVFRrFq1iueee65i5otx4wDIzMykU6dOPPnkk/j7+3PgwAEmTJhAQkICP/74o6UOVzR2Wusr3UQDlV9cpjtOXKHHzNlidCnabDbrYdPX6IETF2hbW1v9ySefVD6WnJys7e3t9ezZsy/7/IKCAm1jY6PfeeedKstvu+023a1btyvue9asWRrQGRkZNTsIIaq6bK5K94IVGjNmDLGxsSxZsoQ2bdrg4uLCyJEjyczM5OjRowwcOBBXV1diY2PZu3dv5fPMZjNTpkwhKioKL3dX9s94iLDM7VW2vWTJEoYOHUpAQAAeHh706NGDlStXVlknLi4OPz8/du3aRY8ePXBxcaFTp06sW7euWsejlOKBXqHs3bwWgFGjRlU+FhQURJ8+fVi2bNlln28ymTCbzXh6Vr1Aj5eXV5XuhUvx9fUFoLS0tFq1C3HdrpTIRvx5EFf34IMPan9/f925c2e9cOFC/dlnn2kvLy99++236y5duugPP/xQL126VHfo0EG3bt1am81mrbXWTz75pHZ1ddWv/+sN3WLMFN16+GhtY2OjFy9eXLntd999V7/99tt6+fLleuXKlXrcuHHaxsZGr1+/vnKdCRMmaGdnZ92+fXs9Z84cvXTpUt29e3ft5+enCwoKKtczmUy6rKzsirfy8nKttdYFJWXat+cd2sM/8KLjffLJJ3WbNm2u+Jrcddddum3btnrXrl06NzdXL168WLu6uup58+ZdtG55ebkuLi7Wu3bt0p06ddKjRo26vv8AIa7usrkqoWuFHnzwQW1ra6uPHj1auexvf/ubBqp8NF+yZIkG9MGDB/WRI0e0UkrPmzdPf7TmqA598Ue9LTFD33///To2NvaS+7kQmsOGDdMPPfRQ5fIJEyZoQP/yyy+Vy3bt2qUBvWzZsip1UjGj9GVv/fv3r1y/w5BR2rFJhM4uLK1SxyuvvKIDAy8O498rLi7Wt99+e+V2lVJ6ypQpl1y3VatWlesNHz68yh8KIWrJZXNVvkizUmFhYURG/jbMKyqq4suwQYMGXbQsJSWFY8eOYWNjw/CRN3Hje1vpHeFFx2APBg8ezJdffonJZMLW1pbk5GReeeUVfv75Z86cOVP58bx3795V9u/g4MCAAQMq77dp0waA5OTkymVxcXH85S9/ueJxuLv/Nmoi0t+Ng1rzw+4U7u8Zdh2vBowbN44tW7Ywd+5cIiIiWL9+fWU3yMMPP1xl3YULF5KTk8O+ffuYNGkSd955Jz/++GOtXbBdiCuR0LVSXl5eVe47ODhctPzCsuLiYs6dO4fJZCLQv6IPcxfwxZ9/e/6ZM2do1qwZN998M3l5eUyaNImoqChcXV35xz/+QVpaWpX9ubu7Y2Pz21cCv9/XBSEhIQQHB1/xOH4fdBFBAdiVF/HVtlNVQjcrKwtvb+/LbmPv3r188MEHrFy5kqFDhwLQr18/8vLyeP7553nooYeq1Nq2bcU1fXv16kXr1q3p378/q1atqvIHS4i6IqHbSPj4+GBnZ0fk2OlEBLgz6ZZ2VR4PCAjg6NGj7Nq1i2XLlnHDDTdUPlZUVFStfY4dO5ZPPvnkiuv079+f1atXA9C6dWtKctLZdyKNfck5tA+u+GIsPj6e6Ojoy24jPr7iEpEdO3assrxTp05kZ2eTkZGBv7//JZ/buXNnAI4fPy6hKyxCQreRGDRoECaTiazsHF5/eTRdQi9uOV4IV0fH32b/TUpKYsOGDcTExFz3Pq+3e2HYsGEooOz4Zr7c1pL2we05ffo069atY+bMmZfdRmhoKAA7d+5k+PDhlct37NiBq6srfn5+l33uhg0bAAgPD7+WQxKixiR0G4mgsEh8Y0eSveRNfu5sT3ZsLMXFxRw4cIDDhw/z8ccfEx0dTXBwMOPHj+f1118nLy+PCRMmEBRUvRmBw8LCCAsLu+b1g4ODefjhh/n0y4/5VEF3uwG88a/XCQ0NZfTo0ZXrTZo0iUmTJlFeXg5AbGwssbGxjB07lkmTJhEeHs769euZMWMGzz77bGUXxv3330/Lli3p2LEjLi4u7Ny5k6lTp9KzZ08GDhxYrWMU4npJ6DYSH605hsvAPzNmRC8+/fRT/vGPf+Dh4UGbNm0qv2hydHRk0aJFPPXUU9xxxx0EBwfzyiuvsHr1avbv32+ROt955x1yymz45qtZ3L38fQYNHMCXX35Z5Ww0s9mMyWSqvG9ra8vixYt59dVXmTRpEunp6YSGhhIXF8f48eMr1+vWrRvz5s1j2rRpmEwmwsPDeeaZZxg3blyVPl8h6pK68O30ZVx5ZLmwCmdyihg4bTXD2jTlnXs7GV3OVZnNmn5vriLM15XPH+ludDlCVMdlh8LIn/dG4D8rD2M2w9+G180Mv7XNxkZxR5dgNhw7R0p29b7EE6K+ktBt4A6czmHhzmQe6h1Gc5+6meG3LtzeORitYeGO5KuvLIQVkdBtwLTWTF56qGIiSIOvJHa9mvu40DPClwU7kjGbpZdLNBwSug3Y6sPpbDiawbODW+DpbG90OdftzthgTmYWsu2EzBgsGg4J3Qaq3GRm8pJDhPm6cF/3UKPLqZYR7QJxc7TjG+liEA2IhG4D9fX2ZI6k5fPiDdE42Fnnf7Ozgy3/FxPI0n1nKCgpN7ocIWqFdb4bxRXll5Qz/acEuoZ5c0O7pkaXUyN3dAmmsNTEkn1njC5FiFohodsAfbD6KOfyS3l1ZBurv3JWl1BvIvxcWSBdDKKBkNBtYJKzCpm9LpHbOgXRobnX1Z9QzymluL1LMFsTM0nKKDC6HCFqTEK3gXlzRQIK6zkR4lrc3jkYG4W0dkWDIKHbgOxNzub73ad5rF8EzbycjS6n1jT1dKJvC38W7kjGJGN2hZWT0G1A/rPyMN4u9jzWL8LoUmrdHV2COZ1TzMZj54wuRYgakdBtILadyGTN4XQe7x+Ju5P1nQhxNUPbNMHDyU66GITVk9BtALTWTFuRgJ+bIw9c59xi1sLJ3pZbOgaxfP9ZcorKjC5HiGqT0G0ANh7LYEtiJk8NjMTZwdbocurMnbHBlJSb+XHvaaNLEaLaJHQbgHd+OUJTDyfu7RZidCl1qn2QJy2buPH1duliENZLQtfK7T6VzZbETB7pG46TfcNt5ULFmN17uoaw51Q2+1NyjC5HiGqR0LVys9Yew93JjnsaeCv3gtu7BONsb8vnm5OMLkWIapHQtWJJGQUs33+W0T1CcXNsHNPdeTrbc2unZny3O4WcQvlCTVgfCV0r9ummJGyU4qFeYUaXYlGje4RSXGZmwU7p2xXWR0LXShWXmVi4M5nhbZsS4OF09Sc0IG2bedI5xIvPNyfJrBLC6kjoWqml+86QXVjGfd0bR1/uHz3QM4zEcwVskDPUhJWR0LVSX2w5SbifKz0jfY0uxRAj2jfFx9WBzzbJF2rCukjoWqHDqXlsT8ri3m7Nrf56udXlaGfL3V2b8/OhVE7LNO3CikjoWqEvtpzEwdaGO7o0N7oUQ13oWvlUWrvCikjoWpnScjPf7kpheLuKj9eNWbC3CyPaBfK/LUnkyxxqwkpI6FqZ1Qlp5BSVMapTkNGl1AuP9A0nr7ic+dtOGV2KENdEQtfKfLc7BV9XB/q28DO6lHqhU4g33cJ8mLM+kXKT2ehyhLgqCV0rklNUxs+H0ripQzPsbOW/7oLH+kWQkl0kMwYLqyDvXCuyfP8ZSsvN3CZdC1UMig4gwt+V2euOo7WcLCHqNwldK/Lj3jOE+boQE+xpdCn1io2N4tG+EexPyWXTsQyjyxHiiiR0rURmQSkbj2VwY/vARjs290pu6xSEn5sDs9YdN7oUIa5IQtdK/HTwLCaz5sb2gUaXUi852dvyYM8wViekk3A2z+hyhLgsCV0rsXTfWUJ8XGjbzMPoUuqt0T1Ccba3Zba0dkU9JqFrBXIKy9hw9Bwj2jeVroUr8HZ14K7YYL7fnUJqbrHR5QhxSRK6VuCnQ6mUmzU3tpOuhat5uE8EJrNm7oYTRpcixCVJ6FqBZfvOEOTlLKMWrkGI7/lTgzcnkVcsM0uI+kdCt57LLyln3ZFz3NBOuhau1WP9IsgrKeerrXJqsKh/JHTruXWH0yk1mRnaponRpViNDs296BHhw5wNiZTJqcGinpHQred+PpSGp7M9saHeRpdiVf7cL5IzOcUs3nPa6FKEqEJCtx4zmTWrEtIY2MpfrrVwnQa08qdlEzdmrZVTg0X9Iu/kemzXySwyC0oZ3Fq6Fq6XUorH+kUSfzaPNYfTjS5HiEoSuvXYT4dSsbNR9G/lb3QpVunmDs1o6uHErLVysoSoPyR067FfDqXRPcIHDyd7o0uxSg52NjzUO4yNxzLYl5xjdDlCABK69daJcwUcTctniHQt1Mi93UNwc7Tjo7XHjC5FCEBCt976+VAqgIRuDXk42XNf9xCW7jvDqcxCo8sRQkK3vvrlUBotm7jR3MfF6FKs3pjeYdgoJacGi3pBQrceyiksY+uJTGnl1pJAT2f+LyaQ+dtOklMkpwYLY0no1kOrD6dhMmsZKlaLHukbQUGpia+2njS6FNHISejWQ78cSsPX1YGOzb2MLqXBaBfkSc8IX+ZtPCGnBgtDSejWM2UmM6sT0hgYHYCtjVzgpjY92i+cMznFLNkrswYL40jo1jM7krLILS5nSOsAo0tpcAa0DCBSZg0WBpPQrWd+OZSKg60NfVrIWWi17cKswQdO57LpuMwaLIwhoVvPXDgLzc3RzuhSGqRbz88a/PG6RKNLEY2UhG49cjw9n+PnCmSoWB1ysrfl/h5h/BqfxtE0mTVYWJ6Ebj3ya3waAIOipT+3Lo3uEYKjnY20doUhJHTrkV8OpdGqibuchVbHfN0cub1LMIt2pZCeV2J0OaKRkdCtJ3KKyth2IpPBMmrBIh7uE05puZnPNicZXYpoZCR064k1h9Mpl7PQLCbS340hrQP4fHMSxWUmo8sRjYiEbj3x66FUfOQsNIt6pG8EmQWlLNyZbHQpohGR0K0Hyk1mViWkM7CVnIVmSd3DfWgf5Ml/1yViNsvJEsIyJHTrgZ0ns8kpKpP+XAtTSvFI33COnyuoHDkiRF2T0K0HfjmUir2tom8LP6NLaXRubB9IM08nZq+TedSEZUjoGkxrzYoDZ+kR4Yu7zIVmcfa2NjzUO5wtiZkyj5qwCAldgx1OzedERiE3tGtqdCmN1t3dmuPmaCetXWEREroGW77/LErB0DYyVMwoHk723NutOUv2nSElu8jockQDJ6FrsGX7z9A11IcAdyejS2nUxvQOB2DeBjk1WNQtCV0DnThXQPzZPIZL14LhgrycGdk+kK+2niKvWOZRE3VHQtdAKw6cBWB4W+laqA8e7RtBXkk587edMroU0YBJ6Bpo2f6ztA/yJNhbLnBTH7QP9qR7uA9zN5ygXOZRE3VEQtcgZ3KK2H0qW0Yt1DOP9o0gJbuI73efNroU0UBJ6Bpk5YFUAAndemZQdABtAj1459cj0toVdUJC1yBL9p2hRYAbkf5uRpcifsfGRjFuaEuSMgpZtCvF6HJEAySha4DT2UVsTczk5g7NjC5FXMKQ1gG0D/LknV+OUCatXVHLJHQN8MOeiv7CWzoGGVyJuBSlFM8NbUlyVhHfbJfLPoraJaFrgO93n6ZTiBchvjJqob4a0MqfTiFevPfrEUrK5SLnovZI6FrY4dQ8Dp3J5RbpWqjXLrR2T+cU87WM2xW1SELXwn7YfRobBSNjJHTruz5RfnQN8+bdX49SWFpudDmigZDQtSCtNd/vSaF3lB/+7o5GlyOuQinFizdEk5ZXwuy1ck0GUTskdC1oa2ImpzKLuFW+QLMasWE+jGjXlI/WHiMtr9jockQDIKFrQfO3n8Ld0Y4b2wcaXYq4Di/cEE1puZm3fjpidCmiAZDQtZDc4jKW7jvDTR2b4exga3Q54jqE+7kyukco87ed5HBqntHlCCsnoWshP+w+TXGZmbtjmxtdiqiGZwa3wNXRjjeWHjK6FGHlJHQt5Ovtp4hu6k5MsKfRpYhq8HF14C8Do1iVkM76I+eMLkdYMQldCzh0Jpe9yTnc3bU5SimjyxHV9GCvMJr7ODPpxwNyerCoNgldC/hiy0kc7Gxk1IKVc7K35dWRbTicms9nm5KMLkdYKQndOpZXXMaincncFNMMb1cHo8sRNTSsTRP6tvDjrZ8Pcy6/xOhyhBWS0K1ji3amUFBq4sFeoUaXImqBUooJN7WlqNTEm8sTjC5HWCEJ3TqktebTTSfo0NyLmGAvo8sRtSQqwI2Heofx9Y5T7DmVbXQ5wspI6NahjccyOJZewIM9pZXb0DwzuAW+ro7ELT6A2ayNLkdYEQndOjRv4wl8XB0MPwPtu+++IyYmBkdHR8LDw5k+ffoV1x83bhxKKZ5//vkqy+Pj4+nevTuenp7cc8895OfnV3l87dq1BAUFXbT8UubNm4dS6pLrxsXF4efnV3n/xIkTKKUqb66urkRGRnLfffexbt26i54/ZswYYmNjr1pDTbg72fPSiGh2ncxm4U655q64dhK6deRoWh4/H0rlvu4hONkbdwbahg0bGDVqFN26dWPx4sWMHTuWF198kRkzZlxy/YMHD/Lf//4XDw+Pix4bM2YMUVFRfP311xw8eJDJkydXPmY2m3n22Wd54403cHOrmymIpk2bxqZNm1i6dCmvvfYaGRkZ9OvXj4kTJ9bJ/q5mVKcgOod48cayeLIKSg2pQVghrfWVbqKanpu/W0e/ukxn5JcYWsewYcN0nz59qix77rnntLe3ty4pubi2QYMG6VdffVWHhobq8ePHVy7Py8vTgE5LS9Naa/3VV1/p2NjYysdnz56tu3btqs1m8zXVNXfuXA3ovLy8ix6bMGGC9vX1rbyfmJioAb148eKL1n3ttdc0oFetWlW57MEHH9RdunS5pjpq6tCZHB359yX6b9/stsj+hNW4bK5KS7cOJGcV8v3uFO7p1hwfg4eJ7d69m6FDh1ZZNmzYMLKysti0aVOV5QsWLCA+Pp6XXnrpou2Ulla05JydnQFwcXGpXJabm8urr77K22+/bfGTPyZMmECzZs348MMPLbrfC6KbevBovwi+3p7M5uMZhtQgrIuEbh2YvfY4SsGjfSOMLoXi4mIcHKoG/4X7hw79dh2BoqIixo8fz5QpU3B1db1oOz4+PoSFhfHuu++SmZnJrFmzKvtNX3/9dYYMGULPnj2vuz6TyUR5eXmVm9l87Wd72draMmjQIDZv3nzd+64tzwxqQXMfZ17+dp9M7SOuys7oAhqa9LwSvtp2ilGdgmnm5Wx0OURFRbFt27Yqy7Zu3QpAZmZm5bI33niDwMBARo8efdltzZw5kzvvvJOXX36ZFi1a8P7773P06FE+/vhj9u3bV636vLwuPZTO19f3mrcRHBxMampqtfZfG5wdbHn9lnaMmbuND1cf59khLQyrRdR/0tKtZXM3JFJqMvPn/sa3cgEef/xxvvvuO2bPnk1WVhYrVqyoHL1gY1Px35+YmMi0adOu2j0wYsQI0tLSSEhI4NChQ4SEhPDcc88xbtw4goODef/99wkJCSEkJISZM2deU31r165l27ZtVW6PPvrodR2j1sYP2RrQKoCbOjTj/VVHOZ5+9dEbovGSlm4tyikq47NNSdzYPpAI/7r5Bv96jR07lj179vDEE0/w2GOP4eLiwr///W+efvppmjZtCsBLL73EiBEjaNWqFdnZFYP9zWYzJSUlZGdn4+npWRnGLi4utGzZEoCffvqJPXv2MH/+fPbs2cNrr73Gxo0bAejZsyd9+vQhJibmivV16tTpotEOP/7443UdY0pKCk2aNLmu59SF1/6vNasT0njl2/188Wh3ubiRuCRp6daizzcnkVdSzhP9I40upZKtrS3vvfce6enp7N27l9TUVHr06AFQ+W9CQgKLFi3C29u78nbq1Cnee+89vL29SUlJuWi7JpOJcePGMXXqVJydnVm9ejWDBg0iOjqa6OhoBg8ezJo1a+r8+MrLy/n111+r1Z9c2wLcnXhpRDSbjmewcOfFr5kQIC3dWlNUamLO+kQGtPKnXVD9u2buhTCFir7ZXr16ER0dDcDHH3980UkK99xzD/379+eJJ57A39//ou198MEHeHt7c/fdd1cuKywsrPy5oKDAIh/7J02axOnTp3n88cfrfF/X4t6uISzamcK/lhxkUHSA4aNXRP0joVtL5m87SUZBKU8NjDK6lCo2b97M+vXr6dixI7m5uXz55ZesWLGC9evXV65zqbO3nJycaN68OQMGDLjosczMTCZOnMiKFSsql/Xr148XXniBOXPmoLXm119/ZcqUKbV6LAkJCfj5+VFaWkpiYiJfffUVy5cvJy4ujv79+9fqvqrLxkYx+bb2jHxnHZOXHmLanR2MLknUMxK6taC03MystcfpGuZN1zAfo8upwt7envnz5xMXF+ayubgAABMASURBVIeNjQ19+/Zlw4YNtG/fvtrbjIuL4+abb6Zz586Vyzp16sTUqVN55ZVXgIqzxzp0qN3AuXBaspOTE4GBgfTs2ZO1a9fSt2/fWt1PTbVq6s5j/SKYufoYt3RsRt8WF39SEI2XuspHQOO/FrYC32w/xd8W7GXuQ10Z2CrA6HJEPVBcZuLGd9ZRUmZmxbh+uDlK+6aRuey3qPJFWg2ZzJoP1hyjTaAHA1pKi0ZUcLK35c07OnA6p0gmsxRVSOjW0MoDZzmeXsCTAyNliJCookuoN4/0Ced/W06y4ahMZikqSOjWgNaa91cfJdzPlRHtjL18o6ifxg9rRYSfKy8s2Et+SbnR5Yh6QEK3BtYeOcf+lFwe7x+BrY20csXFnOxtmXpHDKdzipiyTLoZhIRujcxcdZRATydu6xRsdCmiHosN82Fs73A+33ySjdLN0OhJ6FbTjqRMtiRm8kjfCBzs5GUUV/b8sFaE+7nywsK9FEg3Q6MmaVFNM1cdw9vFnnu7NTe6FGEFnB0quhlSsov49/J4o8sRBpLQrYaDp3P5JT6Nsb3DcXGQ8Zfi2nQN8+GhXuF8uimJjcekm6GxktCthg/WHMPVwZYHeoYZXYqwMn8b3opQXxdelG6GRktC9zqdOFfAkr2nGd0zFE8Xe6PLEVbG2aHipInkrCKmSjdDoyShe50+WnsMO1sbHu4TbnQpwkp1C/dhTK8wPtmUJPOqNUISutfhbE4xC3ekcFdsMAHuTkaXI6zYhW6GFxbspbBUuhkaEwnd6/DxuuOYtObP/erPRcqFdXJxsGPq7TGczCxk6vIEo8sRFiShe42yCkr5YutJbu7QjOY+LkaXIxqA7hG+jOkVxryNJ6SboRGR0L1G8zaeoLDUxBMDpJUras8LN7QixKdiNIN0MzQOErrXIL+knHkbTzC0TRNaNnE3uhzRgLg42DH1jhiSMgp5c4V0MzQGErrX4IstSeQUlfGktHJFHegR4cuDPUOZt/EEWxMzjS5H1DEJ3asoKjUxa20ivaN86RTibXQ5ooF64YZogr2deWHBHopKTUaXI+qQhO5VfLn1JOfyS3h2cEujSxENmKujHf++PYYTGYVMXSEnTTRkErpXUFxm4sM1x+gR4UO38Po14aRoeHpF+vFAz1DmbjjBmsPpRpcj6oiE7hV8s/0UaXklPDOohdGliEbi5Rtb06qJO+O/3k16XonR5Yg6IKF7GSXlJmauPkZsqDc9I32NLkc0Ek72trz7p07kFZcz/ps9mM0yIXdDI6F7GQt3pHAmp5hnBreQCSeFRbVs4s4/bmrD2sPpzF533OhyRC2T0L2EMpOZmauP0qG5F31b+BldjmiE/tQthBHtmjJ1RYJM8dPASOhewre7UkjOKuLZwVHSyhWGUErx5p0diPBz5akvdnIqs9DokkQtkdD9g3KTmfdXHaVdkAcDWwUYXY5oxNwc7Zj1QCwms+bRT7fLRc8bCAndP/h2VwpJGYU8PUj6coXxwv1cefdPnTmSls8T/9tJabnZ6JJEDUno/k5JuYkZPx8hJtiTYW2aGF2OEAD0b+nP5NvasfZwOi8s2INJRjRYNZlV8Xf+t/lkxWytt8dIK1fUK3d3DeFcfilvrkjARimm3hGDna20mayRhO55+SXlvLfqKL2jfOkjIxZEPfTUwCi01kxbeZhSk5m37u6IvQSv1ZHQPe+/6xLJLCjlheHRRpcixGX9ZVALHOxsmLw0nsyCUmbe1xkvFwejyxLXQf5MAhn5Jcxed5wb2jalQ3Mvo8sR4ooe6xfJtDs7sP1EFre8v4HDqXlGlySug4QuMP2nwxSVmXh+uFxJTFiHO7oE89Wfe1BQYuLm99bz5daTaC1fsFmDRh+6B0/n8uXWk9zfI5SoAJkVQliPziHeLH2mD13DfPj7on08/vkOsgpKjS5LXIW6yl/HBv2nU2vNPbM2czg1j9XPD8TTxd7okoS4bmaz5r/rE5m6Ih4vFwf+eWs7hrdtanRZjd1lhz8Z2tLVWjN58mSaN2+Os7Mz/fr1Y/fu3Vd93k8//cS9995LWFgYSini4uIuud6BAwcYNmwYLi4u+Pn58cQTT5Cfn1/5+LL9Z9mSmMn4Ya0kcIXVsrFRhJUco8WBORz4z/3c0C6Qbrf/mYz8a7s05HfffUdMTAyOjo6Eh4czffr0Oq64cTM0dKdMmcLrr7/Oiy++yOLFi3Fzc2PIkCGcPXv2is9bvnw5e/fuZfDgwbi4XHo69JycHAYNGkRRURHz589n2rRpLFy4kNGjRwOQW1zGxMUHaB3owb3dQmr92ISwpOXLl5N05BB33zoCBydnjqblM/Sttfyw5/QV+3o3bNjAqFGj6NatG4sXL2bs2LG8+OKLzJgxw4LVNzJa6yvd6kxRUZH28PDQEydOrFyWn5+v/fz89CuvvHLF55pMpsqffX199YQJEy5aZ/Lkydrd3V1nZWVVLvvhhx80oLdt26ZfXrRXh7/0o951Muui5wphbf74nvjL+Jf0ze+u06Ev/qgf+WSbTs0puuTzhg0bpvv06VNl2XPPPae9vb11SUlJndbcwF02Vw1r6W7cuJHc3FzuuuuuymWurq7cdNNNLFu27IrPtbG5etm7d+8mNjYWL6/fhoANHToUpRSzPl/A/7ac5KHe4XSUIWKiAfjje8LXzZGFT/Ti5RujWXs4nSHT17BgR/JFrd7du3czdOjQKsuGDRtGVlYWmzZtqvO6GyPDQjc+Ph5bW1tatKg6FU7r1q2Jj6/5xHzFxcU4OFQdNG5nZ4eNjQ3fr9lKsLcz44fJEDHRcNnZ2vBYv0iWPduXVk3def6bPYyZu42U7KLKdS71Prlw/9ChQxatt7EwLHSzsrJwc3PD1ta2ynJvb28KCwspLa3Z0JeoqCj27NlDWVlZ5bIdO3ZgMpnIzc5myqgYXBzkhDzR8EX4uzH/sZ5MvLkt205kMvyttfxvSxJmsyYqKopt27ZVWX/r1q0AZGZmGlFug1fnoau1pry8vPJmMpnqepcAPProo6Snp/P0009z9uxZDhw4wOixj4GyIdjHRa6vIBoVGxvFg73CWPHXfnRo7skr3+7nvo+3cNfosXz33XfMnj2brKwsVqxYUTl64Vq68cT1q/NXdc2aNdjb21feBg8eDFS0aPPz8y8K4aysLFxcXC76yHO9oqOjmTVrFl9++SWBgYHExMSQ5dIcj+AW9GgbWaNtC2Gtmvu48PnD3Zkyqj37U3KYey6MAbfexxNPPIGPjw+jRo3itddeA6BpUxnrWxfq/PN1ly5dqnx8cXevOOsrOjoak8nE0aNHadWqVeXj8fHxREfXzkVnxo4dy5/+9Cf2HYznxaVJpJfak/T2n+jdq2etbF8Ia6SU4p5uIfRv5c/Li/axynQ3g/91D2M6eHBTn46V36n06NHD4Eobpjpv6bq7uxMbG1t5uxCwvXr1wsPDg2+++aZy3cLCQhYvXsyIESNqbf8ODo7MizeTWGDHSJdjoM1VRkwI0VgFejozZ0xX3rm3E7lmR/6+OoeXfjjMtBnv0KtXr1pr/IiqDPsmycnJiZdeeonXX38db29voqOjmT59OmazmaeffrpyvU8//ZSxY8dy7NgxQkNDAUhKSqpsPZeWlnLw4EEWLFiAq6trZWDn5ubyr3/9ixSnMH46lE4n+xT+8/UcZs+ejY+Pj+UPWIg6dC3viaSkJCIjI5kzZw4PPPAAAFu2bOHw+vW82rE9CzYn8sk/p1B4bAePTv2MsznFNPV0MuyYGqwrDeKt69HDZrNZ//Of/9RBQUHayclJ9+nTR+/cubPKOnPnztWATkxMvGjZH2+hoaGV6+Tn5+s2sX20jZObtnNw1LGxsfrbb7+t60MSwhDX8p5ITEzUgJ47d27lsu3bt+vY2Fjt6uqq3d3d9aChw/XY/yzQkX9folu8vFS/vGivPpKaZ/kDsn6XzdUGe8GbuRsSmbj4IDe2b8q793bG1kam3xHiWp3KLGTm6mMs3JFMqclM3xZ+PNAzjEHRAfJeujaXfZEaZOh+tOYYbyyLZ3jbJrx7b2cc7GToixDVcS6/hK+2nuTzzSc5m1tMsLczd3ZpzqjOQTT3ufR1TwTQWELXZNb8e3k8s9Ye56YOzZh+VweZQ0qIWlBmMvPTwVT+tyWJDUczAOgZ4cudscHc0K6pnGh0sYYfunnFZTz71W5+jU/jgZ6hTLiprXwMEqIOJGcVsmhnCgt2JHMysxBXB1tGxgRyZ2xzYkO9ZSbtCg07dPen5PDMV7tIyigk7ua23N8j1OiShGjwtNZsTcxkwY5kluw7Q2GpiTBfF+7oEsxtnYMJ8nI2ukQjNczQNZs1czee4N/L4vF2tWfG3Z3oGelrdFlCNDoFJeUs23+WBTtOsfl4JkpB70g/7owNZlibpjg72F59Iw1Lwwvd+LO5vLxoHztPZjOkdQBT7+iAj6tMRS2E0U5mFLJwZzILdiSTkl2Eu6MdI2MCuaVjEN3DfbBpHN1+DSd003KLmbn6GJ9vTsLdyY5XR7ZhVOcg6UcSop4xmzWbEzNYsD2Z5QfOUlhqoqmHEzd3bMYtHZvRJtCjIb9vrT900/KK+e+6RD7ZdIIyk+au2Ob8bXgrad0KYQUKS8v5+VAa3+9KYc3hdMrNmqgAN/4vJpBB0QG0a+bZ0FrA1hm65SYzm49n8uW2k6zYfxaT1tzWMYhnBrcgzM+1TvYZFxfHxIkT62TbQtTUhAkTLjsRq7XIKihlyb4zfL87he1JWWgNfm6ODGjlT7dwHzqHeBPp72rtreDLFl+vBtdprUnKKGR7Uhabj2fw86FUsgvL8HS2Z0yvMO7rEUp4HYWtEMIyvF0dGN0jlNE9QsnIL2HN4XRWJaTz08FUFuxIBsDT2Z5WTdyJDHAl0t+NUF9X/Nwc8HNzxN/dESf72vtiTmtNSbmZkjIzxeUmistMFJeZ8XKxp4lH7V97ok5CNzW3mH3JOZi1xqwrDsr0u5/LTZq84jJyisrJKSojLa+YxHMFnDhXQEFpxfV1PZ3tGRQdwPC2TRnQyr9WX2QhRP3g6+bIqM7BjOocjNmsOZaez86TWew+lc3RtHxWHEgls+DURc9zcbDFxcEWRztbnB1scbK3wdneFid7W2yUqrjwhNZoDRqNyawpLjNTXGaipNx8PlhNFJ2/f6kP/E8MiOTFG2r/Smt10r3w497T/OWLXde0rquDLX7ujoT5uhLu50qLJm7EhvrQIsCtofXxCCGqIauglFNZhZzLL+FcXinp+SVkFZRSdCE0y8wU/S5EzWYNSmGjKj7jK6WwVQpHexuczgezk92Fn39b5mj3u8ftbWgR4E6rpu7VLduyfbrZhaWczCzERqmKmw2//azA1kbh5miHh7O9nKYrhGiIrPOLNCGEsFKXDV1pZgohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVd8Yy0iRMnLgf8LFeO1WsGnDa6iAZAXsfaIa9j7ajO63huwoQJN1zykYor8citNm5xcXHa6Boawk1eR3kd69Ottl9H6V4QQggLktCtXTLlRO2Q17F2yOtYO2r1dbzaVcaEEELUImnpCiGEBUnoCiGEBUnoCiGEBUno1hKl1JNKqUSlVLFSaodSqq/RNVkTpVQ/pdQPSqkUpZRWSo0xuiZrpJT6u1Jqm1IqVymVrpRarJRqZ3Rd1kYp9ZRSau/51zFXKbVJKTWyNrYtoVsLlFJ3A28Dk4FOwEZgmVIqxNDCrIsbsB94FigyuBZrNgCYCfQCBgHlwM9KKR8ji7JCycCLQGcgFvgV+E4pFVPTDcvohVqglNoC7NVaP/q7ZUeABVrrvxtXmXVSSuUDf9FazzO6FmunlHIDcoBbtdaLja7HmimlMoG/a60/qsl2pKVbQ0opB6ALsPIPD62korUhhJHcqXifZxldiLVSStkqpe6h4tPYxppuz67mJTV6foAtkPqH5anAEMuXI0QVbwO7gU1GF2JtlFLtqXjdnIB84Dat9b6abldCV4gGSik1HegD9NFam4yuxwolAB0BT+AO4BOl1ACt9f6abFRCt+bOASagyR+WNwHOWr4cIUAp9RZwDzBQa33c6Hqskda6FDh6/u4OpVRXYBzwcE22K326NXT+P2YHMPQPDw2lFvp/hLheSqm3gXuBQVrreKPraUBsAMeabkRaurVjOvCZUmorsAF4nIprcH5oaFVW5Py37FHn79oAIUqpjkCm1vqkcZVZF6XU+8D9wK1AllKq6fmH8rXW+cZVZl2UUlOAJcApKr6M/BMVw/FqPFZXhozVEqXUk8ALQCAV403Haa3XGluV9VBKDQBWXeKhT7TWYyxbjfVSSl3uDT1Rax1nyVqsmVJqHjAQaErFkLu9wJta6xU13raErhBCWI706QohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAVJ6AohhAX9P1kuJ7Muu7ohAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"az.plot_autocorr(idata, var_names=[\"beta\"]);" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 335 | |
}, | |
"id": "J67lbBUJbGk8", | |
"outputId": "acb7c271-c8a3-4dff-e3ca-03883e737107" | |
}, | |
"execution_count": 80, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 993.6x331.2 with 2 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA08AAAE+CAYAAABV3ytXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5xkZX3n8c9XELwwigrOgCxREgLesiIYBUUbwySuZuOFRNRVxFVRUSLRmOjGjWi8RQ0OqxIzxA2KMeAl8aWuhBFkxACiM6tRQZGNI0ZhYCYqogLC+Ns/6rQUNdXdZ7qrumqqPu/X67y66pznPP2cp6vqqW+fW6oKSZIkSdL87jTqBkiSJEnSzsDwJEmSJEktGJ4kSZIkqQXDkyRJkiS1YHiSJEmSpBYMT5IkSZLUguFJGpIkpySpJLsOoK6Zpj7fs5KkHeJ4JA2OL3xp5zADvA7fs5Kk0ZrB8UhTzBe+JEmSJLVgeJKG74FJLkzysyTXJnlD9+EOSfZO8t4k309yS5JvJjmha/kpdP7LB3Brc+hFdS1/fZL/m+THSbYm+WySRy3b1kmSdhaOR9ISLfnYV0kL+jjwv4G3AL8D/E/gF8ApSe4B/AtwV+AUYFNT5q+T7F5V7wL+FtgPeD7wGGBbT/33A94JfA+4O/Bs4KIkh1bV14a7aZKknYjjkbREhidp+M6oqrc2j9c1A9Qrk6wBTgJ+BXhoVV3VlDk/yZ7A65L8dVV9L8n3mmWXVdVt3ZVX1QtmHyfZBfhn4HLgBcDLh7dZkqSdjOORtEQeticN34d7np8N7AE8BHgCcBmwKcmusxNwHnAf4EELVZ7k6OYwjP8AbgNuBX4dOGiA2yBJ2vk5HklL5J4nafium+P5/YD7Ar9GZ4Dp5z7zVZzk4cCn6QxuzweupXMYxd8Cd1lkeyVJk8nxSFoiw5M0fCuBb/c8B/g+8B/A9cx9OMOVC9R9DJ3/7j2tqn454CW5F/CjRbVWkjSpHI+kJTI8ScP3dOCtXc+fAfwE+Bqd48FPAr5bVdfPU8ctzc+7Ajd2zb8bnf/sdV/t6PHA/nRO9pUkaZbjkbREhidp+F7YXAr2S3SuXPQC4JSquiHJO4Fjgc83j6+kc4Wig4Ejq+rJTR1XND9fmeRcYFtVbaAz2J0MnJnk7+gcW/4/6fwXUZKkbo5H0hKlqhYuJWmHdd0P46HAu4BHATcAZwCvq6pfNOXuBfw58BQ6x53/iM6g9bGqWtOU2QX4X8AfAHvRee+mWXYS8ApgFfB14DXAawGqamb4WypJGmeOR9LgGJ4kSZIkqQUvVS5JkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+SJEmS1ILhSRozSf5Tko8muSHJj5P8Y5L9R90uSdJ0SbJfkncluTTJz5JUkvuPul3SKBmepDGS5G7AZ+nclPC5wHOAA4ELk9x9lG2TJE2dXwOeDvwQ+PyI2yKNhV1H3QBJd/BC4ADgoKr6fwBJvgpcBbwIOHWEbZMkTZeLqmolQJIXAL894vZII+eeJ2m8/B7whdngBFBVm4CLgSePrFWSpKlTVb8YdRukcWN4ksbLg4Gv95l/OfCgZW6LJEmSuhiepPFybzrHlvf6AXCvZW6LJEmSuhieJEmSJKkFw5M0Xn5I/z1Mc+2RkiRJ0jIxPEnj5XI65z31ehBwxTK3RZIkSV0MT9J4+QTwqCQHzM5obkj46GaZJEmSRiRVNeo2SGo0N8L9V+Am4LVAAX8BrAB+o6p+MsLmSZKmTJLfbx7+FvBi4ERgC7Clqj43soZJIzKUPU9JHpvkE0m+n6SSHN9inYcm+VySm5r1/jxJesock+SKJLc0P586jPZLo1JVPwUeD3wLOAv4e2AT8HiDkyRpBD7STC9unp/ePH/9yFokjdCuQ6p3Dzr3qvlAM80ryT2AzwAXAY8ADgb+Dvgp8FdNmcOBc4DXAf8IPA34SJJHV9VlQ9gGaSSq6rvAMaNuhyRJVZWFS0nTY+iH7SX5CfCyqjpznjIvAf4SWFlVNzXzXgu8BNivqirJOcC9q2p113rn09lt/MxhboMkSZIkjcsFIw4HPj8bnBrnAfsC9+8qs65nvfOAI4beOkmSJElTb1iH7e2oVcD3euZd17VsU/Pzuj5lVvWrMMkJwAkAd7rTnQ495JBDBtZYSdL8Nm7cuLWq9h51O8aB45Ekjc6gx6NxCU8DV1VrgbUAK1asqA0bNoy4RZI0PZJcPeo2jAvHI0kanUGPR+Ny2N5mYGXPvJVdy+YrsxlJkiRJGrJxCU+XAkcmuUvXvNXANcB3usqs7llvNXDJ0FsnSZIkaeoN6z5PeyR5WJKHNb9j/+b5/s3ytyS5oGuVDwE/A85M8pAkTwNeDZxat18O8DTg8UleneTgJK8BjgLWDGMbJEmSJKnbsPY8HQZ8uZnuSudGal8G3tAs3wf41dnCVXUDnb1I+wIbgPfQub/TqV1lLgGeARwPfBU4DjjWezxJkiRJWg5Dv8/TOFixYkXdeOONo26GJE2NJBur6rBRt2PcOB5J0vIa9Hg0Luc8SZIkSdJYMzxJkiRJUguGJ0mSJElqwfAkSZIkSS0YniRJkiSpBcOTJEmSJLVgeJIkSZKkFgxPkiRJktSC4UmSJEmSWjA8SZIkSVILhidJkiRJasHwJEmSJEktGJ4kSZIkqQXDkyRJkiS1YHiSJEmSpBYMT5IkSZLUguFJkiRJklowPEmSJElSC4YnSZIkSWrB8CRJkiRJLQwtPCU5McmmJDcn2ZjkyHnKnpmk+kw/7SozM0eZg4e1DZIkSZI0ayjhKcmxwGnAm4FDgEuAc5PsP8cqLwf26Zm+DXy4T9kH95S7aqCNlyRJkqQ+hrXn6RXAmVV1RlV9o6pOAq4FXtKvcFXdUFWbZyfgV4EDgDP6FL++u2xVbRvSNkiSJEnSLw08PCXZDTgUWNezaB1wRMtqXghcXlWX9Fm2Icm1SS5IctQSmipJkiRJrQ1jz9NewC7AdT3zrwNWLbRyknsCT2f7vU6ze66OAZ4GXAlcMNe5VElOSLIhyYZbb711x7ZAkqQBcTySpMmx66gb0Mez6YS6s7pnVtWVdALTrEuT3B94FfD53kqqai2wFmDFihU1pLZKkjQvxyNJmhzD2PO0FdgGrOyZvxLY3GL9FwIfq6oftCh7GXDgjjVPkiRJknbcwMNTVf0c2Ais7lm0ms5V9+aU5DeB/0z/C0X08zA6h/NJkiRJ0lAN67C9U4GzknwRuBh4MbAv8F6AJB8AqKrjetY7Abiqqtb3VpjkZOA7wOXAbnQO73sKnXOgJEmSJGmohhKequqcJPcBXkvnXkxfB55YVVc3Rba731OSFcAzgDfMUe1uwNuB/YCb6ISoJ1XVpwfcfEmSJEnaTqom/9zVFStW1I033jjqZkjS1EiysaoOG3U7xo3jkSQtr0GPR8O6Sa4kSZIkTRTDkyRJkiS1YHiSJEmSpBYMT5IkSZLUguFJkiRJklowPEmSJElSC4YnSZIkSWrB8CRJkiRJLUxdeJqZmWFmZmbUzZAkSZK0k5m68CRJkiRJi2F4kiRJkqQWDE+SJEmS1ILhSZIkSZJaMDxJkiRJUguGJ0mSJElqwfAkSZIkSS0YniRJkiSpBcOTJEmSJLVgeJIkSZKkFgxPkiRJktTC0MJTkhOTbEpyc5KNSY6cp+xMkuozHdxT7pgkVyS5pfn51GG1X5IkSZK6DSU8JTkWOA14M3AIcAlwbpL9F1j1wcA+XdNVXXUeDpwD/D3wsObnR5I8cuAbIEmSJEk9hrXn6RXAmVV1RlV9o6pOAq4FXrLAetdX1eauaVvXspOBC6vqTU2dbwLWN/MlSZIkaagGHp6S7AYcCqzrWbQOOGKB1TckuTbJBUmO6ll2eJ86z2tRpyRJkiQt2TD2PO0F7AJc1zP/OmDVHOvM7pU6BngacCVwQc95Uqt2pM4kJyTZkGTDrbfeumNbIEnSgDgeSdLk2HXUDQCoqivpBKZZlya5P/Aq4POLrHMtsBZgxYoVtcQmSpK0KI5HkjQ5hrHnaSuwDVjZM38lsHkH6rkMOLDr+eYB1ClJkiRJizLw8FRVPwc2Aqt7Fq2mc9W9th5G53C+WZcOoE5JkiRJWpRhHbZ3KnBWki8CFwMvBvYF3guQ5AMAVXVc8/xk4DvA5cBuwLOBp9A5B2rWacBFSV4NfBx4KnAU8JjFNnJmZgaA9evXL7YKSZIkSVNiKOGpqs5Jch/gtXTu1/R14IlVdXVTpPd+T7sBbwf2A26iE6KeVFWf7qrzkiTPAN4IvAH4N+DYqrpsGNsgSZIkSd2GdsGIqjodOH2OZTM9z98GvK1FnR8FPjqI9kmSNEoe/SBJO59h3SRXkiRJkiaK4UmSJEmSWjA8SZIkSVILhidJkiRJasHwJEmSJEktGJ4kSZIkqQXDkyRJkiS1YHiSJEmSpBYMT5IkSZLUguFJkiRJklowPEmSJElSC4YnSZIkSWrB8NRlZmaGmZmZUTdDkiRJ0hgyPEmSJElSC4YnSZIkSWrB8CRJkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+SJEmS1MLQwlOSE5NsSnJzko1Jjpyn7NOSrEuyJcmNSS5L8ns9ZY5PUn2muwxrGyRJWg7eZ1CSdg5DCU9JjgVOA94MHAJcApybZP85Vnkc8FngSU35TwP/1Cdw/QzYp3uqqpsHvwWSJEmSdEe7DqneVwBnVtUZzfOTkjwBeAnwmt7CVfXynlmvT/Ik4CnA5+9YtDYPo8GSJEmSNJ+B73lKshtwKLCuZ9E64IgdqGoF8MOeeXdNcnWS7yX5VJJDltBUSZIkSWptGIft7QXsAlzXM/86YFWbCpK8FNgPOKtr9pXAfweeDDwTuBm4OMmBS22wJEmSJC1kWIftLVqSY4C3A8dW1dWz86vqUuDSrnKXAF8BTgL+sE89JwAnAOy+++5DbrUkSf05HknS5BjGnqetwDZgZc/8lcC85ysl+X06e5uOq6pPzle2qrYBG4C+e56qam1VHVZVh935zndu2/Zf8spHkqRBWOp4JEkaHwMPT1X1c2AjsLpn0Wo6V93rK8nT6QSn46vqowv9niQBfgO4dvGtlSRJkqR2hnXY3qnAWUm+CFwMvBjYF3gvQJIPAFTVcc3zZ9AJTn8MXJRk9tyon1fVD5oyrwO+AFwF3IPOoXq/QecKfpIkSZI0VEMJT1V1TpL7AK+lcz+mrwNP7DqHqfd+Ty9u2rKmmWZ9DphpHu8JrKVz0YkbgC8Dj62qLw5jGyRJkiSp29AuGFFVpwOnz7FsZr7nc6zzR8AfDaJtizF7/tP69etH1QRJkiRJIzSMC0ZIkiRJ0sQxPEmSJElSC4YnSZIkSWrB8CRJkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+LMDMz88v7PkmSJEmaDoYnSZLGjP+kk6TxZHgaAAc5aTr53pckaboYniRJGmOGdEkaH4YnSdoBfpGVJGl6GZ4kaR47EpYMVpIkTTbDk6Sp1B10ekOPIUhaOt9HkiaR4UnSVFjuL3J+cZQkafIYngbML0yadr4HJEnSpDI8SZoYHn6naTCur+txbZckDdKuo27Acti2bRvr168H4Ec/+hEA69evv8PjYS2Tps0o3wPL8Z5e7LKTTz4ZgDVr1gxmY8fcgQceeMio2zCOBj0ejZOdpZ2SpsugxyP3PEla0Mknn/zLL/9SG0kcX5aB701Jk2JYn2eDHo8c3CQtyXwfdsvxxc4vj9Lo+P6TtBQ742eI4WnIdsYXhSZX7+ux+/nO8lrdWdo5DPP9/aRx5mtV0qQYWnhKcmKSTUluTrIxyZELlH9cU+7mJN9O8uKl1qnRajtYOqgu3XwhaBj9699Mktrx83KyLPff09fP+BlKeEpyLHAa8GbgEOAS4Nwk+89R/gHAp5tyhwBvAd6V5JjF1qnx4pt/5+PfTJIGz8/WybXYv63/5Ny5DGvP0yuAM6vqjKr6RlWdBFwLvGSO8i8Grqmqk5ryZwDvB/54CXVKE2vaPhQnbXt3ZHsmbds1XMPe4+/rUcPS9jDySX8NTnqQGqe2LNbAw1OS3YBDgXU9i9YBR8yx2uF9yp8HHJbkzousU2NsEt482nH+3fsbRL/Yt5oUvpaXz6R/UR+EQW3PpPXLNEtVDbbCZF/g+8Djquqirvl/Dvy3qjqozzrfAj5YVW/omvdY4HPAvkAWUecJwAkAK1euPPTss88e0BYOTvd9X3rvATMJy+yXpfXZoPpzXE3zts9nEt5HAC960Yu48sors6SNmBCjGo8W+hsNer1BtbNt2VF/Xg9i/Bvndg5irFqO7wyL/X3DbsuOtHOx6w3jb9v277mz/G1h8OPRxN4kt6rWAmsBDjrooMEmxAHpflFN45dEzW+aXxNuuybJzjAezWfYr0lf8+Np0r+jjHKbRt2fi/39bdcb9fYN2zDC01ZgG7CyZ/5KYPMc62yeo/xtTX1ZRJ3aSc33ppu0N+SkbY+k8dH7+eLnzfiZ9L/JqF+DkxYAJ2EbFmuctn3g4amqfp5kI7Aa+EjXotXAx+ZY7VLgqT3zVgMbqupWgEXUuVNr+4Yf9QfTsE3a9sBkbtNi2A/SeBrn9+a4fhkeVFvcy7c0w96jMm4G8X6Ytj4bhGEdtncqcFaSLwIX07ma3r7AewGSfACgqo5ryr8XeFmSNcDfAI8Gjgee2bbOaTJOu03HdSCTJKmNxY6pjnlLY/+Np50lTI3y9TOU8FRV5yS5D/BaYB/g68ATq+rqpsj+PeU3JXki8E46lx6/BvjDqvrYDtSpKTdOH8SGSo2ar0Fp6XzvLMw+0rQZ2gUjqup04PQ5ls30mfc54OGLrVPLww9Jaefn+1iSpMWZ2KvtaXvjdLjfsE3CNkiSBmNnHBN2pM3z7WneGbddGmdTEZ4SbzWyFOP6wTtO7RqntkjDsiOv86r6xRCbstNyPFoefiZLmjXo8WgqwtMee+zBzMzMqJsxVr7yla/c4fmee+4JMLH91L19vds6iGXSzmpHXvPdej9Dep9fddVVXx5wUyeC49Hw9L4GF1NunD/Xu9vWdlulabDQd9pBj0dTEZ60sPXr14+6CZLGQPdngZ8LkiTdkeFJU6Htl8DecvOt5xdLSZosfq5LWojhSVNnRwKSNOl8/UuS1J7hSWrJL5mSpFFxDJLaGfZ75U5DrV2SJEmSJoThSZIkSZJaMDxJkiRJUguGJ0mSJElqwfAkSZIkSS0YniRJkiSpBcOTJEmSJLVgeJIkSZKkFgxPkiRJktSC4UmSJEmSWjA8SZIkSVILhidJkiRJasHwJEmSJEktDDw8Jdk9ybuSbE3y0ySfSLLfAuu8JsmXkvw4yZYkn0zykJ4yZyapnukLg26/JEmSJPUzjD1Pa4BjgGcCRwL3AD6VZJd51pkBTgeOAB4P3Aacn+TePeXOB/bpmp440JZLkiRJ0hx2HWRlSe4JPB94XlV9ppn3HOBq4GjgvH7rVdXv9NTzHOAG4NHAJ7sW3VJVmwfZZkmSJElqY9B7ng4F7gysm51RVf8OfIPOXqW2VtBp2w975j8myfVJvpXkjCT3XWqDJUmSJKmNQYenVcA2YGvP/OuaZW2dBnwFuLRr3j8DxwG/BbwS+E3gs0l271dBkhOSbEiyYcuWLTvwqyVJGhzHI0maHK3CU5I39rlYQ+80M4gGJTkVeAxwTFVtm51fVWdX1Seq6mtV9UngvwAHAU/qV09Vra2qw6rqsL333nsQTZMkaYc5HknS5Gh7ztMa4IMLlPku8ChgF2AvoPvfayuBzy/0S5K8E3gGcFRVfXu+slV1TZLvAQcuVK8kSZIkLVWr8FRVW9n+ULztJNkI3AqsBj7UzNsPeCBwyQLrngYcSyc4fbPF79oLuB9w7UJlJUmSJGmpBnrOU1XdALwPeFuSo5McApwFfJXOZcYBSPLNJC/rev4e4HnAs4AfJlnVTHs0y/dI8o4khye5f3OI4CeB64F/GuQ2SJIkSVI/A71UeeNkOvdpOge4K3ABcFz3+Ut0zlXaq+v5ic3PC3rqej1wCp2LUDyUzgUj9qSzt+lC4OlVdeOA2y9JkiRJ2xl4eKqqW4CTmmmuMpnveZ/yNwG/M18ZSZIkSRqmQV+qXJIkSZImkuFJkiRJklowPEmSJElSC4YnSZIkSWrB8CRJkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+SJEmS1ILhSZIkSZJaMDxJkiRJUguGJ0mSJElqwfAkSZIkSS0YniRJkiSpBcOTJEmSJLVgeJIkSZKkFgxPkiRJktSC4UmSJEmSWjA8SZIkSVILhidJkiRJamHg4SnJ7knelWRrkp8m+USS/RZY55Qk1TNt7imTptw1SW5Ksj7JgwfdfkmSJEnqZxh7ntYAxwDPBI4E7gF8KskuC6x3JbBP1/TQnuV/ArwSOAl4BHA98JkkKwbXdEmSJEnqb9dBVpbknsDzgedV1Weaec8BrgaOBs6bZ/XbqmpzvwVJApwMvLWqPtbMey6dAPUs4G8GthGSJEmS1Meg9zwdCtwZWDc7o6r+HfgGcMQC6x7QHJK3KcnZSQ7oWvYAYFVPvTcBF7WoV5IkSZKWbNDhaRWwDdjaM/+6ZtlcLgOOB54AvLApe0mS+3TVO1tPq3qTnJBkQ5INW7Zsab0BkiQNkuORJE2OVuEpyRv7XNChd5pZbCOq6tyq+nBVfbWqzgd+t2nbc5dQ59qqOqyqDtt7770XW40kSUvieCRJk6PtOU9rgA8uUOa7wKOAXYC9gO5/r60EPt+2UVX1kySXAwc2s2bPhVrZ/J7uevueJyVJkiRJg9QqPFXVVrY/FG87STYCtwKrgQ818/YDHghc0rZRSe4CHAxc2MzaRCckrQa+1FXmSOBVbeuVJEmSpMUa6DlPVXUD8D7gbUmOTnIIcBbwVeD82XJJvpnkZV3P35HkcUkekOSRwEeBuwPvb+otOnu//jTJ05I8BDgT+AlNSJMkSZKkYRropcobJwO3AecAdwUuAI6rqm1dZQ6ic2jfrP2Af+D2w/2+ADyqqq7uKvO2pr73APeic5GJ366qG4ewDZIkSZJ0BwMPT1V1C50b2Z40T5n0PH9Gi3oLOKWZJEmSJGlZDfpS5ZIkSZI0kQxPkiRJktSC4UmSJEmSWjA8SZIkSVILhidJkiRJasHwJEmSJEktGJ4kSZIkqQXDkyRJkiS1YHiSJEmSpBYMT5IkSZLUguFJkiRJklowPEmSJElSC4YnSZIkSWrB8CRJkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+SJEmS1ILhSZIkSZJaMDxJkiRJUgsDD09Jdk/yriRbk/w0ySeS7LfAOt9JUn2m/9NV5pQ+yzcPuv2SJEmS1M8w9jytAY4BngkcCdwD+FSSXeZZ5xHAPl3Tw4ECPtxT7sqecg8daMslSZIkaQ67DrKyJPcEng88r6o+08x7DnA1cDRwXr/1qmpLTz3PB37M9uHptqpyb5MkSZKkZTfoPU+HAncG1s3OqKp/B74BHNGmgiShE8A+WFU39Sw+IMk1STYlOTvJAQNqtyRJkiTNa9DhaRWwDdjaM/+6Zlkbq4EHAGf0zL8MOB54AvDCpr5LktxnsY2VJEmSpLZahackb5zjgg7d08yA2vRC4EtV9a/dM6vq3Kr6cFV9tarOB363af9z52jzCUk2JNmwZcuWfkUkSRo6xyNJmhxt9zytAR64wPRFYDOwC7BXz/orm2XzSnJf4Mlsv9dpO1X1E+By4MA5lq+tqsOq6rC99957oeokSRoKxyNJmhytLhhRVVvZ/lC87STZCNxK59C7DzXz9qMTri5p8auOB24B/qHF77oLcDBwYYt6JUmSJGlJBnrOU1XdALwPeFuSo5McApwFfBU4f7Zckm8meVn3us2FIl4AnN3sVaJn+TuSPC7JA5I8EvgocHfg/YPcBkmSJEnqZ6CXKm+cDNwGnAPcFbgAOK6qtnWVOYjtD+2boXMI3rPnqHc/Onuk9gK2AF8AHlVVVw+s5ZIkSZI0h4GHp6q6BTipmeYqkz7zLgS2m9+1/BkDaaAkSZIkLcKgL1UuSZIkSRPJ8CRJkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+SJEmS1ILhSZIkSZJaMDxJkiRJUguGJ0mSJElqwfAkSZIkSS0YniRJkiSpBcOTJEmSJLVgeJIkSZKkFgxPkiRJktSC4UmSJEmSWjA8SZIkSVILhidJkiRJasHwJEmSJEktGJ4kSZIkqQXDkyRJkiS1YHiSJEmSpBYGHp6SnJDkwiQ/SlJJ7t9yvWOSXJHklubnU3uWJ8kpSa5JclOS9UkePOj2S5IkSVI/w9jzdDdgHXBK2xWSHA6cA/w98LDm50eSPLKr2J8ArwROAh4BXA98JsmKwTRbkiRJkua266ArrKo1AEkO24HVTgYurKo3Nc/flOSoZv4zk6R5/Naq+lhT/3PpBKhnAX8zqPZLkiRJUj/jcs7T4XT2VnU7DziiefwAYFV3maq6Cbioq4wkSZIkDc3A9zwt0irgup551zXz6frZr8z9+lWY5ATghObpLUm+PoB2Tpq9gK2jbsQYsl/6s1/6s1/6O2jUDRgXjket+D7qz37pz37pz37pb6DjUavwlOSNwJ8tUOyoqlq/5BYNSFWtBdYCJNlQVTtyGOFUsF/6s1/6s1/6s1/6S7Jh1G0YF45HC7Nf+rNf+rNf+rNf+hv0eNR2z9Ma4IMLlPnuEtqxGVjZM29lM5+unyt7fk93GUmSJEkamlbhqaq2MtzdgJcCq4G3d81bDVzSPN5EJyStBr4EkOQuwJHAq4bYLkmSJEkChnDOU5JVdM5R+vVm1oOS7Al8t6p+0JS5APhiVb2mKXMacFGSVwMfB54KHAU8BqCqKska4H8k+SbwLeC1wE+AD7Vo1tqBbNzksV/6s1/6s1/6s1/6s1/6s1/6s1/6s1/6s1/6s1/6G2i/pKoGWR9JTgFe12fR86rqzKbMd4D1VXV813q/D7wROAD4N+DPquofu5anqfdFwL2Ay4CXVpUn3kqSJEkauoGHJ0mSJEmaRONynydJkiRJGranhGIAAAWJSURBVGsTH56SnJhkU5Kbk2xMcuSo27RckrwmyZeS/DjJliSfTPKQnjJJckqSa5LclGR9kgePqs2j0PRTJXl317yp7Jck+yR5f/N6uTnJFUke17V86volyS5J/qLrc2RTkjcm2bWrzMT3S5LHJvlEku8375fje5Yv2AdJ7pXkrCQ3NNNZzTmxU8HxyPFoIY5Ht3M82p7jUceox6OJDk9JjqVzMYo3A4fQuXrfuUn2H2nDls8McDpwBPB44Dbg/CT37irzJ8ArgZOARwDXA59JsmJ5mzoaSR5F5+aVX+1ZNHX90nxoXAwEeBLwQDrbf31XsanrF+BPgZcCfwgcDLy8ef6arjLT0C97AF+ns/039Vnepg8+BDwceEIzPRw4a4htHhuOR45HC3E8up3j0ZwcjzpGOx5V1cROdC4qcUbPvKuAt4y6bSPqjz2AbcB/bZ4HuJbOxTlmy9wVuBF40ajbuwz9cU86Fyc5ClgPvHua+4XOl7qL51k+rf3yKeD9PfPeD3xqWvuFzpVOj9+R1wadLz8FPLqrzGOaeQeNepuWoc8cj+647Y5Hd+wPx6M79ofjUf/tdjzavk+WfTya2D1PSXYDDgXW9SxaR+c/X9NoBZ29jT9snj+AzmXlf9lHVXUTcBHT0UdrgY9W1YU986e1X54CXJbknCTXJ/lKkpclSbN8WvvlX4CjkhwMkORBdP5z/ulm+bT2S7c2fXA4nUHukq71LgZ+yoT3k+NRX45Hd+R4dEeOR/05Hi1s6OPRwO/zNEb2AnYBruuZfx1w9PI3ZyycBnyFzk2JofPigv59dL/latQoJHkh8GvAs/ssntZ+OQA4EXgn8FbgYcC7mmXvZnr75S/pfNG7Isk2Op+bb6qq05vl09ov3dr0wSpgSzX/4oNf3sPv+q71J5Xj0fYcjxqOR305HvXneLSwoY9Hkxye1CXJqXR2ST6mqraNuj2jlOQgOocEPKaqbh11e8bInYANdfvNq7+c5EA6x1O/e+7VJt6xwHHAs4DL6QzipyXZVFXvG2nLpJ2Q49HtHI/m5HjUn+PRGJjYw/aArXSOp17ZM38lsHn5mzM6Sd4JPBN4fFV9u2vRbD9MWx8dTuc/wZcnuS3JbcDjgBObx//RlJu2frkWuKJn3jeA2RPap/X18nbgHVV1dlV9rarOAk7l9hN0p7VfurXpg83A3l2H3cze/Py+TH4/OR41HI+243jUn+NRf45HCxv6eDSx4amqfg5sBFb3LFrNHY9xnGhJTuP2geqbPYs30XmRrO4qfxfgSCa7jz4OPJTOf2xmpw3A2c3jbzGd/XIxcFDPvF8Hrm4eT+vr5W50vvh228btn5/T2i/d2vTBpXQuEnB413qHA3dnwvvJ8ajD8agvx6P+HI/6czxa2PDHo1FfJWPIV+A4Fvg58AI6V9Y4jc4JYr8y6rYt0/a/B/gxnZMJV3VNe3SV+VPgBuBpwEPofGBfA6wYdfuXua/W01zdaFr7hc7lPG8F/ozO8fd/0PTBS6e8X84Evkfncrn3B54KbAH+apr6pRloZr/c/Qz48+bx/m37ADgX+FozSB3ePP7kqLdtmfrP8cjxqG1fOR45Hs3VL45HNfrxaOQdsAwdfCLwHeAWOv/5e+yo27SM215zTKd0lQlwCp1d5DcDnwMeMuq2j6CvegerqeyX5gP5X5tt/hade0lkmvuFzsm5a+j8x/Mm4Nt0zlG4yzT1C5379PT7PDmzbR8A9wI+SOdL9I+bx3uOetuWsQ8djxyP2vSV41E5Hs3RJ45HNfrxKE0FkiRJkqR5TOw5T5IkSZI0SIYnSZIkSWrB8CRJkiRJLRieJEmSJKkFw5MkSZIktWB4kiRJkqQWDE+SJEmS1ILhSZIkSZJaMDxJkiRJUgv/H2UNG+6GP3XxAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"base_hazard = idata.posterior[\"lambda0\"]\n", | |
"met_hazard = idata.posterior[\"lambda0\"] * np.exp(idata.posterior[\"beta\"])" | |
], | |
"metadata": { | |
"id": "-G8vzsV_bwvK" | |
}, | |
"execution_count": 81, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def cum_hazard(hazard):\n", | |
" return (interval_length * hazard).cumsum(axis=-1)\n", | |
"\n", | |
"\n", | |
"def survival(hazard):\n", | |
" return np.exp(-cum_hazard(hazard))\n", | |
"\n", | |
"\n", | |
"def get_mean(trace):\n", | |
" return trace.mean((\"chain\", \"draw\"))" | |
], | |
"metadata": { | |
"id": "Twa28-6KcATZ" | |
}, | |
"execution_count": 82, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, (hazard_ax, surv_ax) = plt.subplots(ncols=2, sharex=True, sharey=False, figsize=(16, 6))\n", | |
"\n", | |
"az.plot_hdi(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(base_hazard),\n", | |
" ax=hazard_ax,\n", | |
" smooth=False,\n", | |
" color=\"C0\",\n", | |
" fill_kwargs={\"label\": \"Had not metastasized\"},\n", | |
")\n", | |
"az.plot_hdi(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(met_hazard),\n", | |
" ax=hazard_ax,\n", | |
" smooth=False,\n", | |
" color=\"C1\",\n", | |
" fill_kwargs={\"label\": \"Metastasized\"},\n", | |
")\n", | |
"\n", | |
"hazard_ax.plot(interval_bounds[:-1], get_mean(cum_hazard(base_hazard)), color=\"darkblue\")\n", | |
"hazard_ax.plot(interval_bounds[:-1], get_mean(cum_hazard(met_hazard)), color=\"maroon\")\n", | |
"\n", | |
"hazard_ax.set_xlim(0, df.time.max())\n", | |
"hazard_ax.set_xlabel(\"Months since mastectomy\")\n", | |
"hazard_ax.set_ylabel(r\"Cumulative hazard $\\Lambda(t)$\")\n", | |
"hazard_ax.legend(loc=2)\n", | |
"\n", | |
"az.plot_hdi(interval_bounds[:-1], survival(base_hazard), ax=surv_ax, smooth=False, color=\"C0\")\n", | |
"az.plot_hdi(interval_bounds[:-1], survival(met_hazard), ax=surv_ax, smooth=False, color=\"C1\")\n", | |
"\n", | |
"surv_ax.plot(interval_bounds[:-1], get_mean(survival(base_hazard)), color=\"darkblue\")\n", | |
"surv_ax.plot(interval_bounds[:-1], get_mean(survival(met_hazard)), color=\"maroon\")\n", | |
"\n", | |
"surv_ax.set_xlim(0, df.time.max())\n", | |
"surv_ax.set_xlabel(\"Months since mastectomy\")\n", | |
"surv_ax.set_ylabel(\"Survival function $S(t)$\")\n", | |
"\n", | |
"fig.suptitle(\"Bayesian survival model\");" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 431 | |
}, | |
"id": "MY-dV5whcHn_", | |
"outputId": "4e2957e4-c897-401a-c59f-d18bea8508d5" | |
}, | |
"execution_count": 83, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7wAAAGeCAYAAAC3uA0jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXyU1dn/8c+5Z8lkX0gCWYCw74uCAoKoiFqRQrXWpUpFa1eV+rS1Wve6/GpbHx+rtm5VUau27kXFtYorouyyyB4ghC0hezJJZub8/pghAgkYkkDI8H2/XvNKMve5z33NZJtrzjnXMdZaRERERERERKKN094BiIiIiIiIiBwKSnhFREREREQkKinhFRERERERkaikhFdERERERESikhJeERERERERiUpKeEVERERERCQqKeEVEZGoZow50Rizqr3jaA1jzJvGmEvaoJ85xpjL2yKmg7zuycaYgma2vdUY889DHZOIiBwd3O0dgIiIRBdjTD7QGQgC9cBnwM+ttZvbIx5r7cdAv/a4dlux1p7Z3jGIiIh0RBrhFRGRQ+G71toEIAvYDtzfzvEcsYwxevNZRETkEFHCKyIih4y11g+8CAzcfZ8x5ixjzCJjTLkxZrMx5tY9jr1hjLlqzz6MMUuNMWdHPu9vjHnXGLPLGLPKGHPeHu0mGWNWGGMqjDFbjDG/jdy/13RaY8x1xph1kXYrdvcdOTbdGPOJMeZuY0yJMWaDMWa/o6vGmGsj16qIxHNq5P6Zxpg79mi3bwz5kXOXAlWRz1/cp++/GmPui3w+xxhzuTEmxhhTaowZvEe7DGNMjTEm0xiTaox53RizMxL/68aY3AN9j/bo51ZjzAvGmH9GHs9Xxpi+xpjfG2N2RL5Xp+/RPtsYMyvyvVhrjPnJHsdiI89BiTFmBXDcPtfKNsa8FIlzgzFmRnNiFBEROVhKeEVE5JAxxsQB5wOf73F3FfAjIAU4C/iFMeZ7kWNPAhfvcf4wIAd4wxgTD7wLPAtkAhcAfzfG7E6mHwN+Zq1NBAYD7+8nrHXAiUAy8Afgn8aYrD2OjwJWAenAn4HHjDGmicfWD7gSOC5yzTOA/G95SvZ0YeTxpwD/AiYZYxIjfbuA8yKPtYG1thZ4OXLubucBH1prdxD+v/4E0B3oBtQADxxETN8FngZSgUXA25E+c4DbgIf3aPsvoADIBs4F/p8xZkLk2C1Ar8jtDKBh/bExxgFeA5ZE+j0VuNoYc8ZBxCkiItIsSnhFRORQeNUYUwqUAacBf9l9wFo7x1r7lbU2ZK1dCjwHnBQ5PAvoa4zpE/l6GvBva20dMBnIt9Y+Ya0NWGsXAS8BP4i0rQcGGmOSrLUl1tqFTQVmrX3BWlsYuf6/gTXA8Xs02WitfdRaGyScgGcRXpO8ryAQE7mmx1qbb61ddxDP0X3W2s3W2hpr7UZgIbB7tHkCUG2t/byJ854lnOzv9sPIfVhri621L1lrq621FcCdfPPcNsfH1tq3rbUB4AUgA7jLWltPOMHNM8akGGO6AmOBa621fmvtYuAfhN/IgHASfqe1dldk7fZ9e1zjOCDDWnubtbbOWrseeHSfxyQiItImlPCKiMih8D1rbQrgIzwK+qExpguAMWaUMeaDyHTWMuDnhEdTd0+B/jdwcWQk8ELCI44QHrUcFZnSWxpJqC8CukSOfx+YBGw0xnxojBnTVGDGmB8ZYxbv0cfg3deP2Lb7E2ttdeTThH37sdauBa4GbgV2GGP+ZYzJPojnaN8iXs/yzchtQxLbhA+AuMjzmAcMB16B8Ii6MeZhY8xGY0w58BGQEhkxbo7te3xeAxRFEv/dX0P4ucgGdkWS6t02Eh6xJXJ88z7HdusOZO/zfbyept9UEBERaRUlvCIicshYa4PW2pcJj4aOi9z9LOGR3K7W2mTgIWDPKcNPEk5kTyU8yjk3cv9mwlN3U/a4JVhrfxG51pfW2qmEpzu/Cjy/bzzGmO6ERxOvBDpFkvJl+1z/YB7fs9bacYSTOAv8KXKoCojbo2mXfc+NtN/TC8DJkTW3Z7OfhDeSgD5PODm+EHh9j8TzN4QrUo+y1iYB4yP3t+jxHUAhkLZ7CnZEN2BL5POtQNd9ju22Gdiwz/cx0Vo7qY1jFBERUcIrIiKHjgmbSnhN6MrI3YmERwf9xpjjCY9mNogkuCHgf/lmdBfgdcLTnacZYzyR23HGmAHGGK8x5iJjTHJk+m15pI99xRNONHdG4ruU8AhvSx5bP2PMBGNMDOAnPAK6+5qLCa/JTYuMbF/9bf1Za3cCcwivwd1grV15gObPEl4bfRF7J8aJkThKjTFphNfStrnINOXPgD8aY3zGmKHAj4Hd++c+D/w+UkQrF9izENkXQEWkUFesMcZljBlsjNmrsJWIiEhbUMIrIiKHwmvGmErCieedwCXW2uWRY78EbjPGVAA308RILPAUMIRvEigio5inE17rWUh46vGfCK+jhfB63/zIVN6fE04G92KtXUE4kZ5LePruEODTFj7GGOAuoCgSSybw+8ixpwkXZcoH3iE8Tbs5ngUmsv/pzABYa+cRHkXOBt7c49C9QGwkps+Bt5p53Za4EMgj/L14BbjFWvte5NgfCE9j3kD48Te8cREZoZ5MeCr2hkis/yBcRExERKRNGWv3nVElIiLSvowxPwJ+GpkuLCIiItIiGuEVEZEjSmQro18Cj7R3LCIiItKxKeEVEZEjRmQv1p2EpxsfcFqviIiIyLfRlGYRERERERGJShrhFRERERERkaikhFdERERERESikhJeERERERERiUpKeEVERERERCQqKeEVERERERGRqKSEV0RERERERKKSEl4RERERERGJSkp4RUREREREJCop4RUREREREZGopIRXREREREREopISXhEREREREYlKSnhFREREREQkKinhFRERERERkaikhFdERERERESikhJeERERERERiUpKeEVERERERCQqKeEVERERERGRqKSEV0RERERERKKSEl4RERERERGJSkp4RUREREREJCop4RUREREREZGopIRXREREREREopISXhEREREREYlKSnhFREREREQkKinhFRERERERkaikhFdERERERESikhJeERERERERiUpKeEVERERERCQqKeEVERERERGRqORu7wBaIz093ebl5bV3GCIiEiUWLFhQZK3NaO84OjL9bxYRkbbU2v/NHTrhzcvLY/78+e0dhoiIRAljzMb2jqGj0/9mERFpS63936wpzSIiIiIiIhKVlPCKiIiIiIhIVFLCKyIiIiIiIlGpQ6/hbUp9fT0FBQX4/f72DkU6IJ/PR25uLh6Pp71DERERERGRVoq6hLegoIDExETy8vIwxrR3ONKBWGspLi6moKCAHj16tHc4IiIiIiLSSlE3pdnv99OpUyclu3LQjDF06tRJswNERERERKJE1CW8gJJdaTH97IiIiIiIRI+oTHjbW0JCwl5fz5w5kyuvvPKg+sjLy6OoqKjVsbz66qusWLGi1f005d5776W6urpF57Ymrvnz5zNjxowWnbun6dOn8+KLL7a6HxEREREROTJF3Rreff3vO6soLK1ps/6yU2L5zen92qy/Q+3VV19l8uTJDBw4sM37vvfee7n44ouJi4s7rHGNHDmSkSNHHvR5IiIiIiJydIn6Ed7C0hpyU+Pa7Nba5Pm1115j1KhRHHPMMUycOJHt27cDUFxczOmnn86gQYO4/PLLsdY2eX5CQgI33HADw4YNY/To0Q3n5+fnM2HCBIYOHcqpp57Kpk2b+Oyzz5g1axbXXHMNw4cPZ926dXv1NX36dH7xi18wevRoevbsyZw5c7jssssYMGAA06dPb2j3zjvvMGbMGI499lh+8IMfUFlZyX333UdhYSGnnHIKp5xyCgC/+MUvGDlyJIMGDeKWW25pOP+6665j4MCBDB06lN/+9rdNxvXoo49y3HHHMWzYML7//e83jBy/8MILDB48mGHDhjF+/HgA5syZw+TJkwGYNGkSw4cPZ/jw4SQnJ/Pkk08SDAa55pprOO644xg6dCgPP/wwEC5KdeWVV9KvXz8mTpzIjh07WvW9FBHpyIwxjxtjdhhjlu3nuDHG3GeMWWuMWWqMOfZwxygiItJaUZ/wtoeampqGJGz48OHcfPPNDcfGjRvH559/zqJFi7jgggv485//DMAf/vAHxo0bx/Llyzn77LPZtGlTk31XVVUxevRolixZwvjx43n00UcBuOqqq7jkkktYunQpF110ETNmzOCEE05gypQp/OUvf2Hx4sX06tWrUX8lJSXMnTuX//u//2PKlCn8z//8D8uXL+err75i8eLFFBUVcccdd/Dee++xcOFCRo4cyT333MOMGTPIzs7mgw8+4IMPPgDgzjvvZP78+SxdupQPP/yQpUuXUlxczCuvvMLy5ctZunQpN954Y5NxnXPOOXz55ZcsWbKEAQMG8NhjjwFw22238fbbb7NkyRJmzZrVKP7Zs2ezePFiHnvsMbp37873vvc9HnvsMZKTk/nyyy/58ssvefTRR9mwYQOvvPIKq1atYsWKFTz11FN89tlnrftGi4h0bDOB7xzg+JlAn8jtp8CDhyEmERGRNhX1U5rbQ2xsLIsXL274eubMmcyfPx8Ib5t0/vnns3XrVurq6hq2v/noo494+eWXATjrrLNITU1tsm+v19swujlixAjeffddAObOndtw/rRp0/jd737XrFi/+93vYoxhyJAhdO7cmSFDhgAwaNAg8vPzKSgoYMWKFYwdOxaAuro6xowZ02Rfzz//PI888giBQICtW7eyYsUKBg4ciM/n48c//jGTJ09uiH1fy5Yt48Ybb6S0tJTKykrOOOMMAMaOHcv06dM577zzOOecc5o8t6ioiGnTpvH888+TnJzMO++8w9KlSxvW55aVlbFmzRo++ugjLrzwQlwuF9nZ2UyYMKFZz5GISDSy1n5kjMk7QJOpwFM2POXoc2NMijEmy1q79UD9lu0sbcMoRUREWkcJ72F21VVX8etf/5opU6YwZ84cbr311oM63+PxNFQSdrlcBAKBVsUTExMDgOM4DZ/v/joQCOByuTjttNN47rnnDtjPhg0buPvuu/nyyy9JTU1l+vTp+P1+3G43X3zxBf/973958cUXeeCBB3j//fcbnT99+nReffVVhg0bxsyZM5kzZw4ADz30EPPmzeONN95gxIgRLFiwYK/zgsEgF1xwATfffDODBw8GwlOX77///oakebfZs2cf9PMjIlGgtgJqSiBQC/U14Y+BGgiFwBMLHh+4feCOwe3gau9wjyA5wOY9vi6I3Nco4TXG/JTwKDBdMFzzo79w0fTue1e+d8di4lKwvhTwJeN4E3G7HeK9bhJ8bhJi3HjdmngmIiJtSwnvYVZWVkZOTg4ATz75ZMP948eP59lnn+XGG2/kzTffpKSk5KD6PeGEE/jXv/7FtGnTeOaZZzjxxBMBSExMpKKiosXxjh49miuuuIK1a9fSu3dvqqqq2LJlC3379m3oOz09nfLycuLj40lOTmb79u28+eabnHzyyVRWVlJdXc2kSZMYO3YsPXv2bDKuiooKsrKyqK+v55lnnml4jtatW8eoUaMYNWoUb775Jps3b94rvuuuu46hQ4dywQUXNNx3xhln8OCDDzJhwgQ8Hg+rV68mJyeH8ePH8/DDD3PJJZewY8cOPvjgA374wx+2+LkRkQ6gYjt8fHc40QWwFrDhj8aEP8cJf24hN8nktGO0HZa19hHgEYBsY+ymp5/if5ZM4aYL8kmIDe5uhDUGMBgsIeOm1J3BysQT2Brbm5B18HkdUuO8pMZ5yEj0kZ7gJdHnIdHnJsnnISXOo+3jRETkoCjhPcxuvfVWfvCDH5CamsqECRPYsGEDALfccgsXXnghgwYN4oQTTqBbt24H1e/999/PpZdeyl/+8hcyMjJ44oknALjgggv4yU9+wn333ceLL77Y5DreA8nIyGDmzJlceOGF1NbWAnDHHXfQt29ffvrTn/Kd73ynYS3vMcccQ//+/enatWvDFOiKigqmTp2K3+/HWss999zTZFy33347o0aNIiMjg1GjRjUkw9dccw1r1qzBWsupp57KsGHD+PDDDxviu/vuuxk0aBDDhw8Hwmt+L7/8cvLz8zn22GOx1pKRkcGrr77K2Wefzfvvv8/AgQPp1q3bfqdmi0iU8JfD3AfCI7lJzctjXUa1LfawBei6x9e5kfsOKCEznYE7lrHsq2P50dYh3PmLUvp2azwbydggmcEqulW8TFl9Dqs6TWRnTHdq6oKU1dSzensl9UGLY8LvR4QsxHld9MyIp09mIjkpsXRJ9uHzaFBeRET2z+yvGnBHMHLkSLt7bexuK1euZMCAAQ1fH+3bEsnB2/dnSEQ6oEAtfHoflG6GpKxmn9b7+zcUr90VSj+EkR1RImt4X7fWDm7i2FnAlcAkYBRwn7X2+G/rc8SwwXZa8RbKywI87P4tRZVx/PqH5Xz3xBqaHJy1Fl+gHG+wkl1xPVjTaSJlvhyaalwXCFFZG8BfH8BgCEGTuxp0SojhxD7pDOuaQpLP820hi4jIEcwYs8Ba2+I9SaN+hFfJqYjIUSYUhEX/hF3rIbnrt7c/ShljngNOBtKNMQXALYAHwFr7EDCbcLK7FqgGLm1Wv+4YTv/ZeF64ZRY3jv0PT+z6Pnc9lcxX6zz89uJyYvbNP43B70nG704isXYbozb/g83JI1mVcQYhZ+/GXrdDmtsLeInE2WQM1XVB/rO4kP8sLmRobjIn9OpEj/QEXI6mQ4uIHG2iPuEVEZGjiLWw4j+w+QtI6d7kKKGEWWsv/JbjFrjioDs2hr4nHE/u+HUUfLSIW67tz4s9+zLz9QTWFXi485clZHUKNXlejSeNGneIrmXzSazbzpIu51LrST7ApZr+/sbHuImPcRMMWb7eWsGSzaUkx3o4qV8Gw7umkhyrUV8RkaOF1iqJiEj0yP8EVr0VHtlVsttu3F0Gc8r5x+JNTuDrp9/l8sll/OnKEjbvcHHZ7el8ucK7/5ONQ3lMFom12xmz6RGSazbvv+23cDmGjMQYclPjcDmG15YUcvvrK/jn5xtZv7OSUKjjLusSEZHm0QiviIi0v7oqWDELtiwgXDl5H3tWVwawTYwQQrgac1IOOCpk1K469SQ7I44e55/MqodfJ//t+Zx41igeu6GY3/89hf/5v1R+dk4lF3+nqun3JYyhypuON1DBqM2Ps7zzWWxJGtGqNzHivG7ivOFR3+WFZSzaVEJ6Qgy9MhIatXU54faJPjexXhcxbhc+j4tuaXHaOklEpINRwisiIu1rx9ew4InwfrkJnYH9JDUNyc4Bkh7jaGT3SJCUg8/t0G/MAIq++Jr1r82l88i+dOuSyqPX7+KPTybx4EuJrMz3cMOlZcT7mh5prXMnEnRiGLx9Fsn+QlZlnEHQiWmybXO5HENmog+AqtoASwpKG7WxFoIhS9CGwBqMEy723b1THNNGdyc1/gAj1CIickRRwisiIu2jrgpWvArrP4LYNBWYiiaxqeCNp3uKiy3fP4myrzez4ul3GfmbHxDng9t+WsaAvHr+/mIiG7emcdcVpXTtHGyyq6DjpSwmm5zyRaTUbGZp1rlUxnRukzB3r/VtDmstW0v93PPuai4dm0fPJkaGRUTkyKN5OYeAMYaLL7644etAIEBGRgaTJ08+4HmLFy9m9uzZLbpmaWkpf//731t0LsDll1/OihUrWnw+QH5+PoMHN9rZQkSiSSgIlTth52rYuarlty0L4L+3Qf6n4UTXl9Tej0zakjGQ0Z9Ux09SehI9zx5LydebKfxsRcPhH55Rzb2/LmFXuYsf39GJz5YeeF1vRUwW3mAVYzY9Qk7Zgm+mtx8mxhgyk2LwuAx/+2Atn6zZud8q0SIicuSI/hHe9++AsoK26y85FybceMAm8fHxLFu2jJqaGmJjY3n33XfJycn51q4XL17M/PnzmTRp0kGHtTvh/eUvf3nQ5wL84x//aNF5ItKBBGrBXwb+cgjVQ0wS+JLBG7/3NGBrw2tha8vD7auKoHQjlORDeWF4/Wxrpw1bG762RnWjV+YAzJb55KV3omb0IFLmfc3qF+aQMbQH3sQ4AEYOqOPxG4u57m8pXHN/Kj+ZWsmPJlXh7OfteL8nhfpQHYO3/YdO1etZmXkW9a64w/igINHnIcbt4qWFW9i4q5pzjslttK7XAI62QBIROSJEf8JbVhDemqKtlG5sVrNJkybxxhtvcO655/Lcc89x4YUX8vHHHwNQVVXFVVddxbJly6ivr+fWW2/lzDPP5Oabb6ampoZPPvmE3//+9/To0YNf/epX+P1+YmNjeeKJJ+jXrx/Lly/n0ksvpa6ujlAoxEsvvcRNN93EunXrGD58OKeddhq33HILU6dOpaSkhPr6eu644w6mTp1KVVUV5513HgUFBQSDQW666SbOP/98Tj75ZO6++24KCwu5+eabAaipqaGuro4NGzawYMECfv3rX1NZWUl6ejozZ84kKyuLBQsWcNlllwFw+umnt93zLCIHJxiATXOhrjKc2Ab8kY+1UFMMVcXhKcTGCb8at4STVhsC44L49PA01NrycIIbrKNhrawNgTsGPHGQ0EUFoaR5knIAhy7JsazaVkH/aROZd/s/WfX8hwz58ZkNzbLSgzx8XTF3PZXMI68msmqjhxt/vP91vUHHS5kvh8zKVaTWbKTE161Rm50J/dmaNPRQPTK8bofc1FgWbSph4caSRsddjsOpAzI5qW8GPo9+X0RE2lP0J7zt5IILLuC2225j8uTJLF26lMsuu6wh4b3zzjuZMGECjz/+OKWlpRx//PFMnDiR2267jfnz5/PAAw8AUF5ezscff4zb7ea9997j+uuv56WXXuKhhx7iV7/6FRdddBF1dXUEg0Huuusuli1bxuLFi4HwNOpXXnmFpKQkioqKGD16NFOmTOGtt94iOzubN954A4CysrK94p4yZQpTpkwB4LzzzuOkk06ivr6eq666iv/85z9kZGTw73//mxtuuIHHH3+cSy+9lAceeIDx48dzzTXXHK6nV0T2VVEIC58EV0w4gXWcSHLrgMsLMYnhdbJNjcyGguHEuGwLuDwQ1wkc/XuQVkrKBgNeB7JTYik0hrzvHMeGN+aRPWYgnQZ+82a0LwZuuTy8rveBFxL5+R/T+POM/ezXC2AMlTGZeILVpNXk730IS2bVaorjelLnPnTrbB1jyElpenQ5EAzx7vLtfLa2iHOOzWFITopGfEVE2ole0RwiQ4cOJT8/n+eee67RFOV33nmHWbNmcffddwPg9/vZtGlToz7Kysq45JJLWLNmDcYY6uvrARgzZgx33nknBQUFnHPOOfTp06fRudZarr/+ej766CMcx2HLli1s376dIUOG8Jvf/IZrr72WyZMnc+KJJzYZ/5///GdiY2O54oorWLZsGcuWLeO0004DIBgMkpWVRWlpKaWlpYwfPx6AadOm8eabb7b8SRORlqvaGU5sk3MP/lzHBd444PBODZUo5/KEZ1hV7yKvUzxbSmvImzSK7fNXs+Lp9zjhDz/C5fU0NDcGzj+tmrzsADc9lMLld3TiritKGdK7fr+XqHfFNTmlOaF2O3kln7E6o31mHrldDjmpsVTVBpj52UZ6ZRRx9rG55KTEtks8IiJHMyW8h9CUKVP47W9/y5w5cyguLm6431rLSy+9RL9+/fZqP2/evL2+vummmzjllFN45ZVXyM/P5+STTwbghz/8IaNGjeKNN95g0qRJPPzww/Ts2XOvc5955hl27tzJggUL8Hg85OXl4ff76du3LwsXLmT27NnceOONnHrqqQ1TmHd77733eOGFF/joo48a4h00aBBz587dq11paeOtHESknZRtCY/sihxJMgfB6jeJT0qmT2YCq7dXMuDiiSz43xdY//o8+pwzrtEpowbV8cj1xfzu/lSuvDuN635Uxpkn+A/qslXeTnQvncfmlOOo8aS21aM5aPExbuK8LraW+bnnnVV0TvI1auPzuDguL42B2Ukkx3qa6EVERFpDCe8hdNlll5GSksKQIUOYM2dOw/1nnHEG999/P/fffz/GGBYtWsQxxxxDYmIiFRUVDe3Kysoail3NnDmz4f7169fTs2dPZsyYwaZNm1i6dCnDhg1rdG5mZiYej4cPPviAjRvDa48LCwtJS0vj4osvJiUlpVGxqo0bN3LFFVfw9ttvExsbfie6X79+7Ny5k7lz5zJmzBjq6+tZvXo1gwYNIiUlhU8++YRx48bxzDPPtPVTKCLNtWtDeI2tyJEkLa+hmnK3TvFsLfPj75VD9gmDyH/7S7oc34/E3IxGp+VlBfnH9cVc/1AKtz+ewobCSn5+TuV+i1ntyxo31hh67vqI5Z2ntuEDOnjGGNITYgiGLLWBxlsv1dQFeWlhAS8vhH5dEhnTqxO9MxPwuhyq6oKUVNVRWl3Pzgo/RZV1zb5ut7RYRual4XZpQw4RObop4T2EcnNzmTFjRqP7b7rpJq6++mqGDh1KKBSiR48evP7665xyyincddddDB8+nN///vf87ne/45JLLuGOO+7grLPOajj/+eef5+mnn8bj8dClSxeuv/560tLSGDt2LIMHD+bMM8/k2muv5bvf/S5Dhgxh5MiR9O/fH4CvvvqKa665Bsdx8Hg8PPjgg3vFNnPmTIqLi/ne974HQHZ2NrNnz+bFF19kxowZlJWVEQgEuPrqqxk0aBBPPPEEl112GcYYFa0SaS/WQtnm8DpdkSNJUg5gwVpcxjA4J5nP1xXT+9zx7Fy6nhVPvcvx112IaWJ9a1KC5d6rS7jnuST++VYCGwrd3HJ5GQlxzdsKqMqTTk75IvJTxlAVk9nGD+zguRxDnLfpl11JsR5CIUt+URVfb6vA43IwQH0wFK4tZ8N15rwup9kF0j9fX8wna4s4d0RX8tLj2+xxiIh0NKYj7yE3cuRIO3/+/L3uW7lyJQMGDPjmjnbYlkg6tkY/QyJHutoKePNabfHTBnp//4bitbtC6e0dR0e21/9ma+Ht68Hxgic8nXfNjgo27KyiYvEalj32Jv0vOpVupwzfb3/WwssfxHHvv/7xXGwAACAASURBVBPJyQhy1xUl5GU1HiltSnxdEUVxvViSfX6rH9fhFAiGi3W1dnS2pLqOCn+A0T07ceaQLiT5NGVaRDoeY8wCa+3Ilp4f/SO8Sk5FJNpV7aRhCyGRI4kxkNEPCpc0JLw90uPZVu7HM6IvneauYM1LH5M5vBe+1KZnKBgD359QTc+cem54KIXL7+zELZeXceLw2m+9fJUnjc6VK0n2F1Dma0FBt3bSVtOQU+O8JPs8LNi4iyWbS5k8NIsBWUmkxHkwrd1LW0Skg9DCDhGRjq6qKLxXrsiRKKM/BL8pOuV2HIZkJ1MXtPS/+FRsKMTXz77/rd0c06+ex28splvnINc+kMpjs+IJfduPvXGod3z0KXqvYS3x0cZxDFnJsST63Ly8aAt3vrGSO99YyauLtrCisJwK//6rYIuIRIPDMsJrjOkKPAV0JrwM5RFr7V/3aWOAvwKTgGpgurV24eGIT0SkQyvZGN6SSORIlJzLvu+vp8R56d4pjk0Gen13DGte+pjtC9fQ+djG2+ztqUunEA9eW8yfnk7msVmJzP0qhvSUEIbIttOAz2u5dHIluZ3D055rPKmkVW8grWYDu+J6HrD/aObzuMhJicVaiz8QYu76Yj5ZuzMyN6TxaG/3TnH87KReeFT0SkQ6uMM1pTkA/MZau9AYkwgsMMa8a61dsUebM4E+kdso4MHIx4NmrdVUHWmRjrymXY5iJarQLEewhC7hbDQUDO/5HNE7M4FtZX6yJxzDti++5utn3yetfzc8cTEH7C7GCzddVsbAHvW8/kksW3a4sIQHcEMhw/ZdDpu2u3j4ul3hqs7GUOdKoO/Od/m820/CsRzFjDHEelzEesLfi/3931tfVMUna3ZySv/OhzM8EZE2d1j+6ltrt+4erbXWVgArgZx9mk0FnrJhnwMpxpisg72Wz+ejuLhYiYscNGstxcXF+HyN90kUOWJZGy7M51XCK0colxtS86CuYq+73Y5Dvy6J1IZg4I9Op7asirWvfNysLo2BcydUM/PmYp7+QzH//EMxz9xWzHN3FHHNxeUsX+9l1sexDe397iSSawvJrPy6LR9ZVDDGNHnrnOjjzWXb2FFxcHsgi4gcaQ570SpjTB5wDDBvn0M5wOY9vi6I3Lf1YPrPzc2loKCAnTt3tiJKOVr5fD5ycztOYRMRakogFAAn+msQSgfWeRCsXA++lL3vTvKREFNFfW4G3U49hk3/XUjWqAGk9N73PfHm+84YP298VsuDLyUyfngtackhMIYadwr9it6mKL4PIUfVir+N1+3gdgwvLSjgZ+N74TSxdZSISEdwWF8hGWMSgJeAq6215S3s46fATwG6devW6LjH46FHjx6tCVNEpOOoKkIVmuWIl94HaFxhyjGGfl0SWbCxhN5TT2DHwjUsf+pdxtw8DcftatxPMxgD11xczo9uTee+5xO59SdlANS540nyF5JdvpiClONa82iOGukJMazeXsGCTSUcl5fW3uGIiLTIYVvIYozxEE52n7HWvtxEky3AnptI5kbu24u19hFr7Uhr7ciMjIxDE6yISEdRtYOmEgmRI0pqD4jtBHVVjQ51SvCSFu+lzuViwEWnUlVYzMZ3F7Tqct27BJl2ZhXvzIvli+XfFHSr9qTRt/i/uIM1rer/aGGMISPRxysLt1BWo2rOItIxHZaEN1KB+TFgpbX2nv00mwX8yISNBsqstQc1nVlE5KhTkg8urTuXI5zjQK9ToGZXo0MGQ9/OiQSClvShPck8pjfrXptLTXGLJoI1mDapkq6dA9z9TBK1kVwt4PLhCtXSreTzVvV9NIn1uAiGQsxaXKj6KCLSIR2uEd6xwDRggjFmceQ2yRjzc2PMzyNtZgPrgbXAo8AvD1NsIiIdV8lGFaySjiHn2HCRtSb2jE6O9ZCV7KO6Lki/C04BYNW/PmjV5WI88NuLyinY4eapNxIa7q/yZNCz5BN89aWt6v9okpnkY+GmEr7e1ro3IURE2sNhWcNrrf2Eb1lkZsNvG15xOOIREYkKoSBUbIXEgy5oL3L4xaZClyFQvBbiGy9J6pWZwLZyP7GpiQ178+5cso6MYb1afMnjBtZx+qgann4zntNG1ZCXFSTkuLEYeu76mBWdv9uaR3TUcIwhLc7L818WcPaxloQYNwk+N4kxHnweR1tBisgRTWU9RUQ6qupdgD3q9xWVDqTHeNj2VZOH4r1uuqfFsWlXNd1PG0Hh3BWsfC68N68rpuVVlWecV8Hcr2K4+59J3P/bEoyBam86uWUL2JRyPJUx2me2ORJ8boqranl6bj7GmIa9j92OIc7rUtLbhDivi6nDs+mdmdjeoYgc1fQqSUSko6rS9mvSwWT0A08cBJre2zUvPT6cTDmGARedir+onA1vftGqS6Ylh/jF9ytYuCqGtz4Pr3e3xiHgxNC36L1w1ibN0ik+huyUOLKSY8lOjiUnJZb0hBi8bgePy+i2z63CH+BvH6zlhfmbqaoNtPe3T+SopRFeEZGOqnI7hPRiXToQlwd6ngSr34bkxnuex7hd9M5M4OttFaT1zSVrzEA2vPkFWaMHEN+l5dviTDmxhjc+jeX+5xMZO7SWpHhLtSeNjKrV9Nv5NgEnZq/21d40tiYNa/H1jiYux+ByWraFVLSLcbtIiHHzRf4ulm0p4/zjujIgK0mj4SKHmRJeEZGOqmQDeGLbOwqRg5N7HKyaHR5ZbeKFf7e0OHaU+6nwB+h77nh2Ll7Hymf+y4hfn9viRMFx4HfTyrns9k489HIiv5tWDsZQ5elE17L5jdobG6Qktjt+T0qLrieym8sxZCfHUlkb4NGPNzCyeyqDcpKp9NdTUl1PaXUdpTX1JPk8nDsil/gYvTQXaWua0iwi0lGpQrN0RIldIDUP/GVNHnaMYVBOMhZwJcTS+5xx7Fq5iW1ffN2qy/bpGuDcU6v5z0exLF8fXhMccPmojMlsdLPGIatiaauuJ7KnhBg3uamxfLWljGc+38gri7bw6doiVm+vpKSqjuWFZTzwwVqKK2vbO1SRqKOEV0SkIwrUhdfwujXCKx2MMdDrVKjd/xY38V43A7KSqKoN0HX8EJLyurDqX3Ooq6xp1aUvn1pJekqIPz+dRCC4/3Y1nhS6l8zDCWndpbQdxxg6J/nIToklNzWOzkk+0uK9JPo8ZCXHUl5Tz1//u4bNu6rbO1SRqKKEV0SkI6ouDldn1low6Yg6DwKXG4L1+22SneKjS7KPqvoQgy45nfpqP6uf/7BVl433Wa6+oJw1mz289P7+Z0cEnRi8wWrSata36noiByM9IQbHGB74YC0rtzY9A0JEDp4WCoiIdERVO1VdVjoubxx0HQ2b5+13H2mDYUBWEiXVxThZncj7znFseGMeXUb1J31QXosvffKxtYwZXMujryYwYaSfjNRQk+3qXLF0L/mcovi+Lb6WyMFKjvXgdgyPfryBH4zIZWB2crPP9brC1bLdrm/Gs6y11NQHKamup6SqjqLKWooqawk1/WPfSNBa/PVB/PUh/PVBagNBDIbvHZNNvy5JB/vwRNqFEl4RkY6ofGt7RyDSOt3HQP4nB2wS43YxJCeZ+RtL6HHWKLYvWM2Kp9/lhFsvwe3ztuiyxsCvLyrnopvTuefZJK48rwLHsTgmXNzK5UBqYgi/O5m0mg3E1RVT7e3UomuJtER8jBu3y/DC/AJcri3NO8kS2RvZ4nIcfB4Hn9tFdX0Af30Ix0DIWsDgdTnNnhxkAMcxuIzB5Rgcx1AfCPLQh+s5a2gWE/pl4jiaaSRHNiW8IiIdUcn68H6mIh1VSh7Ep0NdJXgT9tssPSGG7mlxbC6pZtAlp/Pln/7N2lc/pf8Fp7T40jkZQaafVckjryby4SJfo+PD+tTx/35ZQqLX0KV8KevTW34tkZaIcbvomnbwf+OttVgbHpkNhixJPg9pcaZNt0KK9biI9bp4Y2khm3dVc97IrqouLUc0/XSKiHREpZtUoVk6NseBXhPgqxcOmPAC9OmcQFFlLYG8LHJPHsam/y6ky/H9SenZ9HTo5pg2qYreuQHKqwwhawiGIBSC0kqHJ99I4Cd3duJ/rwzR35lHfto4Qo6nxdcSOVyMMRgDDgbPIdwe2eNy6Joax8qt5dz739VMP6EHOSkqoihHJhWtEhHpaOproKYMXDHtHYlI62QfAxiwB15Q6HYchuQmUxcI0fvsccSkJLDiyXcIHajU8rdwOTBueC2TxvqZPK6GqeNrOPvkGi6dXMXfr9mFv85w+Z86M+8rL+nV61p8HZFoZYwhKzmW2voQf31vNa8tKWTJ5lK2ltVQH2zmImGRw0AjvCIiHU3VzvBCRFVolo4uNgW6DIGi1RCfccCmKbFeembEs35nFQMvnsii+19l9YsfkTm8N8YxmMgiXJfHRUJORvjrFhrYs57Hbizmd/en8ssHezGjdBHdpvdvcX8i0Sw1zkttIMgna4oIWoshvPY3M8nHwOxEJg7ogtetMTZpP0p4RUTa0u7KydYSriKyn0rKNhQ5Hvrm1lxlWw6uvciRrMeJsHVJs5r2TE9gR0UtngF5dBnVn03vLWTTewsbtRs47TRyTxraqrA6p4V48Npd3PpoMvc+G89JZV8w+YqRuPTCXaSRGLeLLsnfzKEOWUtNXZD3Vu5ga6mfi0Z3x3co51iLHIASXhGJXiX5sGsj1FdBfXV4KnB9DQRrw4v1bAgIhZNSGwrvCRqsCx8P1kOgDrDg8oLLE/7ojgHHA6F6CNRG2teF24cCkQubbz7sL+E15pt2e57TLBbcjQvtiHRI6X3BGw8B/7f+XLscw5CcZD5fX8zA6d+h68nDscEgNmQjtxCr/vUB275c1eqEFyDOZ/njFaU8/rzhiTdga+Hn/OjGkcQltqxCtMjRwjGG+Bg3cV4XK7dV8PinG7j0hB7EepX0yuGnhFdEoteK16BwUbiaseMC44DjDn808E2SGZkebJzwzeUDdxzERv4x2xCEguGP9X6w1d+0dceGC+4Y55t+RKT5XB7oeRKseguSc7+1eZLPQ+/MBNZsryS1d3aj37nStYXkv/UFdRXVeBNbX9jN5cDPzqule9YWbn/OcN+vPuHHtx9PRs6BC22JSHidb3ayj/yiKh75aB0/PrEnCaroLIeZfuJEJHpVFEJK19aPhu5OlEXk0Mg9Dr6eHZ4R0Yw3jfI6xbOjvJbqugCx3r1/Nzsf24cNs+exc8k6csYNaZPwQo6X74/aitNzIH/6vxrunfEx0286jj7D09ukf5Fotru4VWGpnwfnrOWnJ/YiOS5c9TwUspT769lVVUdZTT01dUHKauop9wco99dTVRuI7B+8N2shGLKEItsvhWy4r8bXhrOGZjOie+ohf5xy5NIrOBGJToFa8JdCUtf2jkREvk1iF0jrAVVFEPvtL0wdYxick8zcdUVU+Ov3Ptg5lZi0RLYvXNtmCS9AlTedszM/xPW/l3DfHet5+Pdz+f5VQxkzqXubXUMkmnVJ9rGzopa/zVlL384JFJTUsK3MTzBkMQZCNryPsNtxcLsMHpeD+wDF55zIFkwuY3A5YFyN19fXB0M8O28jybHhmSFydFLCKyLRqXoXGJemGIt0FL0mwJePNSvhBUiIcTMyL42aur23JgqELBuH9WLbx18RqKnFHds223eFHA8Bx8spvI1zzzSe/OMSXrh3CS/+dUl471NXZP9Tx9D32Aym33wcTisqRYtEo4zEGEqr61i4sZRYr4v0hBhch/D3xOt2sMBjn2zg6ol96Jyk+hdHIyW8IhKdanbtv2CUiBx5Og8Kr+cN1oc/NkNqnJfUfZbpWizZI/ux9YPF7PxqA1nHt912QjWeNJL8hfSvn8+Pbx/LvDc3UVbkx1pLKFI4q6zYz8L3t7Dw/QJGTtQME5F9pcQd3qJvCTFu6gIh/vHxeq46tQ9Jvub9fZHooYRXRKJTZRGghFekw/DEQrfRsGkuJGa3uBuDYeCInixNjGPHwjVtmvACVHoz6V30PkXxfThhcl6j46GQZWdBFbMfX8nQcVl4fXqpJdLe0uK9bC/389Rn+fxkfE9i3KoWfTTRZnIiEp3KN4OrbaYyishh0m1MeHuvVs7O6JwSS9rQnhR9tYFgXf23n3AQQo6bgMvH4G2v4IQa9+04hqk/G0RpkZ8PX1rfptcWkZbLTIwhv7iaFxcUNFngSqKXEl4RiU5lBeERIxHpOFLzIC4D6ipb1U2c10X2yL4Ea+spXr6xbWLbQ40nlcTa7eTt+rTJ4z2HdGLouCz+++81lBf72/z6InLwwtWifczfsIuXFxWworCcHRXholkS3TTPRkSij7VQvhXitWWISIdiDPQ+FZb+C2ISW94NhiGj+7L0kRi2L1xD5jG92zDIsEpvJr13zaE0rhvVnjSscbA4WOMQMm4mXz6Q5Z9v480nv+b8Xw9v8+uLyMFzjCE7NZZ5G3Yxb/0uIPxnJys5lm5pccR5WzfVeXi3FLKS9Wb7kUYJr4hEn9oKCNVr71yRjihnBHz1Qnhqcyt+hzNT40gb0oOdS9YRCgRx2njNXshxU+tOYMSWfwKGPWsGhIybL7pexripPfjo5fWMm9qDnF7JbXp9EWkZt+OQvUdSGgxZKmsDLNhYQrAVyymCQcsXG3Zx9cS+DfsMy5FBU5pFJPpUF2s7IpGOKiYBup8AlTtb1U2c10X2cX0JVNdSsmpzGwW3t1p3EhUxXaiI6Rz5GL5ZHPrtfIvTLuxDbIKHWY8sx6pqvMgRyeUYEmLcZCTG0CXJ1+JbTmos/kCQpz/Ppy4Qau+HJXtQwisi0UdbEol0bHknhmdptOL32GAYckJ/HK+b7QvXtmFw367ak0qn6g10d/I5Y1o/1iwqYuUXOw5rDCJy+GUkxLChqIr/LN6iN7mOIJrvJyLRp2I74SmGItIhJedCWh5UFUNsaou7yeqUQMqgPHYsWsOAiyZgnMP0Pr8x1LiT6b9zNuMm/ZJPZm1g1sPLCYUsxoBxDMYYHAN5g9KIidXLMZFoYIwhOzmWT9cVkZ0Sy9je0VdLpKymno3FVazdUdmo4Je1UB8KURcIURsIUR8Mfx4IhXAZB8cxuJ3wWmq34zT5Us1aCIZCBEKWkLUEQxZXQlrn1sSsv7AiEn1KN4Enrr2jEJGWMgZ6nw5fPNKqhDfO6yZnZF++WrSW0nWFpPbJbcMgD6zOnUCSv5DuVQuZ+rPBPHbLPB6/5YtG7br2S+FXfz0Rx9GbdCLRwHEMWUmxvLywgM5JPnpnJrR3SK1SFwhRWFrDmh0VLN5cyvayWsDicTlN/t0yhJ8DlzE4xhDOaw0BglgbrnZgrT3gBB5jwm8emN2fu72tqgSmhFdEok95obYkEunoOg8CbxwE/OD2tbibYScOYtkTb7Fj4drDmvACVHnT6Vv0PttHDOaGmROprqjDWgiFLNZa1n+1i9f/sYKF7xcwcmLXwxqbiBw6XrdDSqyXmZ9t4OqJfUlPiDlk17LWErLh4lshayOjp6Yhady3bTBkCe4n4QxZS3FlHTsq/OQXVbO+qJId5bUNx5NjPWSn+Br1e6RTwisi0SUYgOoiSDq8L2xFpI25vdBrInz9GiS3PBnMykwkuV83ti9YTd/zTjqsL9SCjhew9Cz+iNouZ5HWZe+ZJ936pbL4wy3MfuJrhp6YjTembStJi0j7SfC58VcG+fNbq/C62/7vTihkCYTC039hd3JrAROeFxxJfF2Owdo925oD1vU0kdM9LkO8102XZB9OB0tw96WEV0SiS03J7rkw7R2JiLRWt1HhhNeGwLRs/W2c103O8f1Y/sTblOdvJ7lHlzYO8sCqvOl0LfuSgpQRVMTsfW3HMUz56SD+fs1nfPTyeiZe2OewxiYih1Z6QgyBUGjPXcvajgGHpkdy4ZtpwyFrw9ODDZEpwkff6yNVaRaR6FJdrArNItEiLg2yj4Gq1m1RNPykwRjHYfuC1W0UWPNZ4xBwfPTb+VaTf5t6D0tn0Jgu/Pffa6goqW2iBxHpyNyOg9t1CG5OeA3t/hJYY0y4SJTLweWE19MejckuKOEVkWhTXcyheStVJPoYY75jjFlljFlrjLmuiePdjDEfGGMWGWOWGmMmHfYge54CgdYlgjlZKST1y2X7gtXtslXI7m2KBu54jb47397rllv6Bd+9fCD1/iBvP73qsMcmIhLtNKVZRKJL+RZwvO0dhcgRzxjjAv4GnAYUAF8aY2ZZa1fs0exG4Hlr7YPGmIHAbCDvsAaa1hMSMqG2AmISW9RFrMdF11H9WTbzHSo27yCpW6t2uDh4xlDpzSCr4qtGh1yheop69GXM5O7MfX0jJ36vB527texxiohIYxrhFZHoUrpJFZpFmud4YK21dr21tg74FzB1nzYWSIp8ngwUHsb4whwH+pwRXp/fCiMmDAXHsH3+mjYK7OAEHS9V3oxGNzCkVW/gjIv74fW5eO3RFd/al4iINJ8SXhGJHtZCxTYlvCLNkwNs3uPrgsh9e7oVuNgYU0B4dPeqpjoyxvzUGDPfGDN/587WrbdtUvZwcMe0ampzbnYKyX1y2TZ/VbtMa96fOlcc2RVLSUiJYeIP+7Bi3nbWLDoEz6GIyFFKCa+IRI/6GqirAsfT3pGIRIsLgZnW2lxgEvC0MY3LJVtrH7HWjrTWjszIyGj7KLxx0Ps0qNrR4i7cjkOfsQOp2VFK5ZaiNgyudfzuRFJr8vEEqznxez1J7RzLrEeWE6gLtndoIiJRQQmviESP6mJwXNqSSKR5tgB7bnCbG7lvTz8Gngew1s4FfED6YYluX3ljw7/boUCLuxgxcSgY2D7/8Fdr3i/jYLCk1mzE43Ux9WeD2LKunIdv+Jyaqvr2jk5EpMNTwisi0aNml7YkEmm+L4E+xpgexhgvcAEwa582m4BTAYwxAwgnvO0z3zY2BfLGQ2XLR3k7d0khtU8u29phe6IDqXd8dIkUtBo6Lpsf/u4YNizbxd9+8ynlxf52jk5EpGNTwisi0aNyB9qSSKR5rLUB4ErgbWAl4WrMy40xtxljpkSa/Qb4iTFmCfAcMN225wLYnieHR3htqEWnGwwDThpM9dZdVBYWt2loreF3J5NZtQZXqA6AkRO7cvntoygqrOK+qz9hR0FlO0coItJxKeEVkehRthncKlgl0lzW2tnW2r7W2l7W2jsj991srZ0V+XyFtXastXaYtXa4tfaddg04sTPkjICqlg8yj5gQnta87Qia1myNCxMKkuL/poZY/5GZ/PIvJ1DrD3D//3zCplWtq1ItInK00j68IhI9yraoQrNItOtzGmxZEF6+0IL1+mmdU0jvG57W3HvKmEMQYMuEHBeZFSspjuvVcF+3fqnMuHccD//+c/5+zWcMOL4zjmMwBkzko+MyGMfgchkcl4NxDDE+F+Om9iApzdeOj0hE5MighFdEokMoBJXbIaFLe0ciIodSSjdI7wtlBRDfsvpZg04azIePvEXV1l3EZ6W1cYAtU+NOoUvlMr7O/A7WfPPyLCMngRn3juPf9yxmW345NgShkMVaG/48GCIUsuFbMHyr9QdY/GEhP//TGNI6x7XjoxIRaX9KeEUkOvhLwyM+jqu9IxGRQ8kY6HcmfHov2E4tGuUdPmEIHz7yFoULVtNn8uhDEOTBCzke3PV1JPm3Uhbbda9jSWk+fnJH8+PMX7mLR2+YxwO//pSf/2kMmbkJbR2uiEiHoTW8IhIdqne1dwQicrik94WkHKgtb9HpKZmpZPTNYccRVq3ZYsioan1MeQPS+OVfTiBQF+Rvv/mUwg0te55ERKKBEl4RiQ41u1pcuVVEOhjHgf6TwV/W4i6GnDyEqs07+fTGJ/jslif5/PZ/Mu+Pz/Lln//dbgWt/O5kssuXtsn2ajm9krnif8fiuAx/++2nbPxaRa9E5OikhFdEokPZFnC0SkPkqNFlSHgNb/kWKC8IfyyLfGxGFecRZ46k+0lDiclKw9spCSchFjxuqneVs+yxN6nacfgTxIDLhy9YTkJdy/ca/v/s3Xd4HNd18P/vmZlt6ABJEGAnKPYiiiKpRklUl2zJam6yHce9yY7z2o4d//I+bxznjRMndmI7LrKSV5ZL5KpCWVa1GlVIiqLE3nsnWNCxdeb+/pgFCXbUnQX2fJ5nNIvZKQcUuTtn7r3ndjZ8TCmf/+4VxIpD3Pe119m2On+mYlJKqVzRu0Ol1ODQtAdCWpxFqYJhO3DllyHeABi/VdQYv5vz8v8+7+FF5UV88H+/l9Zk5qTtLYeb+OVnf8SaXzzHJV96N2Lltm3AIAxp20ZrZHifnG9IbTGf//cruO9rS7j/75bysb+fx+S51X1ybqWUGgi0hVcpNTi0HICQTsGhVEGJVUDVeKiqgyETYOgFMOIiiJZBOn7ew0O2RWVR+KRlzNhhXP/Jm2jeuIfti9f2Sffi7kjapYxsWdWn56wYGuPe71zBsJHF/Pffv8HaJQf79PxKKZXPtIVXKTWw7F8F6x8DsfxxfGL7S2s9VE04//FKqcFNBGovgp2v9Xhe7vm3X8La51ex+9FXqJw+lqqhZT2qBt0TKbuI0tRBYukG4qHKPjtvaWWEz/7r5dz/d0t58JvL+eDX5nDRwpF9dn6llMpX2sKrlBpYdi72KzJnkpBqh0Sz36WxbETObkiVUnmuZgaYzPn3OwuxLN71lTtxk2n2PfYqrUm3D4M738UFD4dph57A9lJ9eurisjCf/ZfLGDu1kl/9ywqWP7u7T8+vlFL5SBNepdTAkUnB4c1QPAzCxRAugUipv+j4XaVUh8px/roXlduHjRvOlR9cyIFlG2nbuIv2ZM8T6O5qCw9lSPt2Zh58BMvr2+tGi0N86p8uZeKFQ/n1d1by0h+2smdzI3u3NrF/exMHdzZTv7cVk+Ou3Eop1V+0S7NSauBo3AXGBcsOOhKlVD4LF/tje9uOQLSix6dZcM/VrH9pDdt/+yIXD5zgKAAAIABJREFU/t0HSVpCJJSDzx8RmiM1VLduYNqhx1lXcztG+u66kZjDx//xEn7+j2/y+P3rz7jPgtvHc9e9M/vsmkopFRRNeJVSA8fhjWjHFKVUl4y4GNb+vlcJrxN2uO0rd/HAX/2UpufepPjmS3OT8EI26a1lZMsqXCvMhup3+LUL+kgobPPRv5/HtjVHSSdcPM/geQZjYPUr+3n9jzu58o7xDBtZ0mfXVEqpIGjCq5QaOPa9BbHyoKNQSg0EQy8Aej+uf/T0Mcy7/RKWL1rGnGnjSE0YSdjJ0YM3sWiK1DKm6Q0yVpgtQ28AEcS4RNNNFKWPEUs3kraLaAtXEQ9V4lqRLp/ediwmXTTstO0TZlaxfukhnv7FJv7i6xf35W+klFI5pwmvUmpgiDdA6yEoGxV0JEqpgaBsJDhRcFNgh3t1qus+cRObX9/ItoeeZ/KX30e4rGfVn3tELJojtdQde5WS1GGimRaKU4cR/DG2YjyMCAZBjCERKqc5MoJdFZfQWDS2R5csrYxy1V11/PnXW7j2vRcwcoI+aFRKDVzaN1ApNTAc2+HPh6mVmJVSXWHZUHshxBt7fapIUYTbvnwnTfuOcuCZ5aTdnhfD6gkjNs3RGioSe3C8BG3hYbREamiJ1NAcHUFLpJbW7M+e2Axt38K0w3/q1RzCC989gVhJiKd/vrEPfxOllMo9TXiVUgPDgVV+a41SSnVVzUxwk31yqgnzJjL7pjnsfe5Njmw70Cfn7A4jDvFQFWm7CHO2sbwiuFaEttBQSpL1lCV7HmdRaZhr3nMB65YeYueGYz0+j1JKBU0TXqVU/vNcOLgGYj0vPqOUKkBVdf66j6bYufFz76SoopjtD/2ZVCrdJ+fsFyJ4EmJk89u9Os2Vd4ynpCLMUz/TVl6l1MCVk4RXRB4QkXoRWXuW9xeKSJOIrMwu/ycXcSmlBojmfZBJ9HocnlKqwMQqoLQWUm19c7rSGLf+9R207T3Ctiff6JNz9pf2UCUjm97GcRM9Pkck5nD9PZPYsvIIm98+3IfRKaVU7uSqhfdB4Obz7POKMWZ2dvlmDmJSSg0UR7YGHYFSaqAaMQcSvR/H22HKgmlMXTiTvU+9QdPe/E0CPctBjMuwtk29Os/l7xxLxbAYTz6wAdNHLeVKKZVL3U54RaRYpHuznxtjFgM6AEQp1TP7V0CkNOgolFIDUfUUoG8TtXf+1W2EiyKs+9kzeBm3T8/dl5JOKeMaXu9Vl24nbHPTX0xm96ZG1i091IfRKaVUbpx3WiIRsYD3Ax8E5gFJICIiR4A/AT81xvRF88tlIrIK2A98xRiz7izxfAr4FMCYMWP64LJKqbyWavcrNJeNDDoSpdRAVD4aLAe8jL/uA8UVJdx47zv547/8gT9/5nsgIJaF2BZiWQyZOobZ997eJ9fqjZRdTFnqIKXJg7REa3t8nrk3jOKF323hT/9vPRNmDiFWEurDKJVSqn91pYX3RWAC8HWgxhgz2hhTDSwAlgLfFpEP9TKOt4CxxpgLgf8EHjvbjsaY+40xc40xc4cNO32ydKXUINOw01+frSqpUkqdixP2W3kTTX162otuuIhL772NETfPZ9RN8xlx3RxqrrqQ0vG11L+9lfiRvr1ej4jgYve6eJVtW9x170yO7G/jJ199ndamvql8rZRSudCVO8jrjTH/CDQbY45PPGeMOWaMedgYczfw294EYYxpNsa0Zl8/CYREZGhvzqmUGiQOrYXujaJQSqmTjZgD6fY+PaWIsPD2+Vz70etZ+NHruebjN3LtJ2/iqk/fAsC+FVv69Ho9FQ9VMbK5d8WrACZfXM3HvjGfg7tb+PFXXqf5WO/Op5RSuXLehNcY01F3/5FT3xORS0/Zp0dEpEZEJPt6fjauo705p1JqEDAG9r8NscqgI1FKDWR9PD1Rh4hjM2FYyUnLRbPGUDl6GEdW5kexPc9ysLwMQ3tZvApg6vzhfPL/XsqxQ+386Muv0VAf74MIlVKqf5034RWR94rIvwClIjI1O6a3w/1duYiI/BpYAkwWkb0i8nER+YyIfCa7y7uBtdkxvD8A3m+0FKBSqu2w3w0xFAs6EqXUQFY8DKIV/vRmOTDtquk0b91PvKlvpkPqraRTwrjGJX2S8E+cPZRP//NltDQk+dGXX+Pogfz4HZVS6my6Ur3hNSAKfAL4d/yktRG/uFSXHu0ZY+45z/s/BH7YlXMppQrIse30dXVVpU7luR5H9x7h0LYDQYfSYyJSDCSMMflbMjhIIjBiNux4NScP0KZdOZ3X/ucl9r+1lQnXXNjv1zuflF1CWeIgpalDtERqen2+8dOr+Oy/Xs5Pv76E//zSa0y7ZDiWJVi2IMLx15ZtZdeCbVtYtv+eWHLSumMfy+rYL3uuzvsJiC2ICGJlz5N9LXLiPMfPaXXa76Tr4cd1lv2zHQ6VUoPIeRNeY8w+4Bciss0Y8xqAiAwBxgEb+zc8pVROuBn/htA6z1hZz8u2kJyShBoDxvXP46bAS4Ob9qui9sbupRAq7t05lMoyxtDe2MbhXfXU7zzEoW0HObj1APU7D5FJZkfmVA6Mm90czqAweFRPg+0v5eRStRNHUFpdzrFV25iwcJb/+RokEVyxGdH0Npuqb+mTU46eVMHnvnMFD337LdYtOYjnGYxnjq9dN7vODKyHlp2T6c7JunRKlM+YcNuCfUqSf/G1o7j81nFB/0pKFbyuTEskxvdaxzZjzFE6jbHt2KefYlRK9belP4b6DRAugmi53/UvVulP4RFvhESD37U42ZI94Bw3bx03dsZkX/fio8FzoWxUz49XBS3ZnmTLsk3sXLmdI7vqqd9ZT7z5ROGiWFmMmgm1zL1tPsMn1FIzoYZffu1HAUbcLS8Cf8afQWFtR1FJEakCrsGfQeFRY8yvAowxv1SO89fHP5v6j4gwdcE03nz8DdpaExSXBj8sIx6qYkzTGxwumcKxovF9cs4R48v4yn0Lz7mPMQbj+T0pOpJgzzMYA16nnz3X4LoentvxuvO+2dcuGAzG9Y83nsHrWGfPcfx1NvH2f/bjOPV6x9euwTt+jWxsnRJ3ryOuTtfouH7HvifO5e/bdCTBw/+5mhF1ZYybVtUnf95KqZ7pSpfmF0XkYWCRMWZ3x0YRCeNPTfSX+F+8D/ZLhEqp/pVJwpFNUD7KTzAzKWja5899iwE7DFYInBhEynR6IJXXEq1xNr2+gQ2L17F1+RbcdIZIcZTqcdVMvXI6w8ZWM2xcNcPGVlM6tGwgd1+83hiTFpFxp86gADwMPCwiOllqZ5ESqBgD8SaIlvX75aYumM4bjyzh8JodFF8+rd+vdz6e5ZBwypm79+esG34b+8rm5KTlWUQQGyzb7tJN52CRaM/wb59+kV9/522+/JOFhCM624BSQenKZ8/NwMeAX4vIeKARf0yvDTwLfM8Y07sJ3pRSwWne5zfCigW2BbbeI6v85qYztDa00nSokcaDDTQebKDhYAMN+46yZ/0evIxL2bByLr5tHtOunMHoGWOx7MH1oOaUGRTmdH5PRC41xizt7QwKg1LtRbDh8ZwkvGNmjiVWVkTDmu2MuXQqlhX8w5W0XYQnDjMOLqIkdZjNQ6/HSCGlobkTLXJ435dmc9/XlvDUgxu4/dMzgg5JqYLVlTG8CeDHwI+zT4uHAnFjTGN/B6eUyoHGPYB33t2U6iue65GKp0i0xom3xEm0xIm3+utUPEUqkSIVT5FO+K8TLXHaGttob2yjrbGVROvplXZLqkqpqKngkrsuZ9rVMxg5eSRiDa4ktzMReS9+olsqIlOBTZ1aeu8HZgUWXD4bNhE25OZSlm0z+fKprFu8ltb2FGUlkdxc+DxcK0xztJaxDUsoSh1jTc1dZOxo0GENSpMuGsblt45l8SPbmbWglvHThwQdklIFqVuP9bJPiw8AiMgC4B5jzL39EZhSKkfq10GoJOgoVJ5zMy6Jljjtze3EW+IkWxMk40mSbUlS8STJ9iSp9iSJtsTxdbItSbI9QTqRJp1Mk0mlSSczeJnzFxK2HJtwNEQoGiZaEqW4ooSaibUUlRdTXFlCcUUxFTWVVAyvpHx4BaFIwfVM6PUMCgWpfLRfnM/L+DUK+tmUBdNY+fQKGjfvoeyiCcEXr8oyYtMcGcGQ9m3M3/sAOyqvOG2feKiSxtiYAKIbXG79xHQ2Lj/Mb76zki//5GrCUW1RVyrXuvWvTkQuAj4AvAfYDfyhP4JSSuWI58GRLRCtDDoS1ceMMXgZl3Qy7beaxpPZdbb1NJkincyQTqTIpPx1Mu63psZb2rPrBPEWP8FNtSfPe00nEiJaHCVSHMmuo5QOLSUcDWOHHULhEE4kRCjiEI5FiJbEiJXGiJZGiZXEiJbGCMcihKMh7JDeFJ6LzqDQQ3YIqqfA0e1Q1P+tbXUXX0AoGqZ13Q6Ss8YTcfJoHKcIrZHhxNKNzDj42Glve1aIxeO+SNrRSvm9ES1yeN+XZ/OTr77OUw9u5PbPaNdmpXKtK1WaJwH34E9/cBg/yb3cGLO/n2NTSvW3tsN+0SodtzvgPfqt37Fj5XYyqczxllS6WTzfDtnESov8BLS0iLKhZVSPH06srIhYmZ+cFpUVES2NES2JEYmFCRdFiBRFCMfCWHYe3cwPcjqDQi/UXgQH1wD9n/CGIiEumD+RXau3M+quq/Mr4c2KhyogVHHa9tLkAUY0r2JX1eUBRDW4TJw9lCtuG8fiR7czc0EtdTO0a7NSudSVR+gb8ef0u9EYs6ef41FK5VLT3qAjUH2gvamN1X9eyejpYxh+Qe3xllQn7BCKhPxW01iYcCxMpChCKBomHO1obfUXJxLCzsObcXVWOoNCT1XVcc6p1frYlAXT2bB4HW27DlEyZVReFK/qivZQFXUNr7K3Yi6uFQ46nAHv1k9MY8Pyen75rRXUzRyCZZ2Y59dxLK64bRw14/q/mJpShagrCe9d+K27r4rIs8DvgeeNMecfhKWUym9HNvlTDqkBbfeaXQBc/6mbGTNzXLDBqFw50wwKMcBCZ1A4t5JqiJRCJgFO/xdrmnTpZCzbIrlpJ03jhmOLYAlYIliW4FiCk4dVxF0rQih1lOqW9Rwonx10OANeJObwob+dw8M/XMOeTY0nzfPb3pJi89uH+Zv7FuKE9cGjUn2tK1WaHwMeE5Fi4HbgC8CDIvIk8AdjzNP9HKNSqr8cWp+T6TlU/9q1Zid2yGHE5FFBh6JyRGdQ6AURqL0Qdi+D0pp+v1y0JMb4iyZw+O2tXP3xG3ENpDIeyYxLKmOob0lQJGDnYVXxeKicC469xMGymRjRRKy3xk2r4ss/vvq07RuW1/Nff7eUlx7ezvX3TAwgMqUGty5XBTHGtAEPAQ+JSCV+4aq/ATThVWogSjRD+1G/aqka0Hav3sGoaaNxwlroqVCIyPPAXxlj1hlj0iIyD5glIs8aY94IOr68N3wG7Hw1Z5ebsmAaf/reIv741QewHQuxrGx3Vovay6fTPq2O0mj+Jbxpu5iyxH6GtG/jSPGkoMMZtKbOq2bmglqee2gzF183ksrqoqBDUmpQ6dGnqzGmwRhzvzHmur4OSCmVI837/JaOPJkmQ/VMsj3JgS37GTtrXNChqNwaZYxZByAilwO/BMbg98C6M9DIBoLKcYDpdmG3nppx7SxmXDuL0qGlxMqKjhd5O7rnKOt+/woYg+flZ32xlF3MhKMv5ezPqlDd8ZnpADx237qAI1Fq8NHmAKUK1dHtIPnXoqC6Z8+6XRjPMHbW+KBDUbnV3On1h4H7jDFfE5Fq4HHg0WDCGiCiZVA2ElKt/nje/r5cSYy7//f7T9u+8pm3WPTtP1Dc0ER7VSUleThHa8IpoyKxj4rEHp2Xtx9VVhdxwwcm8eTPNrBheT1T51UHHZJSg4be7SpVqOrXQbgk6ChUL+1avRPLthg1TW9EC8xWEXl3NsG9A1gEYIypByKBRjZQjJgDiaZAQ5h8+VQs26JpzXYMhrycRUqEtBVlfMNr599X9crCu+sYNqqYR3+0hkxKa8Mq1VfOm/CKyJfOteQiSKVUH8ukoHFXTlo2VP/avXoHtZNGEo7ptCEF5n8Bnwb2AW8ZY14HyBaw0idZXTF0EhBsghkrjTF+zgS2vrqe6tII8TxNctpDlQxr3URxsj7oUAY1J2xz1+dmcmR/Gy/+flvQ4Sg1aHSlhbc0u8wFPguMzC6fAeb0X2hKqX7Tst+/z9MuzQNaOplm38a9On63ABljDhpjbgAixph3dHrrGvz5d9X5VIwBscELNsmcdtUMGg4co7iphYyXu3HF3SIWrjiMbVwadCSD3uS51Vx4ZS3P/Xozxw62Bx2OUoNCV6Yl+gcAEVkMzDHGtGR//gbwp36NTinVPxr3gPGCjkL10r6Ne3DTrs69W8CMOfkfsjHmWfx5eNX5OGG/lffwxtOHdzhhCOWmUu7kK6byxH88xu5lG6m8di5tyQzRPJyLtT08hJHNK9ledRWJUEXQ4Qxq7/r0DDa8Uc+D31zOuOlVWJZg2YLtdFT3lhPbbEEsv+K3ZZHdnn1tW9njBNu2sBzrxGv75ONtW/z3s9XDbfsM18xeV7TYpRpgulMdYTiQ6vRzKrtNKTXQ1K+HcHHQUahe2rV6J4howqtUT0245syV6g+t9YtaWf1fRKq4ooRxF45nw8tref/7rmLFrkai5F/Ca8TGE5sph59iZe37tcJ/P6qsjnHnvTN58mcbWPHCXjzXZBcPNxN8D4Apc6v5xD9egmXr3wE1MHTnk/wXwBsi0lH58Q7gwT6PSCnVv4yBI5shUhZ0JKqXdq/eyfDxw4mVxoIORamBqWaGv5xqxS9g3woorclJGFOvmsGT338ct76R4ohDKuMSdvIv6W0LDWV46waGtW7icOmUoMMZ1C65eQyX3HzmYoSel02AvROJ8PGfPYPJbnezibKb8Y6v3cyJ/d1Tjnddg5fxTj7u+D7+0lAfZ+lTu1j2zG4ue8fYHP+pKNUzXUp4xe+78AvgKeDK7OaPGmPe7q/AlFL9pO0IpONQNDToSFQvuBmXPet2M/tmLaVQyEQkAtwNjKPTd7ox5ptBxTQojL0c9izJ2eWmXjmdJ3/wRza8so7Jd1zO6r1NeZnwIkJ7qIrp9X/k1aKxZGx92BYEy/K7FgfBGEP9nhaefGADsxbUUlymBRNV/utSxRrj18l/0hjzljHm+9lFk12lBqKmPUFHoPrAwS37SSdSOv+uWgTcDmSAtk6L6o2qOohWQCo3RYNKqkoZM2MsGxavpbosSsSxSGfys85C2i4i5MW54OgLQYeiAiAi3PX5mbS3pnj65xuDDkepLulOida3RGRev0WilMqNI1vACgUdheqlXat3AmiFZjXKGPM+Y8y/GmO+27EEHdSAZ1lQdy3Ej+bsktOunkH9jkM07DnCtNoy4mmXtJufSW9ruJoxjcspj+sD1EI0oq6cK24bz+t/2sm+bcHOZa1UV3Qn4b0EWCIi20RktYisEZHV/RWYUqqf1K/X+XcHgV2rdzBk1FBKqvT/ZYF7XURmBh3EoDRyDmByVtF+6pXTAdjwyjqqy6LMGVtBMu2SysOWXiMWSaeEGYcWYXnpoMNRAbj5w5MpKg3zyA/XYPJxKi2lOulOwnsTMAG4FrgNuDW7Vkrlu1QbNO6GvSug7XDOpttQ/cN4HrvX7GSMtu4qWACsEJFN+jC6jxUPgaGTId6Qk8uVDStn1LTRrH95LQDDSqLMHVdF2vVIpoOdK/hMkk4ZxakjOjdvgSoqDfPOj01lx7pjrHh+b9DhKHVOXa7SbIzZ1Z+BKKX62MG1sPU5aN4PyVYQG/DAiel0EgNc/Y5DJFoTOn5XAdwSdACDWt1CWPZTKBqSk8tNvWoGz933FA37j1E5oorKojDzxlWxYtcxEik37+bnbQ0P44KjL3IsNp6Ec3JvE8EgxsPCQ4ybfe1ClxsDDbZJ43gpHC+J7SaIuG0ILgmnnJRdTNqOkbZipO0YRrrWhiPGI+QlCLnthNw4IbeNWKYZu5ct1a7lkLb8mDJWmIwVIeGU0Rap7tV589n8m8aw5Mld/PG/1zPjshqixTpcSuWnbk0wJyKVwEQg2rHNGLO4r4NSSvWS58Gq30C6HaLlEK3UJHcQ0fG7qoM+jO5n1VPBiYCbArv/q9FOvXI6z933FOsXr+WK918FQHksxPzxQ3hz5zFaEmmsLn6WRxwLx+5OR77u86wQGSvC/L0PAKfHZbJbDQbJvt/dzq+C8afTw58L2CDYJoNBMOLvId04b8e+/nn9tSsOppffkWKMn9BjwAgIeGLz6rgvkHQG5zSAliXc/fmZfP+vXuHZ/9nMuz41PeiQlDqjLie8IvIJ4IvAKGAlcCmwBL+Ls1IqnxzbDu1HoeLMc/ipgW3X6h2UV1dQUVMZdCgDlmv8OShDliAD/GGQiFzIiSkDXzHGrAoynkHFicC4K2D7Yigb0e+Xq6ytonbSSDZ0SngBSiIO88dXsa8xjuedP7XzDOw61k5ZtP//fsdD+jl0NqXJA9S0rGNX5WVBh9JvxkyuZP7NY1j8yHbWLTmI5Vg4jmTXFlfeWcfsq/r/345S59KdFt4vAvOApcaYa0RkCvCt/glLKdUrO1/NSWuEyj1jDLtW76Tu4guCDmVAMRjaky6N8RT1zUmOtqXwsq1G0ZBNLGRTFLYxljOg+uSJyBeBTwKPZDf9SkTuN8b8Z4BhDS6j5sPWF/xWxhw8HJl29Qye/69n2Lt+N6OmnXhoWRR2mFjd9SJ1rjEcaIxTEh1Qf6UHlbhTybiG19ldMR8j+dUdvS/d+vFphCM2rU0p3LSH6xrctMfhfa387j9WMumioRSV6j2JCk53Et6EMSYhIohIxBizUUQm91tkSqmeSbbA3uVQWhN0JOocjOeRSbu46Qxu2iWTzpBJZXCz644lnUz7SyJNOpmirbGNtoZW7c7cRa3JDHsb2jnYlCCVneLFsSxiIRvLEky2pbctmaE5ngY7FAk45O76OHCJMaYNQES+jd/7ShPevlIxxv88TbXmpML9vHddwvJFS1n0rw/z6fs/jxPuWcJ6QXUJB5sSuJ6HbfVv12Z1Zhk7SizRQGV8F8eK6oIOp98Ul4W583OnF4vfv72J73zmZV5+ZDu3/OWUACJTytedhHeviFQAjwHPiUgDoGOHlMo3+1cBHljdGqJf0IwxeK7nLxkXN+PhuS5uxsXNJqWZ4+sMbsolnUr7SWkyfTwxTbYnSbYnSbUnSbYnSLWnSMWTpOKpE0siSTqRxuvF/JrhWJgJcyf24Z/A4GKM4Vh7ih1H2jjamsISIRa2iIROTxxEBMcWnIHb+CJA5xK+LmcaTHm2g0VuBr4P2MB/G2P+5Qz7vBf4Bv7Qx1XGmA/0JuABRwQmXAsrH8pJwhspjnLbl+/kf772IC8++Dw3fOrmHp0n6thMGl7ChgMtlMU04Q2Ka0UY3bh8UCe8ZzOirpwLrxrB4ke3c9WddRSXaSuvCkZ3qjTfmX35DRF5ESgHnuqXqJRSPWMMbP2zX6SqwB3bd5TFv3qRdCJ1WuKaTqRJJzoSUH9tvL6Z6zIUDRMpihApihAuihApClM6pIxwLEwoFiYcixCKhnBCNnbIwXZsnLCDHXJwwg5OyMYJh7BD/nYnHCIcDRGKhglFOtYOkmctNhnPY39jnGTGI+rY2STSwrEES4SM55FxDRnPkMq4JDMetiWEbb+wjm1Jdt/Tz20A1zPHl5TrkXYNAoQd/xqObWGLkMy47DjSRnvKJWRblEWdwV6w7WfAMhF5FD/RvQN4oCsHiogN/Ai4AdgLLBeRx40x6zvtMxH4OnCFMaZBRAZvydlzqZ0Fq34NngtW/z8duWDeJC56x1yW/O4Vpi6YdlLX5u4YWVnE7mPtJNMukdDAfaozkLWHKqhu20gk0zxoi1edy00fmsTqV/bz0h+28c6PTQ06HFWgulO06nngu8aYJ40xL2e33Q98qr+CU0p1U8NOaDsEZaODjiRwyx59ndXPrWTIqCHHE0s7ZGM7NrGhMUKx0PHkMxwN40RC2LaN5VjYjo1lWyeOCTk4IcdPQjsS00gom5A6hLKvw7EIVj9XRc03njEcak6w6WALyYyHJYJnzPEc80SqKZhsVVQELBGM8Vtjz9ce2bkCa8cwSksEQ/b4jlKw+DtGQjZlscIYt2iM+XcReQm4IrvpL40xK7t4+HxgqzFmO4CI/Aa4HVjfaZ9PAj8yxjRkr1ffJ4EPNNFyGHGRP91bjoaL3PTZd7DtzS296tpsizCttpzlO48RdqwBX6BtQMpOlzTYi1edTc24MmZfPZJXHtvO1XfVUVIx0EaNqMGgO30exwNfE5F5xph/yG6b2w8xKaV6atdrYIUGe4vWeRlj2LxkIxPnT+Keb3046HAGJYOhoT3NpgPNNCcyxAooycwHIvKqMWaBiLRwcsqPiBhjTFeakkYCezr9vBe45JR9JmXP+Rp+t+dvGGOePkM8nyL7AHzMmEFaHf6C62DfipwVr4oUR3nXl+/iV1/7Wa+6NlcWh6gpj3K4JUlxRIe6BCHuVDK2YcmgL151Njd+aBIrF+/jxT9s47ZPTAs6HFWAuvPJ1whcB/xARP4IfKh/QlJK9UiqDXYvg5LC7HHY2eGd9TQeaGDBPVcHHUrOGAztKbdjusrz8ozfvTjj+l2NU65HKuMdr1x89uv42pIZjramCDsF0W047xhjFmTX/T2o1AEmAgvxpyVcLCIzjTGNp8RzP3A/wNy5c7s71erAUDkequqg9TAUVeXkkhPmTWTOO+f1qmuzIEwaXkp9cxLXM9hnGjeg+lXGjlKWOEBlfDfHisYHHU7ODR9TypxrRvHaoh0svLuO0spo0CGpAtOdhFeMMRngcyLyEeBVQAcKKpUvDqwGL6PFqoDNSzYCMOnSwqkK2ZrIsHT70W4f1zkzsbqRtFoimujmARH5tjG7RPimAAAgAElEQVTma+fbdhb7gM7jH0Zlt3W2F1hmjEkDO0RkM34CvLwXYQ9MIjD5HbDkhzlLeAFu/MwtbFvud23+yPc+SSgSwrItLNtCrK51U46FbC6oLmbzoVbtiRGQjBXOFq8qvIQX/Fbet1/cxwu/28rtn54RdDiqwHTnzvi+jhfGmAdFZA1wb9+HpJTqNmNg2/P+ODPF5iUbqJ00ktKhhVMg5FhbCgOU6pybheYG4NTk9pYzbDuT5cBEERmPn+i+Hzi1AvNjwD3Az0RkKH4X5+29inggq54KxcP86d9yULEZslWbv3Inv/rqz/jOXd867X3Lto7XJ7CcbJ2C0hjv+spdjJx64nnG6KoiDjQlaEtmtGtzANpDlVS3bSjY4lXDRpZw8XWjeO2PO7nm3RdQNkRbeVXudKdK809FpBL/yW7H39IH+yMopVQ3Ne2Bpn1QrsWq2hpb2bN+D1d/+NqgQ8mpg80JwgVWMKuQichngc8BdSKyutNbpcBrXTmHMSYjIp8HnsEfn/uAMWadiHwTeNMY83j2vRtFZD3+lEd/Y4zpfleCwcKyYfI74a2f5yzhBZgwdyIf+vZHObyr/vgUaq7rnjSVmpvx5/R2My5b39jMY9/+A5++/ws4Yf9Wz7Es5oyp5I2dx4inMsTCmvTmlFiAFGzxKoAbPjiJFc/v5dn/2cwtH5mC7VhYtmDbgmWLFlVT/aY7VZo/AXwRv8vTSuBS/MntC+uuUql8tGuJ35VZvyzYsmwzGMPkywqnO3PK9WiKpynVVptC8hD+1ID/DPxtp+0txphjXT2JMeZJ4MlTtv2fTq8N8KXsogBGXgRr/wDpBIRy10o1Yd5EJszr2vzbW5Zt4qGv/5xXHnqJaz5y/fHt0ZDNxWMreWPHMRJpl6hOVZRTcae8oItXDR1RzLwbR/P6Ezt5/Ymdp71v2YITsrBDFk7IwnEsLEewLH8REcTO/tyRKFuSnVXB32bZFrYt2E7Htuy5QhZOuOO1fcp1BCdkYzlyIgm3TpzPsuX4uTqS847z27Z/HtsWQhEb29EHz/moO3dHXwTmAUuNMdeIyBTg9L41SuWDtqPQdobZM4wBLw1ux5KEdNy/cXETkE762zJJfzwsZ6i94nn+eXDBeP7PAJaVfYJrZ+dNOcuHnjH+ccYD4544/vQds+d3O+3fsQB0xGH87nXlg7QyajdtXrKB0qFl1EwcEXQoOdPYnvJf6AOPgmGMaQKa8Lsbq1xyIjDxJlj/SN5+7k68ZDIzr5/Nqw+9zPSrZ1A9/sRUSsVhh7lj/ZbeZMYl4hRe4hWUjB2jLLGfi/f+Eu+UehvNkVq2Drnm+DRGg9Wtn5jG6EkVZNIdPRUMnmuyvRT8dSbtnbT2b7UMnmcwrjn+2st4/vzsrkcqabK9H4x/zo7zuf55MmmPTMrFzfRfTb1wxOZLP7ma6lEl/XYN1TPdSXgTxpiEiCAiEWPMRhGZ3G+RKdUTbUdhy7Ow85Uz3/ybTi86qtGKBWKfSFjFzq7PkjyI4M8AItmJQDpNAGo6LtLp/Kef4MS5O5/rLLv6k5Y6J/aRU/YXgaKhg/5LsisyqQzblm9h5vWzC6pr1KHmJHYB/b7qBBH5OfDFjqrJ2aFH3zXGfCzYyAa5sZfChkX+g1M7P8fN33zvO9m2fDOPf+dRPvaDT580R3hpNMTFYytZvuMYFkJIW6VypjVcTXH6yGnbh7VtJmNF2Vl1xRmOGjyKy8Jcfuu4wK7veZ2S6rRHJpNdZxfjmeNJuJ88eydeZ7zj2zqSc881x4996ucbWfzIdt79V7MC+/3UmXUn4d0rIhX4BSyeE5EGYFf/hKVUN7Ufgy3PwY6X/cSvtFarFRegXat2kIqnmFRA3Zk9Y6hvSWjXxMI1q/MUQcaYBhG5KMiACkKkFOqugW0vQvnIoKM5o6LyYm6691Ye/dbvWL5oKZfcdflJ71fEwswZU8mK3Q0kMy6nPnh1bNHPlX7gWQ5J6/SiVWkrxqQjz9ISGc7R4gsCiKwwWJZghW1C4b7/u12/p4U3n9vDLR+ZQnFZuM/Pr3quO0Wr7sy+/IaIvAiU448fUio32o7Crtf8Lr6dpVr8+WdFNNEtcJte34ATCTH+oglBh5IzLYkMrmewdG7NQmWJSKUxpgFARKro3sNs1VN1V/vV8T3XL2aVh2ZedyFr/ryS5//7WaZcMY3y4RUnvT+kJMLFYytpbE+ftN0Yw7bDbUSdc/R2Un3Ks0LEQ5VceOD3LB3zKdrDQ4IOSXXTlXfU8cYze1j61C6ue1/Xxtur3OhO0aoIcDcwrtNxs4Fv9n1YSp3C8+DtX8KhdeDETn5PBEprNNEtcMYYNi/ZyISLLyAUyc8uhv3hWFsy6BBUsL4LLBWR3+E30b0bra+RG8VDYeRc2Lv89CnhLBvCwY/jExHe+de38+OPfZ8/fW8R93zrw6cN9xhSHGFIceS0Y4+0pkjoGN+cSttFhNwEsw/8lmWjPoZr69Q9A8nICeVMnD2U1xbtYOHdE7SAVR7pzv+JRcDtQAZo67Qo1f/2vw31G6ByPJTVnrxosquA+u0HaapvLKjuzAAHmhJ6Q1rAjDG/AO4EDgEHgLuy21QuTHkHDJ8GJcNPXlLtkGwOOjoAKmoqufbjN7Bl2SbWvrCqy8fVlEdJZc5WVFH1l/ZwFcWpw0yrf8IvUqkGlKvurKPxSILVrx4IOhTVSXeyhFHGmJv7LRKlzibVBqt/A8XDtGuVOqtNSzYCMPHSwqmll8i4tCYylEb1gU+hyva+mg2U4X+nv1tEMMZo76tcKK2By79w+vbtL8Pq30Lk9LGaQZh/x2WsfX4VT//wCermXEBx5flbnyuLdAxiUFrCNYxoWU1LpHbQF7EabKZeMpyhI4p5+ZHtXLQwP8f3F6Lu3CW9LiIzjTFr+i0apc5k09N+0lteFXQkKo9tXrKREZNHUTokP24wc6GxPZ0t8q0PggrYIvzpiVYA2r89Xwyfnp2CzuTFv0/LtnjX39zN/Z/5IU/+4HHe8/cfOO8xpVEH2xI8rRGQeyK0hIcz5cjTTDz6QpcOMSJkJIxrhclYETJWlLQdweuHIf1pp5hNQ2/Eswpn+FBXWZZw5Z11PPqjNezccIxxU/XeNR+c91+BiKzBn2fFAT4qItvxv1QFf056rb2t+k/jHtj6ZygrnDlVVfe1Hmth38a9LPzIdUGHklOHmhPYeiNa6LT3VT4qHgqVYyHeANGK8++fA9Xjh3P1h6/jhf/3LOsXr2XaVTPOub8lQnVphPrmJEUR7UWSa54VojEyik7zKZ6TAGI8BBfHSxJy4xSn3C4f3x0Rt5XDxRM5Ujypz889GMy/cTRPPbiBxY9sZ9zfacKbD7ryCXZrv0eh1Jl4Hqz6NYRiOkZXndOWZZvAGCYX0Phd1xiOtCR12hClva/y1dgFsOqhvEl4AS5/35VsWLyWJ7+/iHEXjqeovPic+1eXRjnQmMhRdOo0Ipw6XdTZGMCIBTi459u5lyzjMbJppSa8ZxGJOVx6y1gWP7Kdhvp2KquLgg6p4J03izDG6Fy7Khh7lsHRbVAxNuhIVJ5wMy5vP/km7U1tpFMZ0ok06WSKXSt3UFZdzvAJtUGHmDMt8TSu0a6GigVo76v8VDMdVpE33ZoBbMfm9q/ezf2f/TFP//AJ7vq7951z//KibJfVPPodVPDioXKGtW0i5LaTtjWZO5MFt4/n5Ue28erjO7ntE9OCDqfgabOZyk+JZljze7/apX7Jqqy1L6zmT99bBIBYFqFoiFDEXy5794LTptsYzI62pYIOQeWHW4IOQJ1FrBKq6qC13n+dJ4ZPqOXKDy7k5Z8/z/SFs5h8xdSz7ht1bEqiDinXEHYK5/NVnZsRGzEeQ9q2cbBsZtDh5KWq4UXMWjCCpU/u4sYPTiIS05QrSPqnr/LTpqcgk/QrMyuVtfLpFVSOqOLen/01dqhwP74MhgNNCaI6HZGCvzzLdq3SnA/GXgFv/SKvEl6AKz9wNRtfWccT//EYY2aOJVZ29la64WVRth1uJaxziqpO0nYRo5pXaMJ7DlfdWceqxfv56deXUFoZwXYsLEv8tSM4joUTsrBD/toJWdhOdrEFO+SvnZBNKGIRCtuEItklbJ14HbEJhW1sRwrqwX93FO4do8pfbhp2v+637iqV1XDgGDtXbueaj15f0MkuQCLt0Z7KUKqFZBS0dXodxa+7sSGgWNSphk/zeykZDyR/EkY75HD7V+/mvz73E/70/UVcevcVWLaF5dhYloXt2FSOqMKyLYYUh9l2OOiIVb5JOGVUxXcRSTeRDJUHHU5eGjetkktuGcPezY0c3teGlzG4nofnGty0h5sxZNIumezr3rIswQlnk+ewjROyCIX916GwdTxxdsI2oWyibdmCbVvYjvivHYvwKYl0KHIiGXcc/zjb8c8djjqEo3Z2cXBC+fM511mX75bEf2TwQaDOGPNNERkD1Bhj3ui36FRhatjpJ722lrtXJ6x65i0Q4cKb5nT5mKZ4mqb4mbv+GgNe9oV3ju8ZY8AzBs+YTq/PvK8l/heOLYJtCZYldHz0n+laIh2zCkm3ZhdqT7knTqAKmjHmu51/FpHvAM8EFI46VbQchk2Gxr1QlF/VWmsnjWTBB67mlV+9yLoXT695dtl7r+TGz9xCaSyEJTo9kTqFCAYY1raZvRXzgo4mL4kI7/tfs7u0rzHZJNg1ZNIenusnwW7GI5P2SKc80kmXdMr11x1Ldnvq+M9+Ap1Jedm1v49/DpdkY8Y/R8r1E3DX4GU8XM9f9zb5th0hVhwiVhIiWhI6/rqsKkJldRGV1TEqqmNUVscoqYjk7DOlO80DP8a/Z7sWv6tUC/AwoH/LVd86sApEu2qqE4znsfKZt6ibM4Hy6q5VPDUY1uxrojWRPmMXHzn+n/PVwJTjeWXHMWfb3+AnyOB/eZmOjWe5ljnlRXe+YorC+m9EnVERMCroIFQnYy6H+gfyLuEFuOaj13PB/Emk2pO4GRfP9W+0lz+2hDXPr+T6T96EbVsMLQlzrC1FLKy9StQJSbuU0U1vsrd8rj6A7SUR8VtlgUgs2Fg815BOuaQSJxJsN9PRIu0dT8IzKZdkwt8vlciQSrgk4xkSbWnirRnirWnibWka6tvZuDxBMn5y/XDLEorLwxSXhykpj1BScfJrf+2/7q3ufHJdYoyZIyJvAxhjGkSk9xEo1Znnwd7lEMu/GwMVnJ0rd9B0qJHrPnFTl49pT7m0JzOUx0L6RawGLRFZw4lnJTYwDB2/m1+qp+Zlt2bwb7LHzDh9JgRjDA//42/YvWYn42bXMbwsSn1LMoAIVT5L2cWUpQ5SnDpCW0RrrgwWli1EYk6fFtoyxpBoy9BQ305DfZzG+jhNRxO0NqZobUrS1pRi37YmWhtTxFvTpx3v9HJ2t+78JmkRscl+sYrIMLK99JTqM837INkC5fkzb6EK3sqnVxApjjJlQddL+x9pSdKtfsJKDUy3dnqdAQ4ZYzJBBaPOIFICw2f40+wVDw06mi6ZdOkUQtEQa19czbjZdVQUhU90YdHPVNVBBINQ3baRHZrwqnMQEWIlIWIl5YyoO/eYbzfj0daUoqUxeXz92/t6d/3uPGr8AfAoMFxE/gl4FfhW7y6v1CnqtdaKOlmiNcH6V9Yx49pZhCJdG9dtMOxrjBPRKsZqkBKRX2Zf3mGM2ZVd9mmym6fGXAqZ9qCj6LJwLMyky6awYfFaPNclGrKIhW3S5yp4oApS3KlgdOObfg8GpfqA7ViUDYkyckI5k+YM4+Jrez9KpzsJ73Dg2/hJ7gH8L9nf9zoCpTrbsxSi2rqrTlj30hoyyTSzb764y8fEUy6tyQxhW1si1KB1sYiMAD4mIpUiUtV5CTo4dYphUwALPPe8u+aL6Qtn0d7Uzo63tiMINeVRkumBE7/KjYwdJeo2U57cH3QoSp1VdxLeUuB+4P3Zn4919UAReUBE6kVk7VneFxH5gYhsFZHVItL1Mqxq8Gg7Ci0HIFwSdCQqj6x8egVDxw5j5JSuP+E70pryu99p1zs1eN0HPA9MAVacsrwZYFzqTMJFUHshNO6CloMnL+1dvp3KqYmXTCJcFGHtS6sBGFIc6VZhPVU4PGyGN5/xFl+pvNDlhNcY8w/GmOnAvUAt8LKI/LmLhz8I3HyO928BJmaXTwE/6WpcahA5vAm/BK4mKcp3ZHc9e9fvZvZNF3drMvV9je2E83QuOKX6gjHmB8aYqcADxpg6Y8z4Tktd0PGpM5h6K0y8EcYtOHnJxP2p+PKMEw4x5YppbHxlHW46Q1nMQfCLzyjVWXuoglHNK7E8HVGh8lNPym/VAweBo0B1Vw4wxiwWkXHn2OV24BfG/xRdKiIVIlJrjDnQg/jUQLVnmbbuqpOsfPotxLK48MaLunxMPO3SkshQGtHpM9TgZ4z5bNAxqC4qGwGz3nP69kQT1K+H4vwr+jPjmlmsfu5ttr25lUmXTaGmPMrBpgQl0a7VU1CFwbPCOCbJ2MalJJzSk95LOmUcKxofUGRK+bp8RyginwPeiz/lwe+BTxpj1vdRHCOBPZ1+3pvddlrCKyKfwm8FZsyYMX10eRW4ZCsc3QJlI4OOROUJz3VZ9dzbTJw/iZKq0vMfkHW0NTt1hvYUUEoNBCNmw/63go7ijOounkC0NMbaF1cz6bIpTK4p41hbimTaJRLSooDqhLhTzgVHnj9tuxGLl8d/ibRTHEBUSvm60wQyGvhrY8zK/gqmK4wx9+OPJWbu3Lnar2awOLoVMHk3R6Hqf8YY3LSLm3Gz6wxu2mXX6h20Hm1h9he6N6R/X2OcsK1/j5RSA0RVnT/dTx5O+WOHHKZeOZ11L64mnUwTjoSYPbqSZTuO4tgWtpVf8argpO0i0nbRadtLE/sZ0r6dg2UzA4hKKV+XE15jzNf7MY59+Al1h1HZbapQ7HsL7GjQURSkVDzFnrW7yKQyZNIZ3HQGN+OSSWXwXA834+JlPFzXxXM9vI7E1M1uz7h4GTd7rNspec10SmJPHOOm/KQ2k87uc46qn0UVxUy6bEqXf5dE2qWpPU1pVLszK6UGiFgllAyDdDuE868VbMY1s3j7yTfZsmwT066aQXksxJSaUtYfaKY8Gsq7JF3ll7RdzKjmtzThVYE6712hiLxqjFkgIi1wUoG+bO0CU9YHcTwOfF5EfgNcAjTp+N0CkknBwVUQGxJ0JAXpuZ8+xZuPL+vy/pZjYzs2tmP5r20by7FwQg52yMYOOf77IZtIURTb8d+3Qza243Ta18EJ2dhhf//jxzvZc4RsaibUYIe6nrwebdPuzKownOE7+fhb9N13s8oFERhxMWx9Li8T3nGzx1NUUcy6F1cz7aoZAIyuLKKhLU19i47nVeeWcEqpjO8kkmkh6XR9eJJSfem8d5LGmAXZdY//lorIr4GFwFAR2Qv8PRDKnvc+4EngHcBWoB34aE+vpQaghp1+hUpbvzRzLdmeZPVzbzP1quks+MBCPwHNJqxO2MGyOyW2joVYVreqJefavsYEIUe7M6vBrzffySoPVU+FLc8EHcUZWbbNtKtnsPLpt0jFk4RjEUSEaSPKaNqeJpF2iep4XnU2YoGBIW1b2V/e9QKUSvWl7hSt+rYx5mvn23Ymxph7zvO+wZ/uSBWig6vB0i/LIKx9YTWpeIrL3nMlIyYN7IJhyYxLY3uKEq3OrAqMiFTiT+t3fFyIMWZxcBGpbqsc67f0em5efh/OWDiLNxctY9PrG5l53YUAhGyL2aMrWLr9KI4lZxzPawwYTHbt/3zmjgm5JDiWYOn445xJOcWMalqhCa8KTHfuDG8ATk1ubznDNqXOzM1AqvX07XvegFhV7uNRrHjiDarHD2fUtNHn3znPHWtLAeR1C7RSfU1EPgF8Eb/2xUrgUmAJcG2QcaluciIwdDI07oGi/Ps+HDNzLKVDylj30urjCS9AWTTE9BFlbDjQcsbjLAHbEiyR40lx0J/QnoG2ZAbXGL//f3a71Q/fHZYIsXD+PcDItaRdSkViL9F0I4lQRdDhqALUlTG8nwU+B9SJyOpOb5UCr/dXYGqQMQaW/xccWH2GSszGL9qhcmr/5n0c2LyPW75w26BIEvc1xglpdWZVeL4IzAOWGmOuEZEpwLcCjkn1xIg5/ny8eZjwimUx49pZLHvkdQ5s3kdtpx5BIyuKGFlxenXefGYwpF1DPOWSSLu0pTJk3L5ved7fGCed8XSojQiIMLRtC3sr5gUdjSpAXWnhfQh4Cvhn4G87bW8xxhzrl6jU4LN3Bex/GyrGaUGhPLHiiTdwIiFm3TA76FC6pTWZYX9jnGTGJZXxSLkeqYyhPZWhPKbjwFXBSRhjEiKCiESMMRtFZHLQQakeGDIhr6fmu/KDC1n74moe/qff8umffp5QNBx0SD0mCGFbCMesfv3eKArbrNvfrAkvkLBLGd30JnvL5+p9oMq5rhStagKagHtOHSckIjpOSJ1foglWPQTFw/VDLk8k25OsfX4VMxbOJFoSCzqcLjMY1u5roimeJmT73eQsEWwLymOhQdFSrVQ37RWRCuAx4DkRaQB2BRyT6onSGoiUQiYBTv5N0xcrK+KOv303v/zKAzz706d45xdvDzqkvDe8LMrGgy24nin4OYtTdjFlyYMUpY/RHg52Vg7bSzGkfRtivFPeEdJ2jKRdQtIpIWNF9b51kOhO0SodJ6S6zxhY8zC4KSgeFnQ0KqujWNWcW+cHHUq3NLSlaIqnKYs6+iWkFGCMuTP78hsi8iJQDjwdYEiqp0SgdjbsXuonv3mobs4FXPqeBSz9/atMumQKEy/VzgTnErItxlQVsetom07fJIJBGNa2mV3hy4ILw7hMP7SIEc2rcSV06pv4M7sJGA/Pcog7FTTGRnOoZBqNsdG4ViSIsFUvdaePRcc4oV3GmGuAi4DGfolKDR6H1sKepVBaG3QkqpMVT7xBdV3NgCpWZTBsqW8lbFua7CqVJSJfEpGRAMaYl40xjxtjUkHHpXqoZgZ46aCjOKfrPn4j1XU1LPq3P9DWcIZClOokoypjfpVqE3R16uAlQmWManqzo1x37hnDBUdeoLZlLY3RUbREa05eIrW0RGpoiQynJVpLe6gKy2SobVnLnP0Pcc22f2PWgd9R3bqBUKYNy0uftqj81J0qzTpOSHVPshXe+gUUDc3rcUmFZqAWq2poS9PYnm3dVUp1KAWeFZFjwG+B3xtjDgUck+qpyvH+2nh5+73phB3u+v/ey3999sc8/p1HeP///YsB9V2Sa0Vhh2FlEY61pigq8Gnz0laMsuRBilOHaYtU5/z6o5pWUHfsFZqjtV16cG7EJmPHyNj+0C8xLkPatlPTugHM6RNsCYZVNXdzqGxmP0SveqM7n6anjhNahI4TUueyYRGk2vwxSSpvDMRiVQbD1sMtfhVmvbFS6jhjzD8YY6bjz2VfC7wsIn8OOCzVU5ESqBgLyTNP85MvhtfVcP0nb2Lzko2seOKNoMPJe+OGFJPxTHAtm/lCBCNCddumnF96SOsWptf/kZZINUZ6NlWUEZt4uIrmSC3N0VpaTlmSTgmjm1f0ceSqL3T5UZOOE1Ldcngz7FgMZQOny2whGKjFqhrb0zS0aeuuUudQDxwEjgK5bzpRfWfkxbDuEYiWBx3JOV1y12VsWbaJZ378JPs37cOyrexiY9kWtmNhOzZ22PHXjo0dso+/33mxbRvLsbBDNrad3c/J7mdZp+0vlhzfLtm17Zz4Od9UFIUoiTgkXY+IU9jz8sadckY1rWBH5YKcPcAuS+znogO/pS1UhWf1X3XxpF1CZXwX4UwrKaek366juq9Hd4/GmJf7OhA1iKQT8NbPIVoJVmF/sOebtS+sIhVPcfFtA6dYlcGw9f9n777j66juhP9/zszcqmpZcu/YxgZsMDYYjAHTAwkklAQSUkg2ZH+bsrvJ7j77y5PdTTbJ7pNNe7IlWwgbCEsvIUAwoRdT3Ds27tiWi2xJVr1tZs55/pirYlm2Javce+Xv+/Wa11xN/Uq60p3vzDnfc6iFkK3k6a4QXSilvgp8CqgCngDuNsZsym1Uok8qp+U6gh5RlsUn/vo2HvvuQ2xfthWtfbSv2yffDb4e/LjUMYl3d0m25djYnV4fsz6biHdOvoOEPXs8S7Un25alsENO+zZBcu8wcdYkho+vRKGYUlXEhurG0z7h9ewYZal9nLf/UXTXJ61KYbDxLQetHLSy0SqE4djPfoXG1i4WPsr42NoDNCmnlFSonIxdhGvH0crivP2P49rR9qbJA0ZZYGBYcjc1JWcP7LlEr5w04VVKNRM0U+/8bmv72hhjSgcoNlGodrwGiXoon5DrSE5bjTUNvPbfL5FJZdCexvd9tOdTs6uGEVNGMXZm4Tx5b0y41Ldm5OmuEN0bD/y5MWZtrgMR/aRsHNhh8F2w87uyb0llKV/+5Z8cd73RGt/T+J6P73rtSbD2NVpn516wzPf8jsn10V6nbdonH+0bjO5YZ7TpSLI9v+N47dt32t/rtMzL7pP9fNTa4GW89pja9/fajqvxPQ/f09nzm+z5gxi6UzF2OF+7/5tYtkVVSQTHVvhaY+fhU+jB1BKuojy1t9t1CoMyBjAodPb1sQyqvfJz22sAy3jY2ssuC7b1VJhUqGIgvpVjeHaU0U0bJOHNMz0Zh1c6YIqea66BD56Xqsw59vp9L7PxjQ0MHzcc23GCO9yOzYhJI1nwqUsLpsBI0He3BUee7grRLWPMt3Mdg+hnlg1jzofqFVA6JtfR9ImyLJywhRN2gKE7nIvRulPSrvFdj+3Lt/LMj59i85KNnL1oNo5lMXF4ETsOt1ASPb0TXt8K4w9g0+JcSjmlVCa2YfspfDv/xtM+XfVmHN6/6265Meb7/ReOKGjGwIbHwXby/q70UHZkfz3rX1nHhTdfzEe+9tFch9MnTUmPuhZ5uitEV0Q+iXkAACAASURBVEqpt40xCzu1wmpfhbS+Knxn3QgH10OqCaLyq8x3yrKwLQs71PFZde61c3j7kTdZ8tCbnHX5LJRSjC2PseNwC8aYgrnxLHrHKBsLzbDUHmqLpuc6HJHVm6vI1k6vo8DHgM39G44oaAfWwcGNQYVJkTNvP/Imlm1xye2XDvi5tDH4Opg8bXB9jetrPG3IeJqM17f+W/WtGRxLnu4K0ZUxZmF2Lq2whqLYMJj/x7DkpxCKBk2cRUFRlsXCT1/OMz9+iu3LtzJt/plEQzZjy2NUNySP6ZVqDMHNXfm8K3ieCjOyeZMkvHmkN1Waf9b5a6XUT4EX+z0iUZjcJKx7BOLD5Z91DjUeamDti6s5/6PzKKns+VOBTfsbqW3JHH8DddQMTxs836CNaf91t63r/KjJ6uN7QQHx8Old4EOIE1FKfQt41BizP9exiH5WOQ3O+WTQcqp8kny2FqBZV53L6/e/wtsPv8m0+WcCcNboUqaPPPo+lQFW7T5C2vWJhOQzr9ClnDJGtWxis/4Y2pIWavmgL7+FODCuvwIRBW7by8G4gWWFUwxpKHrn0bfAGC65/bIe79Oa9qg+kgwSy+6up8xRMwDCtkXEQZpkCZF7JcDLSql64DHgCWNMTY5jEv3ljCuhfgccWB8UsxIFxQ45LPjUpfzh337Png0fMmHWJJRSwagDXZxRVcSaPQ2S8A4B2nKwtEdZqpoj8Um5DkcAPe41r5TaoJRan53eB7YAvxi40ETBaDoAW/8AxaNyHclpraW+mdXPr+Tc686nfNSwHu9X3ZBEKbDtbB+krpMdTE6nybKUJLtC5AFjzN8bY84GvgaMBt5USr2S47BEf7EsOO9OiA8LRj8QBef8G+YRL4vz9sMnHtGzsjhCNGTh9rErkMgPRtmMaPkg12GIrN6UifsYcGN2uhYYY4z5twGJShQOrWH9Y2BHpFBVjr372BK077Pw05f3eB/X1+ytTxAPS5MbIQrcIeAgUAeMyHEsoj9FiuHCPwY3EYxz76UgeQSa9kPjXmiqhoY90HwgaGllJGHKJ6FomPm3XsK2ZVs4uP34PQ8spTijqpiU6w9idGKgJENljG5ejzLy+8wHvenDu3sgAxF5JHkEPnwbfK/LCgNeOvuhmww+dDOJ4MO2fFIuIhVZrQ0trHxuGbOuPJeKscN7vN+h5hS+NliWPK0VohAppb4KfAqoAp4A7jbGbMptVKLflY+H8z8Hqx+AWHkwzn35hGDYomhZUM25fgfU7Qg+kw0QjkNscMYeFSd24Scu4p1H3+LtR97ktr/99HG3G1UWZWtNs4zVOwT4Vpi4W0dp+gCNUemOkGu9GZZoHvAdYGJ2v7ahD2YPUGwiFzKt8N4voWEvON2MmacsUHYwTmDbvGyCFNPIsaVPvYub9lh456Ie72OMYVdtK1HpLyREQVJBv4K5wJ8bY9bmOh4xwCZcBOMuCD53uzNubjD3XajbDu/8C0SHyedzHogWx7jgpvm8+/gS6r9Ud9wb045lMamyiO2HZKzeocCgGN6yTRLePNCbv6aHgPuAWwmaNbc1cRZDhZeB5b+C5oMwbBKUjD52Kh4JRZXBkAnRUggXHf/DVwyKZHOS5U+/x1mXnU3VxJ63ZDySdGlN+4Qd+VAVohAZYwwwX5Ld00hPPm/tEFTNgKIqcFtPvr0YFBfddgmWbQfFJU9gbHkMBWhtTridyH8pp4yxzeuCMadETvWm495hY8yzAxaJyC3tw5oH4PAWqbR8CozWaG3Qvu40+WgveO17fsdyHcxNp2397La+62df+/iebj+u0fqoY/tedhtfc3DbfjKJNJd99opexbynLhGMcSuEKGSrlFIXGGNW5DoQkUeUgkmXwqbfQrg419EIoLiihDnXz2Xls8vY+Pp6bMfCsm1sJ5gWffFqZl99HhHHZnxFnL31SYqjUl+jkHl2jJLUAYoyh2mN9HNphbYkutBbcBgDGCyjUfiobA0Cg8IoG6MsTK+ez3avN39J31VK3Qu8CqQ74jS/7XMUIreMgY1Pwt7leT3W385V22k81NiR/LXNvSAB9FwPP+Phez6+6x+bWOrstn52fZdEtOO4JtinbX9t0FpjfJNd5ndJbINtcsWyLc697nxGnjG6x/skXZ9DTSn5MBWi8M0HPquU+hBoRbobiTajZ8P7TwWf8Xn6uX66WfSFq4iWxPDSbvv1h+/57F63i9f++yXOuWIWlh0kvHvqExhjZESEQqcUla3bu014Q36CeKaOokwdZam9lKeqsY3L4fg0jsQn0xQZRcopC/5+jSHiNVGW3s/w1u2MaN1K2G/Bs6J4VgTPiuHaETwriul2jMljuXaMhuh4WiNVtIQq8e1of3/3HYwh6jVSlKmlJH2AisRuytL7cHQKZQB19PCXwT6gskv/b6gl3pfT9+Zq94vADCAEtJUANIAkvIVu64uw7RUon5i3H4qrfr+C3//86ZNuZ4ds7JDTfufUsiws20LZKnjtWNi2jR2ys3dWLZyQjRUNoyyFZVtYVnb7ttdWdhge20JZCtu2g3VOdm6pjtdtU/Zclm1hd13XKa622GzbxnKCuGzbao9PWSobgzpqf9vpOP+pfBjub0iCknF0hRgCrst1ACJPFY+A0rGQaYZIaa6jEUDRsGKu+qNrj1m++a2NPP69h9nyzmZmXnYORWGHkaVRapvTxCNyY7qQpZxSzqx9kTPqjx6WSgG2zmCUAgy+CuPaMQyKcU2rmdC4HIC0XUpDbBxlqf3E3AaMAl+FSDslpO1RWMZH4ePoJCG/BasXVdot4zG2aQ0GC8toWsPDaYyOw7O6qeHTLUPIT+HotimNo9PtT2k7C+k0lslkv3PI2HHSdjFJp/zkuYcxhJTu02Pe3vwVXWCMObMvJxN5aO8K2PjboBlznvbFrd68lxf+9VnOuGAaH/3zj2M79lHJqeXYQdLq2JLA9YCnNbvrWomH8/P3LYTolS8cZ/n3BzUKkX/amjVveEwS3jx35iVnUT5qGEufeoeZl50DwKThRRxsTOHrniYwCktuZOcd145nE8iuzy9V0FS3m9+XZ8eCF8ZgmwzDEztxrRhNkVHHbK+VAzj0efAjY3B0Kjt2cM/fc21NjnW2+bFWNqhj00vXjmK6Wd6z0/T9Pd2bM7+rlDpLhjsYYra+EBShytMxdFuPtPD4dx+iZHgpt37ndmKlfWrRIIDa5jSeNsRkyAORZ5TxCPnpY5YbBVqF8JUTVIrvKWOIu/U42bvoBlDGYJSNZ4Vx7Ti+Fe6/byA3OlclihIUlNyco1hEvhl1Dqx/TJo15znLtrjw5ot56T8Ws39LNWPOHEdpzGFMeYz61mP/J3bHGIPrG0w2sRrI37YBiiOOJNc9ZNQpPmBQCl9FSPb4iWsfKIVnxzqS7SGmNwnvRcBapdQugj680k+o0LXWBQPVl+ZnkSrt+zz5g0dINiX40r/+f5Ls9oHBYExwzbOrLkHYlmRX5A9bZ4i7dRgsmiOjsk28OlhGE/ZaiPv1BO9mK3sxZ0jbRWTsoqMTYWOIuUcI6RS1RdPYUXE5nhUh6jcR8VqIZ2opyhxmWHIvcbcegKRThmcNYP+lAWKM+Vnnr5VSPwVezFE4It8UVQajLiTrIVqe62jECcy5fh5v3P8Ky556l5v/96dQKGaNLevVMQwGXweJr+trXF/T4wfEvVDdkKC+JSPNrUXB6M079SMDFoXIjcMfBPM8vUP3yj0v8uHaXXzi//8ko6eNyXU4BWf7oWY+rEugjeko5kfQUKVMilWJPOD4SeLeETwrwo6KRewrO5+0U3L8HYwmpFOE/ARhP0FJej+jm9+nLFUNKLSy0diEdJK6+BS2D7+KxujY9v9xrVQdc7zS9EEqW7cxpmkdJZmDA/fNDp440ONBH5VSHwH+GbCBe40xPzrOdrcCTxJ0b1rZH4GKQTJpIax5UBLePBctjnLe9XNZ+cwyrv7KRyip7H0zdIXCsRSOBbHQwHVbCjmKQ01paTkgCkaPr3qNMbsHMhCRA3uXQ/gEF5c5tPH19bz3xNtc8ImLOPfaObkOp+CkXJ+dta3Ew07QpwfkQ2mIc/wkcbcB3cMmv0ED3+BpqW+F8VUI3wp3W93RMt7RxSiURTf1FE96NpXdq+3pbMaOs6nqoxwomdWz6pDKwrXjuHacBNAQm8De8osI+QnKUtVUtW4l6jayq2IhDdEJJ3/PK4um6BiaomPYWXEZcbeOw95LqV58YzmnlNpAxy/DBqroYf9dpZQN/BK4BqgGViilnu3adUkpVQL8GbCsv+IWg2jkWcG8/W9X5Kv5Ny9g+dNLWfHMUq7sprhVviiLhSiOOqR9TcSReiAi//U44VVK/V13y40xUhijEKVboG5bUMExzxz+sIZnf/Jbxp8zkev+5IZch1OQdtcnggqAMs7uaaEt2d0w8hMkwz17imNrl7DfSsw9QlGmnphXT8xt7La6omvHOBKbRHNkBIlwJSmnlLRdjOlFcq2MH1STNBoLHww0R0ahrb63NnDtOLVF06ktmn7qB1GKRLiSpHa8Pgc0uD7W6bUH1Bhjevo9XAhsN8bsBFBKPQp8HOhaq+MHwD8Bf9XHWEUuxIZB5TRoPhi8FnmrYuxwzlwwg5XPLefSz15BKJKf9VUUiimVRayvbpSEVxSE3lxpSGGMoaRuWzDPw7u9r9//CnbI5pPf/TR2SJre9lbK9dlTFzzdFUNfyE8QdRtZNeYz1BVPy3U4YpAopS4A9ra1vlJKfR64FditlPqeMaa+B4cZC+zt9HU1wbi+nc9zPjDeGPO8UkoS3kI1aSGsuk8S3gJw0a2XsOWdzax/eS1zP3ZBrsM5rqqSCI6t8LWRm+si7/U42zHG/KzT9A/AImDKgEUmBta+VeDkX4GW5tomPnh7M+ffMI+S4TKMwqnYXZ8AwJIPoCEv5CeIes2sGvtZSXZPP/8FZACUUpcBPwIeABqBe/rjBEopC/g58Bc92PYrSqmVSqmVhw8f7o/Ti/5UNQNQQbNmkdcmnjuZUVNHs+ypdzCmN11HBpdjWUyoiJPMFFqjGHE66svjvV4VxhB5xMvAgfV5ead3zQsrMVoz92MX5jqUgpTy5OnuUYwJLvAGaVJGo4yHpV1sncHWaRw/1avJ1hks7WJpD2X8416ghr1Wol4zK8d+jvqiMwb5ByvygN3pKe7twD3GmKeMMX8LTO3hMfYBncv0j8sua1MCnAO8oZT6kGC0hmeVUvO6HsgYc48xZp4xZl5VVVXX1SLXoqUwYiYkj+Q6EnESSinm33oJh3cfYufK7bkO54TGlseCahB5nJgLAb3rw3vKhTFEnqnfCdqDfug715+0r1n1/AqmzJ1KxdjhuQ6nIO2Vp7tHCaruDtbPQmGUQmOjlZMdhN3ucT/XgME22WQXjWU8LONn16j2QlPKgFY2K8Z9nobYxAH5bkTes5VSTra/7lXAVzqt6+k/9xXANKXUZIJE9w7gM20rjTGNQGXb10qpN4C/lCrNBWriJVCzCeLy+ZrvzrliNq/c8wde+dUf2PP+bmzHbp8sxwrmto1lW9iOheVkX2eXWY6VXZfdLxRsb4fsY5dl9z+VMXXjYYeq4gj1iYzcaBd57aTvTqXUVGAkxxbGmAwcGKC4xEA6sA5U/v1j2r58K02HGvnIVz+a61AKUtrz+bA2IR86Wcr4GCxeP+N/4Q/GoO0DxRhCOknYayHitxL2W4i6jdTHJ9MUzb+ic2LQPAK8qZSqBZLAEmj/zG7syQGMMZ5S6usE4/bawK+NMe8rpb4PrDTGPDswoYucqDoT7DC4CQjJuPb5zAk7XHrnIl7+rxc4uH1wLrUt2+pIiLsmyCEHu9P6yXOncvnnrgRg4vA4h5rTgxKjEKeqJ1fGvwC+3XVYIqVURXbdjQMRmBggWkP1CohX5DqSY6x8bhnFw0uYvmBmrkMpSHvqE8EgM/J0F4Co10Rt0bTCTnYBlGofiqf15FuL04Qx5h+UUq8Co4GXTEebQgv4Ri+OsxhY3GXZ8UZlWHRq0Yq8EC6CuXfBsv+A0nFg52cFYBGYf8sC5t+yAGMM2tf4ro/2fXzXx/d8tK+D5W2vs3Pf12jfR3vZdZ7G9zx8r2Pfttft+7cta9u27Ryuj9/5nJ6m6XAjb9z/KudcMZvh4yoZFg8TC9u4nibk5F8hVCGgZwnvSGPMhq4LjTEblFKT+j0iMbAa9wR3d/OsSVPDwSNsW7aVyz67CFtK3Pda2vPZXZegSJ7utnP8FAdKZuU6DFEgjDGkEoVVfMUYs7SbZVtzEYsoEGPnwNm3wPu/hfKJeTlSgziaUqq9GXI+aKlv5hef/jHvPfE2H/vmJ1AqGKJo04EmSXhF3urJ1fGJBnWM9VcgYpDUbMrLD7jVz69AKTj/hvwtwT8QDP1T6GHvkSTayNPddkajgCPSv/W0ZYyhtSlDw+EUTfUpWhszwdTUNk/T2uTS2pQh0RQs177B6dkwxkIUrmnXQstB2LMMysbDKfTdFKev4ooSzr32fNb+YTVX3HU1RcOKGVka5YODzWgt1yEiP/Uk4V2plLrbGPOrzguVUl8GVg1MWGJAGAN7lkI0v67ofM9n9eKVTJt/JmUj8yu2vsr4mpaUR3PKpb41Q0PSJeP1/7AQ2hhKotI8rU3Eb6EhNp6MU5zrUEQP+b7Gy2g8t62Zngma1/kGz9W4KR834+OmfTLpYJ5s9Ugn3KPmTfUpGg+naKhN4mWO/VuzLEVRWZh4aZjisjAjxhdTVBrOTiEWP56Db16IwWRZcO6noeUwNFZDyahcRyQKzMWfXMjqxStZ/rv3uOKL1xCyLcYNi7G7LoFSQalIx7KwbYVjqVMqiCVEf+pJwvvnwNNKqTvpSHDnAWHg5oEKTAyA1sOQqA367uSRLe9sovVIC/NunH/C7VozHrXNaXxj0DpI8nxjMMbgZ7/Wum3Z4JbJD8ryBzEYEzy59XxDxu+44A7ZFiHbItrW5Ec+AAZMxG9lR8WiXIeRd4K+YCabVJqgr5eXnWeXe67Gzfh4GY2b9nEzGt/VuK7fnpC6GR/PDZa37eN72dcZjef67cuDdSbb38zg+2390QxupiN51f6p/706IYto3CFS5FA6LMq4aWWcs2AU5VUxyquilFZEKSoLU1wWIVrknPDiSxJecVpwInDh3fDmP0GiPi/reoj8VTmhijMXzGDFM0u55I7LCcfCTBtRwqjSKClP05r2aE55tKRdGpMuZbGQJL0ip06a8BpjaoAFSqkrCMbjA3jeGPPagEYm+t+hDwCTd4nWyueWUzaynDMumHbcbepbM6zZcwRPG4LWMqr921CQvaMY3FbMrh60wWjaolAdL4O7m7Yi4jh59/Me8oI7DtTFp+Q6kkFjjOGJX6xn+7patB/c+GlPMLXBzyakvte/N4EsS2GHLJzsZDvZ1+GOZU7IJhxV2LYVbO+o7HAZilDEJhS2s3MLJ2wHx7FVduiNYD8nZBGKBtuGIzahaDCPxh2icQcnnB9924QoKLFyuPhr8MY/QcMejvnUDMfzrt6HyB+X3H4ZW97ZzJoXVjL/lgXYlqI8Hj5mu437GznYmKIoIjVGRO70+N1njHkdeH0AYxH9xRhIdTMqxd73IFI6+PGcQN3eWnat3sGVf3Qtln1s32KDofpIkk37m4iGbOKR/Ot/LPJLSCdpDQ8nGRqW61AGzfvvHWTpC7uZfn4VpRURLFthWRaWTXty2ZaM2p0SScvJJpe2wraD5DUUtnHCbQlokLCGsglsKGy3J7ihsI1ly80cIQpa2Ti49JtQ/2GXFQY2PQO+K9WcRbfGnzOR8WdPYOmT73DBx+dj2d3feJw0vIh9R5IYY+Qpr8gZud0yFG1/BTY+eexYu9oLqjLmSGtDC27KbS+lb7Rm6W/fxbIt5lw/95jtfWPYWtPM7roExREb25JkV5xc1Gti+/ArTpsn69o3PH/fB4wYV8zd/zAfu5sbR0IIcVwVU4Kpq2Q97HwLSscMfkyiICy44zIe+9sH2fTW+5xzxexutymOOIwoiVDfmiEuT3lFjsg7b6jxPdj2MhSNhFD+FNFe+uQ7vPjvz3e77qzLz6G4ouSoZRlfs766gbqWDKXRE/e5E6IzZQy1RcdvHj/UrHqtmprdzXz+b+ZJsiuE6D8TL4EdrwWtxuQzWHTjzItnMHx8Je8++hZnL5p13Gu1yZVFHGpOy3tJ5IwkvENN3TZIN0Msf5pzbnl3My/+x2KmXzSDmZedjbKsoMmlbWFZFhPPPfrOsjGGNXuO0JR0KY1KH1jRc7ZOk3aKaA6PyHUog8LL+Lz4wBbGTStj9sLRuQ5HCDGUlI6BiqnQfFCKWoluKcvi4k9eyu9//jQfrtnJ5PPP6Ha7sniI8niIRMYnGpKaC2LwScI71Ox8M6+e7B7ccYCnfvgYY6aP4ba/u4NQ9NiCBl0dbklzJOFSJsmu6KWY28ie8gvzcqzpgfDe4t3U1yT45J9dJGMfCiH637SrYel/SsIrjuvca8/j9fte5t3Hlxw34VUozqgqZtXuI5LwipyQhHcoSdTDgXVBEYo80FzXxCPfeYBYSYw7fvi5HiW7OttvN+pYkuyKXlNoDhdNz3UYgyKd9Hj54a1MPbeS6XOrch2OEGIoGnEWhIvBTUEomutoRB5ywiHm37KA1/77JX5yyz/ghB2ckIMTdrBDDvNums/5N8xjeFGYoohNxvMJO5L0isElCe9QUr0qO0ZP7p9uuWmXR//mQZJNSb70L1+hZHjPqkPXNKVoTfuUxqQqpOgdS3to5dAYzY8bPgPtrad30tKQ4Ya/nyF93IUQA8MOwdQrYfNzUDY+19GIPDX/lovJJNOkWlJ4GQ/f9fAyHge3H+DVe19k9tXn4YQdzqgqZn11oyS8YtBJwjtUaB92vgqxylxHgtGa3/3oCfZv3cft37+TUVN7VuGxrSqzNHcRpyLqNXKw+Cy0NfT/rbU2ZXj98e2cs2AUk2ZKU0MhxAAaPz9IeI3OixvqIv+EYxGu+vJ1xyzfsWIbD/71fWxespFZV53HiNIoEacZz9c4UmRRDCJ5tw0Vddsh2RAMFJ9jr9//Kpve3MjVd1/HjEvO6vF+BxqTpFxN2JG3pTgBY4KpC9tkqCnp+futkL322DbSSY8b7pqR61CEEENdvAJGnwettbmORBSYKXPPoGLscFY8swwAWymmVBWRdP2eHcAYTD9MQgz9RyGni11vgZP7/jVrXljFkgdf57zr57Lg9kt7vJ+nNdtqWoiF5emuOA6jibv1ODqDUQoFmKANPwBahWiITui/0xmD0aC1CSbfYNpfa7QmO6Z0x3rf0/heMPc8jfZMdp5d7gfztn2MNvhtx/UNWmu0T3a5xmjws+fw/eC8vmdY+cpe5l41jlGTetZVQAgh+mTKIti/JtdRiAKjLIt5N83npf9YzMEdBxh1xmhGl8XYdqiF5pQLhraP8Oxn+tGMgaAe46l32zHZo5ZEpavc6UwS3qEg2RB8EJXkdnD4nau28/ufP82UuVP52Dc/0at+hfsakmQ8LX13xTGU0cQzddjGo6Z4BrsqFtIUGYOt0zidJqMsPLvjps+Hm+p57t5NZFJ+kFz6HYlmexLp6SCRzM6NCZJNo013D5EHnVJg2QrbDobysp1gPmpCCR/5gjzdFUIMkuFToagS0i0QKc51NKKAnPeRubz265dZ8cxSbvzWzYRsi9ljy2hKeUQci5BtEbIVjm3hWApLKSxLYSmC132sUeFpzYpd9STSHvGIpD2nK/nNDwX71wAGrNw9HT206yCPf+8hKidU8cnvfga7FwUJXF+z/VALRfJ0NzeMoSRd0/7U9Oh7rMHtV3OSu6uqfZ+Oe7QG1Wl5l1Nmj9dxvmA7Zdpu95qO/ZViX8m5fDhsAa2RjvF1fTuKb0dJd3P8VMLjf/7PKnxXM356OcrKfoDaCmUp7Ow40LYTJJHB16p9O6UUyuKo/ay2de37d7xW2W1sx8JxLCzHwske23KChLXtXO2Ja6fjqs7nsDstl2JUQoh8YFkw7VpY97AkvKJXYiUxzrlyNhteWcs1X7meaHGUqpIoVSWDc37HsjhvwjCW7qwj7fpEpE7MaUkS3kKnNWx/FWLDcxZCc20TD337N4SiYT7zj18gWty7ptV76hP42mCHpe9uLkS9Jpqjo9gw8hM4JoOtXWydwTYZlNH4VhhfhYK5FcZXDidqXnRUcnychM3SHrbJ4OhM9lwutnazexswGmU0RinqiqaRDA3r1ff0/H9vouFQkq//fCGTz5aiTkII0Wdj5sD6x0B7cBoUBxT954KPX8TaF1ax7qXVzL9lwaCfPxayOX/CMJbvqsO2lBTMOg3Jf6xCV78TknVQ1n99F3sjk0zzyHceINmU5Iu/uJuykeXdbmcw7DuSpK41c8y6mqYU8bC8FXPCGCJ+C+tGf/Kop6eFbNvaWt557kMuv3WKJLtCCNFfIsUw9SrY9rIMUSR6Zcz0sYydOZ6Vzy7jwpsvzknrpbJYiNnjylmz9wglkRCWJS2oTieSZRSKTAJqNgbDAnRWvQqscL+eqmbnQer31WG0zhbnMdnX2WI9vp+da7Yt28LBHQe444efY/T0sd0ez2DYebiVbTUthB3rmGeDUcfGln88ORF366mNn8GR2MRch9Iv0kmPx36+lsoxRVwvfVyFEKJ/Tb8+uO5INUK0LNfRiAJywcfn87sfPcmHa3Yy+fwzchLDyNIo00eWsLWmmdJoSLoNnUYk4S0ExgTNiD58OxgEvjNlQ8nofjvVpjc38OQPHsXonlXssWyLG/7sJqZf1H1yYYxh26EWdta2UBKVO2p5xWgcnWZb5dXHbXpcaJ7/9WaO1CT42k8vIRyVf29CCNGvQlGY+wVY8lMIF+e0dogoLGcvmsWL//48K55dmrOEF2Dy8CISaZ+9RxI4VkfBLFsxZK6FxLHkirAQHFwPe5ZCxZQBDFc/uwAAIABJREFUHfR9+/KtPPUPjzNu5niu/8aNWI6NZVtYlpUtqmN1moJ1TtjGCXdfWVkbwwcHm9hTl6Q0JnfS8k1Rpo6DJWfTFM1tde/+sn19LW8/s4tLb57ClFm569MuhBBDWuU0mLwIPlwiTZtFjznhEHOun8d7T7xD0+FGSqty00JAKcXM0aUMLw7TkvZoTLg0pz0Svm4vu3nUEEmm0+hJik4lN7t/MBSyLSmMlYck4c13qUZY/UAwHMAAJru71+3ise8+xIhJI/nM//kC0eJYn47nG8P7+xvZ35CiNOZIsptnlPGxjMeO4VfkOpR+0daUefiYODfcJU2ZhRBiQJ11ExxYC+lmiAxSuV1R8ObdOJ93H3+b1c+vYNFdV+csDttSjC7ruM41GFzfkMz4+Nrgm2AIQ20M2gStFS1LYau2YZOCIZO6XtkmXJ8N1Y1EHEueFueZQUt4lVIfAf4ZsIF7jTE/6rL+LuAnwL7son8zxtw7WPHlJWNg/RPgpSFeOWCn2b+lmoe/8wDlI8v57I/v6nOy62nNhn2NHGpKUxqVZDcfFWVqqS6bR2t44N5XAyGV8Fjy9E4SzZlg/NzsdKi6hbr9Cb760wVEYnIfTwghBlS4COZ8Dt791+D1AN6QF0PHsDEVTLtwOkufepe97+/BdmwsJ2g5aNs2dtjBCTs4oWBuh51gm04tDYPhAoPh/2zHxrLt7BCANrZjY4fa5k7716FIqGOKhrBDR1+bKhRhWxGO9e19XIZhV20raU/LU948MyhXhkopG/glcA1QDaxQSj1rjNnUZdPHjDFfH4yYCsK+1VC9HMonDdgpDu06yIN/fR/xsjif+8mXKCrv2/h6ntasq26ktjlIduUOV/6xtAfAzoqFOY6kd7Q2PPRPq3n/vYNE4w7KVtidxq+94YszmDq7sBJ4IYQoWCPPhgkXwb6VUDou19GIAnHZ56/klXv+QCaZxvc02gsKofq+j5/x8VwXL+PjZTx81xuYIJTKJtZBtzw7ZAcJdsjBtq32Ln22Y2UT6qOTaatrYp19HS+LM/my2Ww40CwJb54ZrEchFwLbjTE7AZRSjwIfB7omvKJN8gisfRCKRg5Y0thw8Aj/87/uww45fP4nf9Tn/hSe1qzb20BdS0aS3TxW5B5m17BLSYcKq8LmC/d/wPvvHeTmr83i0o9PznU4QghxelMKzrkVDm4Mul/Z4aBlGqZjboeDSa4HRNa4meO56//e3aNtuxstxGiN1hrtafy2ZNnz0Z6P72t818f3vOw8SJy9tIub9nDTGby2uevjZVx8N7tNxsXPdCTf2vPxPY2XCRLz9nO4Pp7roX2//Ry+G+wHcFtFCeGRI/B8LeP95pHBSnjHAns7fV0NzO9mu1uVUpcBW4FvGmP2dt1AKfUV4CsAEybkZuzZAWcMrHsUfA+K4gN2mtd//TLp1hR3//tXGTamb+OVelqzdk8D9YkMJZLs5oWw10LEb0EZjcn+PgwWnhVhd3l3f375a/Xr1bz66DYuumEiC2+alOtwhBBCAERLg6rN6x8nSHCdoHJzW/XmxBFoqQmaPCuC65uuwyselwquJZSivUiQgfYSQu3XGdljmp6NLnHCc9HpXG3Hbl/X6fw9/R7sMBSPkmuiU6QsC9uyKIRnpb7n88+f+QnrXljFJX95G1sONlPSxybSov/kU2e354BHjDFppdQfA78Bruy6kTHmHuAegHnz5vXlv1v+2rsM9q8Z0KbMddW1bHhtHRfdtpCqSSP7dCzX16zZ20BDIkNJRJLdfBB1G1FotlZehWdF0cpBqxC+5ZB0huE6RbkOscf2bDnCoz9by5RZw7nla7OkT7gQQuST0bOD6Xh8F1JNkGoIngT7mZ4f24lAKA6hWMdc2eAlwU1CJgFuArxULxLp47DDx57LcjrO5SaDc7nJnp9r20uQbpIxi08DtmNz3kfm8vbDb3BtJo2yFFobGY4zTwxWwrsP6Fy7fhwdxakAMMbUdfryXuDHgxBX/mncB2seHPA7gm8/9Aa2Y7PgU8f249TG0Jh0e3QcA2yvaaYx6Uqymyfakt0V475AS2RUrsPpk8a6FL/+3gpKh0W562/n4YTkbqkQQhQUOwRFw4Opv4SiEBvWf8cbsHMpWHW/JLyniTnXz2XJg6/z/itrGX/NPPbWJyiOdj90pxhcg5XwrgCmKaUmEyS6dwCf6byBUmq0MeZA9subgM2DFFv+yLTC8nvAiQZ3FgfIkf31rHt5LRfefDHFFUcPJ5DxNeurg364Vg+TV6WgWJLdvDCUkl0343Pf95aTanX5018spLg8kuuQhBBCiJ4bfW7w5NjPBHMxpA0bXcGUuVNZs3glX/7kQvbUJzDGSMu0PDAoCa8xxlNKfR14kWBYol8bY95XSn0fWGmMeRb4U6XUTYAH1AN3DUZseUNrWPMwtB4e8IHclzz8BpZtccntlx61vDntsmZPA2nXl6JTBehUk91De1tY8fLeoFqib7LFIQzGGLQfVEc2JlgWrKN9m2AdGG3wfd0+TJD2TXbYII0x2e07HVu37etnx7jrsswYg+8ZPFfzxe9ewJgpcndcCCFEgQlFYfJlsPN1KB2b62jEIJhz/Vye+uFj1GzczYiRldS1ZIhH8qkH6elp0H4DxpjFwOIuy/6u0+tvA98erHjyzo7XYd+KAe23C0Fl5nUvrmbujRdSUlnavvxQc4r11Y3YSknzizZ9KoDR304cS9RrPqVkt74mwS//6h1aGtKEQjYqO8SPZamgVshRXyuUnR1svW2ZRfs6y7Gw7WCYICdsEe40ZFCwb6djZfez7Oy67HLLbnsNSikmnVXBrEtG9/WHJ4QQQuTGxAWw/eXgmkIeJAx5MxaeRaw0xpoXVnL1X9xKTVN6aP7ujcHX5iRXpx2UCoaSzBW55ZAParfDxieCu38D/Afx9iNvoizFwk9fDoAxhl11rWytaSEetgkVcgl1o4n4LYT9VgDUcRJWQ5DMGVT2n5BFkFAG2yvIm2TXtL8f2ipHdi/tFLN6zKd7lewmW1x+9TfLcNM+f/Wfixg1qfTkOwkhhBCi50pHQ+U0aDoI8b6NiCHynxMOMfvqOax8bhnX/+mNlMZCpF1/SIzLa4wh7WlcX4OBSMjqcRLr+ppEJij2ZiuV3Xfwcg5JeHMteQSW/xdEhw14/47GQw2seWEVc66fS2lVGQbDBweb2V2XoCTq5H0luajbQEinAIPK5qNaWYBCEfwRHYlNYEfxIurjk0iGyrs9jmU0GI2FRhmNQmOwMMpCY2GUExxXFXDyfxJexufXf7+c2n0tfOUfL5ZkVwghhBgoU6+Gpf8pCe9pYs4N81j223fZ8PI6plw7lzV7jpDx+1hFvBudB9A6JdlRt2yVbWWnFLYCbYICtr4xaB28Vio4X0VRhNFlUYYVhYmGLNQJHsYcfSpDIuPTlHSpbUlT25IhkXGPu7chePbkWArb7nt+IgnvYGk5DLVbjl2+5z3wMlAy8P8E33n0LTCm/eluTVOa3XUJSmNOfneoN4bizGFSTgmbRt6IMgbbuNg6TchPYhmPhth4GqLj8eyTF/vys9+qP8Bh5ytjDI/+bC071tVx51+fz7TzKnMdkhBCCDF0jTgLwkXgpoJ+vWJIGzllFGNnjmf14hVccMvFzJtUgR6gloNthw0SxN6dwxhIez4pV5PyfNKuJuNrHFsRcWzCjk00ZBF1bGJhm/J4COcUn8oqFEVhh6Kww+iyGAZDytX4+tiYfW1Iez5J16c17dGa9sHoPl22S8I7WNY+BAfXH/sU145Acd/Gwe2J5tomVj+/knOvO5/yUcNIZDw27mskHrHzOtlVxqc0fZDDRdPZMPITBTV+bL564f4PWP36Pm744gzmXjUu1+EIIYQQQ5sdgqlXwebnBrwwqcgP598wj+d+9jQHPqhm3FkTch1O3lEoYids5n10PSHlpZN9OZ8kvIOhcR8c/gAqpg54H10v4/L2w2+STqTbK+0abajZeRDtay79zCJ8Y9iwrxEFed1n1/FTFLm17Ki4nB3DF2FU4fd/GCy+p9m+rpZMyg+qLeugEvLB3c288sg2LrphIlfdMS3XYQohhBCnh3EXBgmv0UO6y5QInH3FbP7wy+dZvXilJLx5QBLewbDzDbDCg1Khbdlv3+PNB14jHI+0V79VKijSdPGnFjJsTAXbDjXTkHCDoYfyVNRtxNFp1oy+nUMlZ+c6nILiZXx+88OVvL+0ptv1Z80fya3fmJXXT/aFEEKIIaVoOIyaDYe3QPGIXEcjBlgkHuGcK2ez8bX1XPfVjxKJR3Id0mktfzOeoSLZAHveheKeV889VelEmncefYupF07nzh/d1e029a1pdhxupSSSv+Ps2jqDo9Msm/BlmntRdViAm/H5zQ9WsmlZDTfefRbT5lS1D/FjZYcMGj66KO8LlAkhhBBDzpRFcGBdrqMQg+T8G+axZvFKnvrBo5SNKse2bSzbwnJs7JCNE3I6zR2csI3t2MF6O9jGciyckIMTCRHqNLV9beVxS818IgnvQNuzNGi+Yg38j3rZU++QbEpwxRev7nZ92vNZV91ILGTldcJTlKnlg6rrJNntJTfjc9/3VvDBykPc9qezWfCxSbkOSQghhBBtKqdBfFjQ1c3q0k0rFIeojJgwlIydOZ4zF8xk35Zq9n2wF9/TaN8P5l7/lE61Qw6haDYRjoYIhYNk2Ak77VMonP060rEuFA6SbMu2sLMJuGXbOGGbUCSME3Gyxwy3b+uEney2bYm6jRrEoYX6QhLegeSlYdvLUDTwTVeSzUneffxtzrxkJhVTRrO/4di+3QcaU3i+oTiPmzJHvCZaw5VUl12Q61AKSibt8+vvLmfbmsN86pvnctH1E3MdkhBCCCE6s2yY83k4uKHLCgO7loATCSYxJCiluOOHn+t2nTEG3/XxXQ/P9fBdHy/jBQmx6+P7Gt/10Z6P53p4aQ83ncFtm6dcvIyLm3LJpDK4aRc3lcHLeMGUdkk1J/EyHm7GbV/mpj28jIvppjryqQhFw4RjYcJt81iYSFGUaFGUSHHHvKi8mJLhJdmplHhZfFCT5fzNfIaCA+vBTUDRwA/78t7jS0i3plh019Vs3N/I4eY0dpcmy8pSFEfyuPCT0US9ZpaPuw09CE/Eh4pMyuO/v7uc7Wtruf1b53HhdVIcQQghhMhLI2YEU1eRUtj8DJTJZ/jpQCnV/gR2sG9xGGPQnt/piXOQZGtfZxPmIJEOkmgXN51p38b3gsQ8SNBdMskMmVQmmCfTZBJpWhtaqd9XR6o1Raol1e3TbMu2KCovJl5eRFF5EfHSOPHyIuJlceJl2WVlRe2v+0qyioGiNWxZDNHyAT9Va0MLy377LmdfMQtnZAV1u49QHgvlbR/d4ynO1FJdeh5H4pOOWed7mnVL9tPa5HaqPh380Rpj0H72D1gHVak71nWaZ/drq1hsdNv2XbbN3vXS2oDhqGNgDLr9WB3H7Ng32MZkB+02utN5/ePv0xF7cN6jv7/sMek4b8f3afA9g+9p7vjLOVxwjQx3IIQQQhScyZfBthdlrF4x4JRS2WbJA38uYwxe2qW1oZXmumaa65poqWumub6Zlvpmko0JWhtaaag5QqKhlVRLqvsDDetbTiMJ70Cp2w7NBwblTt07jy7BTbtc+vmr+OBgExHHKrhk19ZpjLLYXnnVMeu2r6vlqX/bQM3u5h4fTymyVaqDL9q+bivgpGyFZWWXZytZW9nXqGB8MNW2bXZfFB3bW9nt25Z3qobdce7gGLZttb8OYlDHxNe2zGo7dlsc2WN2ft22TXsMlmLanCpmXiBVH4UQQoiCFI7DzBthwxPylFcMGUopQtEw5aPClI8adtLtfc8n2RQkwYmGVlobg/n/PPj7PsUhCe9A2fZSUIBggBPP5romVvzuPWZffR5uaTGt+5sojQ3CLZt+VpSpZdOIj5F2Ogo2NNWlePZX77P6tX1UjIzzpe9dwKSzK9qTxqOSQFt1JJPZxFIIIYQQomBMWABbXoBMIkiAhTjN2I5NcUUJxRUlR6+QhDcPNR2Amo1QNvDNS5c89Aba1yy4cxEba1qIh/O4j+5xRN0GmiOj2Vc2BwDf17z9zC7+8MAWPFdzzZ3Tuer2qYTzuNiWEEIIIUSfhKJw1idgzYMQlqe8QvQXySAGwq63wAoRtFftX219TI0xNB1qZPXzKzjv+rk0RaJ4za3EwgXwdNdobONiaxfbZAj5KdaM+QxGOWhteOhHq1n75n7OnFfFLV+bRdXY4lxHLIQQQggx8MZfCB88D+lmiJScfHshxElJwtvfkg3w4ZJ+HYpo/5ZqHv/ewzQeagwqKHVih2wuuP0yNtS2UhTO01+nMUS9JkJ+a7aJt0XKKSEZGkYyNIz6+EQaY+MAWHzfZta+uZ+PfmkmV94+VZomCyGEEOL0YYfgnFthxa8k4RWin+RphlTAdr0FRtNfpc+2LdvCE3//CEXlRVx656JOBYuCQkijzhjNYWOjlBf0a80jyvjEM/XYxqMhNo5dw26iITYe14p127f5vcW7ee2x7Sz42ERJdoUQQghxehpzHhSPhFQjRMtyHY0QBU8S3v6UbobtrwT/pPrBmhdW8tzPfsfIKaO480dfOLYDN9CYdFm6s46SPOrfqoxPceYwAPtLZrOnfD7NkVEnLOC1ZeUhnvqX9cyYN4KbvzZLkl0hhBBCnJ4sO3jK+94vOz3l7XRdJNdIQvRK/mRJQ8Gut0F7YIf7dBhjDG/9z2u8cf+rnDFvGp/83mdo1vDBh/WYLtu2ZjxC2QrF+SDiNRPxmvhw2CXsHnbRUVWXj2f/ribu/+FKRk4q4fPfmYtt93/fZyGEEEKIgjHynGCq/YDg4s9ku7W1XQmq7GvVsUxlh6U0nda3Xx+ajm5xxmTz567Xjqqb5abj67b9vTSUj+/z9a4Qg0US3v6SaQ0GDO9j313t+zz/i2dZ/fwKzr12Dh/9i5vZ05Bi26EWIo51zE09C0UklPsEURlNcaaGlFPK8vFfoiE2sUf7NdaluPdvlhGJOdz9g/lEiwqg6JYQQgghxECyLLjkG92v65y40um1n8lObsdrpYLE1A4H3e3sMFhOx75Gd0zaDx7ctE2+G2xjOdkpFDx9/uB5qF4JJaMG4QchRN9Jwttfdr8X3PFyIqd8iEwyzZPff5Rty7Zw6Z2LuOQLV7FxfxM1zSlKIqG866PbJuy1EPMa2V1+IduHX4VnR49a77mad57bxfIX9+BlNMa0VZuGZKuL72m+/vOFlFfFcvQdCCGEEEIUiLanH12fgtgOMAjj946bB3veHfjzCNFPJOHtD24StiyG4lN/uttc28TD//sBanYe4KPf/DhnXns+y3fVk3I1ZdHQ4PXXMJqiTC3qmMbTcFSzFjoa0XhWjJXjPk9d/IyjtzaGDe8c5Pf3bqJ2fyuTz66gfGIs+FYU7QW45l83gXFTpSiDEEIIIUTeqzgjeFLsu/1WpFWIgSQJb3/YuxzcBBRVndLuh3Yd5KFv/4ZkU5I7fvg5imdMZOnOehylKB6sYlTGUOTWY+sM+0pnU11+Ab469p+YaU94FaggLU7bxfhdnuru3drAM//1Pjs31DFyYgl3/3A+My4YkTd9jYUQQgghxClwwjB6DhxY22+FWoUYSJLw9pWXhs2/P+W+uztXb+fx7z5EKBrmUz/+IvXFJezc10hR2MYZjOJNxhDzjhDyUxwqPpPtw6+gJXLqfTLqDrTyhwe2sOrVaorLwtz2p7OZf/0EKUQlhBBCCDFUjJsH1ctzHYUQPSIJb19Vr4RMM8QrjruJ9n02vbmRRFMCow3a1xhtSDQleO/xJVSMr+Tib93KDhXCSbmURZ1Ba8Jckj5IQ3wCW4dfTWN03Cmft6UhzcsPb+Xd33+IshRX3j6Vq+6YRkyKUAkhhBBCDC3DpwYFrLQXFLQSIo/JO7SnEvWQaelUqc4Jyr9vfg7ilSfcdclDb/DG/a92u27ceWcw/nPXUGuFKI44WIPY5DfstZAKlbFqzOfQp/jPKpXwePOpHbzx5HbctObC6yZw7WenSwEqIYQoAEqpjwD/DNjAvcaYH3VZ/y3gy4AHHAa+ZIzZPeiBCiHySygKo2bDoc2n3KVPiMEiCW9PNNfAWz8BL9WxzHQq6lQ27ri71u+rY8lDbzJy7nTG33YZSimUZaEsBZbCCoeIhQap+XJnxhDzGlkz+o72ZNcYw+blh3jjyR001aUwGDCgjWkfvq2turLWBmMM6VaPTNpn9sLRXH/XDEZOKDnJiYUQQuQDpZQN/BK4BqgGViilnjXGbOq02RpgnjEmoZT6E+DHwO2DH60QIu+MuwD2rc51FEKclCS8J5NuhqW/BAyUju3VrsYYFv/zsyjHYuzNC6moLB28assnEfWaaIyM4VDxme2J7ov/s4W9WxuoGBlnwozyoMBUpzHIlVLZysrBa6UUTthi7pXjmDhzWK6/JSGEEL1zIbDdGLMTQCn1KPBxoD3hNca83mn7pcBnBzVCIUT+qpwetHbUftC8WYg8JQnviXgZWP4rSByB0jG93v39NzawY+U2Jt52GRUjy/Mm2cUYIn4La0fdxvvLDvHSg1uDRHdUnNu/dR7zrh6H7UiRKSGEGOLGAns7fV0NzD/B9n8EvNDdCqXUV4CvAEyYMKG/4hNC5LNwHEaeDXU7oOjE3fuEyCVJeI9Ha1j3KNRuhbLef3inWlL84ZfPUzx+BJOvnDOofXNPJu4eoSY6jV/9qon3Fm+QRFcIIcQJKaU+C8wDLu9uvTHmHuAegHnz5nU3kLsQYiiaMB9qNuQ6CiFOSBLe49n2Eux+G8onntKT2dfue5nWI83M/vINhMN59GM2GtwU//uJySx9fTdXfGoqN9w1QxJdIYQ4/ewDxnf6elx22VGUUlcD3wEuN8akByk2IUQhqJwOqOD6Usm1pMhP8s7sTvUqeP9pKB13Sn+8+7fuY+XvljJy4WxGTetdv9+BFknW8Y0H57D09Tquv2sGN375LEl2hRDi9LQCmKaUmqyUCgN3AM923kApNQf4L+AmY8yhHMQohMhnkRKoOhOSDbmORIjjkkynq/qdsPLXUDwS7N6PIat9zTM/fRqnOMaMWxfmT79dIJPx+ItfTWDJCsVNXzmbaz4zPdchCSGEyBFjjAd8HXgR2Aw8box5Xyn1faXUTdnNfgIUA08opdYqpZ49zuGEEKer8RcFQ3cKkafyqK1tHmg5DO/9MrhbFTq1cWSXPrOUQ9v3M/OPridSnD9j0abS8J1/LeW9D0q59RuzuOTGybkOSQghRI4ZYxYDi7ss+7tOr68e9KCEEIWl6szgAY8xefWgR4g2kvC2SbcEww8ZA9GyUzpE4+EGXr/3JcrOHM+4i2b2c4A9s2pziJ88UExz0sIYhSGov+X5irRr8dlvzuT86yXZFUIIIYQQ/SBWDhWToXFfcA2t7GCYIunTK/KEJLwAvgsr74PW2l6PtdvGGMNvf/I02tfM+sI1wRi2g+yNVRG++6syRldqzrl8QvCPJjuOrlKKmReOYPqF+dWnWAghhBBCFLjp18OmZ8BNgNcCbgrQwRi95ZPkya/IKUl4jYENT8Kh909p+KE2a19dx56V2zjjtsuIjxjWjwH2zO/ejPHTB0s5e0qGO//xGsLDygc9BiGEEEIIcRoadU4wtTEGtAfv/CLoMhgb/GtjIdpIwrv9NdjxGgybdMp3n1obW/nDv/2e4gkjmHzN3P6N7ySMgd88X8Q9vythwTkJPvn96zDFkuwKIURnxhhc35DIeCRdH2PAALZSFEcc4hE7r8ZLF0KIgqbU/2vvzsPsqOt8j7+/Z++9s69NCCFElgAJGEQJiyMqqMCIuM+gow8u1wXnjldH7zPDzDx3rrujjldHhRlBZvS6YUQEkU1cgATIBmEJ201CErJ2utPdZ6vv/aOqk5PO6U66032W7s/reSqnTp1avufXlfqdb9WvfhV2/jr/Qnj4BiW8UlUTO+HduhbW/V9oG9njh/r94uu3ku/u46xrryQWr9z9CkEAX/tRCz++q4lLl3Xyhs+8nmyjDigiUnmBOzu7sxSKTiYZJ52IkU7ESETHRHcnWwjCIV8kVwxIxGKkk7Fo3jjx2OAJZ3/C2lcoks0H5IoByZjR2pAkk4yXXaYvX2Rvb44gAMdpTCWYO6mBeVOamNWWIWbG87v289T2brbu7Q3v/xARkdEz45Twnt6gALGJnXZI9UzcPW/fi7Dye9A0HeKpEa9mwwNP8vQ9a5h3yTJajps+igGGdnfGWHF/A7f9sYHO7ljYQsQBh6JDNhfj3a/eyfKPX8L+hmmjvn0RkaG4O3t68uzPFVjS0c7Mtgzb9vWxoyvLzq4cuWKAEV5NbW9MMqstw4zWDNNb0nT25g/O252lGHjY0WfZ7UBzOs7U5jTTWzLMbMuwoyvLYy92smt/DoBUPEyeu7N5HGjJJHnVidM4ZVYLM9saaErFD+tf4bQ5YSeF2UKRl/Zl+fL+vdvHtMBERCaSVBPMWRpeZGqeUe1oZIKamAlvthse/HaY6KYaj2oRdw8TzdLV9Gb55VdvITO9nRMvO3fUwnOH9c8k+ek9jdy9KkOhaLxi0T7OPyWHY8RiYIQ/DE/sKDD3itfR2TBr1LYvIvXH3enJFUklYiRiVpGO87r68uztyXP81Cbef+Z85k1pOiym3nyRXCGgOZ04cLW3HHenO1ugLx8c9lnMwuQ1lTh8+TcvncPu/Tk27ellw4ud7Nyf48KXTeOkGS3MbM0cdTmkE3E6Jjfi+b7eo1pARESOznGvhE0rqx2FTGATL+ENivDIjdCz+6h7ZN7d1ceDq18g21fAiW78cmf7H9bTu6OTsz/5VuLJYy/K3qzxmwcz/OyeRp7elKSpIeCq5bt5x/k7yJ26nE3tL8ft8O10HvOWRaReBe7s6s6SLQRMa8mwry9PXz4j21VeAAAcB0lEQVQ40CWBu+PlLpkOQ3/KWLoad5jSnOJ9583n5FmtxMo0RzYzGlMJGo+iEY2Z0ZJJ0pIZZmxmTGlOM6U5zZkd6r9ARKTmTDkxvNJb6IPEMA/yIqNg4iW8T94GW9dA+7wjzlp0Z92GF7nryz+l+7ltZeeZe8HpTF7UcUwhPfdinJ/f28iv/9TA/t4YC+bk+dS7dnPl0hfIth/H4zP+iv2pqce0DZGJqFAM7/UcDoue5WVEid4wLpTGzYhX6OpqMei/ZzZg8dx2Xv2y6cyd1ICZ0Zcvsq8vz77ePJ29BYoDm6eMwMCvlE7EOHlWK8kK9lsgIiJ1KJ6A45fDxjtH/PhPkWMxsRLeLathw61RJ1VD/yDdny3w21tXse6GO8CdRW+/iHR7ExD9mDWIpxJMPvnIiXNfFu5a1UBv1qLOUwCHQhH+sDbD6qdSJBPORWf18eYLe1h23DYSFHli2qVsaVuKW/kOWUSkPHdnR3eOYuDMaE0PY7nwimngThCEJ72Gkyp2F8Imuf2J8oEro0OsxKIbXD1a5mg36MDZ8yZx4aLpzGw79Ix5Jhknk4wzfbiXS0VERMbC3LPgqdvDClE94kuFTZyEt3MLPHw9NE8fspc4d+eFHV3c8a1fs+2+NbTOm8Hp17yBxhkj6/148/Y4n/lWOxs3J8t+PntagQ9f2cUbzuthUnNAS24bXamZrJl1Fb2pySPapshE1pcv8lJXH4tmtvKWs+YytfnoE97RUCgG9OaL9OaK9OSK9BWKg87rfjAZdobX9HhmW6bi301ERGREWudAyyzIdUO6pbqx9O6FXFeZJ7T4wRcvgiUgkYJkAySblKjXsYmR8Ga7ok6q0pAcvJOqnlyBlY++wMr/s4L9m3Zw3GuWctKVy4mN8P7c+1en+afr2zCDL3xkD6cuyBGzg80kzaC5Iex8yrxIa3YbW1tO47Hpb6IY15UZkeFwd17qymJmvGPZPM6eN6nsfaVjLRGP0RKP0ZIpf5JLRERkwjGDEy6Etf9V3YQ31w35HnjVx6Fh4IUlDz/Ldofz9eyGnp2w+1nYtymcJdEAmfbwGcNSN8Z/wlvMw8rroW8vtMwuO4u7s2VvL7+/7RE23vxbLGac+ZHLmX7miSPaZKEI3/tFMzfe1szL5uX5Xx/ay6ypg1/liQdZmnM7eGbyBTwz5UI1YRYpI4h68e3uKxxo+tvfAtgMCoFz2uw23rx0Du1H00uSiIiIVM6sxbD2h+BBmaurFVDog55d8MqPwbRFw1u2Zzfsfg62Pgrb1kGxUNLHh4XfCaBhylE/AUYqZ3wnvO6w9kew4wloO67sLD25Aus37eHRH9zNtvvW0HbCLE7/wBtpmNI6ok3u3hfj77/TxsNPpLns/B4+8Y59pIc4CZQqdJMudLF25pVsbTldzSWkKgrFgMIgHRvFzDALX2MW9orb/5iu/tcgute1tEdgP/DPUbJDXg6sozubpxiE0zsmN3LBSdOY2pw+8F/FoiUyyRjzpzZVpMMoERERGaaGSTD9ZNjzAjROqey2i3no2gpnvRdmnDL85Rsnh8Pcs8Jkt2srFHMQFMJ1BwXYtwWeuBVS5XMOqZ7xnfBuvAue+13YI/OAH8GO8+LeXh5Zv4Wnrr+N7he2h02Y33I+scTIrrA++mSSv/9uO/v2x/jMezp543nh4xzNi7Rkt+NlunvNJ5pY2fFe9jboP4dUXrZQZGd3jmTcyjbBdXdyhYBCECbE+aLj7pgZyZiRiBuJWCx8jRsxi0WJ8cHkeKj800uyYj/4xK/+KcTMOLOjnUUzW+iY1EhDSq0fRERE6tbxy+Glx4EKJrwewL7NcMqfw7xzj3198QS0l3lCy7RF8NQdYQKsJs81ZfwmvFvXwrofhzfJD2g2Ebjz9PYuHrlvPc/edCe4c8aHLmPGWQtHtKliADf+qonrVzQzZ3qRL31sFycdVwAOba783OTlhyW9bjE1YZaKy+aL7OjOkknGecPiWZxzwmQaU0d3OOhPeEVERESGZfrJEEtB3z6IlWvWfIy/L2KJMNns/+3vDp3/D064CBa9/tjWfSTJBuhYBptWQsvMsd2WDMv4THj3boKHvgtN0yB+6L18uWLA6ud3sfo/72XrPY/S0jGNMz74phH3wryrM8Y/fK+NVRvSvPacXj75F/toyoTXp9KFLlLFbtbMfAvbWharubJUTCEI6OzJky0c/gzawJ1MMs6bzpjNOfOnDPuqqZJdERERGZFEGk5+E2x+cPTXHQRhZ1P7dxD18BH2tjxrCSy+qjK/wzteAS/8cey3I8My/hLe3r3wp2+GZ1lSTYd8tD9X4P4Hnmbdd39Nz5addFx0BidddQHx1NDNDnJ52LQ9QTHKHfpvS9y6I86Xbm5lf1/YhPkNr+o98H+pMbeTwJI81PE+OjNzR/lLihyuUAzY05MnVywSj8U4dXYrs9sP7+27JZ3k9Lntah4sIiIilbfwNeEwVtwh3xsNPdA8I2yGXAmT50O6Ndx2sqEy25QjGn8J7xO/Ch9D1HZokrmru4/bbvodz99yP/FMiiUfvYJpZywYdDXusHZjkjseaOCulRm6esr3Jjd/dp6v//c9nDCncGDBltx2utIzWT3rrfQl20ftq41n7k4xcLKFgFwxiO4bDTtAMsKTcv2Pc6quow/Ao1MjduD92EXgHj4O54y5bZzR0c78qU1kkkpoRUREZIIxC3tKTjVS0XuFAWJxOOEC2PBLaCtzn69UxfhKeLu2wfO/D+/bjRSCgMc3vsQ9X1/B3sefZ+pp8zn1va8j3dZUdhUvbItzxwMN3PFAhq07E2RSAecvyfLK07Okk1HKEiVf8TictShLJh1N9iIt2W1sazmNx2ZcRjGWHuMvXPvcnZ5ckX19+bCDokHyRQ8gk4oxqTFFR3MjU5pTtKQTpJNxkvEYqXiMZMKI10Bz2pGFMLpxD4whbsbs9gZSiSp08y8iIiIiodlL4fEV4dWIGvjdKuMt4X3iV+E9u7HwylZnb567b13F4zfdSdCX52XvfDUdF5152D2Ind3Gb1dmuP1PDTz2bIqYOWefkuP9l3dzwZIsjZkjX5uLBzmacy9N6GfpFoLwymyuENBXCAgCB5wZrRlePn8GC6Y109pw+C4XN6M5kyA9wt6xRURERERqQssMmDQPevdARi09a8H4SXj3boLNK6Gtg2LgPLVpN/f826/Z8cDjtHRMY/H7L6V5ztQDs+cL8Kd1aW7/UwO/X5OmUDQWzMnzkav2cfE5fUxrP7yzn8Ekiz005PeyfsblbGldWhdnc4qB05cv0psvki8G4XNODWKEr8Npftv/KJlk3JjUmGJma4bprRkWTGumY3JD2cfdiIiIiIiMS/MvgEdvUsJbI8ZHwusOG1ZAIkN3LuDeu9ez/vrbye7pYv6l57DgsnOJJeIUA3j0yRR3Ppjh3kfC+3IntRS58tU9XHJuLws7CoPnqt7fnPnQGTL5TuKe4+E572ZX04lj+z2PQhA4O/dnyRfDq6t41P7awztKY7EwmzWD6S0ZFkxvZmpziuZ0goZUgnQiRiYZH1bT2GTcaEknySRj6sFXRERERCa2mYsBg6B4oOWpVM/4SHj3PAfb1tEZn85Pv7qCTXeuomFqG8s+9TbaFsxh/bNJfvtQhrtXZdjVGacxHbB8SZaLl/Wy7JQcicFKwQMyhS6SxZ7oDkwPn6Nr4MQwIBtvYtXc99Gdru7ztgrFgJ37cxSKzhkdbSye0xZFHObq/c9ObW9MMrkxRVtDMkx+RURERERk9KSbYfYS2P4YNE+vdjQTXv0nvO7w2C08+0wnP/3KT+jZuos5yxfj51zMTY+0cvd3MmzfHSeVcM5dnOXic/bxysUHO5oqt750sYt0YT9usKdhHptbl7K78QRy8UZiXiTmBeJewLxIIZahED/80S8j+yphr8RBdDW2/6Ky4wfG4eBFZsMourNnfw4zOPeEKbxq4VSmt4xOPCIiIiIiMgLzXgkvPlztKIQKJrxm9nrga0Ac+J67f27A52ngRuAsYBfwNnd//kjrLb64nru/9gP++PPVxBqb2HLWO/m3DYvZen+CRNxZdmqWa67oYvmZWZoby9+Zal4kU9hHotgHBp3puTw95dXsajqRbKL1kHkDixGQpDBETO5OXyGgN1ekL18c+gtYOD9uOE48FiMRM+IxiJkRjxlmRszAzMKkOIiS4qhp8mtPncGy+VNoa9C9siIiIiIiVTd1ISQaoZCFhJ7cUk0VSXjNLA58E7gY2AysNLMV7v54yWzvA/a4+4lm9nbg88Dbhlpvfn8PX3n5a+nZuo0nkku4pfsK8qsbePnJOd77xv2cv6SP1qYySa4HJINe0oX9mBdxi7GzcSFbW05jT+Px5BLNh84ePSO2XLpcCPzQxNYAh0mNKRbOaGbe5Eamt2aY0pyiMZUo+3CaeMyiJNd0D6yIiIiISL2LJ2H+efD0XdA25/DPgyLke8KhmAWLHew1Nt0SDlbSp4475Hshuw+CQtTk80BzUCA4tNfZAzlFSW7Rv0jUvw8Wh2T0zOJ4alS+di2q1BXeZcBGd38WwMx+CFwOlCa8lwPXReM/Af7VzMzdB+0weMcTG9hOC7fHr2byKQv4m6W9vOr0vbQ1BcS8CEGRWD7A+pshB1mC6EpqZ3I6GzOL2J6Zz0vJ2eRIERQd6zaM3gP7SHj/K6STMeJl7nltSMZZOKOZjsmNTG9JM6UpzeSmlJ6HKiIiIiIykc1dBs/cC52bDv8sloDWOWEHV+3HQdO0MEnd9SxsWwN7nidsChocTF6bpoZNpaedBOlWKOYhyIevxXyUCMcGDESJs0XriV4LuTCuPc9B5+Ywme5Pjg+5AOeHvAzLka7jlSbfB6Z5WDbx1MHhGFUq4Z0DlP6lNwPnDDaPuxfMrBOYAuwsncnMrgGuAZgSyzDlqiv5xpI8jekNB+bxnjj5WJp8LEMh3kAh0UAh3kRn03FkG2eTb5xBMp0hk4zTkYxzUjJOOhmjIZkglTBS8TgNqThN6TiNqQSNqTjJuBJYERERERE5Sm1z4JLPhVdzS5lBogFiZfKLqQth0esg3xcmol0vhslw6xzItB4+/7GYe1b46g65bti/M4rVD07HD01IR2SQ5T0It+cBeBGCAAp94TOMe3ZCz27o3UOuSO5Ytl53nVa5+3eA7wCcffbZ/rc//PcqRyQiIiIiIlJGsmGEy2Vg6onhMNbMDjajrkGb9v3zi8eyfKUuW24BOkrez42mlZ3HzBJAG2HnVSIiIiIiIiLDVqmEdyWw0Mzmm1kKeDuwYsA8K4Cro/G3AHcPdf+uiIiIiIiIyFAq0qQ5uif3I8AdhI8lusHdHzOzfwRWufsK4HrgJjPbCOwmTIpFRERERERERqRi9/C6+23AbQOm/V3JeB9wVaXiERERERERkfFNXQ+LiIiIiIjIuKSEV0RERERERMYlJbwiIiIiIiIyLinhFRERERERkXFJCa+IiIiIiIiMS0p4RUREREREZFxSwisiIiIiIiLjkhJeERERERERGZeU8IqIiIiIiMi4ZO5e7RhGzMy6gCerHccwTQV2VjuIYVLMlVOPcSvmylDMlbHI3VuqHUQ9U91cMYq5cuoxbsVcGYq5Mo6pbk6MZiRV8KS7n13tIIbDzFYp5rFXjzFDfcatmCtDMVeGma2qdgzjgOrmClDMlVOPcSvmylDMlXGsdbOaNIuIiIiIiMi4pIRXRERERERExqV6T3i/U+0ARkAxV0Y9xgz1GbdirgzFXBn1GHOtqccyVMyVUY8xQ33GrZgrQzFXxjHFXNedVomIiIiIiIgMpt6v8IqIiIiIiIiUpYRXRERERERExqW6TXjN7PVm9qSZbTSzT1c7nnLMrMPM7jGzx83sMTP7eDT9OjPbYmaro+HSasdaysyeN7N1UWyrommTzexOM3s6ep1U7Tj7mdmikrJcbWb7zOzaWitnM7vBzF4ys/Ul08qWq4W+Hu3fa81saQ3F/EUzeyKK6+dm1h5NP97MekvK+9s1FPOg+4KZ/W1Uzk+a2etqKOYflcT7vJmtjqbXSjkPdnyr2X16iJhrep+uJ6qbx47q5jGLU3Vz9WJW3Tz6MatuLsfd624A4sAzwAlAClgDnFLtuMrEOQtYGo23AE8BpwDXAX9T7fiGiPt5YOqAaV8APh2Nfxr4fLXjHGLf2AbMq7VyBs4HlgLrj1SuwKXArwEDXgE8WEMxvxZIROOfL4n5+NL5aqycy+4L0f/HNUAamB8dV+K1EPOAz78M/F2NlfNgx7ea3aeHiLmm9+l6GVQ3j3ncqpvHJjbVzdWLWXXz6MesurnMUK9XeJcBG939WXfPAT8ELq9yTIdx963u/kg03gVsAOZUN6oRuxz4fjT+feCKKsYylD8DnnH3F6odyEDu/jtg94DJg5Xr5cCNHnoAaDezWZWJ9KByMbv7b9y9EL19AJhb6biGMkg5D+Zy4IfunnX354CNhMeXihoqZjMz4K3Af1U0qCMY4vhWs/v0YDHX+j5dR1Q3V57q5mOkurkyVDdXhurm8uo14Z0DbCp5v5kar6zM7HhgCfBgNOkj0SX6G2qpCVLEgd+Y2cNmdk00bYa7b43GtwEzqhPaEb2dQw8+tVzOMHi51ss+/leEZwb7zTezR83sPjNbXq2gBlFuX6iHcl4ObHf3p0um1VQ5Dzi+1cU+XeaY3K+e9ulaU1N/46OhurliVDdXVj0dx1Q3jxHVzQfVa8JbV8ysGfgpcK277wO+BSwAzgS2EjaJqCXnuftS4BLgv5nZ+aUfetieoOaeZ2VmKeAy4MfRpFov50PUarkOxsw+CxSAm6NJW4Hj3H0J8NfAf5pZa7XiG6Cu9oUB3sGhPxRrqpzLHN8OqNV9erCY62yflmOkurkyVDdXVp0dx+pqXxhAdfMoG8u6uV4T3i1AR8n7udG0mmNmScI/3s3u/jMAd9/u7kV3D4DvUoVmGkNx9y3R60vAzwnj297fxCF6fal6EQ7qEuARd98OtV/OkcHKtab3cTN7D/BG4F3RgZOo6dGuaPxhwntuTqpakCWG2BdqvZwTwJuBH/VPq6VyLnd8o8b36UFirrt9ukbVxN/4aKhurijVzRVSb8cx1c1jFp/q5gHqNeFdCSw0s/nRmcO3AyuqHNNhovb91wMb3P0rJdNL28b/ObB+4LLVYmZNZtbSP054w/h6wvK9OprtauAX1YlwSIecbavlci4xWLmuAP7SQq8AOkuaolSVmb0e+B/AZe7eUzJ9mpnFo/ETgIXAs9WJ8lBD7AsrgLebWdrM5hPG/FCl4xvCa4An3H1z/4RaKefBjm/U8D49xDG57vbpGqW6eYyobq64mj2ODaYej2Oqm0ef6uZBeJV7ExvpQNir2FOEWf1nqx3PIDGeR9hkYC2wOhouBW4C1kXTVwCzqh1rScwnEPaMtwZ4rL9sgSnAXcDTwG+BydWOdUDcTcAuoK1kWk2VM2GFvxXIE94j8b7BypWwt7xvRvv3OuDsGop5I+H9Hv379Lejea+M9pnVwCPAm2oo5kH3BeCzUTk/CVxSKzFH0/8D+OCAeWulnAc7vtXsPj1EzDW9T9fTgOrmsYpZdfPYxai6uXoxq24e/ZhVN5cZLFpQREREREREZFyp1ybNIiIiIiIiIkNSwisiIiIiIiLjkhJeERERERERGZeU8IqIiIiIiMi4pIRXRERERERExiUlvDIhmJmb2Q9K3ifMbIeZ3TrC9bWb2YdL3l840nUNsv7ZZvaT0VpfJZjZ8Wb2zmNY/j1mNns0YxIRkdqlunnsqW4WUcIrE8d+4DQza4jeXwxsOYb1tQMfPuJcI+TuL7r7W8Zq/WPkeGDElSrwHkCVqojIxKG6eewdj+pmmeCU8MpEchvwhmj8HYQPFAfAzCab2S1mttbMHjCz06Pp15nZDWZ2r5k9a2Yfixb5HLDAzFab2Rejac1m9hMze8LMbjYzi9bxOTN7PFr3lwYGZWYXROtZbWaPmllLdEZ2ffT5e8zsZ2Z2u5k9bWZfKFn29Wb2iJmtMbO7omlNUcwPReu7vMw2LzSz+8zsF9H3+pyZvStaZp2ZLYjme5OZPRit57dmNmOwmKMyWR5N+4SZxc3si2a2MvruHyjZ/qei7ayJtv0W4Gzg5mj5BjP7s2jd66Lvk46Wfd7M/nc03yozW2pmd5jZM2b2wWieG83sipLt3VyuHEREpOpUNx9cTnWzyFhwdw0axv0AdAOnAz8BMsBq4ELg1ujzbwB/H42/GlgdjV8H/BFIA1OBXUCS8Izp+pL1Xwh0AnMJTyT9CTgPmAI8CVg0X3uZ2H4JvCoabwYSpesnPLv6LNAWxf4C0AFMAzYB86P5Jkev/wy8u397wFNA04BtXgjsBWZF320L8A/RZx8H/iUan1QS+/uBLw8R84HyjKZfA/zPaDwNrALmA5dEZdo4IO57gbOj8Uz03U6K3t8IXBuNPw98KBr/KrAWaInKY3s0/QLglmi8DXgOSFR7P9SgQYMGDQcHVDerblbdrKECg67wyoTh7msJK6t3EJ5RLnUecFM0393AFDNrjT77lbtn3X0n8BIwY5BNPOTum909IKy0jyesaPuA683szUBPmeX+AHwlOkPd7u6FMvPc5e6d7t4HPA7MA14B/M7dn4vi3h3N+1rg02a2mrCiygDHlVnnSnff6u5Z4BngN9H0dVHsEP5IuMPM1gGfBE4dRsyvBf4yiuNBwh8YC4HXAP/u7j0D4i61CHjO3Z+K3n8fOL/k8xUlsT7o7l3uvgPImlm7u98HLDSzaYR/758OEqOIiFSR6ubDqG4WGWVKeGWiWQF8iZImU0chWzJeJDxjelTzRQfyZYRnr98I3D5wIXf/HOEZ2gbgD2b2smOIAcCAK939zGg4zt03HGGdQcn7oGT93wD+1d0XAx8grKCPNmYDPloSx3x3/02Z+UaiNNaB36M/9huBdwPvBW4Ype2KiMjoU91cfp2qm0VGgRJemWhuIGwetG7A9PuBd0F4Dw2w0933DbGeLsKmOkMys2agzd1vAz4BnFFmngXuvs7dPw+sBMpVUOU8AJxvZvOj9UyOpt8BfLTkPqUlR7m+cto42IHI1UeIeWCZ3AF8yMyS0TInmVkTcCfwXjNrHBB36fJPAseb2YnR+78A7htm7P8BXAvg7o8Pc1kREakc1c3Do7pZZBiGOhMlMu64+2bg62U+ug64wczWEjZturrMPKXr2WVmf4g6r/g18KtBZm0BfmFmGcKzqn9dZp5rzewiwjOgj0Xrm3UU32WHmV0D/MzMYoRNui4G/gn4F2BtNP05wjPYI3Ed8GMz2wPcTXifz2AxB0DRzNYQVmhfI2x+9UhUwe8ArnD3283sTGCVmeUIm7B9Jlrm22bWC5xLePb3x2aWIKy4vz2cwN19u5ltAG4Z2VcXEZFKUN08bNehulnkqPXf8C4iMq5EZ6nXAUvdvbPa8YiIiEx0qpulGtSkWUTGHTN7DbAB+IYqVBERkepT3SzVoiu8IiIiIiIiMi7pCq+IiIiIiIiMS0p4RUREREREZFxSwisiIiIiIiLjkhJeERERERERGZeU8IqIiIiIiMi49P8ByImnoTf8LGAAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from pymc3.distributions.timeseries import GaussianRandomWalk" | |
], | |
"metadata": { | |
"id": "MmcTwcBQiX_9" | |
}, | |
"execution_count": 85, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"coords = {\"intervals\": intervals}\n", | |
"\n", | |
"with pm.Model(coords=coords) as time_varying_model:\n", | |
"\n", | |
" lambda0 = pm.Gamma(\"lambda0\", 0.01, 0.01, dims=\"intervals\")\n", | |
" beta = GaussianRandomWalk(\"beta\", tau=1.0, dims=\"intervals\")\n", | |
"\n", | |
" lambda_ = pm.Deterministic(\"h\", lambda0 * T.exp(T.outer(T.constant(df.metastized), beta)))\n", | |
" mu = pm.Deterministic(\"mu\", exposure * lambda_)\n", | |
"\n", | |
" obs = pm.Poisson(\"obs\", mu, observed=death)" | |
], | |
"metadata": { | |
"id": "zwVJHLVxcMer" | |
}, | |
"execution_count": 87, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"with time_varying_model:\n", | |
" time_varying_idata = pm.sample(\n", | |
" n_samples,\n", | |
" tune=n_tune,\n", | |
" return_inferencedata=True,\n", | |
" target_accept=0.99,\n", | |
" random_seed=RANDOM_SEED,\n", | |
" )" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 239 | |
}, | |
"id": "AtfrBArWiMGL", | |
"outputId": "ad4a5deb-b3ba-433e-b7c6-c2e7b6f4c109" | |
}, | |
"execution_count": 88, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Auto-assigning NUTS sampler...\n", | |
"Initializing NUTS using jitter+adapt_diag...\n", | |
"Sequential sampling (2 chains in 1 job)\n", | |
"NUTS: [beta, lambda0]\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
"<style>\n", | |
" /* Turns off some styling */\n", | |
" progress {\n", | |
" /* gets rid of default border in Firefox and Opera. */\n", | |
" border: none;\n", | |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", | |
" background-size: auto;\n", | |
" }\n", | |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", | |
" background: #F44336;\n", | |
" }\n", | |
"</style>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" <progress value='2000' class='' max='2000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" 100.00% [2000/2000 10:56<00:00 Sampling chain 0, 42 divergences]\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
"<style>\n", | |
" /* Turns off some styling */\n", | |
" progress {\n", | |
" /* gets rid of default border in Firefox and Opera. */\n", | |
" border: none;\n", | |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", | |
" background-size: auto;\n", | |
" }\n", | |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", | |
" background: #F44336;\n", | |
" }\n", | |
"</style>\n" | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
], | |
"text/html": [ | |
"\n", | |
" <div>\n", | |
" <progress value='2000' class='' max='2000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n", | |
" 100.00% [2000/2000 10:58<00:00 Sampling chain 1, 38 divergences]\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {} | |
}, | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Sampling 2 chains for 1_000 tune and 1_000 draw iterations (2_000 + 2_000 draws total) took 1315 seconds.\n", | |
"There were 42 divergences after tuning. Increase `target_accept` or reparameterize.\n", | |
"The chain reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.\n", | |
"There were 80 divergences after tuning. Increase `target_accept` or reparameterize.\n", | |
"The chain reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.\n", | |
"The estimated number of effective samples is smaller than 200 for some parameters.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(6,10))\n", | |
"az.plot_forest(time_varying_idata, var_names=[\"beta\"], ax=ax)\n", | |
"ax.axvline(x=0, color='C3')\n", | |
"plt.show()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 614 | |
}, | |
"id": "GccIyVT1ik2b", | |
"outputId": "1f918781-d542-4aa3-9ff3-f009dedb86cd" | |
}, | |
"execution_count": 100, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x720 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAJVCAYAAAASrrgvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeZwcVbm/n3eSzJKFbGQlG9wkILmyGAXCIlEW5WpwIYgSjFEvy9UAiSK77CpBQPCKErliRFFyEQwENQEUfhIJqDHBS+CCuWRfSMgyGZKZyfb+/jhVk5pO93R1d3VXdff7fD58Ol1dVXMGSL19znnO94iqYhiGYRhRUhN3AwzDMIzKw4qLYRiGETlWXAzDMIzIseJiGIZhRI4VF8MwDCNyrLgYhmEYkWPFxah6RORDIrJARJpFZIuI/FxEBmS55n4RURH5RcifUSMi14jIChFpEZFXROScNOd9XUTWiMjbIvIdEalJ+fx4EWkSkREhf+5NXjs7p/lspPfZlMCxKd4x/58dXpt/IyKfERFJcx8VkdvCtMeoHqy4GFWNiJwCPA1sA84BLgc+CPxBROoyXHMScAGwPYcfdStwE/AD4CzgJeBREfm3wH0/DNwO3AJMA74KTA583gn4EfBtVV2Rw8/Oh3OBccC/Ad8EWoFfAc+ISEORf7ZRARzwbcYwqowbgZXAJ1V1D4CIvA78Ffgy8MPgySLSBZgJfAu4OMwPEJH+wBXA7ap6p3f4OREZiSsmv/OOnQU8o6o/9q77oHdslvf5fwANgH+PYrJEVZcF3v9cRB4FHgXuAC4tQRuMMsZ6Lka1cwLugb7HP6CqfwM2A59Kc/43gE7k9oD/CFALpA6h/QJ4r4gc6r2vBZoDn+8E6gG8Ybpbga+o6u4cfnZkqOpjwBPAhSLSNY42GOWDFRej2tkL7EpzvBX41+ABr6dxPbk/4Md491uWcnyp93qk9/oycLqIvM/7Wefihs/AFbPfqupzOfzcIJ1EpHPwH1yRzJXfAXXA+/Nsh1El2LCYUe28geu9tCEiw4FBQGoB+RHweB4P+D7ANj0wyG9L4HOA2cAngUXe++eA74vIqcDHgSNy/LlBWgq4Nsgq73VQRPczKhQrLka1cy/wC892+j7uQf9jYJ/3DwAicgHwAeDwYjVEVfcCnxGRwUBnVV3lzfHcB1yvqm+LyOU46aA78DgwXVWbM9+1jRNwvbQgQ4Df5NhM3xazxFujQ6y4GFWNqj4sIkfgJtyvwz00Z+OGf/4VQES6A3cDM4BWEenlXV4DdPHe7+hgqGwr0EtEJKX34vdYtgRPVtV1gbfTcL2OH4nIGbh5lw8Ca4H5wLU4mysbi4LzSt7vtS3EdakM9V7X53GtUUXYnItR9ajqN4GDgaOAQar6OWAUsMA75WCgH/BtXKHw/xkKfMb788c6+BFLcfMU/5Jy3J9reS3dRSIyBDfH8x+qug/4KE4+WKKqm4CfesdKycdwxW5RthON6sZ6LoYBqOoO4H8AROSjuPmNL3sfbwA+lOayR7xrvgW82sHt5+HmbyYBNweOXwC8qqrLM1x3D/Cwqv41cKxb4M/d2T9MVXS8RZ9nA/eq6s5S/VyjPLHiYlQ1InIsbi3J371DJ+N04ztU9UUAVW0Bnk9zbQvwtqo+n3J8D/AzVf2yd/1GEbkbuEZEmryfdR7wYdzDOl27PgKcQvs5nmeBy0XkK8A63FqTWTn/0uE4RkQOxunRw3BCwbnAM8A1RfqZRgVhxcWodnbhVqFfiRu6eh24RFV/WsA9O3Gg5nsd8C5uMn4gzlL7jKo+lXqxlwzwA+Abqto2L6KqvxeRa3HzLF2BOUCxYlce9V5bgI24gvhZ4NdprDfDOACx/08MwzCMqLEJfcMwDCNyrLgYhmEYkWPFxTAMw4gcKy6GYRhG5GQtLiLyvIj8oBSNSfm5IwIbFv1vjtfOClw7sVhtNAzDMNJTdBVZRMbjAvj6qeo7edzio6SsBvaC/O7Gpc2uw61JuD9wyuXA1eQQUfHRj35U33knn+YZhpGOXcvd2tDaQw/NcmZx2bNP2bVnH7Wda+hcU7I1p1XDokWL5qvqAUkR5bDOZXOwKHl7X/wOeBC3wvlk4IcissnbbwJVbQQa0+zImpF58+ZF2mjDqHZWft5tojn85w/F1oY5i9dy09yljOrTlZVbdnL9hDF88thDYmtPhZI2gihsceksIveyf8vV/wKuUtV9IlKLC9ObhAviW4pLcJ3v7fPtx5Nv8h72P1PVKV7ExnW4cEDF7fw3TVVfz9KWS4B1qurvhPe6iByPCx58LOTvYxhGCufNXBjp/aasd7tAX5nHfdds3cnabYXvElDfuYa5l57MqAE9+OfbTUz4zwVMm72k4Pumckiveob0Lr/902ZfPK5o9w47oT/JO3ccbmvXi3BpreDC804FzscVip8Bc0XkaGA1bl9ycENYg3BDVuAyku4BjgPGA43edbVZ2jIOt+d5kPnA+714csMwDAAG9Wpg1IAeAIwa0INBvRoAF8hW37mGQw/uRn3nmtIFtFURYXsu64HLvNiH/xWR0cDXROQJ4HPACFX1NxH6gYicDlysql8RET9OfGNweMsfwvIRkS8C23HFZgGZGYjLWArytve7HIxFgRtGXqT7Fht1b6bUrN/WzD/fbmrruazf5ra+qUvTo2nZsy/L3TKzdltL2p5W0ns0581cWLTeS9ji8lJKntBC3FDYybgvAa+lzG/UAX/s6IYi8i/ePY7HxZnXeP8MC9kmwzAqlCG9u7Z7KOc7TNa6Zx8T/nMBg3o1sH5bM61eAUnXo1n+zo5oGm8A0UzoK26HvtSNkrLtjvcUsAY3zLYW2IPb1yJ1WGymiLzP+/M4XPz5gJRzBnjXvwNOYwb8GPO7gV9n/zUMw0ilkG+1KxccVPA9fL73zJvc+4d/5nydAi179h1QODL1aKJm4tihTD9jdFHunXTCFpfjU3bROwGnAC/E9VwGdrCv+C7vtS0lVkT64vbL+Ip/nVdAMrXnp7gk2M3ez/yyiBwDHINLh30A+FtgJ8DVuPkdGyIzjApg+hmjI31Iz1m8lnNnLmS4Z5Hdfs5RZpFFTNjiMhi4R0R+CLwXt9/Fbar6pog8DMwSka/jYrn74Cbo31LVx4GVuC8QHxORubgezVZcL+NCEVkNHAJ8F9f7SMdOVd0AICL3A9Nx+4H/HNfzmYKb+wHa9iLfkIuKbBhG5bKxqYXVW5oZ2qeB/j3q+eSxh3DiyL7tjhnREtYWexjX83gZ10v4CfA977Mv4noWdwD/ixvu+iCuqKCqa4Ebcbv1vQ38wNuy9TzctrKvAvfh9gFvzdYQb9e+M3C78Pk7BV6WKggYhmGA66Wc+b0/ccvcpZz5vT8xZ/HauJtUFSR2P5fAvMnfgYWqOjXNOROBR1U1bRdFRBRYraphJIFk/oswjJgo1BSb8ugMAGade1Xe94hivUu6tS4te/ZR37mm3UR/Pg+ApNlgxVy30gFpn7/lsEL/GGAocEBxyYQ3dHZB0VpkGFXMa97iyGzsaN2T0/npaN29N+9rfdKZYWu37oxERc6kINd2Euq6pG5GWnyyfSEoZfFJcnFZA4zCDcllW7Wfyg3AncBlwGkRt8swqoJMD6KwPZpude7xcuSgg/JuQxQ9l3Rm2ICe9UVVkfv1qEtUjyYOEltcVHUPsExEDgeOE5EvAONU9aUQl3cFfG8x6zyOYRjhCfvtN0oVOUiuWnK6tS6btrcWVUWuZgXZJ7FzLj4isg2nPX8YpyIfgpv8/5D351rgduAWVW32rumEW5j5OPA+VQ2jgiT7X4RhlBlJCK70SbXF/EBLX0W+yQItC6Fs51wA9gRU5COAg3Dq8lDgGpw1NlpEvqCq7wZU5F0Z72gYRlWQWlgAU5FLQLkUlzZUdZ6IfBb4YeBwP+DTwH8Cz8fRLsMwkke6HkqwqIwd3jvuJlYsZVdcAFR1Cm7hJAAicjXw76r6fExNMoyKo2AVuYDIfZ9CJ/TTaciqyuDeXStCQY5JPQ5FuRSXMSLyLvAhVf1r8AMRGY7by+XbgWPDcDllDRyYeWYYRkR0pBknQUVO1ZAH92rg8tNG8YljD6kIBTnsF4A4ilA5FJfXgP8DbsZlhrUhIgOAecAz7E8MACcAHINTkc8sTTMNo7II80Dq6OGWBBX5AA25sYVxI/sCpiAXm3KxxXp6b9tUZBEZiIv1Xwp8zlOX/WtGsD8VudVsMcMoPcWyxXJRkQW3d4uvIe9T5beXnRLZPi6pXH7aqGpUkNMnpJRJcQmqyHuB33vva4CNwB9w2y6v9a4xFdkwYiYpKnLQFntx2WZTkKOnYlTkQ4Bjgf8BvoLbffJG4CkReb+q7jUV2TAMsDTkOCmX4hLkDFyvpB9ub5cgI4E3St4iwzAShy2UjJeyKy6qOguY5b8XkT7Aj4DhqmqFxTCKRK5qchQqMuQ/qZ9OQ542e0neacil1I+TrBiHpVyKywEqsojMwCUldwVeAj7un2wqsmGUlnS6cRQqMuSvI0edhlxK/bjQNUYQf4Eqh+KSSUX+Lm7TsuG4OZdfiMhZ3lbMpiIbRsR09LBK9zCMQkWG/HsupUpDNv04PeViix2gIqecMwRXeD6oqi+YimwY8RO3ipyqIbfu2Uddho3DCqFK9eMgZW2Lvc5+FbkNEanHbb18lHeozntdDQzCU5FL1EbDMErA9DNGh36Yp0tDPnfmwrZJ/tvPOcom+YtEuRSXoIo8DlcwFgBfA/yNGNZ5xzAV2TCql9SCEtSNTUUuHeVSXII0AxOB7wDdcUUF4EJVLWzLOsMwypqO9ONg0bE05OJTdsVFVZeIyOeBvwCnAI24+ZWNsTbMMKqQjqymOFKRM+nH6eZfsk2yJiH5OG7jqxDKpbi0qcjA34GHgbtU9RVv8r4dpiIbRmlIWipyOv14+Ts78prIT0LycabiXQ5FpxyKS6qKfC2wC7i7g2tMRTaMEtCRZhxHKnI6/RgyF518MPU4HGWnIgO344bDgg3vhAu0nK2qk0xFNoz4KYaKnE1DzjT8lW64LF8F2dTjA6iYVOQhOCtscMqpTwBTVXWNpSIbRvzElYqcaouB5YwVmbJe59KmIgPLRWQ3cAsuU2wobnL/LlVdA6YiG0Y1kU49TlWMTUEuPeVSXNLRpKobvIWUsH+9i2EYVUKmHkm63ku6omMUj3IuLleIyDW4Sf7rgX/E3B7DqGiKnYqcT4ZYlMnHcajH5WB95Uu5FJfUVOTvA4txczDH4Sb5DwX+HUxFNoxiElYtzlVFzif9OMrk43TqcbG143QFu1IKTjkUlwNSkVU1qCH/Q0S2A7NF5CpV3YypyIYROf5DL2wPJlcVOZ+eS7GTj007zp9yKC67gEZVXdbBOS97ryOBzaq6B1gmIluAPcVuoGFUE2G/Wa9ccFBO52eiI/24dc8+JvzngnZDYJu2t6Zd65IPE8cONe04T8pFRc4Wuf8JYA5uN8pVts7FMOKnVCpyuuRj045LSlmryG2R+14q8glAC3AhMAboAryjqqu88y1y3zAqlGzqsWnHyaBcikswcr8VuAQYhRvyWgP8Dljkn2zrXAyjMknXK0lXSEw7jp9yKS5BXsFZYBer6gNxN8YwKplC9nIPqyLnMpGfTj1WVQb37prYtONKsb9ypVyKSzAVWXCr8neJyN9xMTD/AK5S1cVgKrJhlIooUpFzUZBT1ePBvRq4/LRRfOLYQwpKOy6mchymQFdiASqH4pKqIn/KO34L8HXcxP1XgedF5AhVXY+pyIYRCdkeeh09OMOqyLn0XA5QjxtbGDeyL1CYdmzKcfSUQ3FppyKLSI13/Fuq+mvv2EXA6cBkYIapyIZRGjoqPvmqyLmox/tUady5m/496gvSjk05jp5yKC7HAKeKyFdxkfvrveOv+Seo6h4R+ScwzD8mIv7Qa3652oZhxML0M0Z3+KAP2mIvLtvMuTMXtk3w337OUaYdJ4RyKC4QUJGBM7xjL4gcoFevC/x5EPBTbFjMMCqKoAlm2nFyqcl+SiLYo6obVHU38CzwAK4H8zngZPZryDf5F3jqcmuJ22kYRkRsbGph0cqtbGzqeD6mf496xg7vbYUlYZRLz6UNVd3lDZFtA+4BuuJ+j8dV9f9ibZxhGJEQdj2LkVzKrrgAeD2YK4ErRWQ88BzwnVgbZRgVQiFrW4JkWucSxg5L+nqWSlSHo6Zciktq5H6Qi4Alqvo3/0BgnYt9vTGMiAgbne+TaZ1LmHUtUa5nKcYaltQCbMXmQMqhuBwQue8jIn2BTwNfS7nGX+fyaeDGErTRMCqGTA/KXHs0mda5hOm5RLmexdawxEM5FJcjcQryBd5rMBV5MrAXeDjlmiGAL8qbimwYEZDrt/Ow61zSrWuJcj2LrWGJh3KJ3F+HpyKr6m4RGQ3cAXwcF5W/CLhJVed513QC+uGpyKoapk+c7H8RhlFmFBq5n7qexWL0E0tZR+63pSJ7PAVsAToB5+G2On5CRI5U1f8LpCKbimwYZUpH61kAFq3cauZYgimX4tKGiByMi9t/GnhdVf9bRB4HpgPH4uZnDMOoMPxik6opf+2M0YwZ3NMKTcIou+KCW6X/OrAWOMcbArsIaAL+HGfDDKNaCDO5HzZyHwqM3f/BAvr1qGPT9tasinKx4/bNGttPuRSXdiqyiJwB/AbYjpuw3wKc5SUiA+Cdb19jDKMIhNGSw0buQ2Gx+yP7d+fms/+Vg+o7Z1WUg3H7USvK2dKfq41yKC7tVGRxgWI/xPVgTgGagX8HHhORD6jqWu86P3L/I6VvsmFUNmEepGEj96Gw2P01W/ev2o9TUbZeS3vKxRbr6b0dB3QDngH6qOq2wHn/BH6mqreJyAjcPi8AraoapgeT7H8RhlFmFGKLdRS7L0Bd5xqnKTc2M+20UVwyfmToxZU+l582yhTlaChrWyyYivxR79jjIvI+3DqXx3DFwQ/iXI1LRX4ceF9pm2oYRqGEjd1furaRu599k9+/usEi9xNGuRSXNhVZRN7yjo3ALaLsAnwfV0yeAgioyLtK31TDMIpN0Ar75YXH07xrn9liCaNcikuQk3AT+f/ELZLsAqwABnvHDcOocNLpyD5WYJJBORaXOqBZVdsm6kVkJK7YnAwsi6thhlEtRK0i+4Sd2C9ERw5SbDUZqneiv1yKS5uKDPwRuFtErgbuxk3w3+6dNwjapSI3ALtL31zDqGyiVpF9wirJhejIQYqpJvsEC3E1FZpyKC7tVGRVbRWRL+AKy7eAPbg5l7fZH1LppyJfhm1zbBiRE7WK7BO25xKVjhzE0pOjJdbiIiLPA6d6b8ep6ktpTtsFNKpq23CXqv4S+KWIDAB24EyxrwH+ZP8FuPkYcAssDcOIkDDfwMOmIqejIxUZUlKTPR05n8TkIJaeHC1J6Ln8FLgWpxkjItcB/4breXQF/l/qBd6w1304PbkZWAK04Na/AMwG5gF/9e5hGEYZkU1FBtORk04SisvOlMTjOtz6lOdxRacdXpbYQmA9MAk4Dfgq8IK/qFJVm4FmEQmfKWEYRlnhB1mOHd6b9x/amyWrGjlmWE+OHNQz+8VG0anJfkppUdUbVPUuYHGGU87Eacf/guuhfBCYCRwvIhbuYxhVxpzFazn/gZf51V9W8dmZL/HQwhVxN8kgGT2XXBkHvKaqY/wDItIPuAQYCzwXV8MMo5rIpiPnoyIHKURLvuGJpTn9rFIoyT7VYoyVS3G5SESm4FTkgTgzLMg7uBiYgdBORe4KbC1dMw2jOjhv5sKsinE+KnKQQrTkNzc0sWtv+LjAtdta2NTUWhQVuVrTksuhuEzCrVcBlxkWBl9FfhiXS2YYRsRke2jmoyIHKURLHtCzntVbcrPGiqUiV0tPJZVYU5FTE4+DKrKITAQeVVVJueYW4Jw0w2IbgQ+r6nMiMp79w2MrVPXQEM2xVGTDiJBCUpF9sinJ4KUkd6lhZP/urNnazCUfPIx7nv1n6IWUPpaSnDdpU5GTUFzW4SUeq+rugIo8FqhLU1zOAn4H/AM4HNiAs8oeBPqr6nYRqQX6eOfssOJiGKUniuISlodeXMEd8/+XYX26sq6xhZsmjDEduXQkNnJ/T4qK3A94Cbd+5TQROcY7vkxV3wWexq2JaQB+iwuy/C7wgKpuB1DVXbhU5Ny+uhiGUXZsbGphzCE9+e9Lxlk6coJIQnFJpRfwhcB7X0n+EPC8qu719nH5ITAB6IRbUPmNkrbSMIzYsXTk5JKEYbFVqnpUms/SzrmknHMFMFVVR2T4fAMuQdmGxQwjYrKqyI/OAGDWuVfldf8wE/pRpCMXW0Ouggn9xA6LtSUeq+pfo7ihiEzCLazsCqyM4p6GYXRMqnJcChU5inTkYicjWypyPLRLPI7wvk8CLwMzgO4R3tcwDI/UB2VqT6YUKnLU6ciWjBwdcReXI3Er7i/wXtOlIudDcKX+xojuaRhGB6QWm0JSkX1KnY5sycjRkYQ5l1xV5KOBq3G7Tg70Dl8H3Kmq+7xzfBV5IdBVVQeEaI7NuRhGhJRKRU5NR/Yn901HLhmJnXPJVUUei9vj5WZcb+dTwI3AUBH5uqruCqjIlopsGFXCR987kI++dyCrtzSbjpwAklBcUsmmIj8oIpOBySnXTQXuAlYUvYWGYSQCX0Ue2rsrKzfv4IqPHM7kcSPibpZBMobF8laRA+feD4xU1dNTji8DetiwmGEUh4505HxV5LCZYpBeRW7ZHX7tdKnSkCvcEkvssFhBKrK3oHIKLuDSP3YK8HucirwponYahpGGTKpxvipy2DRkKDwRuZhpyFC9icgQf3EpSEUWkcNxETD3qOpjgY/+hktFngFU739dwygysy8el7H3kq+KnEvPJYpE5GLqxxXeY+mQuIvLLqBRVZfleqGIHIHTjR9R1auDn3nbHC8TkSbctsmGYRSJTA/QQlTkMGnI4KnIP1hwQCJyLph+XBySMOeSU+S+99mRwB+B/1bVy9J8Pp7AOhebczGM0lMqFdkSkWMnsXMur+OtcwEQkTuAM4H3eO/bqcgicjLwB2AfcLGInINLSv62qvpfWV4EBuGtcynVL2IYRmmxROTkkoTikrrO5Uzg6MD7dioyLgm5NvD5YNyE/hS8CmrrXAyj8kmnIY8d3jvuZhkeSRgWi0JFvgy4RlUHpRw3FdkwikSxUpHDTugXoiFbEnKkJHZYrFAVeTDwaeD/BY6ZimwYJaAjzThfFdm/LhuFaMhRK8jVrBxnIu7ikreKLCK/Aj6B25HyKeCLgY9NRTaMItORhgz5q8ivrWukqTX7iHahGnKUCnKV9VRCEfew2PPAq6o6Nc1nHQ6LichAXFTMaOA7wAJVvTjlnFnAwar68RDNsWExw4iQfG2xsBqyAHVdag7QkMPs4QJw+WmjTEGOhvTP6ATMueSsIqe5z8nAC8AwVV1tKrJhxE8pVGTTkBNBYudcUlXkYOR+h4jIwcArOGMM9i+YNBXZMKqAySeOsCTkhJKE4pJT5L6IfBzoCywC7gHW4orL3/yV/qYiG0bl4e/bklpE+veot6KSQJJQXFLpMHIfaAEuwa2FqcNtNgbw2RK1zzCMEuOvaRnepysrNu9kyokjmHTCMCsqCSYJcy45r3MRkWNxgZUfAEbh5lf6qeo7KefZOhfDKJBs61kyEWadS75rWs7+wZ/Zt28fu/Zq1r+4tqal6CR2ziWndS4i0g14BLhUVdeKyKg059g6F8OIkFzXqkC4dS5h4/VT17SMHtCdL510KFc99o+sdpitaYmHuItLPutcvo/Tjh/r4Bxb52IYEZFtPUsmwqxzCdtzSV3TsnLLTsaN7MugXg0sf2dH1uttTUvpScKwWE4qsoisAIayfxhLgBpgLzBDVa8zFdkw4iesihxmXYsAdZ1rGNyrgc07dnHz2WMYM/ggJvznglDrWmxNS1FJ7DqXdXgqsqruTlGR69IUl9HAG2ludydwp6q+LSK1QB88FdmKi2GUnqjXuWxsauHhl1bx0xeXc2jfbqzcstPWtSSDxM655KQiq+qbIgJwIS725UTgMeBeVX0bTEU2jEogVT3u36Oe6WeMZtIJw2xdSxmQhOKSSjYV2Webqm4QkS3e+3D7ohqGkXgeWriCO+e/wfC+3Vi9tX0Pxda1lAdJGBbLR0VW3HBaHbAc+AnwY1Xdl3KeqciGkSP5qseppFORQ6vHXWqYOzUQpx9ybqWY2rFN5GckscNi+UTu34CbsH8XOA24CzgYuA1MRTaMqMhHQfZJpyKHidOv7SSM7N+9nXoc1grb1NTK9pZwkf25ct7MhVZgciDu4pJX5L6q3hp4u0REOgHX4RUXTEU2jLwJPkAL6cWkU5HDxOkP6FnPmq3t1eP120ofo28URhKGxaJIRT4VNx8z0LPFxmMqsmHESjpbLIx2XN+5hmmnj+L+P73FkN4NLNv4Lq2792X9C2q6cWxUhoocuPYC4ArgCGAPUA90U9VWU5ENI37yVZH9HLHBPetZtWUnV37kCCafOKIILTQiIrFzLrmmIk8AzgdOx20SVgdcC8xT1VYwFdkwyplPHnsIJ47sm1Y3zpSMbCSPJBSXVLKpyLXAZ4BW4FbgLeB64L7SNdEwjGKSqhv7CyhnvbiCEX272gLKMiBxxUVVpwBTOphz6QTsBi7C9Vj6AOOBubhCYxhGhOSdiuxZYldmuD6sliw4g6ympoYnp57UTk+eNntJqLYUS1E2eywzSSguuarIh+GyxK4HpgFb8NRkEXmPqu40Fdkw8ie1mOSrI2dLRQ6jJYPLFJtxzlE8+OfleenJEL2ibMnI2Ym7uOSjItcAXYDLVPVpABGZBGwAJgCzMRXZMCIj3wdptlTkMFoyuLj9cSP7cuPcpXnpyRC9omw9luzEXVyOBMYBF3ivL3V8OgDrvdfX/AOq2igi64Bh3qEBgO87NkXTVMOoDqJ6cK5ccFCH9wujJYOL22/cuZubJoxh4v0L6dutlnXbmmkNsWIfTFGOi7iLC8DreCoyQIqKnI7+3utqL8AyiP/7rAYGAc+yv+AYhpEgpp8xOtRDf87itZw7cyHD+3RFUSYcPdi2OC4DklBcclKRcZuFjQcOBb4BNAI/BwYD976DA8IAACAASURBVAKo6l6cilycHAjDMEpGUE1uqK2heVe4HosRL0koLql0qCKrarOIfAa4G/gZTibpjovc31nSlhqGURL696jnxWWbufHJpQzp3cCarc3cfLapyEkmCSv0c05FTjlvCvAAMDSlB4SILAEOU9UwM5K2Qt8wUigkWyxdKnIqYXVkcLEwcy/NPSk5lWImJ0NVTvYndoV+PqnIQS4CngoWloCK3ACEcxUNwziAqFORg7Tu3suuveG/0w3u1dBORR7cq4G3QqrIQYqRnGxq8oHEXVzySkX2EZExOMvsYykf+SryZcCZBbbRMKqWQh6a2VTkXHotAOsbW9qryI357Q9YjOTkKuytZCUJw2J5pyKLyL3Ap4ARwY3CUlKRm2xYzDBKT7bgyrAqsk9tJ6GhtjMj+nZlxeadNO/ak1PPx5TkopHYYbFcVWRE5AO4BZLjgV3AMyJyjar+xTvlRUxFNoxEE1ZF9pmzeC03PPkqO1r3oCh3TDzaJvQTTBKKS66pyN2BebghNcUVoi8B80VkmKo2BVKRTUU2jAohnZK8sanF1rsklCQUl1SypSIfgQurrAXmq+ofRWQ5MAk4HDffYhhGBdK/Rz3zXt3AnfPfYHjfbqzeaunISSVxxSVEKvIbuDDKZ4BbRaQOuBBYBSwtZVsNo1rIR0mOKhU5lfouNcydenJe6chQfBU5HdU44Z+E4pKTiqyqTd6E/RzgGu/wCuAMVW0GEJFhuGEzU5ENo0DOm7kwLyU5jIqcK7WdhJH9u+edjgzOOotaRfYxJXk/cReXnFVkEWkAHsTNy0zC7e9yBfCEiLxfVXfgtk72U5F7ZrqXYRjhyOehGbWKDDCgZz1rtjbnnY4M0K22U9GKQDX2UDJRdiqyiHwZuB0Y6GWIISK1wFbgYlX9RYqKvFFVB4RojqnIhhEh2VRkyF1Hru9cw7TTR3H/n95iSO8Glm18l9bd+3L6y2tKcuRUjIrcFdfuF0Tkvbhhr4dwxaHGO8dXkRd65xuGkUDy0ZFvmruUwT3rWfHODq496z1MPnFE8Rpo5E0SikuuqcircEZZF2AiMBCXlNwF+CNAQEXOfVDXMIzEYjpy+ZCE4pJKNhX5eNw8TStu10kFVuI05MaStdIwjFgwHbk8SFxxCaEi1wGbVPVk/4CInI5Tk8fiCpBhGEUirJacTUVOJaeE5AJ05FKoyDaxn4zikmsq8nxguohcADyC29L4Bu+zQdAuFbkrbk2MYRgRkIuWnE1FDpJLQnKhOnIxUpHBNORU4i4uOavIqvq0iFwB3AfMwg2P3QqcAvjhlX4q8gzA/osbRoSEfYhmU5GD5NJrKVRHLkYqMlhvJZW4i8suoFFVl+VykareLSLfw/VUtgIjgO8Ab3mfNwPLRKQJN4xmGEYE5PIAXbngoNDX5KIkb9reyrTTR3HuzIX7deSQm4aZhlw64i4uxwCnishXSVnnkg11C3TWAYjI53A9n79776cAP/VOXRFhew3DKAK5KMmmI5cHcRcXCKxzEZERuAWSJ+PmUhCRnwA/BpZ6KjIi8i3gJOA4nC1WD5znL6rEWWTzgH+U7LcwDKMkfPLYQxg9sDtLVjVyzLCeHDnIQjiSSE32U4rOHlXdoKq7cYnH7wcOYX/h+xJu3cv7AUSkE3A5rgDV4Na9bANO9W+oqs3e2pncN9g2DCPRzFm8lvMfeJnZf13F+Q+8zJzFa+NukpGGJMS/rFLVozo45yvArara13t/FvBbYLiqrvaOXQD8F9BfVbcHrt0ANKvqoSGaY/EvhpGFXNKRpzw6A4BZ516V9dycNOTONcy9tL2G3BJyzsU05KKQNv4lCT2XMSLyrre7ZDoOwk3a+4wDXvcLi8d83MT9WHAqsqc39y9Ggw3DiI/BvRoO0JCN5BH3nEuHKrKIDMclHn87cHgg8HbKqe8Ae73PYL+K/DC2x4thREI+e7qEIZdeS10nYfOOXQWlIheDKuytZCXu4pJRRRaRAbhJ+WeA7+Vy04CK3AzsjKKhhmHEz+DeXbn8NKchD+/TlTffDq8hx7FJWDWThDmXAyL3RWQgLoRyKfA5Vd0TuOYW4BxVHRM41g/YCHxYVZ9LidxfYXMuhlF6wkTuQ25rXPz5lp5du7Bw2Wau/PUrtIZc2W9rXIpG8iP3PRX527i04044xfhWEbnF32USF6P/TRF5BRdWuQG4FrdSf5F3jh+5byqyYSScXNe4+L2WlVt2MmPi0RZYmVCSUFzaIvdF5ETgY7iC8xXcyvs7gSEiMsVbx/I0bu+XBpw1dhLwXeAB3xQLRO6bimwYZc7GphZWb2lmaJ+GdpH7Q/s0WNR+gklCcQlSi7PDjgIWBI5fAHwTN8S1V0TeB/wQmIDr4dwHfKPEbTUMo8jMWbyWG59cypDeDazZ2szNZ7tofSsqyScJcy7Z1rlcDfy7qo5M89kVwFRVHZHhWlvnYhh5Uqgd1tE6l7CGWCFrWsDWtZSIxM65ZIzcz6AiZ0VEJgEzcZH7K6NqqGFUE2Gj9TPRUeS+/1k2Ute0DO7VwFsho/UB1je2RB6vb9H64Yi7uGRc51KIigw8CbyMi9zvXngzDaP6KPQh2lHk/mvrGmlqzb4L+frGlvZrWhrDrYdpa0Ntp8iLgfVUwpGEYbGcVOSU69MOi6WoyBtVdUCI5tiwmGFESEcqclj9uLaT0FDbmRF9u7Ji806ad+0JvakYmH5cIhI7LJaTiiwiRwNX44IrB3rHrgTuVFV/MNZXkRfihsYMw0gQYfXjOYvXcsOTr7KjdQ+Kcoepx2VDEopLriryWNzK/ptxOWOfAm4EhorI11V1V0BFzt7vNgwjUZh6XBkkobgECaMiPygik4HJKddOBe7CNgczjLLF1OPKIQlzLnmryIFz7gdGqurpKceXAT1szsUwcidqFTmMfpyvelxs5dgm8TsksXMuBanI3oLKKcCkwLFTgN/j5ls2FaHNhlHxRKkit+7eG2oiPl/1eO22FjY1tVLXpVNBbU6Hqcf5EXdxKUhFFpHDcREw96jqY4GP/Mj9GbhhNsMwciRKFTnsoslC1ON+PeqK0nuxXkt+JGFYLC8VWUSOwOnGj6jq9JTPxmMqsmHESlBFLoV6bNpxbCR2WCxXFbkf8BucKabARBGpBa5V1UbvnqYiG0aCMPW4+khCcclVRR6Fs8meBa7zzvkOMBQ4G9qlIpuKbBhlRCb1OKgnmzlWHiShuATJqiIDZwI9vNczA+dktMkMwygf+veob1dUHn5pFbNeXMGIvm4Pl5smjLHeTBmQhDmXglRkERkM/BLYoKqfTfnMVGTDCEGh2nE6MqUih53cF9wcTE1NDU9OPSmvZORiKco2yd+OxM655KUii8ivgE/gNg17Cvhi4DNTkQ0jTwpVkH3SpSKHVZIB6jrXMOOco3jwz8vb6cmDejWwPGQy8qam1shTkWF/MbYik5m4i0shKvJ077rRuDmXe4CLvc9MRTaMHAg+JKPqxaRLRQ7bawEY1KuBcSP7cuPcpe315G3N2S/2KJaebGQnCcNieaciB+5zMvACMExVV5uKbBjxky4VOaySDPtX6y9dt50bn1xK3261rNvWTOuefaH+spqaXDISOyyWk4ocREQOBl4BBnuH6rxXU5ENI4GEVZLBacnnzlzI8D5dUZQJRw9m0gnDzBYrE5JQXHJSkUXk40BfYBFuKGwtrrj8TVWXganIhlEJpGrJAKu3uO+YVmCSTxKKS5AwKnILcAlwNK6nss47p50pZhhG5TDv1Q3c/cybDO9jOnK5kIQ5l5xVZBE5Fpcp9gHcosrngH6q+k7KtaYiG0aAYijHmQiqyLlM5PsIzhjrd1Adm5pamTs197TkIMVOToaqtccSO+eSk4osIt2AR4BLVXWtiIxKvaGpyIYRnqjU41SCKrL/51yo8yb0t7fs4cYnX81bR/ZZ39hSFC05SEfFu9oKT9zFJR8V+fvAgpQU5FRMRTaMNKR7wBWrNxNUkV9b10hTa25ToIO8+P2NTS2s2dqct47c1p7aThafX0KSMCyWk4osIitwOWJ+wwWoAfYCM1T1OlORDSN+8klFDhLcOOz+55dxzx/+yaCeDazPQUcOYmpy0Ug7LJaE4rIOT0UGDqG9irwSmA0EU5FHA2+kud2dwJ2q+raXktwHT0W24mIYpSfdOpdcmLN4LTfNXdo2if+100cz5pCeFl6ZPBI755KTiqyqb4oIwIW42JcTgceAe1X1bTAV2TAqgaCK3FBbQ/OufVZYyogkFJcgYVRkn22qukFEtnjvc1NRDMNIPP171DPv1Q3cOf8NhvftxuqtpiGXC0kYFstHRVbccFodsBz4CfBjVd2Xcq2pyEZVUkrlOBO+inzb6ZfmrCEHqe9SU7CGnEoptGSoGkMsscNi+aQi34CbsH8XOA24CzgYuM27zlRkw0hDsbTjdPj68frG/AtLbSdhZP/uBWvIqRQrLTmVdEW+SgpO7MUlr1RkVb018HaJiHTC7Up5m3fMVGSjqsn0ACtlj8ZXkbvVdspZQ/YZ0LM+Eg05FUtLLj5JGBaLIhX5VOB5YKBni43HVGTDiBXfFnt88vU5a8g+9Z1rmHb6KO7/01sM6d3Aso3v0ro7dw0ZTEUuIpWhIgeuvQA3ZHYEsAeXoNxNVVtNRTaM+ClURYb9OvLgnvWs2rKTKz9yBJNPHBFRC42ISOycS66pyBOA84HTcZuE1QHXAvNUtRVMRTaMSiGdjryxqcV05DIgCcUlSBgVuRb4DNAK3Aq8BVwP3FfKhhqGURpMRy5PElVcVHUWMCt4LKAir/AOdQJ2Axfheix9gPHAXFyhMYyqJgkaMsDnVm2ldc8+Tr36twXfK52OPG32koLuWSodOUi1mGKQjOKSq4p8GC5L7HpgGrAFT00Wkfeo6k5TkY1qxC8qpdSNO2LX3mimMctdRw4SLPyVXmjiLi75qMg1QBfgMlV92jt3ErABmIATAExFNqqWpCT/1nYSWvcUXmBMRy5P4i4uu4BGf3tin4CK/CrweW2vtK33Xl/zD6hqo4isA4Z575uBZSLShJvwN4yKJ2nfhFcu6M2arYUXgU3bW5l2+ijOnblwv45c4Ap905KLT9zF5RjgVBH5Kt46FxEZhFujkmmNy5+918OBNQAi0h0YhFOXEZERuFgYgKZi/gKGYWRmSO8GVtz+sYLuEdSRV7yzg2vPeo/pyGVA3MUFnHb8YWCziByHGwarxWnI/yciTwB3A6tVdS8uBRngWS8dOcg673U1rtg8i9ebMQyjPDEduTypibsBeOtcVHU3cB5ujqQeN5w1DLgU1wsZ6p0/GxgJPAxsAxqBtcAqvF6NF82/Abe40jCMMqd/j3pWb9nJ+Q+8zC1zl3Lm9/7EnMVr426W0QFJWKGfLRX5K8Ctqto3w+ddcT2WO1T12ymfLQEOU9UwM5y2Qt+oKOJWkqc8OoPW3XuZNu6SSO4X3JkyqnRkiEdJDkvS5tEykHaFfhJ6LmNE5F0R+UCGzw8CtnZw/WeAbsCD/gEROcXTm98bXTMNw4gDwZlnh/RuOEBHNpJL3HMuGVVk6DByP8hFwFN+hIyHryJfBpwZWWsNI4HE3UPJROvuvQVbXQB1nWv42ZeO4+JfLIpcR46TMumV5E3cxSWtigwdR+4HzhkDjMPlkbURUJG3YPMuhlHWDOrVwPGH9eWmCWM4d+ZC+narZe3W5rwLV5KHwSqJuIvLASoyZF3nEuQiXI9nXvBgSuS+qchGRZPUb8B/nlvPmq07C77P+m1uAeUnjz2EQT3r+fxPXi5o9f/EsUNtjUsJiLu4QHsVeQTtI/frgVtFpF3kvjc/MwOXKbYLeEZErlHVv3invIipyIYRK0N6N0S2zuXcmQsZ3qcrK7fs5I6JR1toZRmQhOKSa+R+d1xP5TWc4fVvwJeA+SIyTFWbApH7NiRmGGVOcJ3L0D5uEn/Ryq0M7dNga10STBKKS5AwkftH4JKQa4H5qvpHEVkOTMKt2v9bKRtsGEbpmPfqBu5+5s22XoxF7yeXRBWXkJH7b+CSjp/BDZnVARfiFlEuLVVbDSMukmqHpTJl/XZad+8tOHJfcMZYv4Pq2NTUGnn0vk+SJvqTOo+WC0koLjlF7qtqkzdhPwe4xju8AjjDn5cRkWG4YbMGoLBcbsNIGEmJ1O+I1t17+XTz7kjuVectntzesocbn3w18uh9n1JH8CclvbpYxF1cco7cF5EG3ILJl3BDYZ1wBegJEXm/qu7Ardj3I/d7Fv/XMIzSUQ4PpSgsMZ9BvdziyY1NLUWJ3vcpdQR/JfROOiLu4nIkbp3KBd5rGBX5fOBfgJO8IEtE5HzcKv5PAb8ATma/iryx+L+GYZSOcngofe+ZN93esBHgq8ijBvTgkg8exoQfLGBQzwbWb8t/rYtF7hefuIsL5K4id8W1+wUReS9u2OshnDnmx9n4KvJC73zDMErI9DNGs/IhFwcYtYp87VnvYcwhPc0WSzhJKC45qci4ifteuN0oJwIDge977/8IEFCR95b2VzEMI2pSVeRgQdnY1JL2uBE/SSguQcKoyMfj5mlacfH7itsk7HBc/L5hGBVG/x719O9Rz8amlrY1Li8u28xNc5ealpxQElVcQqrIdcAmVT05cM7puIn/scDzJWiqYSSCJGvJUzyr7fzb/8DabS0F389Xkgf1amDd1p2IyAER/IVqyUnSkaE85tcykYTikpOKDMwHpovIBcAjwADgBu+zQd51pwC/x823bCpu8w0jXpKqJu9o3cM+JZLCAvuV5FEDevDE4rXc+4d/Rq4ll1pHTqUcTMCwxF1cclaRVfVpEbkCuA/Xy2kFbgVOAXx1xI/cn4EbZjOMimT2xeMS23vpVteZ1t3RTXv6SjLAuJF9ufrx/4lcSy61jpxKOfdUUknCTpT+OpR0qchLgc+p6gFfJUREcD2VrbiJ/9eA41T1ryIyBfipd+oKVT00RHNsJ0rDiJCVn5/Mmq3NTPrXKZHcL3Unyo99/wVqRBjUa7+WnMtfYtORIyPtTpRx91ygvYpcgxvO+jBOK+4NzBKRq1S1bcNsbwX+fd55zbjez2rg794ps3G9nn+U6pcwDONAokhF9kmXjpzJIjPiJwnFJagiHwIcC/wPTkU+GLgReMpbfb9XRDoBLwNrgC8AH/def+cvqvTWxDSLSOHb4BmGkQjSpSNbYUkuSSguQc4A+nn/pA4kj8SFVp6JW9vSFfg58ArwXeAyETlIVZM5u2kYRsH4SvJDC1dw5/w3GN63G6u3moacRJIw57JKVY/K8Hkf4EfAcFU9wTt2C3COqo4JnNcPF/PyYVV9LnB8A9Bscy5GJZHUCfxUpjw6A4BZ517Fmq07I7PGAOq71ByQjtySZxRMKknSkctkgj+xcy4HqMgiMgOYiuudvIQb+vIZCLydco93gL3eZ6kq8sqitt4wEkrcivKOVufhLF61taBtiVOp7SSM7N+9YtKRM1HuWnLcxSWTivxd4CfAcNycyy9E5CwN383yVeSHsT1ejAoj7LfZuHs43erc46Vfj7pIey0DetZXVDpyJsqk15KRuItL2lRkVX0H1xt5U0RexxWek4EXgA3ASSn3ORgXdLnBe388+1OR+xex/YaRWOJ+OK1c4L55Txw7lHv/8M/I7rtpeyvTTh/FuTMXMqR3A8s2vpt3OjKYklws4i4ucKCKPAfX6+iPW8Pif/2q814XAt8UkVdweWIbgGtxiykXeef4qcimIhtGzEw/Y3SkD+85i9dy09ylDO5Zz4p3dnDtWe9h8okjIru/EQ1JKC6pqci7cMXiLVxW2Le8Y36Q5dPAZtwuk7/F9WK+Czzgm2KBVGRTkQ2jwkinJPthlqYkJ4ckFJcgO4G+wL1AN2A9rqic5Z/grXV5H/BDYAJuOOw+4Bslb61hGLHgF5GHX1rFrBdXMKKvJSMnjbJTkVM+vwKYqqojMlxvKrJR1cQ5qV9MFVlw1lhNTQ1PTj2p4pXkIHHPpaWhYlTkrIjIJGAmpiIbBhCPluyryK+t397256io61zDjHOO4sE/L694Jblcibu4FEtFfhIXETMD6B5dcw2jvPC/5cbRg/FV5CMHHcRr6xppao02IXncyL7cOHdpxSvJ5UoShsUOSEVOOWcIrvB8UFVfSPks7bCYiIxnv4q8UVUHhGiODYsZRoSs/PxkAIb//CG+98ybkerIfkLy0nXbufHJpfTtVsu6PJKRg5iSnDeJHRbLSUUWkaOBq3HrXvwV+VcCd6qqP9jqq8gLcUNjhmHESDF0ZD8hWVEmHD2YSScMM1ssQSShuOSqIo/13t+MW3j5KdzQ2VAR+bqq7gqoyNH1ww3DSAxBHbmhtobmXbbqIGkkobgECaMiPygik4HJKddOBe4CVpSkpYZhxM6f3txkKnJCSVRxUdUlwIf89wEV+WVVbQmcNz54nYjcD4xU1RWlaalhJJO488SCTPEMtSsDbYpKSe5IRZ42e0nB9wdTkQslCcWlIBXZW1A5BZgUOBZMRd5UtJYbRoJJSiqy347W3XsjS0euBhXZUpELoyAVWUQOx0XA3KOqjwU+8lORZwDl/V/IMHIg+K027l5MUEWG6HotUB0qcrn0UDJRtiqyiByB040fUdXpKdeMx1Rkw4iVoIoMRKojF0NFBtOR86RiVOR+wG9wppgCE0WkFrhWVRu9c01FNoyEEaWObCpy8klCcclVRR4FHAU8C1wHjAC+AwwFzoZ2qcimIhtGBWIqcvJJQnEJklVFBs4EenivZwaOjyxRGw3DSAD9e9Qz79UN3Dn/DYb37cbqraYiJ4kkzLnknYrsnTMY+CWwQVU/m/LZMqCHzbkY1UDcE/ipBFORg0Q5sV/fpYa5U08uSiqyTxKU5IRP7id2ziUvFVlEfgV8Ardp2FPAFwOfmYpsGAHiTkVOd7xQajsJI/t3L5qK7BO3kgz7vzgkvMi0I+7iUoiKPN27bjRuzuUe4GLvM1ORjaqjowdP3KnIQaJKSB7Qs541W5uLpiL7xK0klytxD4s9D7yqqlM7OCdjKnLgnJOBF4Bhqro6cHwWcLCqhtkPxobFDCNCUlVkn6iU5PrONUw7fRT3/+kthvRuYNnGd2ndXZiKDKYj50Eih8WOAU4Vka+SYZ0LUOO91nVwn3bnpK5ziaCdhmFERFRK8pzFa7lp7lIG96xnxTs7uPas9zD5xBGFN9CIhLiLC7Rf53IicD/QD+gN7AD24nouCwBE5OM4o2wR0AV4xnv/N1Vd5t3T1rkYRoUT1JGH9mkAYNHKrQzt02DrXRJAEopLcJ1LM26C3i8IrbheyeZAcGULcAnwHpyS7A+ytplits7FMKqD/j3q6d+jvq0XM7yPpSMnhbjnXDpUkb1zzgaeABqCycgicjlu0eS3gD8A/VT1nZRrTUU2qpa41eRMKjJEqyPD/jiYqJXkJGjIkHhLLO2cS026gyVmjIi8KyIfSP3AW+cyiZTIfRE5FrgKt6fLAf8Hicgpnt58WPGabRhG3PjR+4f0bjhASTbiJe5hsbQqckfrXESkG/AIcKmqrhWRUWnuayqyUfUkTU32ibLXUte5hp996Tgu/sWioivJcWLrXHJnF9AYmIj36Widy/eBBSkR++1Q1WZgmYg00bFlZhhGGTOoVwPHH9aXmyaM4dyZC+nbrZa1W106ciEkZTisnEnCnEtOkfsisgIXUuk3XHDDe3uBGap6nUXuG0b8FHudC7Sfa3n5rc18/icvR7Ihma11yYlErnOBHCP3cWGVb6S5z/dwvRowFdkwEkuxovdXbtnJHROPNkssISShuOQUua+qb4oIwIW4TLETgceAe1X1be8cU5ENowqwtS7JJQnFJUiYyH2fbaq6QUS2eO+j8xoNwygb/LUuDy1cYfH7CSIJcy45R+6LiALrcENly3GT/z9W1X0p19s6F8MIUEpLrKN1LkGisseKFb+fxMn9hFljiZ1zySdy/wbchP27wGnAXcDBwG3e9Ra5bxghKVYcf6bIfZ/W3XsjmXyH4sbvJyFyHw5Ml046cReXvCL3VfXWwLlLRKQTbsvj27xjts7FMNKQ7htvsXozmSL3faJc71LM+P2kRO4nrLeSlSQMi+WkIme4z6nA88BAVX3bVGTDiJ9MKrJP1EpylPH7piLnRGKHxXJVkQEQkQuAK4AjgD24dS7bvI9NRTaMhBO1kmzx+8kiCcUlJxVZRCYA5wOn43agrPPOn6eqrWAqsmFUG76S/I81jQAcNaRnliuMYpOE4hIkjIpcC3wGF8d/K64IXQ/cV9KWGoaRKOa9usFU5ASRqOKiqkuAD/nvAypyMBW5E7AbuAjXY+kDjAfm4gqNYRh5EPXE/hTPErsyxH2jmNxPpyJPm72koHv6JE1HLofJ/SQUl1xV5MNwWWLXA9OALXhqsoi8R1V3mopsGNlJLSZRK8nZVGSfKJTkYqrIUDodudx0446Iu7jkoyLX4LY3vkxVnwYQkUnABmACMBtTkQ0jZ6J+sGVTkX2i6LUUU0WG0unI5dAjCUvZqcgi8kXgQWCoqq4JnPd/wP2q+l0RGYFbuQ/QpKph/taYimwYEZJNRfaJQkmOWkX2MSU5FBWjIvf3Xld7AZZB/N9nNU5FfhYYVpxmG4YRBVEoyaYiJ48kFJecVGRcrP544FDgG0Aj8HNgMM4yQ1X34lTk+DMbDMMoOsF05IbaGpp37WNjU4slI8dIEopLkKwqsqo2i8hngLuBn+G6ZN1xkfs7S95iwzASQf8e9aYjJ4gkzLnknIqccs4U4AHcHMyGlM+WAIfZnIthREMuunLYVORUCpngL0YyctI0ZJ8ETf4nds4ln1TkIBcBTwULS0BFbgCicRENo0oJFpRcdOWwKrJPoUpysXTkUqYim4ocHXmlIvuIyBhgHPCxlPv6KvJluG2RDcOIgFwefmFVZJ9CleRi6cilTEVOUG+kYJIwLJZ3KrKI3At8/PUXuwAAIABJREFUChgR3CgsJRXZVGTDiIGwKrJPoUpyMXRkU5FDkdhhsZxTkUXkA7gFkuNxJtkzInKNqv7FO8VPRTYV2TDKhEKVZNORk0USikuuqcjdgXm4ITUF/g34EjBfRIapalMgFdlUZMOoEj557CGMHtidJasaOWZYT44cZMnIcVITdwNSCKrIfwS+hisqtYFzjsCFVdYC81X1j8A3gV7A4SVtrWEYieGhhSv47MyX+NVfVnH+Ay8zZ/HauJtU1SSh59JGyFTkN3BhlM8At4pIHXAhsApYWtoWG0ZlEkVCci6pyEHyndiPOhU5aQpyuU32J6G45KQiq2qTN2E/B7jGO7wCOENVm73rh+GGzUxFNowQFCMhORcVOYka8vrGlpIpyFBZGjLEX1xyVpFFpAEXXPkSMAm3v8sVwBMi8n5V3QGsY38qsg28GkaORPGgy0VFTqKG3K22U0kf+OXWM8lG2anIIvJl4HZgoJchhojU4syyi1X1Fykq8kZVHRCiOaYiG0aE5KIim4Zc1lSMitwV1+4XROS9uGGvh3DFwRcUfBV5oXe+YRgJxjTkyiMJxSXXVORVODOsCzARGIhLSu6CM8wIqMh7S/drGIYRF34q8j/WNAJw1BAbDY+bJBSXIFlTkYHjcfM0rbhdJxVYidOQG0vZWMMwkoMlIieLRBWXkCpyHbBJVU8OnHc6Tk0eCzxfsgYbRhWQr5ZcziqyaciFk4Tikmsq8nxguohcADwCDABu8D4b5F3vpyJ3xa2JMQwjQC4FI18tuZSpyFGryMXUkCtNOc5E3MUlZxVZVZ8WkSuA+4BZuOGxW4FTAD+80k9FngFUx39JwygS+T4MS5mKHLWKXEwNuRx7IfkQt4r8PPCqqk7t4Jy0qcgiIrieylZgBK5QHef3frxzZgEHq2pH+8H4mIpsGBFSylTkqFVk05BzIpEq8jHAqSLyVTKsc2G/XlwXPOjt7bIOQEQ+hytAf/feTwF+6p26IvJWG4YROYXoyKYiJ4+4iwu0X+cyDngfzhBrxs2bHIYrIr6KjIh8CzgJOA7X46gHzvMXVeIssnnAP0r0OxiGUWI2NrWwekszQ/s0tKnI/vv+Perjbl7Vk4TiElzn0oxbu3ILbuX+Lu+cC31bTEQ6AZfjCsoeYDluweWpwK8BvIyxZhEpbPNswzASyZzFa7nxyaUM6d3Amq3N3Hy2046tqCSHJBSXNnwVWUQ+AXwbV2heAzYGTjsTZ4ENV9XVAJ459l8icp2qFp64ZxgVQBTJxoUQRkXOWzvuXMPcS6NLQPaJU0GutIn+JBSXdiqyN4H/I9zCyXS6xzjgdb+weMzHzcmMBZ5LUZFXFrX1hlEhRJGEHCSMiuyfkyuDezW0044H92rgrQISkH02NbWWNAk5SOqXgXIvNnEXl3Yqsjfk9TBwl6q+IiIj0lwzEHg75dg7wF7vM9ivIj+M7fFiVCm5Ppyi7umEUZFfW9dIU2vuKU3rG1vaa8eN+ScqB+nXoy5RiyfLmbiLyy6gUVWXAYjIN71jdxdyU2/OZZk3h7Oz4FYaRhUQ9TfllQsOynrffPXjvfv2MfH+hYzo25UVm3eyd1/h06umH0dL3MWlnYoMnIZbDLnbLWNp4yURma2qk4ANOFMsyMG4fV18MWA8+yP3h+NW+xuGkTDy1Y/nLF7LDU++yo7WPSjKHROPthyxhBF3cYGAigx8ERdYCVALPIpTkb8J/Nw7vhD4poi8ggur3IBLUW4FFnnn+JH7piIbRoWxsamFoX268shFJ9C8a5+pxwklCcWlTUXGacUAiMgPcJPxhwFrVHWN99HTuELUAPwW14v5LvCAb4oFIvdNRTaMCsJfLDm8T1dWbnHJx2OH9467WUYaklBcDsBTkT8EXEYgJRlAVfeKyPuAHwITcMNh9wHfKHU7DaMciEtJzqQiF5IhVokKcpByN8SC1GQ/pbQEVOTzcSYZuKGzNlR1lZcXdi2wWlUvU9XW0rbUMIxSMyhFQR7UqyHmFhmZSELPpW2dCy4bLJuKnBURmQTMxNa5GAazLx4X+4LKINubd+d97frGlOTjxvyTj+Omknop6Yi7uKRG7l9LBCoy8CTwMi5yv3uB9zIMI0IOauiS19oWgIPqu3DuzIVtcy4H1XehZXd+gxZJGQqrVOIuLkfiFOQLCK8ih2Es+1XkjR2daBjVQBzfkjOtcykkWn97825+9qXj6Nyphj179/GFB/+Sd/smjh1q61qKSNz7uWzDJR77KvIQ0qvI1wI/V9U1InI0cDVwMvtX5F8H3Kmq+7z71gJ9cNpyV1UdEKI5tp+LYURIrvu5hCGdLWbrW2Inkfu5QO4q8ljc0NnNuN7Op3C7VQ4Vka+r6q6Aipxf39swjEThx+ufOLIvT0//oEXrlwFJKC4HkEVFflBEJgOTUy6bCtyFbQ5mGBVFpnh9I9kkrrikpCI3eodTVeTxKdfcD4xU1RUlaKJhlA1xWmL+Opfzb/9D3utaoDhrW5I0mV+p1lgSiktBKrK3oHIKMClwLBi5vyn6JhtG+RB1lH5Y/Dj9QhOLixGvH2e0fpCOEqPLnbiLS0EqsogcjouAuUdVHwt85EfuzwAq97+eYWQhzjUufuR+t9pOeavHUJx4/aRE61dqrwWSYYv19N6OA27HqcjBRnXC7dXSTkUWkSNwuvEjqjo95b7jCajIZosZRunxbbHHJ1+ft3oMUNtJaKjt3Bav37xrD7v25v/X1aL1IyextlhOqcgi0g/4Da4YKTDRU4+vVVV/jsZPRV6IGxozDCMm8o3V97F4/fIkCcUlVxV5FHAU8CxufcsI4DvAUOBsaJeKbCqyYZQxFq9fviShuBxARyoycCbQw3s9M3B8ZGlaZxhGKUinIFu8fvmQhDmXVap6VODYEOAv7FeRlwMfUNW/ZbjHYOCXwAZV/WzKZ8uAHjbnYlQDSQmn9CP1Z7zwQwCuOuUred0nnYLcsqewLZqSoiBX2ER+Yudc8lKRReRXwCdwm4Y9hZuv8T8zFdmoSuLSjoP4CnKhVJKCXMnKcSbiLi6FqMjTvetG4+Zc7gEu9j4zFdmoOpISrf/ausaC1GOfSlKQK6ynEookDIvlpSKn3Odk4AVgmKquNhXZMOLDTz0udFjMFOSyIe2wWBKKS06pyCnXHwy8Agz2Do1S1WWWimwY8VNoKrKvIPfvXsfGd1u55ex/NQU5mSR2ziUnFVlEPg70BRbhhsLW4orL31R1GZiKbBjlTDAB+dmvnWoJyGVKEorLAWRRkVuAS4CjgTpczwfgsxiGUdZYAnLlkLjiki0VWVWfFZHNuEyxD+AWVT4XONcwqpa4JvR9/TjIjLc2A3Dq1b8NfZ9KT0D2qYYJ/iQUl5xUZBHpBjwCXKqqa0VkVJpzTEU2KpJsxSMOFbl1996CJtqDVIJ+XI3acTriLi75qMjfBxakpCCnYiqyUZXE8WBL12vJl0rQj6uhVxKGJNhiOanIIrIClyPmnyNAjXfODFW9zlRkwygdvnqcSj4qclT6sWnHJaUyVGQRGQ28keZ2dwJ3qurbpiIbRvzkoyKbflyWVIaKrKpvigjAhbjYlxOBx4B7VfVt7xxTkQ2jzLAE5MoiCcXlALKoyD7bVHWDiGzx3kcz6GsYRknZ2NTCwy+tYtaLKxjRtysrt+zkpgmWgFzuJK64ZFORA9wrIvfjejv/AWxJc45hVDxx54llmtAPoyILbp6lpqaGJ6eeVHEKcjVP7iehuOSTinwDbsL+XeA04C7gYOA2MBXZqA78ohJ3EnIhKch1nWuYcc5RPPjn5e0U5EG9GlhuCnJZE3dxySsVWVVvDbxdIiKdcLtS3uYdMxXZqBrifqgVkoI8qFcD40b25ca5S9sryNuaC26XKcjxEndxORKnIF/gvZ6GU5F3e5P2Pi+JSMZUZOBl4CARGeBN6h9PQEUuSssNI2aS8jDLpCKHYf22Zhp37uamCWOYeP9C+narZd22Zlpz3BTM1OPkUXYqcuDaC4ArgCOAPUA90E1VW01FNoz4CaMiz1m8lpvmLmV4n64s37yDL554KJNOGGaWWHnx/9s79zC5qipvv6sT0t0hIQlNbk1uYBIuERAjkgTUfEIyOhJGh4B+BBEvgI4IRFEGRAjgjESQi+gMDI/KgCCRcb6QoEO4yQOBgAoBhqBgJDc6CQm5NJ30LZ2s7499Tvfp6qp0VXVVnX2q1vs8PE1VnSp2N9W9au/9rt8uDxVZROYAZwOn4g4Jq8YVn0dUtQ1MRTaMJBCqx/eff6Kpx2WID8WlB72oyAOAs4A24HrgLeAq4KelHKNhGPlh6nFl4F1xyUJF7gfsAS7AzVgOBmYCS3GFxjAqklIqydnkiaVTkctdPU7Fl32xOPChuOSqIh+OyxK7CrgU199yNfB7ETlKVZtNRTYqhWhBKaWSnK9+XC7qcdyGXhKIu7jkoyJXAQcAF6vqowAiMg/YDMwBFmEqslGBlPIPXr76cbmox5U8I8mWuItLO9AYHk8sItmoyJuC+14PH1TVRhHZCIwLbrcAq0WkCbfhbxhlSVx/5PLVjwulHoPpx77jg4ocjdx/hy4VGaAeWIY7wvjZlFTkU1X1ieB1BuH6Wc5T1V8Hy2mhedakqtl8pDMV2TAKSDoV2dTjssRbFfnPBH0uqronvFNEaoBfBzcHRHpcZgRfH0+Z3YDrmQG3xDYaeJxgNmMYRvzMmFjHTWceB8CxY4ZYUSljquIeAEGfS7SwBNyE20dJZREwEbfxvxNnlDUA64FnAVR1b9A7U7pgIcMw9svilQ3MuvlpbnnsTb7161d4bvW2uIdkFBEfZi49iPS5zMXtrXSqyMF+yt9wkTGIyEDcjOWHGucan2HEQKkTkXM50jhVRa7pX8XSb5xcEP04Du3YNvFzw4fi0qkiq+ofU/pcslFIzsLt0/w8vCOiItcCffMbDSNhFFNJbtuTf+hF/dDabvpx/dBa3spTPy514jG4Qm4FJnviLi7dVOQg3TibyP0oFwAPRyJkoEtFvhiYXdARG4ZHpPtjV8zZTC4zl1Q2NbZ2148b8z/fr9SJx0buxF1cUlXk75FF5H6IiEzBWWafit4fUZG3Y/suRoVR7E/X+WrIe/ftY+4dK5hQN5C125rZu8/043LGNxX5BlyfS3RQ/YC9QI/IfRG5DfgMMEFV90Xun0lX5L6pyIYRA6kq8uKVDVy95DVGDKpmy642rjv9/Xz6+EPjHKJRGPxXkYEvkj5y/3vAveETROQEXPf9TNxM5zERuUJV/xBc8hymIhtGydnS1MqG7S2MPbi2x2OfPv5QZkys63zcNOTyxofikmvk/iDgEdx+jQJ/D3wJWCYi41S1KRK5b0tihlEiog2S67Y387NdbRwyqHtAxojBNVZUKgQfiksPeoncPxKXhDwAWKaqT4rIGmAecARuM98wygKfVeNUUlXjl8/4Mau37OqWipwNPqQbmxXWd3xoouxGREU+G2eSQffI/TdwScePAZ8RkWrgfFwT5aoSDtUwjAipqvGA/t79eTFKiA8zl5wi91W1KdiwXwxcEdy9FpgVWGKIyDjcspn1uRiJZtGF00s2e+nLrKW6n7Btd3s31bg9jzDKUmMzlOIRd3HJOXJfRGpxDZPP45bC+gGXAQ+JyIdUdTeuYz+M3B+S6bUMwygM9cMGcskpkzjzzhWMP3ggb76ziwV5mKg+LIkZhSHu4nI0TkE+J/iaTeT+2cD7gJNUdS+AiJwN7MBpyb8ETqZLRd5Sgu/DMIpGqT5d59u/Ai5Kf0r9QTw6/6OsWL2N7/zXK3m9ztypY62PpUyIu7hA7iryQNy4nxGRY3DLXvfgzLFwkTdUkVcE1xuG0QvzZ03O+w/74pUNnbOWddubWTj3OI5fXwfA2hs+1cuzjXLEh+KSk4qM27gfijuNci4wCvhxcPtJgIiKnH8QkmEYPYj2sUSV4nQ9LOtiHKcRPz4Ulx70oiKfiNunacPF7yuuCB2Bi983DKPAbGlq5b7n13P3c2uZUOdmJwvmTOnWYW89LEYU74pLSipyWCyiKnI1sFVVT44851ScmjwVeKo0IzWM/Cl1/wrkb4MJMKCfUFVVxZKLTso6Mj81ct+HzXqzw0qHD8UlJxUZd+zxfBE5B3gAGAlcHTw2GrpF7g/E9cQYhvcUMyofYHdbfoEV1f2rWHjGsfz82TXd+lhGD61lTQ6R+Q07W9na1Eb1Af3yGke+HD06m2hBo9DEXVxyVpFV9VERuQz4KXA3bnnsepxlFor1YeT+QsDeWYZ3lDoqH+D1jY00teW+DTl6aC3TJ9ZxzdJV3SPzd2Zz3FJ34ojKt9lKPMRdXPJRkVHVm0XkFtxMZQcwAfgB8FZw/WeBXwT/vra434JhFAZfo/I37WyhsXkPC+ZMYe4dK6g7cAAbd7bQlkeTpKnGlYMPkfsb6VKRxwDLgfqUSx8CLoqEV47DzVw+jjut8m+4QnOYqu4NGi2HAK8Cu1X1sCyGY5H7hpGGaCDlmm27+eKMw5g3bVyvm/epkftG2eJt5H43FVlE9gDX4Tb1xwJ/wO3BhIWlH/AC8DbwBeC04OvvwqbKIAamRUT8z58wDI/Z0tTK2IMHcv/5J9LSvs+i8o2s8aG4pKNJVTeLSPguji7uzsb1tgzENVa+AtwIXCwiB6lqcXdFDaMCyKQeTx0/LO6hGQnBh2Wx9ap6bOS+tUANrilyA65L/8agMRIRuQ44Q1WnRJ4zHBfz8nFV/X3k/s1Aiy2LGaUgDr04lb6ET4bsTz1uzWGfZeEz/wbA5R/5Jy80ZLDN/SLh7bJYp4qsqn/EdduvxO3BfBh39PFhwFeC60cB76S8xru4o5BHQQ8V2RqFjVgotlqcjrY9fQ+lKJR6HGVrUxvvtZb+7D7TkOMj7uKSqiKjqlEN+VUReQ9YJCKXq+q2LF83VJHvw854MUpE6qfiJDVKRimkehwSh4IMNlOJk7iLS6qK/Hyaa14Ivk7EzWY2AyelXHMILno/FANOpCsVeUQBx2sYWRPXH7a+pBtDYdVjgEtOmWT6cQXiw55Lp4qsqnuCPZfxaS4fr6rrReSTwO9wmvERuIJyJe6MlxGq+p6IDMAdhWwqsmHkSL7qcSqmIlcM3u65dKrIIjId11F/J/Az3NLWdcCLqro+uP5R3AymFvgtbhZzI3BXaIpFUpFNRTaMHDD12CgUPhSXKG2481y+EPyzDldofhheEDRJfhD4N2AObjnsp8C3Sz5awygjFq9s4JolqxgzrJa3d7Rw7emmHhv541VxUdWXRGQTXSpyK7AH6Ei5bj1wWpAxdpGqXlzywRpljw9qcW8UYgM/pKZ/FUu/cXLWqce9EU1F9kFFts390uJDcclVRe4VEZmHm/GYimyUhDi0YyiMehxSP7S2m3pcP7SWt/JUj1OJS0WOku7DghWc4hF3cSmWirwEZ5ktBAYVcLxGBZHLH564ZjmFnLlsamztrh43FuZ1IT4V2YgPH2yxIcHN6araQ0UWkfG4ZONpqvpCymPhstiElPtn0qUib1HVkVkMx2wxI7H0VT8G15VfO6A/E+oGsnZbMy3tHbTvzf/X4r7X7mbMsFqzxcqftLaYD8UlVxX5OOCfgZMJOvKB7wI3qeq+4HVDFXkFMNCKi2H0zuKVDVy95DVGDKpmy642rjv9/d2OMc4VU5ErhrJRkafiDhS7Ftd4+RngGmCsiHxLVdsjKnLhFqQNo4wJFeQHLphmCrJREHwoLlGyUZF/LiLnAuemPPci4EfY4WCGkRVbmlrZsL2FVRsbufmxNxl/sKUfG4XDq+KSg4o8M3pbRO4AJqrq2tKM1ChHKkk9FlxA5fCDqtna1MbSiwqnIIeEKvLZNzzh7Wa+2WLFw4fi0icVOWioPA+YF7kvmoq8tZiDN8qfuDTjdOxuK4zOWx30tLzX2sE1S14rWPpxOnzQkFOxtOTiE3dx6ZOKLCJH4CJgblXV30QeClORF+L2cAyjVzJ9ivVpRvP6xkaa2vq+lTg66GnZ0tTK2ztaCpZ+nA4fNWSbsRQfH2yxvFRkETkSpxs/oKrzU54zE1ORjTKkEMoxdO/Gv+Op1dz6xF8ZPaSWTUH6cV9/GS45ZRL/eM/3AbPFKoCyUZGHA/8PZ4opsAnXNHmlqjYGr2sqsmHsh2jy8brtzXzz1MlMOXRIQS0xU5ErhrJRkScBxwKP4/pbJgA/AMYCp0O3VGRTkQ0jDZ8+/lBmTKzj1bcbATh2zBBTj42C4kNxidKrigzMBgYHX2dH7p9YojEaRqLZn4Lcl6ZJw4jiVXHJRkVW1QXAgvC2iNQD99N1CqVhZI1Pm/WpFDI3LKQUCnLIwre2Ud2/iu94/DMOsQ3+wuNDcclLRRaRXwH/gDs07GHgi5HHTEU2euWzd67wSjNOpZCJxyGlVJAB2veq1z9jU5KLR9zFpS8q8vzgeZNxey63AhcGj5mKbGSFz39cijFzKaWCDC4M0+efsc1YikfcxaUdaFTV1fu5JtSPJ+JmMwAEEsBm4C8ish14RkS+r6obVLUFWC0iTUB1kcZuJJwk/GEplHocsmlnV0H56kcPZ85PlndTkPvKJadMYv6syQCs+/wiAD6dgJ+zUXjiLi4fAD4mIl8nQ59LcA045TgTVcHXaujZ51KAcRpGLMyfNbnzj3UhWLyygTPvXNG5iX/lJ48quIJsGBB/cQH4M0GfS6Ai/xZITc37a6gii8hpQB3wIm7T/7Hg9p8iM6DngNEEfS5F/w4MIwGEycf3n3+iJR8bRceH4hLtcwlV5DZcU+PbwEO4vZOQVuCrwFE4JTlcKP5ceIH1uRhGdxavbOCaJasYM6yWt3e0cO3plnxsFBcfOvTXq+qxkfvWAj9R1Zt6ee4luKbJfwGeAIar6rsp16wGBluHfmXhs168P4qxgR8SjXsJtePWAuyxpOPQoTWMGTaQ8x50nwnvPvPyovx3ciEJ+2sJxtsO/VQVGeAyEbkCZ5A9CNwYzEYAEJHjgcuBE3Ad+90wFdkI8VmDTaUY6nFIfWCJgdOO64fW8laBteOQMAU5THD24f9B6gcOKzbFJ+7i0kNFppc+FxE5EHgA+IaqNohIj+KCqcgVTfQPR5JmMcWcuWxqbO2uHTcW578DXSnIB1a7Py8+q8hG8Yh7Wewp4DVVvWg/15wFLAIOUdVtIvIzAFX9cvD4TJwZlm5Z7O7geadlMRxbFjNip9DqcciAfkLtgP5MqBvI2m3NtLR30L638G/57iqyBVdWCN6mIucUuR/syYylqxgITkXeCyxU1e9a5L5hdGfxygauXvIaIwZVs2VXG9ed/v6i54hZcakYvN1z6VSRoXNDP13kftjnMht4I83jt+CW1MBUZMPoxoyJddx8lmsZswRkoxRU9X5J0elQ1c3BWS7RyP0PAxfguvB/G/a5qOqbwfPOxxWQM4Lbt6nqO8E17YHebCqyUfEsXtnA7Fue5vYn/splD77Cc6u39f4kw+gjPsxcomQTuR+yU1U3B9Ev4PpfDCNRm/hQ3I18SK8hFzL9GLr04yjnBZaY76nIZo4VBx9mLp2o6ku45a9GoJk0kfsRbhORd4Ebga8B29NcYxgVT6qGPHpobcwjMioBH2Yu+UTuX43bsN8FnAL8CDgE+D5Yn0s5krTZSDYUe8YCUN1P2La7vejpx75hs5H4ibu45BW5r6rXR655WUT64Y48/n5wn/W5GAZQP2wgl5wyqTOs8s13dhUk/ThKuiUxw0icipzhdT4GPAWMUtV3TEU2kkCxelqihPstQwYewIrV2/jOf71CW4H7W6K9LVFMRa4YykZFJrjuHOAy4EjcnsxeYGfwsKnIhvcUOk4/HakR+wvnHlf0/hbDAD+KSzQVOaoi/wy3tHUd8GIkcn8OcDZwKu4EymrgSuARVW0DS0U2DLCIfSNefCguUbJRkQcAZwXXXg+8BVwF/LSkIzUMj7lnxVpuWvYG4+sOZMOOZhbMsYh9o7R4VVxU9SUR2QTU4A4CS6ci9wvuuwA3YzkYmAksxRUao0wpJ2Os6L0tB1Sx9KLi9rbA/jfzfe9zMaOsuPhQXHJVkQ/H9edcBVyK62+5Gvi9iBylqs2mIpc3PkS494W2PXuLEhoZMqCfMHHEoB69LWuKELG/qbGV91rTtaHhVeR+iCU0l464i0s+KnIVblZzsao+CiAi83AxMXNwCcqmIpch4SfNpM9gij1rGTmkhrd3tJSkt+XAAf0y/sH2MXLfZiulI+7icjQwHTgn+NpDRQZC/XgibjYTWmOvhxeoaqOIbATGBXeNBELHs6nAYzZiJul/IIqtIG99r41LT3W9LWOG1bJ6S+F7W0K+dPLhGY23dctdUUn6/y8jP+IuLpC7ijwi+LpBpIdeHX4/G3Aq8uN0FRzD8IJiK8iLVzawYOkq6ofUsPbd3Vz5yaM4d8aEov33DCMdPhSXnFRk3J7MTNw+zLdxOWT3AvXAbQCquhenIqdfDDaMMmbGxDpuOvM4wOL1jfjwobhE6VVFVtWW4HTKm4H/xHWHDsJF7jeXfMSG4Qlbmlq57/n13P3cWibUuabJBXOmWNOkEQteFZcsVWRUtQl3nsv5InIecBdwU2lHa/SVpG/M50KxN/EFZ4lVVVWx5KKTiq4gQ++ZYnGoyLa/4w8+FJd8UpGjXAA8HC6tQbdU5Fqg8P6lUVJ8UlnzodjqMUB1/yoWnnEsP392TUkUZICtTW0ZNWSIR0XO9IHFik7pibu45JWKHCIiU3CW2adSXjdUkS/GHYtseEi2v/BJn+GUIlp/9NBapk+s45qlq0oWrz98cPV+Zy4+qshG6Uh0KrKI3AZ8Bpigqvsi98+kKxW5SVWzeXdbKrJRFEqZfrxq43tcs2QVdQcOYOPOFto69hXljZ0pCTmKpSJXDOWTiiwiJ+AaJGcC7cBjInKFqv4huCRMRTYV2YidUqcfK8qc4+qZN22cmWJGbPhQXHJ5cez7AAAgAElEQVRNRR4EPIJbUlPg74EvActEZJyqNkVSkU1FNiqCTx9/KJNHDeLl9Y18YNwQjh49pPcnGUYRqYp7AClEVeSngW/hCs1ZkWuOxIVVDgCWqeqTwPeAocARJR2tYXjCPSvW8rk7n+dXf1jP2Xe9wOKVDXEPyahwfJi5dJKlivwGLozyMeB6EanGacnrgVWlHbFRTGwjP3t8SEFOxcdUZLPGSocPxSUnFVlVm4IN+8XAFcFrrAVmqWoLgIiMwy2bmYqcIFKLSdIV5FDFLTalTEFu2NlKw85WBvQTqg/ot99r40xFNkMtfuIuLjmryCJSC/wcF3I5D3e+y2XAQyLyIVXdDWykKxXZFp8TStL/QLy+sZGmtuIfhlrKFOSQ3jRkiFdFthlK/CRORRaRL+NmM6OCDDFEZACwA7hQVX+ZoiJvUdWRWQzHVGSjoJRCQQanIV966iTuePqtrhTkPcVRkENMRTYilI2KPBA37mdE5Bjcstc9uOIQCgqhirwiuN4wSk4pFGSwFGTDT3woLrmmIq/HmWEHAHOBUbh9mgOAJwEiKnLx1yQMI0a2NLUy9uCB3H/+ibS072PswbXW22J4gQ/FJUqvqcjAibh9mjbcqZMaXHcELn7fMCqCxSsbuGbJKsYMq+XtHS1ce/oUpo4fFvewDAPwrLhkqSJXA1tV9eTwDhE5FacmTwWeKtmAjbxJumYcpZTKcZQw8sWHBOR0lFpFtk18v/ChuOSairwMmC8i5wAP4I40vjp4bDR0S0UeiOuJMRJCEvXjtj3xrL7WD63tph/XD63lrSIlIG9qbN1vAnI6Sq0ip35gsWITL3EXl5xVZFV9VEQuA34K3I1bHrse+AgQhleGqcgLcXs4hmdk+sVP4owmrpnLpsbW7vpxY/HGcOCAfjkrxZaKXNkkTkWO3C+4mcoOYAKuUH1YVf8YHCD2i+DStap6WBbDMRXZ6BOlUo9DBvQTagf0Z0LdQNZua6alvaNo58Zkox6nYipyxZAMFRlARP4OWAAcR9dsJJqKPA43c/k40IKb/WwAXgouWYQLt3y1uEM3jC5KpR6HLF7ZwNVLXmN3WweK8sO5x9mRxoY3+FBcUlXkrwBnAjfi9lSuBN6IpCL3A14A3sYZZacFX38XNlUGMTAtIrIPwygjtjS1smF7C2MPruXTxx/KjIl1nbdNQTZ8wofiEmUPcA6wF1dU1gH/TncVeTaut2UgcC/wCq4QXSwiB6lq8naEDSMLwmbJ8QcPZN32Zr45azJT6odYYTG8xLfiUoWL0j8PuASoB2bgelhWBtdMB15X1Snhk0RkOPBtnIr8ewyvSeKmfTpKvZHfQz3+yXKGD65m63ttRTlxMh/9OEqcqchmisWPD8WlU0UGDg/uuw53lssa4OvAUyJypKpuws1a3kl5jXdxs51R0ENFXlf078DIiSTqxukotYI8OkU9njhiENee/n4OqunPnNuX09pR2FXgXBKQ0xFnKrIRP3EXl1QVeVJw/7+o6n8BiMgFwKnAuTi1OBtCFfk+7IwX7ygXNbXUM5dNO7snH7+9o2uvpVgR+5BdAnI6TEWubOIuLu1Ao6quBgi688EVHQBUtUNE/gqMC+7aDJyU8jqH4KL3NwfPaQFWi0gL0Fy84Rv5UI5LFqXQkNs69jHn9uWMHlrLpsYWLj1lEiMG1xQ9Yn/u1LF5WXDrlruiUo7/v43eibu4fAD4mIh8HbeX8iKuKfIIYDmAiFQB78N15oNLOr5KRMao6tvBfbOC570YPGcmXXsv44GLiv6dGBVNqTTk0BZb1dDIzY+/yf+8tpl125u54YxjTUM2vCLu4gKRPhdV3SMidwA3iMi3cLEvVbhZyb3B9Y8C24HXgyOOd+D2W+6KmGJh5L71uRhlySeOGcUnjhllGrLhLT4Ul84+l4BngK/irLG9wP8CDwWb+ajqXhFZCpwAHAkMxzVUfjt8gUjkvvW5GGVDVEVeu62Z82ZMYN60cVZYDC/xIf5lvaoeG9zuhzPErlfVu7J4/mXARao6IcPjm4EWi38pPuWiF2eDLynIp//kWfbt20f7Xi3qmzdfJfm8B51/c/eZlxd6SBmx/Z1Y8Db+JaoiCzAWaBeRl3B9Lq8Cl6vqyv28RjdEZB7uHBhTkYtItKBUkm4aVwpyqoo8eeQgvnTSYVz+m1cLriFHadjZytamtpx15DhU5PA9aUUmfuIuLqkq8meC+/fX55INS3ARMQuBQQUdsZGWStJNY0tBTlGR121vZvrEuqJqyCH56MimIlc2cReXVBW5Kri/T30uqtoENIlIE+5wMaMI2KdDR6nSkEMVuX5oLdt2t3Pt6VNobN5TVA05JB8d2VTkyibu4pKqImfT59IrKSrylsIM1TDSU8o05C1Nrdz3/Hp+8dwafvHsGtOQDW+Ju7hA98j9Wly/yj+KyI24yP123OxjGYCIHAf8M3AyXXEv3wFuUtVw4TlUkVfg9l0MoywYMbiG+bMmM2/aONOQDa+p6v2SotOhqptVdU/Qp/IYcCkuwuUfgYdxJlfY5zIVV3CuBe4BmoBrgNtEZAA4FTnQm+PZeTWMIrGlqZUX1+0AYOr4YVZYDG/xYebSSaAiH4drlDwTd07LS8DJkT6Xn4vIubg9mCgXAT/CnVppGGWH9bkYScKr4oKblYwFvgeMwKnI7aT0oKjqzOjtoKt/oqquLckojU6sv6V0pOtzueOp1f72ucQYuZ8JkwtKhw/FJdfI/W6IyAdx57/Mi9wXjdzfWtTRG2kpx76XuPpbQqzPpe989s4VVmBKRNzFpU+R+yJyBPBb4FZV/U3koTByfyFgkn0RyfSLWo4zmrhnLtbnYiSJuIvL0TgF+RxyVJFF5EicbvyAqv5zyuueiKnIsVKunw5L1dOSDutzMZJE3MUFcleRhwP/D1eMFJgbWGJXqmpj8JqmIhtFoZQ9LemwPhcjKfhQXKKpyHtEJFSRf4pbLjsHpySHKvIk4FjgceC7wATgBzgR4HTolopsKrJRdnx08nD+7v0jaWnfZ30uhrf4UFw6yUZFBmYDg4OvsyNPn1jCoRpGyQlV5LHDBrJu224u+7sjmDp+WNzDMoy0eFVcyEJFVtUFwILwtojUA/cTHHFsFI9y3KTPlrg386GnijznJ8u5+qFVJflv56Mj+6gig+0BlQofikteKrKI/Ar4B9w+zcPAFyOPmYqcJ/srID4ppaUmbg0ZeqrIE0cM4s3NTbTvLf5RRA07WzuL64B+kpWWHKeKbIZa/MRdXPqiIs8PnjcZt+dyK3Bh8JipyEWgkn9hfZi5pKrIb+9oYeSQGjZsL74tFiVbLTlOFdlmJ/Hjw0mUQ4Kb03GzkCeBj6jq8sh1TwB/UdWvZ3idk3HHI49T1Q2pqciqOjKL4dhJlMZ+iVNDBneSXvUBVUwcMYi3d7Tw1Y8ezq2P/7WoDZTpuOSUSVkZc+s+7xKaxt97T7GHZMSLtydR5qQiRxGRQ4BXcHsz0HV2i6nIRsGJW0MGuOe5tfxw2V8Yd/BA7nj6LdOQDW/xobjkpCKLyGlAHfAibimsAVdc/hQeOmYqslFObGlq7YzXP3fGBD5xzCiL2ze8x4fi0kmWKnIr8NXgumpgY3D/50o7WsMoPpmSkE1BNnzHq+JCdiry4yKyDZcpdgJOAvg90Njj1YyCUkkqsg8b+BBfEnImclGSfVWRe8NkgMLgQ3HJSUUWkQOBB4BvqGqDiExKfUFTkXMj26JRSSqyD+oxxJeEnIlcEpJ9TEWGyrYeS0ncxSUfFfnHwPKUFORUTEUuApX0S+nLzCXOJORMJEFF3h82MykNiVORRWQtbuksHLjgjmveCyxU1e+aimwUkjgVZAGq+1d1S0KeUn8Qc25fHsvMBUxFNnpQNirybOCNNK9zC25WA6YiGwUkbgXZkpCNJOJDcclJRVbVN0UE4Hxc7MsM4DfAbar6TnCNqchG2TBicA3zpo3jmDFukn/smCGmIBve40Nx6SRLFTlkp6puFpHtwe34F8gNowhk0pGtwBg+41VxIQsVOcJtInIHzij7GrA9zTVGnlSSdhziyyZ+Kr7oyLkmIydRRbbN/sLhQ3HJJxX5atyG/S7gFOBHwCHA98FU5ELhm0JabHzRj1PxRUcOk5GTkIpsxE/cxSWvVGRVvT7yGi8Hy2nfJSgumIrcZxZdOL3iZi++zlx805GTriIbpSHu4nI0TkE+J/gazkxeDy9Q1Q4R+Sswbj+v8wJwkIiMDDb1TySiIhd81BVCpS4RxJ1+nEpbxz7m3L68m47c2LyHTTtLG7UfMnfq2OxU5OWuqFTq+6jSibu4QJ6pyCJyDnAZcCTQgetz2Rk8bCqykTdxq8fpMB3ZSBo+FJdcU5HnAGfjlsp+gCs8VwKPqGobmIpslA/RROT5syYzb9o4S0Q2EoEPxaWTLFXkAcBZuBnO9cBbwFW4YmQYZUNUQV63vZkFc6YwY2Jd3MMyjKzwqriQnYrcD9gDXICbsRwMzASW4gqNkSOVtnGfiq8b+akK8pzbl6Oq1A8byKadLbR17PM6GTmJKnIqtl+UPz4Ul1xV5MNxWWJX4ZbPthOoySJylKo2m4qcHWFRqXRVNCkKcv3QWi45ZRL/cPyhncUmrmTkbJRkU5Erm7iLSz4qchVwAHCxqj4aXDMP2AzMARZhKnJOVLoq6uvMJVVB3tTYyvRgWWzSyMGxJiND70qyqciVTdzFJR8VOd01jSKyMXLNSCB0SZuKM/TkY1P+nvikIYcK8uihtWza2cI+VRqb9zBicI0rNjGpyCG9KcmmIlc2cRcXyF1FHhF83RAEWEYJv58NOBX5cfbfH2MY3fBNQ47aYs+t3saZd67o3OA3FdnwGR+KS04qMi5WfyZwGPBt3PHG9+I2/28DUNW9OBW5o0Tfg2EUnGhhGTG4hk8ffygzJtaZimwkAh+KSyfZqMiq2iIiZwE3A/+JO6hmEC5yvzmWgRtGgUmnIdssxUgSXhUXskxFVtUm3Hku54vIecBdwE0lHalnVLpOnA2+btynI52GfOmil6npX9W5BxOXigzZ6chJVJFtf6hw+FBc8klFjnIB8HBkaS2ailwLxKfTeIBpoF34qhynI1VDHj20loYdzT0KTlxHHYc6MpBRSU6iipzuQ5oVnPyIu7jklYocIiJTcJbZp1JeN1SRL8Ydi1z2ZPoFsBlNF0maufTQkHe2MHJITY+CE6eKHJJJSTYVubKJu7i0A42quhpARHJNRb4AV5Qeid6pqi3A6uCUyore1LdPXdnhk4IMPTXkto59bH2vrUfB8YFMSrKpyJVN3MXlA8DHROTruBnIizgV+QhgOYCIVAHvo2cqcg3weeDHqrov5bGZdEXuW5+L0Su+KcjQ0xZbvLLBVGQjMYhqXFuCICI7gY0EfS6qukdEbgXm4WJbDsN15PcDxoZ7LiJyAvALYArwHm4Z7ApV/UPw+ABc5tjjwDhVzWZeHt8PwjBSSC0svd3vI+s+fy4A4++9J+aRGEWmR8MhuD/ccdOhqptVdU9w+xlgMHAo7oyWV4BrIoVlEG4Z7BDgaWAarmt/mYgMBhe5H2zwV/SSmJFMFq9sYPYtT3Pd0lXMvuVpFq9sAJJVWAwj7mWxbgR9LrcA31DVuzJcdiRuVnK4qq4Jnvc93GznCNwspuKxjfzuJGkz33cNGcpXRc4H21NKjw/FJaoiC67PpV1EXsL1ubwKXK6qK4Pr38AtmX1ZRK4P7jsfWA+sAhCRcTgpoCJU5HSFJEn6ZykwDbmwRFVkSK8jJ1FFNrOtcMRdXFJV5M8E92fsc1HVpmDDfjFwRXD9WmBWYImB28cJU5GHlOD78A77JelOkmYuSdKQQ9LpyElUkW0WUjjiLi6pKnK4B5Sxz0VEaoGfA8/jlsL6AZcBD4nIh1R1t6p24FTkJlzoZVljvxB9wzTkvpNORzYVubKJu7ikqsjZ9LmcjVOTTwoCKhGRs4EduJnPL1NU5C3F/iaMZGMasmEUnriLC+QeuT8QN+5nROQY3J7KPTiVOJz5PIeL3F8RXG8YiWLE4JpuRpglIhtJwysVWVXfA8LI/T/hovYfxhWOMHJ/PTAUdxrlXOBy4MLg9pPQTUVOzi6uYUTY0tTKi+t2sKWpa59oxOAapo4fZoXFSAQ+zFw6ySZyHzgRJwG04Y40VmAdTkNuLPWYDaPQROP2125r5rwZE5g3bZwVFSNReFVcyC5yvxrYqqonh3eIyKm4Gc9U4KlSDdZHrL+liyQZYlFS+1xO/8mz3PHUatr3qlcxEr31ulRKn0smKl1k8KG45Bq5vwyYLyLnAA8AI4Grg+eNhm6R+wNxPTFlS2oxSVJPQbFJUm9LlNQ+l8kjB/Glkw7j8t+8GmtvSyqpvS4hYc9LEvtceiNJWnXcxF1cco7cV9VHReQy3DHId+OWx64HPgKEv3lh5P5CoKLeDfbm7yKpM5fUPpd125uZPrHOu96WTIQ9L0nsc+mNSp+N5IIPwZVhk+N0nC32JPARVV0eue4J4C+q+vXIfYKbqewAJuAK1YdV9Y+pKrKqjsxiOD6tOBglxqdeFwGq+1dRP7SWbbvbufb0KUypPyj2rvxsueSUScyfNdmCKyuHtMGVPhSXzlRkYBbw2wyX/1JVPx88bxjwY+D04LF1wDBggqrujaQirwAGWnExksaWplbue349v3huDYfVHci67c0smDMlUb0tVlwqhrTFJe5lMQhUZAAReRy4CzgN+CZuqew23Eb9gshzVuDG/jVgJvAV4MWwqVJV24HNIpLMRXej4khtmhwxuIb5syYzb9o4620xEokPxaUTVW0PuvV3ArfS1TD536r6NwAROQqnHe8CfoaL5P82cJOIHKGqb8QyeMPIk6h6nMQZimGkw6viAhCc6/Id4DuRvZMfRC6ZjissB2mwphfsv1wLzMClJlcMph73JGkb+Zki9sO9F19i9qNY5H52VLIA4ENx6VSRVfWPKY9dALysqtEzWkbh+lw6f89UVUVkS/BYRanIUF6qZyFImoKcLmJ/zbu7qU5TdHzZ0E+nIafG7pejipyJcjLiCkXcxSVVRe5EROpw8S/fzON1K0ZFXnThdJu9pJC0mUu6iH3IXHR8JTV2vxxV5ExU8gwlE3EXl6Nxy1znBF+fjzx2Li4b7L6U52wGhouIpCyLjQgeA9dYGXqlTcUZuj/YGzs/fNGP00XsQ+ai4yupsfsWuV/ZxF1cIJKKnNKfErLT1Q7OUtUHcabYIOAVEXkfbunrJOBAXBoyuFnQaOBxuqL6DaMbPkXtp9pigMXsG4nGh+ISVZHDqPwPAw/h+limA9/A7aGgqn8Wkb8Bw4EHceGWdwIPh6ZYoCRvFpGOEn8vhpEXoX4cpiGPPbjWYvaNRONDcekk0p9yBvBnVV0qIj8CfqWquyKXngDcDpwV3H4FuKi0ozWMwpJJSU4tOlZkjCTgQ4f+elU9NsPjM3HLZCekGGPh43OBB1U1ffyAyMvA4aqazY5iyX4QtgFffJK2qQ/pleTWjn3eKsm9piI/uBCAu8+8vFRDKim2l9SJtx36uarIvRJRkWtxJ1UmjkrQN4tJ0nRkSJ6SnCkVGZyWfGYZq8iVYMD1lbiLS7FV5IuB2X0cY8HJ5hOPzW76RhJnLuWiJIPTkstZRbZZS+/EXVzyUZGzIaoit/VlgHFhb97i4It+nI5yUZLBaclHrzIVuZLxYc8lmop8Ej1V5JCzVPVBEZmAO6ny/wCHAgOAG4DrVLUleN1+OJvsv4EPqmo2O6A+LGMbFU4mJTmJ2WOWilwxeLvnkpOKDByJ67q/EXck8hXAl4HJIvIFVd0VUZHbS/qdGEYRMCXZSCI+FJdOslGRVfUREfkc8G+Rpw7H7c/cDjxV4mEbRkHINENJN5sxDN/xYVksbxU5ct0/A19R1Ykp9z8FTPNpWcw26ktDEjf0M6nINR5qyGAqcr6U4R6Ut8tifVKRRWQ8cBnwr5H7xuFMtFpgT+GHXFrKUeUsNuWiIjfsaPZSQ4b9q8gAZ7R2UCWV+f4tR0MuV+IuLn1SkUVkJPAI8BhwS+ShjXiqIufzqcVmO7mTxJlLOits5JCaxGnIIWEEfyX+oS3D2UnO+LAsNiS4OV1Vn488Nh/4PlCvqo1pnjsKeBJYBfxfVe2IPDYBWBPcbPNpWcyIH1915HSd+L42UGbDfa/dzZhhtWaLlT/pE1I8KC65qshVOHPs40AVsAV4ArhcVRuC1zUV2UgkqZv3SdWQwVTkCsLbPZdcVeTRwPHA/wL/BBwCXAM8LCIfUtW9piIbSSNaVKaOH9Z5v2nIRlLxobh0kmUq8izcrGQ47myXKBOBN0o2YMMoAL3NTsKCsmF7S7fbhuEzPiyL9UlFFpGDgX8HxqvqtJTHnqLEKrJtvsdHEjfxIbOCHOJrKnIqqWpyJarIFbqR7+2yWF4qsogsxJ3hMhCXSXZa5LGyUpGhMnXOXEmifgy9B1MmZVM/VU2uRBW5EB8uy6VAxV1c+qIi3wj8DBiP23P5pYh8Ut1ULDYVuVhvDJsR9U5SZy69BVMmMRUZKltFNvxYFstLRU55nTG44vRRVX3GVGQjEz5qyL0te/W2bOYrpiJXDOWhIqc8vwZ4AQj3bGap6uOmIhtJY3/5YUnVkU1Frhi83XPJSUUWkenAB4HluCWzcA1hY3AfpiIbSWPE4BpGDK5hS1MrL67b0a3ImI5sJBEfiksnWarILcBc4AfAIFxRAThfVZO34G4YAUmdoRhGOrwqLiGq+gXoVJEnAWdHHntZRD4P/AH4CNCI21/ZUvqROmyzPT6SuomfjnR7K5cuejm5KnJgiX3Hfj+A8rHAssWH4pKTihzsp9wH/EhVXwk277tRLipyJSmc+ZJU/TgdmaywJKrIA/oJZ7a5uD97Hzuy/RBaLkUo7uKSj4p8JdAO3Lyf1y2pimz6cXyU08wlk5KcRBV5+OBqDqx2f15MRa5M4i4u7UCjqq5O89i5wF7cLCXKKbjlsD0i3SSF50VkkarOCxKSV4vIdqCDhFIun2DiwEfluDfaOvYx5/bl3Za/oPc+GB+ZO3UsR69yRcXex5WJDypypj6XVcAfVfW8lOccBhwYuaseWAZ8DnhWVd+2PhcjqaRTkpO60W8qcsXgrYr8Z4I+l0iWWMjRIvKF4N/PUtUHVXWNiKzFdeZH+aSqLgr+fQNOaf5vnLZsGN6TqdfFVGQjiVTFPQCCPhdV3QOEfS6/Bt4M/v0HwC66IvdDrqOrJwZcFAzg+lyC3hnrczESweKVDcy+5WmuW7qK2bc8zeKVDd0eHzG4hqnjh1lhMRKDDzOXTsI+F+Cz4X0iMpfufS4hTUEB2UyGaVnc2IZ88SinjXzIrCEnCVOR+0457U/5MHOZIiK7ROSE1AcifS7/keZ5l4nINhF5WUS+KyIDIs8bF+jNHynaqA2jgKQzwgb0Ew475EBq+lf5+enJMPZD3DOXjCpyQKbI/R8DK3F5ZB8GbgAOA74SPB5bKnKU8FOIzWCM3uhhhDW2cO+XT+TEw+u87m2JEu1zOXSoLd/1RjnNUtIRd3HJqCLvL3JfVaM9Lq+KyHvAIhG5XFW3lYuKbGRmzLCB3ZZgQpK6XJaqIR9UewAnHl4HJKe3xTCixF1c9kemPpd0vBB8nYibzXhFuX9C8Ykk9reA8+BbO/Z1FZCWPYnrbYlifS6Gz8XlK8CDvZ3lEvCB4OumIo7HSADzZ01m/qzJcQ+jzyxe2cCZd67o7G254YxjE9HbEmWdtbdUNF4WFxE5GTgat+eS+th0YBquH6YROAG4BViiquv78N9cBhyS7/MTziHAu3EPIkGU5udV1b//q/0PqNaOPW2fuaYjqcu7h/DLe+29lR1J/T18RFU/kXqnl8UFOB8Xuf9smsfacKryNUA1sA64C/hhX/6D6X44lYKI/ElVPxT3OJKC/byyx35W2VNuPysvi0sYuZ/hsZdwMxfDMAzDU3zoc7kgU59LvkT6XK4s1GsahmEY2RP3zGUe7swVSN/nki9hnwu4ZTRj/6RrUjUyYz+v7LGfVfaU1c8q1lRkwzAMozzxYVnMMAzDKDOsuBiGYRgFx4pLBSMiF4jI70Vkp4hocMha6jXDROReEWkM/rlXRIaWfrT+ISJPBT+36D8PxD0uHxCRfxKRNSLSKiIvioiFyKZBRBakeQ9tjntchcCKS2UzEHgUWLCfa+7HHbj2ieCfDwL3Fn1kyeEXuHOFwn8ujHc48SMinwVuA/4VOB53TtP/iMi4WAfmL2/Q/T10TLzDKQxx22JGjKjqrQAikrZxS0SOwhWUk1V1RXDfhcAzInKEqr5RssH6S3NwrpDRxTeBu1X1ruD2N0TkE8DXgCviG5a3dJTje8hmLsb+mI47BfS5yH3PAruBGbGMyD8+JyLvisgqEblJRAbHPaA4Cc5VmoqbEUd5FHvPZOJwEdkYLCM+ICKHxz2gQmAzF2N/jAK2asRXV1UVkS3BY5XO/bj4oY3AFNyR3McS4xlCHnAI0A94J+X+d4BTSz8c73kBOA/4CzACuAp4TkSmqKp3Ce+5YDOXMkNEvp9mgzD1n5lxj9NXcvn5qep/qOoyVf1fVX0Al3k3S0Q+GOs3YSQGVf0fVf21qr6qqo8Dp+H+LmeMwEoKNnMpP24FftnLNdmmR28GhouIhLMXERHcJ6yyWyMO6MvP70+4M4gmAS8VclAJ4l3cz2Bkyv0jKd/3TMFQ1V0isgr3Hko0VlzKDFV9l8LFdq8ABuH2XsJ9l+nAgXTfhykb+vjzOwa3JFSx5wqparuIvAjMAh6MPDQL+E08o0oOIlIDHIk7UiTRWHGpYERkFG7vJDxd6+igh2W9qm5X1T+LyCPAnSISnq1zJ/BwpZtiIvI+XDbe73DF6GjgR8BKnPRQydwM3Csif8D9LL4K1AN3xDoqDxGRm4CluNnwCOB7uA9v/xnnuAqBFZfK5qu4cymySmIAAAChSURBVHFCfht8/SJwd/DvZwO3A8uC20uAi0oxOM9pB04BLsHN7jbgfn7XqureOAcWN6q6SETqcJvTo4HXgL9X1XXxjsxLxgC/wokQW4HngWnl8LOy4ErDMAyj4JgtZhiGYRQcKy6GYRhGwbHiYhiGYRQcKy6GYRhGwbHiYhiGYRQcKy6GYRhGwbHiYhiGYRQcKy6GYRhGwbHiYhiGYRSc/w+RRoDusSUEKAAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(8, 6))\n", | |
"\n", | |
"beta_eti = time_varying_idata.posterior[\"beta\"].quantile((0.025, 0.975), dim=(\"chain\", \"draw\"))\n", | |
"beta_eti_low = beta_eti.sel(quantile=0.025)\n", | |
"beta_eti_high = beta_eti.sel(quantile=0.975)\n", | |
"\n", | |
"ax.fill_between(interval_bounds[:-1], beta_eti_low, beta_eti_high, color=\"C0\", alpha=0.25)\n", | |
"\n", | |
"beta_hat = time_varying_idata.posterior[\"beta\"].mean((\"chain\", \"draw\"))\n", | |
"\n", | |
"ax.step(interval_bounds[:-1], beta_hat, color=\"C0\")\n", | |
"\n", | |
"ax.scatter(\n", | |
" interval_bounds[last_period[(df.event.values == 1) & (df.metastized == 1)]],\n", | |
" beta_hat.isel(intervals=last_period[(df.event.values == 1) & (df.metastized == 1)]),\n", | |
" color=\"C1\",\n", | |
" zorder=10,\n", | |
" label=\"Died, cancer metastasized\",\n", | |
")\n", | |
"\n", | |
"ax.scatter(\n", | |
" interval_bounds[last_period[(df.event.values == 0) & (df.metastized == 1)]],\n", | |
" beta_hat.isel(intervals=last_period[(df.event.values == 0) & (df.metastized == 1)]),\n", | |
" color=\"C0\",\n", | |
" zorder=10,\n", | |
" label=\"Censored, cancer metastasized\",\n", | |
")\n", | |
"ax.axhline(y=0, color=\"C3\")\n", | |
"ax.set_xlim(0, df.time.max())\n", | |
"ax.set_xlabel(\"Months since mastectomy\")\n", | |
"ax.set_ylabel(r\"$\\beta_j$\")\n", | |
"ax.legend();" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 388 | |
}, | |
"id": "wIRbVbuepoFn", | |
"outputId": "050ea068-2667-4025-a86d-f6d4b599244b" | |
}, | |
"execution_count": 104, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 576x432 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg4AAAFzCAYAAABW74G7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxlVZno/d/a+8xD5qHmSg3UQM0TgiVYCA20YIOtXHHARgWnBi+vLa/DtQFp2758oEWRVxHv5VVsWlEEsRGviAJVxSBVFFUMRc2VGpKq5OQkOfO81/3jJCHDSSpJZTin8nw/n0Bqn733WeckOfvZaz1rPUprjRBCCCHEcBiT3QAhhBBClA4JHIQQQggxbBI4CCGEEGLYJHAQQgghxLBJ4CCEEEKIYZPAQQghhBDDZpvsBkymmpoa3dDQMNnNEEIIISbMq6++2qa1rh3t8VM6cGhoaGD79u2T3QwhhBBiwiiljpzO8TJUIYQQQohhk8BBCCGEEMMmgYMQQgghhm1K5zgIIc5smUyG48ePk0wmJ7spQkw4l8vFrFmzsNvtY3peCRyEEGes48eP4/f7aWhoQCk12c0RYsJorQkGgxw/fpx58+aN6bllqEIIccZKJpNUV1dL0CCmHKUU1dXV49LbVhKBg1JqsVJqZ6+vsFLq5n77bFJKhXrtc+tktVcIUTwkaBBT1Xj97pdE4KC13qu1Xq21Xg2sA+LA4wV23dK9n9b6joltpRBCDGSaJqtXr2bZsmWsWrWKf//3f8eyLAC2b9/Ol770pRGdb9OmTVNu/ZnOzk5++MMfjvr4733ve8Tj8VEde//99/PQQw+N+rm7NTQ00NbWdtrnKQalmONwEXBQa31aC1gIIcREcLvd7Ny5E4DW1lY+9rGPEQ6H+da3vsX69etZv379JLdw7Gmt0VpjGGNzb9odOHzxi18c1fHf+973+MQnPoHH4xnxsZ///OdH9ZxnspLocejnGuAXgzx2nlJql1LqD0qpZYV2UEp9Vim1XSm1PRAIjF8rhRCl5/VfwT3L4faK/P9f/9WYnr6uro4HHniA++67D601zz33HFdccQUAsViMT3/605xzzjmsWbOGJ554AoBEIsE111zD0qVL+eAHP0gikTjl8xw4cICLL76YVatWsXbtWg4ePEg0GuWiiy5i7dq1rFixouf8jY2NLF26lBtuuIFly5ZxySWX9DxHofMA3HXXXWzYsIGVK1dy22239Zxn8eLFfPKTn2T58uUcO3asT5saGhr4+te/zurVq1m/fj07duzg0ksvZcGCBdx///09+xU699e+9jUOHjzI6tWrueWWWwZ9LbFYjMsvv5xVq1axfPlyHnnkEe69916am5u58MILufDCCwH4whe+wPr161m2bFnPc3Q/z9lnn83KlSv5yle+AsDtt9/O3XffTXNzM6tXr+75Mk2TI0eOEAgE+NCHPsSGDRvYsGEDL7zwAgDBYJBLLrmEZcuWcf3116O1HvbvSdHrjgxL4QtwAG1AfYHHygBf1/fvB/af6nzr1q3TQogz1+7du4e/865HtP52vda3lb3z9e36/PbT4PV6B2wrLy/XJ0+e1M8++6y+/PLLtdZaf/3rX9c///nPtdZad3R06LPOOktHo1H97//+7/pTn/pUvom7dmnTNPW2bduGfM5zzjlHP/bYY1prrROJhI7FYjqTyehQKKS11joQCOgFCxZoy7L04cOHtWma+rXXXtNaa3311Vf3tKPQef74xz/qG264QVuWpXO5nL788sv1888/rw8fPqyVUvqll14q2Ka5c+fqH/7wh1prrW+++Wa9YsUKHQ6HdWtrq66rq9Na6yHPvWzZsp5zDfZaHn30UX399df37NfZ2dnz3IFAoGd7MBjUWmudzWb1e9/7Xr1r1y7d1tamFy1apC3L6vkZaK31bbfdpu+6664+r+W+++7TV199tdZa649+9KN6y5YtWmutjxw5opcsWaK11vqmm27S3/rWt7TWWj/55JMa6NOGiVLobwDYrk/jWlxqQxV/C+zQWrf0f0BrHe71/VNKqR8qpWq01mfGoJIQYnz9+Q7I9LubzyTy21f+t3F/+qeffprf/e533H333UB+RsjRo0fZvHlzTx7EypUrWbly5ZDniUQiNDU18cEPfhDIz+WH/JoW3/jGN9i8eTOGYdDU1ERLS/6jdN68eaxevRqAdevW0djYOOh5nn76aZ5++mnWrFkDQDQaZf/+/cyZM4e5c+dy7rnnDtq2v/u7vwNgxYoVRKNR/H4/fr8fp9NJZ2fnkOfuTWtd8LWsWLGCf/qnf+KrX/0qV1xxBeeff37BdvzqV7/igQceIJvNcuLECXbv3s3ZZ5+Ny+XiM5/5DFdccUVPT1B/L7zwAj/5yU/YunUrAM888wy7d+/ueTwcDhONRtm8eTOPPfYYAJdffjmVlZWDvi+lptQCh48yyDCFUmoa0KK11kqpc8gPwwSHOlnO0sTTWTyOUnsbhBBjLnR8ZNtH6dChQ5imSV1dHW+//XbPdq01v/nNb1i8ePGYPl+3hx9+mEAgwKuvvordbqehoaFnqp7T6ezZzzTNIYdDtNZ8/etf53Of+1yf7Y2NjXi93iHb0P08hmH0eU7DMMhms0OeezivZdGiRezYsYOnnnqKb37zm1x00UXcemvfCXaHDx/m7rvvZtu2bVRWVnLdddeRTCax2Wy88sor/PnPf+bRRx/lvvvu4y9/+UufY0+cOMFnPvMZfve73+Hz+QCwLIuXX365J7CaCkomx0Ep5QX+Bnis17bPK6W6M1c+DLyplNoF3Atc09UlM6h0zmLzvjYiycx4NVsIUSrKZ41s+ygEAgE+//nPc+ONNw6YKnfppZfygx/8oGcs/LXXXgPgggsu4D//8z8BePPNN3n99dd7jvnkJz/JK6+80uc8fr+fWbNm8dvf/haAVCpFPB4nFApRV1eH3W7n2Wef5ciRofPLBzvPpZdeyoMPPkg0GgWgqamJ1tbW0b4lfQx2br/fTyQS6dlvsNfS3NyMx+PhE5/4BLfccgs7duzoeS3dx4fDYbxeL+Xl5bS0tPCHP/wByPduhEIh3v/+93PPPfewa9euPm3LZDJcffXV3HnnnSxatKhn+yWXXMIPfvCDnn93J8L2/rn94Q9/oKOjY0zeo2JQMrfaWusYUN1v2/29vr8PuG9kJ4VoKsvmfQHes7CWcs/YLssphCghF90K//WlvsMVdnd++2lIJBKsXr2aTCaDzWbj2muv5ctf/vKA/f75n/+Zm2++mZUrV2JZFvPmzePJJ5/kC1/4Ap/61KdYunQpS5cuZd26dT3HvP7668yYMWPAuX7+85/zuc99jltvvRW73c6vf/1rPv7xj/OBD3yAFStWsH79epYsWXLKthc6zyWXXMLbb7/NeeedB4DP5+M//uM/ME3zNN6lvMHOvWDBAjZu3Mjy5cv527/9W7761a8WfC1vvPEGt9xyC4ZhYLfb+dGPfgTAZz/7WS677DJmzJjBs88+y5o1a1iyZAmzZ89m48aNQH6I58orrySZTKK15rvf/W6ftr344ots376d2267rSeh8qmnnuLee+/lH//xH1m5ciXZbJYLLriA+++/n9tuu42PfvSjLFu2jHe/+90DhltKmTrFTfkZbdnKNfruh5/CYTNIpHOct6Caap/z1AcKIUrC22+/zdKlS4d/wOu/yuc0hI7nexouunVC8htGIxwO85nPfIZf//rXk90UUcQK/Q0opV7VWo96HnDJ9DiMJ4/DhqEUWw+0ce68KurL3ZPdJCHEZFj534o2UOivrKxMggYxKUomx2G8uewm5W47Lx1q53j76FYYE0IIIc500uPQi9NmUuVVvNLYztH2ODMr3FT5HPicNlnvXgghhEAChwHspsG0MhfxdI7Xm0JYWuO2m8yqdFNX5qLK48AwJIgQQggxNUngUIBSCq/ThteZf3vSWYvDbXH2t0ap9jpZNbscv0tmYAghhJh6JMdhGBw2gyqvgzq/i2gqy7N7WjnQGiFnTd0ZKUIIIaYmCRxGqNxtp9Lr4K3mMFsPtBGKy+JRQojBnTx5kmuuuYYFCxawbt063v/+97Nv377JbtagzqTyz8PV2NjYs1jTaHznO98Z9bG33norzzzzzKiP79a9kuVEkMBhFGyGQZ3fRSqT47m9rew9GcaS3gchRD9aaz74wQ+yadMmDh48yKuvvsq//du/9dSImCjZbHZCn2+8jfXrmczA4Y477uDiiy8e9fGTQQKH0+B32an2OdndHOZAIDrZzRFCnKbfvtbExv/5F+Z97fds/J9/4bevNZ3W+Z599lnsdjuf//zne7atWrWqp/jSYOWpBytzfe+99/aUfb7mmmsAaG9v56qrrmLlypWce+65PUtS33777Vx77bVs3LiRa6+9dkzLP2/bto13v/vdrFq1inPOOYdIJEJjYyPnn38+a9euZe3atbz44osAPPfcc2zatIkPf/jDLFmyhI9//OM9z1HoPLlcjltuuaXnffnxj3/cc57zzz+fv/u7v+Pss88e0Cafz8ctt9zCsmXLuPjii3nllVfYtGkT8+fP53e/+x3AoOf+2te+xpYtW1i9ejX33HPPoK/lxIkTXHDBBaxevZrly5ezZcsWvva1r/WsDvrxj38cgKuuuop169axbNkyHnjggZ7nvu6661i+fDkrVqzgnnvuAeC6667j0UcfZfv27T0lu1esWNEzk+/gwYNcdtllrFu3jvPPP589e/YA+Zob5513HitWrOCb3/zmKX9mY+p0SmuW+tfZK1brp15v1i8eaDutry37AvrxHcd0WyQ5oHypEGLyjKSs9uM7jusl3/yDnvvVJ3u+lnzzD/rxHcdH/fzf//739c0331zwsaFKSA9W5nr69Ok6mcx/znSXfb7xxhv17bffrrXW+s9//rNetWqV1jpfDnrt2rU6Ho9rrceu/HMqldLz5s3Tr7zyitZa61AopDOZjI7FYjqRSGittd63b59et26d1lrrZ599VpeVleljx47pXC6nzz33XL1ly5ZBz/PjH/9Y/8u//IvWWutkMqnXrVunDx06pJ999lnt8Xj0oUOHCrYL0E899ZTWWuurrrpK/83f/I1Op9N6586dPe/JUOfuLm+utR70tdx9993629/+ttY6X5I7HA5rrQeWTu8u2x2Px/WyZct0W1ub3r59u7744ot79un++f3DP/yD/vWvf93n+K985Sv6K1/5itZa6/e973163759WmutX375ZX3hhRdqrbX+wAc+oH/2s59prfNlvguVb9daymoXLdNQ+F12th1pZ9OiOlz201+zXQgxse76414SmVyfbYlMjrv+uJer1swc8+cbqoR0oTLXkC+r/fGPf5yrrrqKq666CoCtW7fym9/8BoD3ve99BINBwuEwkC9j7XbnV8Idq/LPe/fuZfr06WzYsAHIr2AJEIvFuPHGG9m5cyemafbJ4zjnnHOYNStfLGz16tU0NjZSXl5e8DxPP/00r7/+Oo8++iiQL2i1f/9+HA4H55xzDvPmzSvYLofDwWWXXQbky3Y7nU7sdjsrVqzoef+GOndvmUym4GvZsGEDn/70p8lkMlx11VU9P6P+7r33Xh5//HEAjh07xv79+1m8eDGHDh3ipptu4vLLL+eSSy4peOwjjzzCjh07ePrpp4lGo7z44otcffXVPY+nUikgX967++d+7bXX8tWvfrXg+caDBA5jxOOw0R5L8WZTiHVzK2XBKCFKTHNn4VLSg20fjmXLlvVcpPrTQ5SQHqzM9e9//3s2b97Mf/3Xf/Gv//qvvPHGG0M+f+8y1+Nd/vmee+6hvr6eXbt2YVlWn+fp/3qGylHQWvODH/yASy+9tM/25557bsiy3Xa7vedzt3fZ7u6S3ac693BeywUXXMDmzZv5/e9/z3XXXceXv/xlPvnJTw441zPPPMNLL72Ex+Nh06ZNJJNJKisr2bVrF3/84x+5//77+dWvfsWDDz7Y59g333yT22+/nc2bN2OaJpZlUVFR0VNxs7/Jus5IjsMYqvQ4ON6R4EhQlqwWotTMqChco2aw7cPxvve9j1Qq1TPODfmKllu2bBlxeWrLsjh27BgXXnghd955J6FQiGg0yvnnn8/DDz8M5C9aNTU1PXfvvY2m/PNFF11EU1PfPI/Fixdz4sQJtm3bBuSrSmazWUKhENOnT8cwDH7+85+Ty/XtvelvsPNceuml/OhHPyKTyc9Y27dvH7FYbMhzDddg5y5UtrvQazly5Aj19fXccMMNXH/99T1lu+12e885Q6EQlZWVeDwe9uzZw8svvwxAW1sblmXxoQ99iG9/+9s9x3br7Ozkox/9KA899BC1tbVAvhdm3rx5PTVJtNY95b43btzIL3/5S4Cen/9EkR6HMaSUotrrYNfxTio9DinTLUQJueXSxXz9sTf6DFe47Sa3XLp41OdUSvH4449z8803c+edd+JyuWhoaOB73/seZ5111ojKU+dyOT7xiU8QCoXQWvOlL32JiooKbr/9dj796U+zcuVKPB4PP/vZzwoeP9Lyz5ZlceDAAaqqqvqcx+Fw8Mgjj3DTTTeRSCRwu90888wzfPGLX+RDH/oQDz30EJdddtmQvQNDnef666+nsbGRtWvXorWmtraW3/72tyN96wsa7NwrV67ENE1WrVrFddddN+hree6557jrrruw2+34fD4eeughIF+2e+XKlaxdu5YHH3yQ+++/n6VLl7J48WLOPfdcIB8YfupTn8KyLAD+7d/+rU/bnnjiCY4cOcINN9zQs23nzp08/PDDfOELX+Db3/42mUyGa665hlWrVvH973+fj33sY9x5551ceeWVY/L+DJeU1X74KSo8jlPvPALRZBbDgAsW1WI3pVNHiMky0rLav32tibv+uJfmzgQzKtzccunicclvKAVvvvkmDz74IN/97ncnuyniNEhZ7RLhc9loi6bY3Rxm1eyKyW6OEGKYrlozc8oGCv0tX75cggZRkNwOj5Nqr4NDgShHgmMzNieEEEIUAwkcxolSihqfk9eOdtIaTk52c4QQQogxIYHDOLKZBuVuO68cbieclJoW4syntcay9LBWH5woxdQWISbSeP3uS47DOHPZTbI5zV8PBTn/rFpZHEoUpWzOIpTIkMjkcNlNPA4Tl83EMPrOE09lc0SSWTpjaU6Gk4ST2XywoDXvfEYpQONx2PA6TbxOGz6nDbfDxDQUaNCA1qDJH2fvCrIdtsHvZbTWxNI5OmJp3A6Taq/jlPPYXS4XwWCQ6upqWVtFTClaa4LB4Lis2yGBwwTwuWx0xNNsb+zg3PlV2GSmhZhkWmuiqSyd8TRNnUkCkVR+OVnyl30UKBR+l41Kjx3TMGiNpIh29ZwZSuF2mJS77F379l2MRmtNJqeJp3OEElkyOavX3Y9CqXz0oBXd/wGgyutgeoWbKo+DMrcdrTWdiQytkSTNHQniXVMlLQvqypwsnVZGpXfwWVGzZs3i+PHjBAKBsX4LhSh6LperZ8XOsSSBwwSp9DgIRJO8fjzE6tkVA+7khJgI8XSW5o4Eh9piJDP5+eRuh0mV14HR747c0pp01uJkKIWlNW6HSa1/eHcvSikcNoVjBKOhWmsSmRy7m8NorTGU6uqZ0JiGgc9po9b5ztoo4WSG5/cFmFnpZvE0P2Wugeum2O32QZcoFkKMjgQOE6jG6+RIewyv02TxtIEruwkxHnKWJhhNcagtRms4iVJQ5nLgL3Ch7c1QCpfdnLDhNaUUHocNjyP/sWRZGhQDAppuZS47fqeNtkiK5s4EDdVeFk/zy3CgEONMAocJpJSizudi94kwVV4ntX7nqQ8SU146a9GZSNMSStISSeGxm/hcNspcdtwOE6fNwGEzyFmanKXJWvkExayliSQzHArESOUsPHaTGp+zZMb6h9Mrp5SiwuPA0ppjHXGaQwk2NFRR45O/LSHGiwQOE8wwFOUuBzuPdfDeRXVDJoOJqSuSzNAeTXO8M04wmkYDDtPA47CRyOQIJTI05rprouieYEBrjUJ1ZQzku/vL3HYqzvC8GkMpqr1OEukcW/cHWDajnAW1PhkSFGIcSOAwCdwOk7Zolv2tEZbNKJ/s5ogiEktl2dsS5lh7AgV4nbYBvQQODMZ4lfQzhtth4rC5eLM5RDCWZvXsChm6EKKXjlgaDNtpXftLJnBQSjUCESAHZPuvs63yn6zfB94PxIHrtNY7+p+nWFR5HOxviTCj3D1kVriYGpKZHIfbYuxviWAzDWpLaEih2JiGYlqZm/Zoiuf3BdjQUEWV/I2JKS6UyLCvJcKRYAxlc5zWHM2SCRy6XKi1bhvksb8Fzur6ehfwo67/FyXDUPicdl471sEFZ9XKFM0pKpuzONaRYHdzCK2hyuvMr3UgTlul10k8nWXzvgCzqtzMqvBQ6bXjtEkPhJg6oqks+1siHA3GcdgMyt2nH0SXWuAwlCuBh3R+svjLSqkKpdR0rfWJyW7YYLxOG62RJIfaYiyq9092c8Q4S2ctEukc8UyWcCJLRyxNezxNNmdR4XFIJdVx4HHYcNlMgpE0TR354Z+6MhezKt1Ue524HRJEiDNTPJ3lYGuUw20xbKZBjd+JoRSxVPa0z11KgYMGnlZKaeDHWusH+j0+EzjW69/Hu7YVbeAAUO11sudEmPoyF+XuoafHidIUSWbYcaSDUDJL9/KKpmHgtBn4XTZshgQM48kw8gmiZdixtCaSyLIj3AFAQ42XRfUyhVOcOXoHDIahqPY5B53SPFqlFDi8R2vdpJSqA/6klNqjtd480pMopT4LfBZg+szZY93GETMNhdNusutYJ+9ZWCNZ4GeYllCCbY0d2G35vAUxuQyl8Lls+Fw2LK05GoxzrD3OypkVzKx0y9+fKFnxdJZDgRiHAtF8wOB1jtvvc8kEDlrrpq7/tyqlHgfOAXoHDk1A70hgVte2/ud5AHgAYNnKNUVR/abMZaclnORIe5x5Nd7Jbo4YA5alORiI8mZTWMbVi5Sh8ndj6azFq0fbORx0snJWORUyZUWUAK01qaxFNJWlJZzkYGsUc5wDhm4lETgopbyAobWOdH1/CXBHv91+B9yolPol+aTIUDHnN/RX7XXwRlOI+jJnz8p5Y6W7OFAyk6PCbZdEzHGWzlq8fryTYx1xav0uSXYscg6bQX2Zm0gyw/N7A8yv9bJ4WpmssSKKitaajniGcCJDIJoiGE2RzlqAwjSYkIChW0kEDkA98HjX9DQb8J9a6/+jlPo8gNb6fuAp8lMxD5CfjvmpSWrrqNhMA1PBvpNRVs+pOO3zxdNZQokMreEkJ0JJ0lmNRmMzFHOrvcyqdFPutsuUvzEWTWV55XCQeDpHvd8l728J8bvseJ02GoP5Rbc2zKvC6yyVj0hxJtNa8/aJCHtPhrGZBi5bvupsuXtygtuS+KvQWh8CVhXYfn+v7zXwjxPZrrFW4XHQGIzSUOMZdXdpRyzNa8c6iCbzmbMOm4nX8c4vWNayOBKMcyAQxee0saDWx7Qyl2SXj4G2aIq/HgxisxlUeyWfoRQZSlHjcxJKZHhubyvnLaiRNSDEpLIsze4TIfa3RKnzu4oiD0f64oqIoRRuu423uqoDjoTWmsa2GJv3BdAaav0uav35mRq9hyZshkGV10G934WpFG8cD/Gn3SfZdayTcFfJZDFyx4Jxtu5vw+O0FazSKEpLuduO225jy74Ax4LxUx8gxDiwLM0bTSH2t0apKyuOoAFKpMdhKilz2zkZTtAaTlJf7h7WMZmcxZtNIRqDcWq8jmHnMHRXPrS0pqkzQWNbjGnlLhbW+ajyOqSbfRgsS7O3JcLekxGqvLIWw5nE7TCxm4rtRzoIpzIsmVYm+SpiwuQszc5jHRzviBfdsKcEDkWo3OXgjeYQNcNIrIskM2xvbCeaylHvH90yxYZSVHocaK3pjGfYsr+NSq+DRfW+/LivwyyqX9pikc1Z7DreydH2OHW+4rkbEGPHZhrUlTk50BohksyyZk6FzJAR4y6bs9hxtJOToQS1vuIKGkACh6Lkdpi0RjIc74gzt3rw6ZknOhNsP9KBw2aMSRlh1VVJscxtJ5bKsu1wO6AwTUW110Gd30l51+NT/c46mcmxvbGDjni66O4GxNgylKLO76YtkuKlg0HeNa9acoLEuMnmLLY3ttMaTVHrP62SEuNGAociVeF28FZziGnlrgF3OMlMjj0nIjQGY1R6HOMybczrtPVklOcsTSSZJRBJYWmN32Xj3Qtqpuxqe5Fkhr8eCpLO6TEJ2ERpqPY56UykeeFAgHMX1OCTGRdijGmteas5TGukeIMGkOTIouWwGeQsOBSI9WzTWnOiM8Gze1tp6oxT53dOyFxz01D4uso71/ldJDMW2xs7yOSscX/ubqlsjlgqi2VN7ppdwWiKzXsDaJ0f3hFTS4XbQU7Dlv0BQnFJJhZj62h7nENtUaqL/IZEQuYiVtlVentOlQdDKd5qDnG8I0GFZ3JXIqz0OGiLpth5tJN1cyvHdWw/ksxwJBjncFsUTb7buMJtp9LjoNLrwOuw4bAZmIbq+RovTR1xXj3Sgd9ln7K9LSK/0msslWXz/gDnLaiWXicxJtpjaXYe7aTGO/a1JcaaBA5FzDQUNtNg1/FOOmJpAOpGmQA51qq9DppDcZzNBitmlo9pm7TWtMfSHAxEORFKYjMUlZ58uWnLyi+zeqQ9zsFAFBT58mcAKv9Pu2lgMw3mVnloqPGedj6G1pqDrVHeaA5R5ZmYXh5R3LxOG6ahePFAGxsaqpheMbwZUEIUkkjn+OvhID6XrSRW9pXAochVuO20RVKUu8cnl2G0lFLU+FwcDMRw203OGoOy4DlL0xJOsPdklHAyg8tmUuvrGygZhsLtMAdNTtNaY+n8ufacCNMYjLFyZjl1ZaNLYMxZmreaQxxozS++ItPxRDeX3cRQir8ebuf8s2qKvntZFKdszmL7kXYUjHm5gfFSGq2cwpRSRZskYyhFrc/Jm00hXHaT2VWeUZ0nk7M40Zlgz8kIiUwOn9NG3Shfs1IKU+V7a2r8LpKZHC8damdauYtlM8rwj2BxJsvSvHasg6aOOPVlrqLvPhQTz9FVGn3H0bYPaFYAACAASURBVA7eu6iuqIJ7Ufy6kyE7Yumi/ZwvRAIHcVrMrnrvO4524LQZ1JUN/5c/lc1xvD3O3pYomZxFuds+ogv7cHQvctURS/OXPa0srvezsM43rO7AA4Eox9qLb/EVUVw8DhvBaIq3T4RZNfv068yIM093T6ilNZbWaA1aw8lwkkOBKPUj+NwsBhI4iNNmNw3K3XZeOhhkfUMlMyuH7nnQWnO0Pc6bTSFyWlPhHv8VFys8DnJdqzx2xtOsa6ga8jlbw0neagpTK0GDGIZKr4NDgSjTy10jCp7FmS2ZyXGsPc7+1ihZy3onHwuFUpqclZ/SXWqfMRI4iDHhtJlUehWvNLazIpNjQa2v4B9DJmexuznMoUCUGp9zQhOBTENR53cRiKZ4tbF90OAh2rX4VaXXLjkNYlgMpajwONhxtINNi+tk1s0UF09naWyLcbBrOn1Fv5pBpU4CBzFm7KZBrc/FG8dDJDM5zp5e3meqZjSVZXtjO5FklvpRJiuOhRqfMx88HOlg3dzKPsFDOmux/XA7NtOQpYXFiLjsJvF0lreaQ6ydU1lyd5Hi9EWSGQ4FYjQGY5hGfq2XM/Hm48wJgURRMA1FXZmLA60xdhx9Z5GollCC5/e0kspYRdE1V+NzEojkg4fuNmqteaOpk0gqS5lbKlyKkav0ODjaHudEKDHZTRETrDWc5Nk9rTR1JqjxOan2Os/IoAGkx0GMg/za/k5OhJIkM+1U+xzsORmm0uMoqrv43sHD+rmVHAnGOBqMl1yikigeSimqPE5eO9pJpccpNS2miNZwkpcOBSmbIovDSY+DGBf5dR6chJMZ9rdEqPMNrLlRDLqDh5cPBXm9KURNkSywJUqXw2aglGLX8U60ntwl0sX4m2pBA0jgIMZZpcdBrb+4S07X+JyEEhkq3A5shvxJiNNX6XFwMpTIr24qzlhTMWgACRyEAKDK65xSf/hi/NX4XLzZFCIQSU12U8Q4mKpBA0jgIIQQ48I0FOVuB68cDhJLZSe7OWIMTeWgASQ5Ugghxo3LbpLKWrx6pIPzFlSP+0JnYvzkLE1bNMX+lgiBSJoKz9QMGkACByGEGFflbjuBaJLdzWFWzhrbSrJi/CUzOZo7E+xvjZLI5PA6bEwrn9ozryRwEEKIcVbjdXIoEKXcbaehxjvZzRHDkM5a7D0Z5nAwDjofAJaNcS2dUiWBgxBCjLPu6cm7jnVS5rZT5XVMdpPEENpjaXYcaSeZsaj2OIp6VthkkAE3IYSYADbTwOey8UpjkFQ2N9nNEQXkLM3bJ8Js3teKUvnKvxI0DCQ9Dr1UH3qCOTvvwhk7Qco7naOrbyE4/8rJbpYQ4gzhcdhoi6Y4FIixdHrZZDdH9BJOZth5tJPOeJpaX3GvPTPZJHDoUn3oCRa8/A3MXH6NeVesmQUvf6PncQkohBBjodLjYF9LhNlVHnxO+QieSOmsRTKbI5fTZK18WeusZRFNZdl3MoLTblLrn9qJj8NREr+1SqnZwENAPfmK5g9orb/fb59NwBPA4a5Nj2mt7xjqvE2dCb77p33YTMVPQ9/BtPoWpjFzCRq2fQszlyoYUEjwIIQYKdNQOGwGe06EWd9QNdnNmTJC8QwvHw6SylhdWzSK/AXFUPlKlmdS6evxVBKBA5AF/klrvUMp5QdeVUr9SWu9u99+W7TWVwz3pInMO+OMtVZbwX3s6U76d1iZuQRzdt4FSE+EEGLkyl12jnfEmVfjpdrnHPHxWmvaY2lMQ2E3ja4v1WeqZ87SZHIWqaxFOmuhtcbtMPE6bFOuG74llOCvh9vxOGzU+kf+fou+SiJw0FqfAE50fR9RSr0NzAT6Bw4jUuG28+W/WUSFx0H6sem4Ys3DPtbZ1fMgPRFCiJFSSuFz2nnjeIgLFtWO6EKuteat5hAHWmOYhiJfRytfTMvjMLGZBslMjnRWo5RG6/zzaa1BgUJR4bFT7XVQ6XXgtpuYhsI0FIbK/99mqDNivQmtNY3BODuPdRRddd5SVhKBQ29KqQZgDfDXAg+fp5TaBTQDX9FavzXUuWp6RfpHV9/SJxAAyJluLJsLe6pjwLEWRp99QXoihBDD53XaaAknaOpMMLvKM6xjtNbsPhFmf0uUujIXRq+Lu9bvjNt7nTbK3YW73S2tSWUsGoNxDrZG0XQFFuju+APIByGzKj3Ulbkod9sxS6yXwrI0u0+E2N8apcbnlAJ2Y6ikAgellA/4DXCz1jrc7+EdwFytdVQp9X7gt8BZBc7xWeCzANNnzu7Z3n1h73/BBwYEFEmcOClcuEZ6IoQQw1XpcfJmc4j6MhcO29AXNq01b5+IFAwaIH/xt5uKU62CbCiF22Hidgy9YzprcaA1yr6WCKahmFnpZka5mwqP45RtnWzprMXOY500dyao8w98r8TpUaVSL14pZQeeBP6otf7uMPZvBNZrrQsnLwDLVq7Rdz/8FBWeoRdjKTRNc87OuwoObeQwMLEGbE96Z/Da3289VbOFEFNMWzTFWXU+lgwxPbM7aNjbEqHO75zwC2HO0kSSGTI5C0MpGmq8zK7yUO4urpUUtdacDCV5szlEKmNR5XWcEUMuYymWynLJmvl7rVRsyWjPURI9Dir/k//fwNuDBQ1KqWlAi9ZaK6XOIb+4VXAsnj84/8qCvQUj64k4MRZNEUKcYXpPz/QWmJ6ptWbPyQh7T4Yn7e7ZNFTPDVbO0hwJxjgYiFLtdbCg1ket3znpMxLaY2neagoRjKUpd9vx+YorqDmTlETgAGwErgXeUErt7Nr2DWAOgNb6fuDDwBeUUlkgAVyjx7E7ZbChjcF6IlLe6bLAlJiy5Hd/cKahsJkGb58IM6vSg1LkZ3J1JTK2RVPsOdEVNBRBnoFpKKq8+fywWCrLK43t2E2DhXU+Zld6TjkEMtbCyQx7T0Y43hHH57BTXybrMIy3khmqGA/DHaoYif4LSUE+ybJ1/t9Td+ixAdsPnvsd+QAVZ7TB/ibkd/8d3dMrNRqt84mKqmuRAQVUeYt76eNszqIzkUZrmF3lYX6Nj3LP+N7xa63ZezLC3pMRHDaDcrddhiWGYcoMVZSS7g/C8pe+Q22ujYBZw0+dn+S6gw8VXGBqzs67xv3Dc7C7PbkLFGNt64EAP3uxkWgqh81Q1PkdPJ4pvLjanJ138YT1bh7Zdoy2aJoan4OPbJjNlcaLU+73srsuQqmymQY1PheW1pwIJTkSjFPjc7Co3k/NONR76JPzIfUkJpwEDuMgOP9KfpU6lxcOvpOXeUu8cD7neOc+DLaUtr91e58eEJn9IUZi64HAgAs+wE+2HCadzScHZy3NiVCKF22L+KAtMOAcfwjN67N/WzTN/3p+PwtsT7DIyA/3ye9laelegREgmsry0sEgdWVO1s2tGrOZGBI0TD4ZqhjjoYrBrHnsPQVzH8Z6tsWf327pE7D8NPRp6q2BH9oy+0MMx3ACBMh3pxsKcgU+TmYY7bzouHHA9nNT93FSD1xyeSYBXnD99z7b5PeydAWjKcrcds6ZV4XrVHNFTyEfNITZ2xKdlNklZwIZqighgy0w1b1WxFh54WAbR4Jx5lbnF5QZbClto0DQAOCIneCOJ/PrZm1cUMNFS+t7Hmt4+Z+pP/BLlM6hlUnLwmtoPPdfxrT9onhsPRAY0CPww2cPFgwQNIWDBoATViU50z1gBtJJXVlw/2aqB2yTWUmlq9rnpCOeZuuBNs6bX11w5shwdC9+tU+ChkkngcME6ZP7YLWRPo2x24aX/5m6/b/AwMLC4Pf2y/iR7wsAPUHDrVcsAxh0KW2tTJTODdgeMGp6zgNtPYFDw8v/zLT9D/fU7VA6x7T9DwNI8HCG6N9btb8lStbqGw0MFSAMptrn5OC7vjMgb6Hmr07aoukB+88oMIs65Z0+sicVRaXS4yCcyLBlf4DzFtSMeP2HnqDhZKTg4ldiYkngMIGC86/kv+9emL+4Ozz5Shu731kVu/8dfiH9L+AmFh/IPAVR+JHvC8yt9rBxQU3P/oP1dAw2yyN07je4df4y7njyLY4E4z29D092/GJAsS8F1B/45aQEDpLYOXr9A4Rub5+IALB0uh9gQNBwKj6nSTqn+wxhOGwGH9kwm+D8tQN+Ph+xAgOGPJyGxT/ZHu+zXxIn39cf5blBesJEaShz24mmsmzdF+C8hTVUeYc3RJzM5Hj7RJjGtpgEDUVCAocJlr+oD/zQ7n+H363/h/xgF/Arsn+k9or7Bpx3sPUmgvOvJFK3ftCLb/92Dja0UajXYrwNlvDZTQKKofUfzuq2dLq/z0X5pl/sKNgjMFiA8A/vbgDgkW3HCEbTVHflRLxnYW3BdnRv77//cuNKOrftoSzdQsCo4aeuT/KccxMw+N+JKA0+p42EUmzdH2DVrAqmV7gHTZrUWtPUkeD1pk60hvoyl0y3LBKSHDlByZGn0n1n3z3E0Ht77w/5pzo+MCBwgHwX8svXHhq39r3rP87CKBAkWMrkr5/YP27PC8NP+Ew7KjBzKVkvoMtgPQv9h7MG0z/HAfIBwg3nzwOGHyCMpcH+TkRpSWctwsk0hlLM61q+2u96Z/gimsryxvFOWsIpKkugNkYpkeTIKaL3h7z+j8K5CVqN72ptLQuv6TNEAvlgpWXhNeP6vDD8hE97unNAUDVRa2VMpuEOPXTrP5w1mMF6BLq3T0SgUEjvIbTeZAijdDhs+XUfcpbmcFuM/a1R6vwuFtR5CScy7G4OYzcNWQWySEngUMSqDz3BT0NdyZSP5bvdJ+sC3p3H0J2UeTqzKobKTyh0ERxuwudgzpSM/JEGCP2HHkbjPQtrJy1AKGSkQ32iuHUvX611vojWSweDKKDS65Ay2EVMAoci1TOOb/Udxz947ncAJmVaZOO5/8Kn26555+6/DXhyZMmdhfIT5rzwNR5/7TjPOTcVvAgON+HTsrmwpzoGPOdoMvJHmnxZaL2D0V5wJyNAKBUXLa0v+DoL9UCI0qGUwu+y9xmuEMVLAoci0rsL9qehwZfpfe3vt07aFMjTTe4s9LpcpLgu+RDPOTcN6yI4WMInDKxYOpq1MoZKviwUPBRa7+AnWw4DQ3fnS4AwtmQIQ4iJIYFDkeh/QR5sHH+yu91Hesc33PyEOqttRAlvg5U6h4F1Qp7bvbBn2muhi8hwghszl6D8pe/w33cvHPB8hdY7SGctfvz8If6yp3XQ1yABwtiRIQwhJo4EDkWi/wV5sHH8UloIpydHw2gjnc73CqR3ju/rKlQnpNtgF5HhBjeDbR9svYNTrYMgAcLYkSEMISaOBA5FaqKWqB4vg+VoDLbw1Fi+rpFcREYS3KS90wv2igy23kGNzyHTBouADGEIMbYkbbVIBedfycFzv0PSOwONIumdUfTrEXR/QN/x5FuUv/SdPsEB5Lv7K5ufLZrX1R3c1FsBDHRPcNMx40JyprvPvkMFNx/ZMHvAPPPuFRPF5Nq4oGbAQleQ/10t1CslhDg16XEoYkON4xebkeRoTObrGk4CandwM9xZFada70BMnqF6n6QnQojRkcBBjIlSyNEYz+Cm2NY7EEOTZEohRk8CBzEuijFHoxSCGzExJJlSiNGTwEGMi6GKaxWLYgxuxOSTIQwhhiaBgxg3xZ6jUQrBjZhYMoQhxKlJ4CCmtGIPbsTEkiEMIU5NpmMKIYQQYtikx0EIIYZhuLkPIy2QJkSpkcBBCCFOYbi5DyMtkCZEKZLAQQghTmG4C0kNVdVWAgdxppDAQQghRqlUqtoKMZYkcBBCiFGSRcXEVFQysyqUUpcppfYqpQ4opb5W4HGnUuqRrsf/qpRqmPhWCiGmsqOrbxlRgTQhSlFJBA5KKRP4/4C/Bc4GPqqUOrvfbp8BOrTWC4F7gDsntpVCiKmuu6pti1GLVSJVbYUYqVIZqjgHOKC1PgSglPolcCWwu9c+VwK3d33/KHCfUkpprfVgJ1XHjzLttv8Hm6nGp9VCiCknBbwSXAZAQ7UHXvkTPv40uY0SoovbGvSSOGwl0eMAzASO9fr38a5tBffRWmeBEFDd/0RKqc8qpbYrpbZnMplxaq4QQghxZiqVHocxo7V+AHgAYNnKNfrkt+6hwuOY5FYJIc4kP+yannnrFct6tm09EOCRbcdoi6ap8Tn4yIbZUopdTLhYKgtP/tdpnaNUehyagNm9/j2ra1vBfZRSNqAcCE5I64QQYghbDwT4yZbDtEXTALRF0/xky2G2HghMcsuEGLlS6XHYBpyllJpHPkC4BvhYv31+B/wD8BLwYeAvQ+U3CCHEeOq9MNT+lijZfmPL6azFI9uOSa+DKDklEThorbNKqRuBPwIm8KDW+i2l1B3Adq3174D/DfxcKXUAaCcfXAghxITrvzBU/6ChW7CrB0KIUlISgQOA1vop4Kl+227t9X0SuHqi2yWEEP31Xxjqpl/s6Bmm6K3aJ/lVovSUSo5D0dJaE01lSWZyyMiIEKKQj2yYjcPW9+PWYTP4yIbZgxwhRPEqmR6HYpPOWoSTGbTW1PpcZKwcwViafOygsZsGLruJ02ag1JmxTkT+NacxlKLK65zs5ghRMrrzGH78/CGylpZZFaKkSeAwApbWhBMZ0lkLt8Nk6XQ/MyrceBz5tzFnaWLpLLFUlvZomkA0RVs0hQbspoHPacNujl0nTyyVxW4aA+5kCsnmLJJZi2zOIpPTgAa6A5p8T4lpGHidJk6bOfA15yxcdpPF08poj6Zoj6WolOBBiGF7z8Ja/rKnFeg7TVOIUiOBwzBYlqYzkSZnaWZXeZhT5aHS48Aw+vYkmIaizGWnzGVnenl+vfpkJkc4kaE1kqK5M0FnIj/OWel2YBtlEKG1JhBNUe62k8nlCHWdUymFy2bisBmksjlSWatn+MRhM6nw2PE7bXidNtwOE0dX0KEURJNZApEULZEUgUgSUGg0hlLMrHAzp9pDVddrTlZ52LI/QDSVxeeUXyEhhJhK5FN/CDlL0xlPYwELar3Mq/H29C4Ml8tu4rKb1JW5WDajjFg6R2s4yVvNYeymQbnbPqLzaa1pjaSYW+1h5awKTEORzOSIpbKEEhkC0RSRRJYqr4ManxOfy4bPaTvlkInHYcu3kXywE0lmyeQsqrwOXHazz74uu8k5DdU8v6+1J/gQQggxNUjgUEDvgGFhrZd5NT7cDvOUx52KUgqf04av1kddmYudRztpCSep9jmwGae++FpaE4gkmV/rY/mM8p4ej+7gpNrnZH6t77Tb2X2+oZR77KydU8n2Ix3U+p0YZ0gehxDjrff6Dr1tXFDTZyaGEMVKAod+spZFWyTN4mm+MQsYCvE5bbx7QTWH26K82RzGZTcpcw3e+5Cz8kHD4mllLJ3uL4qEy1lVHkLJDAdao9T5XZPdHCGKXv/1HbodCcaBNgkcREmQwKEXrTVt0TQrZ5WxoM4/7s9nGIoFdX5qu3ofWiMJHGY+R8FuGtgMhVKqJ5hZNrOcs+p8RRE0dFsyrYxwIkNHPE3lBNf8yP+8Un03KkArQGMB1Z7R55IIMdb6r+/QrVAPhBDFSgKHXtqiKebXeMeku38kylx2Ni6sobkzQTiRIZLMEk1lCWVygEZrWD2ngnk13glt13CYhmLNnEo27wsQS2XxTlCypKU1rZEk82t8LJ7mx1AKpcj/n/w8kaPtcd443onzFL05Qgghhk8Chy4dsRTVPifLZ5ZPyh29aShmV3n6bLMsTSprkdO6qGcvuOwm75pXzUuH2vLTND2OcX0Pu3M9FvTL9ehvXo2Xap+jqzcnSbXXiTnIvmL8RVNZ0tkcFR6H5MQUILkPolRIHy75qYgOu8G6uZVFdWExDIXbYRZ10NCt3GNn0+I66stctEZSZHLWuDyPZeVnlZxV72fFzMGDhm7dvTlLp5cRjKaIprLj0i4xtFQ2RyqTY3q5m0AkRTwtP4feNi6oYW61Z8D2I8E4LxwcmBMhxGQq/ivSOEtnLXKG5oLFtaecSSCG5rKbrJtbSb3fxc7jnYNON7UsTSKTw9K6J59jOHeg+aAhyZLpZSyZNvwEUdNQLKr3U+d38trRDtqiya48CACNRmEzFV6HTaaWjoOcpemIp9m4oIa6Mhdzqj3sPNZJIJKkSnqBAMl9EKVlygcOqazFpsW1MgY+RpRSzK72UOlz8NrRDlojSfxOO8lsjmzOQimFoaDa68RuM4gk84mVVr/qgYZSmMY7X4ZSdMYzp5UgWuFx8N5FdaRzVv4ra5HJWaQyFrFUlqauBbpsRj7gkQva6etOYF0xs5y6svzMmxqfk02LajnUFuPtE2GcNpMyl41MTpPO5n82OUujlMZhk/wUGcIQxWZKBw6GoXjX/KqeDzQxdvLTTWs4FIjS3JlgbpWH6q4FqTx2s88Qg9b5XI5UxiLZ1aWdyuYv7KmcRTpjkcrmWDW7/LQTVw1D4TIKr1Nx9owyOuMZjnfEOdoeJ5OzcDts+J22oprJUkqCsTRzqz0s6Pdzs5kGi+r9TC938frxEG3RFF6XjQpvfnVTv9uO3VRsb2wnmclN2d5Amb4pipGayhUd169fr7dv3z7ZzRBFKJuzaI+lORCIEoymqfFJXY6RCiXSeBw2zltQPWSNFq3zM4cK5au0hpO8cLCNOr9LEip76e6BkJoXYqRiqSyXrJm/10rFloz2HFO6x0GIwdhMg7oyF1VeBy8dDNKZSFPhnth1KkpZIp1DA+sbKk9Z2E11TaUtpK7MxaJ6Pwdbo9TKImN9yBCGmCwSOAgxBJtpsL6his37J3adilKWyVlEkhnOX1Q74touhSyu9xMIp4gkM/ineL5Dt5EMYWw9EOCRbcdoi6alnLcYE/IpKMQpuB0m587LF/UabhnzqSqZyRFOZlg3t5Iq79j00NhMg7UNlTy3pxWX3RzT0vSlarizMLYeCPCTLYdJZ/PTo9uiaX6y5TCABA9i1CRwEGIYyj12NjRU8fLhILU+l8y4KCCczJDNWWxcWDPmOSFlLjurZlew42gn9X6nJKsOofcQxv6WKNl+M5bSWYtHth2TwEGMmoTuQgzT9Ao3y2aU0xZNMpWTigtpj6WwGYr3Lq4bt0TSOVUeZle66Yinx+X8Z4L+C0n1Dxq6BaPyHorRkx4HIUbgrDof0WR+zQeZaZFf/rstmqLe72TN3EqctvGbNqmUYvnMctpiKcKJDH6XTJPtr/8Qxk2/2EFbgSCh2ieJvmL0pMdBiBFQSrFiVjkVbjvtsdSpDziDZXNWV6ExLxvmVY9r0NDNZTc5b34NfreNQDSVXzxMen8G9ZENswfk5CjAYSruePIt7njyLf78dsvkNE6ULAkchBghu2lwzvwqylx2gv3Lek8RiXSO9niaNbMrWT6zfEJzPsrddt69oIZNi+qYUe4mGE0RjKbIWuNTH6WUvWdhLTecPw+fMx/U2QzF9HIn5Z58j4PUwhCjIUMVQoyC02byrvnVvNLYTjCar6w6VYQSGXKWxXsW1kzq6y732Fk9p4JF03wcDcY5GIhiWZoyt0NmvvTynoW1gyZCSi0MMRoSOAgxSg6bwTkNVWw/0k4gkqLWf2YHD1prgrE0fpeNDQ01RbOmhcdhY8n0MubX+mjqTLC3JUxnwqLMZZ+yS1WPhCwkJUZKwnIhToPDZrChoYq6MieBaHKymzNucpamJZxkRoWLjQuLJ2jozWEzmFfj5eIl9ayfW4ml89VUpZT64KSctxiN4vvrF6LE2E2D9XMr2XG0k5OhBNVeZ8G6C6Uqns4SSWZZMbOcBaOsTDqRbKbBzEoP08vdtMVS7DsZoTWSxDQU5S47NllAqoeU8xajUfSBg1LqLuADQBo4CHxKa91ZYL9GIALkgKzWev1EtlNMbTbTYO2cCt4+YXAkGCenNQ7TwOeyYTNK80KVzlp0JtL4nDY2LqwpuaEYw1DU+V3U+V2EkxmaOhIcbovlq57aTXxS9XRIMoQhBlP0gQPwJ+DrWuusUupO4OvAVwfZ90KttfSviUlhMw1WzKpg6fQyOuIZmjsTNHUmyOYsTMOgwmMviQqPOUvTEU9jGrBmdgUzKz0lv1JmmctO2XQ7i+r9BKMpDrXFaAknsRmKSo9DAoh+pJy3GErRBw5a66d7/fNl4MOT1RYhhsNmGtT6ndT6nSyfWU4okeF4Rz7r3++0F2V+AOSTHzsT+WWjz6r3M7/WOyFrM0wk01DUlbmoK3MRS2XZ1xLhSDCO12HD5yrOn8tkGGoIQ3oiRKn9pXwaeGSQxzTwtFJKAz/WWj8wcc0SojDTUFR5HVR5Hcyq9PDa0Q4CkSRVXmdR3cXH01nCiQyzqzwsmV6Gr0iDm7HkddpYM6eShmovbzSFaAknqPA4zrhgaSxJT4QAUMWw5r5S6hlgWoGH/ofW+omuff4HsB74e12g0UqpmVrrJqVUHfnhjZu01psL7PdZ4LMAc+bMWXfkyJExfCVCDC2bszgYiLL3ZASn3aRskstEZy2Ljlgaj9Nk1azKkstjGCuWpTkRSvBGU4h0zsLrsOEwDUmkHKbunohCMzSkJ6K4xFJZLlkzf6+Vii0Z7TmK4rZCa33xUI8rpa4DrgAuKhQ0dJ2jqev/rUqpx4FzgAGBQ1dPxAMA69evn/yoSUwpNtNg8bQyppW72XWsk5ZwkiqvY8JLRWutCSUyZHIWS6eXMa/GO6UvkoahmFnpodbv4mh7jLZImnAyQzKRRqFAg0bjddrwOIriY7OoSE/E1FL0fwFKqcuA/xd4r9Y6Psg+XsDQWke6vr8EuGMCmynEiJS77bxnYQ1H2+O81RQCBRUex7gnT6azFrF0lnTWYlq5i+Uzy6fEsMRwOWwGC+v8LKzL/zubs0hmLZKZHIl0loOBfFKlw2ZQ7rIPOe3WsvQZNS13KDKtc2oZ8SeGUupbgAPYDmzXWo93X/99gBP4U1fm88ta688rpWYA/0tr/X6gHni863Eb8J9a6/8zzu0S4rQYhqKhxsu0chd7T0Y4CYjqcwAAIABJREFU3BbF47DhH2T4QmtNJpfvJFOq6yt/P5yvXARdd8b5u2PIz5CIp3Nkc/k6Dh6nyZwqD/VlLmp8MpvgVGymgc80uoIrJ7MqPYQSGY4E4xxtj6O1xu+yY2lNMmNhWRbd3Zga8Ngl6VKceUaV46CUqgU2dH3NA/Zrrf91jNs27tavX6+3b98+2c0QAoDOeJo3jocIxlKUux09F6NcV/EmpRSermJF2oKc1mityVkaS2sMpVBKYXRFEkrlF6eq75rhUeaWJZjHUiqb42RnksPBGA7ToNJrp8LjwGO34XaYxNNZnt8XoOYMWxBsJCT3ofhMSI6DUup64CrgN8AvgC8DJvBbrfVTXft8cbQNEELkVXgcbFxYQ3Nngj0tYTx2GzMr3PmLkdPE67AV1UyMqc5pM5lb42Vujbfg4w6bg0X1fg60RKjxuya4dcVhvHIfth4I8Mi2Y7RF09T4HHxkw+xBC3mJsXfKHgel1B7yayfcCGwEXgVeBD4G/P9a65+NdyPHi/Q4CCHGUzZn8fy+AFpTtOt3TIbBeiKG0wux9UCAn2w5TDr7Thl1h83ghvPnSfAwDBM1qyKttX5TKXUz+dBxvdY6pZT6GbAFKNnAQQghxpPNNFgzp5LN+1px280pO2TRX6GeiLdPRHj7ROSUxbX2t0T/b3t3Hh7ZVZ95/PtWlUpLaVdLvan3zTvttmxs8AYYAx7AbAlmSAKZTEzCMgGeSeKEeYjzzDwzrCEJk4ExgweYYYBAWDzYwY4hQIbES+O03W23Gxvb4KXdrd4ltXad+aNuO2VZJZXUUt1bVe/neepR1al7b/1OXd2qX5177jlMTD3/B+/YxBRfu/dJJw5lUkri8C1J3wG+ALw7hDAalY8Dy5YqMDOzatCZy7JleQuP9Q+xrLk2x8mYbqarML6/90BJM3JOTxpOOTQ49txVHO4/sbTmTBxCCH8i6Wrg9cAFkv4T8Aj5Kx2OSjoT2BdCmJptO2ZmtWrr8hb2Hxvm5NiEx4EootglndO97yv3cWhw7AXlmag1Z7aWCycUi6Ok/+Bovog7AJS/fmsbcD6wHfiL6PG6JYrRzKyi1aVTbF/bwT/87BANdemKmOwsqd564ZpZ+zgUa7ko9VRIoaVKNObbuTNpnUETMeR0XNw50szK6YGnjvHLwyfp8imL03Lqi/Tw4BhdJX6Rlnoq5JS9+wcAOHNlywueO52EYr6dOxfSGXS2RGMxOkc6cXDiYGZlMjYxxQ/2HaA+nfaYGgk3W8sFzJxQlGKmzp2QP9WyZXlzycsva87y6bfteEH5XIlG1cxVYWZWC7KZFC9a3c5djx1mRVtj3OHYLIr1uZhvy8V0xTp3zre8sDNooXJcdeLEwcysjFa0NdDT2sCJ4XFaG+OdHdXmr9ROnMUU69y5rDnLh197dsnLZ4pc2jtXojFZ5Pn5cOJgZlZGkjhndRs/3HeQ5qmMx3aoMcU6d771wjXzWr5YH4f5JhoLUbvz6JqZxaStsY7NPc0cPfnCD3irbpdu7ua3L9uQn2SOfEvDbB0d57v8Wy9cQzbz/K/2bCbFu67YyIdfezZ/8KoFd214jlsczMxisLmnmV8cHmJsYuoFH/RW3S7d3D2v/gbzWf7UcvO96mQ+nDiYmcWgPpPm3FXt7PzlEVa0uqOkLZ75Jibz5TTXzCwmqzsa6czVMzgyEXcoZiVz4mBmFpNUSpy7uo2hsQmmanhMHassThzMzGLUmcuyvivnjpJWMZw4mJnFbNuKFggwMem5Ai35nDiYmcWsMZvmjBUtbnWwiuDEwcwsAdYty5HNpBidmIw7FLNZOXEwM0uAunSKs1e1cWx4PO5QzGblxMHMLCFWtzfS2pDh5Jgvz7TkcuJgZpYQqVR+HosTw04cLLmcOJiZJUh3cz3L2+o54VMWllBOHMzMEkQSZ61sZXh8guBBoSyBnDiYmSVMe1OWdV05d5S0RHLiYGaWQFuXtzAxOcXklFsdLFmcOJiZJVCuPsOW5S0c86BQljCJTxwk3SjpaUm7ots1RZZ7taR9kh6VdEO54zQzW2wbu3OkUjA24aGoLTkSnzhEPhVC2B7dbpv+pKQ08FfAa4CzgLdJOqvcQZqZLab6TJpzV7d7KGpLlEpJHOZyEfBoCOGxEMIY8FXg2phjMjM7bb0djfS01vuUhSVGpSQO75X0gKSbJXXM8Pxq4MmCx09FZS8g6XpJOyXt7O/vX4pYzcwWjSTOXd3G+OQUE1M+ZWHxS0TiIOlOSXtmuF0LfAbYBGwH9gOfPJ3XCiHcFELoCyH0dXd3L0L0ZmZLq6WhjjNXtnJkyK0OFr9M3AEAhBCuKmU5SZ8DvjvDU08Dawoe90ZlZmZVYcOyHL88cpKTYxM0ZRPx0W01KhEtDrORtLLg4RuBPTMsdi+wRdIGSVngOuCWcsRnZlYOmXSK7WvaOTE8wZRHlLQYJT5xAD4mabekB4CXAR8AkLRK0m0AIYQJ4L3A7cBe4K9DCA/GFbCZ2VLoaq5nY3eOoz5lYTFKfHtXCOHXi5Q/A1xT8Pg24AWXapqZVZNtK1p45vgwoxOT1GfScYdjNagSWhzMzCzSUJfmRb1tHB0a8ykLi4UTBzOzCrOyrZFNPc30D456Bk0rOycOZmYVRhLnrGpjQ1eOgwNOHqy8nDiYmVWgVCo/MNS6ria3PFhZOXEwM6tQqZQ4r7ed3o5GJw9WNk4czMwqWDoltq/pYFVbI4cGR+MOx2qAEwczswqXTonz17azvK3ByYMtOScOZmZVIJNOsWNtB8uasxwecvJgS8eJg5lZlahLp7hgXSftjVmOOHmwJeLEwcysimQzKfrWd5Crz3Bs2ENT2+Jz4mBmVmUa6tJcvLGLbDrF8eHxuMOxKuPEwcysCjXUpblkUxfpFAyMOHmwxePEwcysSjVlM1y8sYvJEBgcnYg7HKsSThzMzKpYS0MdL9m0jImpKU74tIUtAicOZmZVrq2xjsu3dFOXka+2sNPmxMHMrAbk6jO8dPMyOnNZ+gdGPDy1LZgTBzOzGlGfSXPRhi7WRbNqTk45ebD5c+JgZlZD0ilxXm8bZ61qpX9whLGJqbhDsgrjxMHMrMZIYuvyFi5c18mRk255sPlx4mBmVqN6O5s4a2Wr57aweXHiYGZWwzb3tNDZlPUIk1YyJw5mZjUsnRLnr+tgbHKK8Un3d7C5OXEwM6txzfUZzu9t5/DgqC/TtDk5cTAzM3o7G1nT2cTRk55R02bnxMHMzJDEOavbSKfE8Nhk3OFYgjlxMDMzID+j5gXrOjk+PM6UL9G0Ipw4mJnZc7pb6tm6oplDvkTTisjEHcBcJH0N2BY9bAeOhRC2z7DcE8AAMAlMhBD6yhakmVkV2ba8hRPD4xwZGqUzVx93OJYwiU8cQghvPXVf0ieB47Ms/rIQwqGlj8rMrHpl0il2rOvgnx49zPHhMdoas3GHZAlSMacqJAn4VeArccdiZlbt6jNpLtrYSUpicHQi7nAsQSomcQAuAw6EEB4p8nwA7pD0U0nXF9uIpOsl7ZS0s7+/f0kCNTOrBk3ZDC/e2MXo+CQj477SwvISkThIulPSnhlu1xYs9jZmb224NISwA3gN8B5Jl8+0UAjhphBCXwihr7u7exFrYWZWfdoa67hkUxcnhsc9k6YBCenjEEK4arbnJWWANwEXzLKNp6O/ByV9C7gI+PFixmlmVou6muvpW9/BPY8fZVlLlkwqEb85LSaVsvevAh4OITw105OScpJaTt0Hrgb2lDE+M7OqtrqjifN6W+kfGPVpixpXKYnDdUw7TSFplaTboofLgf8n6X7gHuDWEML3yhyjmVlV29TTwqWblzEyMcmRIc9rUasScapiLiGEd85Q9gxwTXT/MeBFZQ7LzKzm9LQ28LJtPTz4zHF+eeQknU31ZDOV8hvUFoP3tpmZzUtDXZodazt48YZOBkfHPTFWjXHiYGZm8yaJVe1NvPyM5XTmshwYGPGpixrhxMHMzBasMZvmovWdbOjKcWDA/R5qgRMHMzM7LamUOHd1GxuXOXmoBRXROdLMzJLtVPIA8PihIXpa6snPFGDVxi0OZma2KE4lDxuW5Tjoloeq5cTBzMwWzankYX1Xjv5Bd5isRk4czMxsUaVS4rzeNtZ25jgwMMLElOe4qCZOHMzMbNGlUuJFve2ct7qNo0Njnpq7ijhxMDOzJZFKiU09LVyxtYeU4NDgKFM+dVHxnDiYmdmSamuq4/Kt3azrauLgiRFPklXhnDiYmdmSq0unOK+3nZds6mJ4fILjwx6mulI5cTAzs7JZ3tbIldt6SKfE4Ij7PVQiJw5mZlZWTdkMF2/sYmxykpNjTh4qjRMHMzMru5aGOi7ZtIyh0QnGJny5ZiVx4mBmZrHozGV58YZOjpwcZWLSyUOlcOJgZmaxWd7WyI61HflLNad8qWYlcOJgZmaxWteV4+zVbRz0OA8VwYmDmZnFbktPM5u6cxwaHI07FJuDEwczM4udJM5e1UZnLusxHhLOiYOZmSVCOiUuWNfB5FTw6JIJ5sTBzMwSoymb4cL1nRwfHmfSnSUTyYmDmZklSk9rA2etaqXf/R0SyYmDmZklzubuZla2NXBkyMlD0jhxMDOzxEmlxPY17WTSKQ9LnTBOHMzMLJEa6tJcuL6TgZEJjyyZIE4czMwssTpzWXas7eDoyTGOnhwjeICo2CUmcZD0K5IelDQlqW/ac38k6VFJ+yS9qsj6GyTdHS33NUnZ8kRuZmZLaW1XE684czk9LfUcHBhhaNSnLuKUmMQB2AO8CfhxYaGks4DrgLOBVwP/TVJ6hvU/CnwqhLAZOAr81tKGa2Zm5ZKrz9C3vpPLtnSTSYkDAyOeVTMmiUkcQgh7Qwj7ZnjqWuCrIYTREMLjwKPARYULSBLwcuAbUdEXgTcsZbxmZlZ+Xc31XL61mwvWdDA0Ns6hwVGP91BmmbgDKMFq4K6Cx09FZYW6gGMhhIlZljEzsyqQSok1XU30tNXzWP8QjxwYIJNO0d5YR/53pC2lsiYOku4EVszw1IdCCN8pUwzXA9cDrF27thwvaWZmS6A+k+bMla2s6Wzi4f0neOroMLlshuaGSvhNXLnK+u6GEK5awGpPA2sKHvdGZYUOA+2SMlGrw0zLnIrhJuAmgL6+PrdvmZlVuOao/8PG7jEefPo4B06M0NZYR0PdTN3h7HQlpo/DLG4BrpNUL2kDsAW4p3CBkL8+5++Bt0RF7wDK0oJhZmbJ0JnLcumWZVy0oYPRiUkODY4y5f4Piy4xiYOkN0p6CrgEuFXS7QAhhAeBvwYeAr4HvCeEMBmtc5ukVdEm/hD4oKRHyfd5+Hy562BmZvGSxKr2Jl5+xnI2duc4NDTKwMh43GFVFdXyYBp9fX1h586dcYdhZmZL5PjJce5/6hiHh0bpbKonm0nM7+VYDI1OcPX5G/dNjQ6dsdBt1PY7aGZmVa2tqY5LNy/jgrUdDI7mL9/08NWnx11PzcysqqVSYm1Xjp7WBp48cpKfHRhgcirQ1pit+RaIhXDiYGZmNaGhLs2W5S2s68rxzLFhHj5wgmPDU7Q2+AqM+XDiYGZmNSWbSbF+WY7ejkYOnBhh77Mn6B8cpytXT8oDSM3JbTRmZlaTMukUqzuauHJrD+s6cxw8Mcq4+z/MyYmDmZnVtEw6xXm9bfSt7+DYyTEGRzz75mycOJiZWc2TxJrOJq7Y1kMqBYeHRqnl4Qpm48TBzMws0tZYx2VbulnZ1sCBgVEmpnzqYjonDmZmZgWymRQ71nZw3upW+gfc72E6Jw5mZmbTSGJTTwsXre/k6MkxRsYn4w4pMXw5ppmZWRG9nU1kMynufvwIUyHQlPXXplsczMzMZtHT2sBlW5YxOjHpCbNw4mBmZjan9qYsl23pRoLjw2NxhxMrJw5mZmYlaGmo49LN3TTUpTkyNBp3OLFx4mBmZlaixmyaSzZ10ZHL0j84UpNjPThxMDMzm4f6TJqL1neyur2RgwOjTNVY8uDEwczMbJ4y6RTnr+lgc0+OAydGmJyqneTBiYOZmdkCpFLi7FVtnLu6jf6BESZqZKAoX5BqZma2QJLYsryFhkya+548SmNdmpaGurjDWlJOHMzMzE7Tmq4mmhsy7HnmOAdODNPSUFe1g0X5VIWZmdki6MhluXTzMl6yaRkABwZGGJuovtMX1ZkOmZmZxUASPa0NXNlczzPHhnlw/3FODE/RkasnnVLc4S0KJw5mZmaLLJ0SazqbWNHWwGP9g+zdP0BLQ6YqTl/4VIWZmdkSqUun2Lailcu3djMVAoeHRit+0CgnDmZmZkusM5fl8q3drG5vrPi+D04czMzMyqA+k2b7mnYuXNfJwMg4x06OMVWBA0dV/skWMzOzCiGJ3s4mOnJZ9u4/wbPHR/JDVgty2QwNdWlSSnYnSicOZmZmZZarz9C3vpPJqcDAyDhHhsZ49vgIh4fGoj4Qoi4tGurSZDOpRCUTiUkcJP0KcCNwJnBRCGFnVP5K4CNAFhgDfj+E8IMZ1r8R+G2gPyr64xDCbUsfuZmZ2cKkU6K9KUt7U5aN3c1MTE4xMDLB0NgEx06Oc2RolCNDY9HSgY6m+C/rTEziAOwB3gT892nlh4DXhRCekXQOcDuwusg2PhVC+MQSxmhmZrZkMukUHbksHbksvR35sqmpwPD4JPuPDbP7meO0N2ZpqEvHF2NsrzxNCGEv5M//TCv/54KHDwKNkupDCKNlDM/MzCwWqZTI1WfYvLyF1sY67n38CGMTU7Q2xjMnRqVdVfFm4L5Zkob3SnpA0s2SOmZaQNL1knZK2tnf3z/TImZmZonU09rAFWf0kM2Iw4PxjAlR1sRB0p2S9sxwu7aEdc8GPgq8q8ginwE2AduB/cAnZ1oohHBTCKEvhNDX3d29wJqYmZnFo7k+w0s3d7OivYGDAyNMlvmSzrKeqgghXLWQ9ST1At8CfiOE8PMi2z5QsPzngO8uKEgzM7OEy2ZSXLC2g/aGOh54+jjdzfVk0uVpC0j8qQpJ7cCtwA0hhJ/MstzKgodvJN/Z0szMrCpJYvPyFi5Y18GhwdGytTwkJnGQ9EZJTwGXALdKuj166r3AZuDDknZFt55onf8hqS9a7mOSdkt6AHgZ8IFy18HMzKzc1nXlOLe3jf6B0bKMRKlKn2zjdPT19YWdO3fGHYaZmdlp2/fsCR565gQ9rQ1FB4waGp3g6vM37psaHTpjoa+TmBYHMzMzW7ity1vYtqKV/oFoGOsl4sTBzMysCkjizJUtbOxu5uDA0l2qmZgBoMzMzOz0SOKcVW1MTgUePzREJi3SSpFJi7pUiolF6APhxMHMzKyKpFLivN52Vrc3MjoxydDoJCfHJxkem2QqTEGYmjyd7TtxMDMzqzLplOhpbZjxuTA+Mnw623YfBzMzMyuZEwczMzMrmRMHMzMzK5kTBzMzMyuZEwczMzMrmRMHMzMzK5kTBzMzMyuZEwczMzMrmRMHMzMzK5kTBzMzMyuZEwczMzMrmRMHMzMzK5kTBzMzMyuZQjj9ubkrlaQBYF/ccSyCZcChuINYBNVQj2qoA1RHPaqhDuB6JEk11AFgWwihZaEr1/q02vtCCH1xB3G6JO10PZKhGuoA1VGPaqgDuB5JUg11gHw9Tmd9n6owMzOzkjlxMDMzs5LVeuJwU9wBLBLXIzmqoQ5QHfWohjqA65Ek1VAHOM161HTnSDMzM5ufWm9xMDMzs3mo2cRB0qsl7ZP0qKQb4o6nFJLWSPp7SQ9JelDS70XlN0p6WtKu6HZN3LHORdITknZH8e6Myjol/Z2kR6K/HXHHORtJ2wre812STkh6f9L3h6SbJR2UtKegbMb3Xnl/GR0nD0jaEV/kz1ekHh+X9HAU67cktUfl6yUNF+yTz8YX+fMVqUfR/yFJfxTtj32SXhVP1M9XpA5fK4j/CUm7ovJE7otZPl8r6tiYpR6Ld2yEEGruBqSBnwMbgSxwP3BW3HGVEPdKYEd0vwX4GXAWcCPw7+OOb551eQJYNq3sY8AN0f0bgI/GHec86pMGngXWJX1/AJcDO4A9c733wDXA3wICLgbujjv+OepxNZCJ7n+0oB7rC5dL0q1IPWb8H4qO9/uBemBD9DmWTmIdpj3/SeDDSd4Xs3y+VtSxMUs9Fu3YqNUWh4uAR0MIj4UQxoCvAtfGHNOcQgj7Qwj3RfcHgL3A6nijWlTXAl+M7n8ReEOMsczXK4CfhxB+EXcgcwkh/Bg4Mq242Ht/LfClkHcX0C5pZXkind1M9Qgh3BFCmIge3gX0lj2weSqyP4q5FvhqCGE0hPA48Cj5z7NYzVYHSQJ+FfhKWYOap1k+Xyvq2ChWj8U8Nmo1cVgNPFnw+Ckq7AtY0nrgfODuqOi9URPUzUlv4o8E4A5JP5V0fVS2PISwP7r/LLA8ntAW5Dqe/8FYafuj2HtfycfKvyH/i/CUDZL+WdKPJF0WV1DzMNP/UCXuj8uAAyGERwrKEr0vpn2+VuyxMcP3xCmndWzUauJQ0SQ1A38DvD+EcAL4DLAJ2A7sJ98smHSXhhB2AK8B3iPp8sInQ74NrSIu+ZGUBV4PfD0qqsT98ZxKeu+LkfQhYAL4clS0H1gbQjgf+CDwfyS1xhVfCSr6f2iat/H8pDrR+2KGz9fnVNKxUawei3Fs1Gri8DSwpuBxb1SWeJLqyP8zfDmE8E2AEMKBEMJkCGEK+BwJaLqcSwjh6ejvQeBb5GM+cKqpL/p7ML4I5+U1wH0hhANQmfuD4u99xR0rkt4JvBZ4e/RBT9S0fzi6/1PyfQO2xhbkHGb5H6qo/SEpA7wJ+NqpsiTvi5k+X6nAY6NIPRbt2KjVxOFeYIukDdGvxeuAW2KOaU7RucLPA3tDCH9WUF54Xu2NwJ7p6yaJpJykllP3yXfa2UN+H7wjWuwdwHfiiXDenveLqtL2R6TYe38L8BtRD/KLgeMFzbaJI+nVwB8Arw8hnCwo75aUju5vBLYAj8UT5dxm+R+6BbhOUr2kDeTrcU+545uHq4CHQwhPnSpI6r4o9vlKhR0bs3xPLN6xEUevzyTcyPeI/Rn57OpDccdTYsyXkm8mewDYFd2uAf4XsDsqvwVYGXesc9RjI/me4fcDD556/4Eu4PvAI8CdQGfcsZZQlxxwGGgrKEv0/iCf5OwHxsmfl/2tYu89+R7jfxUdJ7uBvrjjn6Mej5I/73zq+PhstOybo/+1XcB9wOvijn+OehT9HwI+FO2PfcBr4o6/WB2i8i8AvzNt2UTui1k+Xyvq2JilHot2bHjkSDMzMytZrZ6qMDMzswVw4mBmZmYlc+JgZmZmJXPiYGZmZiVz4mBmZmYlc+JgFgNJQdL/LnickdQv6bsL3F67pHcXPL5yodsqsv1Vkr6xWNsrh2jWv399Guu/U9KqxYzJrBo4cTCLxxBwjqTG6PErOb1R59qBd8+51AKFEJ4JIbxlqba/RNYDC04cgHcCThzMpnHiYBaf24B/Fd2fPvpkp6RvR5Mc3SXpvKj8xmjSox9KekzSv4tW+QiwSdIuSR+PypolfUPSw5K+HI0oh6SPSHoo2vYnpgcl6YpoO7uiiW9aol/ve6Ln3ynpm5K+J+kRSR8rWPfVku6TdL+k70dluSjme6LtvWAm2qiF5EeSvhPV6yOS3h6ts1vSpmi510m6O9rOnZKWF4s5ek8ui8o+ICkt6eOS7o3q/q6C1//D6HXuj177LUAf8OVo/UZJr4i2vTuqT3207hOS/ku03E5JOyTdLunnkn4nWuZLkt5Q8Hpfnul9MKsIcY9y5ZtvtXgDBoHzgG8ADeRHbbsS+G70/KeBP4nuvxzYFd2/EfhHoB5YRn7Uyjryv673FGz/SuA4+fHzU8A/kR9Rrov8iIOnBn9rnyG2/wu8NLrfDGQKt0/+l/hjQFsU+y/Ij9nfTX5kug3RcqdG2PvPwK+dej3yI7bmpr3mlcAxYGVUt6eBP42e+z3gz6P7HQWx/1vgk7PE/Nz7GZVfD/yH6H49sBPYQH6ukX8EmqbF/UOi0QCjej4JbI0ef4n85EEATwC/G93/FPkR+1qi9+NAVH4F8O3ofhvwOJCJ+//QN98WcnOLg1lMQggPkP9Cfhv51odCl5IfdpgQwg+ALv3LjHW3hvzENIfIT7hTbPrxe0IIT4X8REm7otc6DowAn5f0JuDkDOv9BPizqDWjPYQwMcMy3w8hHA8hjAAPAeuAi4EfhxAej+I+Ei17NXCDpF3kv4wbgLUzbPPeEML+EMIo+WF874jKd0exQz4Rul3SbuD3gbPnEfPV5OcW2EV+muEu8uPyXwX8zxCN318Qd6FtwOMhhJ9Fj78IFM7oemqum93A3SGEgRBCPzAqqT2E8CPy8+N0k9/ff1MkRrPEc+JgFq9bgE/w/GmH5zJacH+S/K/rkpaLvqwuIt/S8Vrge9NXCiF8hPyv+UbgJ5LOOI0YID+m/5tDCNuj29oQwt45tjlV8HiqYPufBv5rCOFc4F3kk5BSYxbwvoI4NoQQ7phhuYUojHV6PU7F/iXg14DfBG5epNc1KzsnDmbxupl8k/zuaeX/ALwd8uf/gUMhhBOzbGeAfPP4rCQ1k5+Q6zbgA8CLZlhmUwhhdwjho+Rnkp3pS3gmdwGXKz9rI5I6o/LbgfcV9LE4v8TtzaSNf+lEemrGwmIxT39Pbgd+V/kph5G0VfnZWf8O+E1JTdPiLlx/H7Be0ubo8a8DP5pn7F8A3g8QQnhonuuaJcZsvxLMbImF/HTDfznDUzcCN0t6gPzphHfMsEzhdg5L+knUgfFvgVuLLNoCfEdSA/lf4B+cYZn3S3oZ+V/LD0bbWznDctNj6Jd0PfBNSSnyp1FeCfxH4M+BB6Lyx8m3dizEjcDXJR0FfkC+j0KxmKeASUn3k//S/gvypzzui5KYfuANIYTvSdoO7JQ0Rv600R9H63xW0jBwCfmWgq9LypBv++agAAAAb0lEQVRPTj47n8BDCAck7QW+vbCqmyWDZ8c0MyuDqEVjN7AjhHA87njMFsqnKszMlpikq4C9wKedNFilc4uDmZmZlcwtDmZmZlYyJw5mZmZWMicOZmZmVjInDmZmZlYyJw5mZmZWMicOZmZmVrL/D3beaZNOOc3AAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"tv_base_hazard = time_varying_idata.posterior[\"lambda0\"]\n", | |
"tv_met_hazard = time_varying_idata.posterior[\"lambda0\"] * np.exp(\n", | |
" time_varying_idata.posterior[\"beta\"]\n", | |
")" | |
], | |
"metadata": { | |
"id": "3PHDuC6yrsRS" | |
}, | |
"execution_count": 106, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, ax = plt.subplots(figsize=(8, 6))\n", | |
"\n", | |
"ax.step(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(base_hazard.mean((\"chain\", \"draw\"))),\n", | |
" color=\"C0\",\n", | |
" label=\"Had not metastasized\",\n", | |
")\n", | |
"\n", | |
"ax.step(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(met_hazard.mean((\"chain\", \"draw\"))),\n", | |
" color=\"C1\",\n", | |
" label=\"Metastasized\",\n", | |
")\n", | |
"\n", | |
"ax.step(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(tv_base_hazard.mean((\"chain\", \"draw\"))),\n", | |
" color=\"C0\",\n", | |
" linestyle=\"--\",\n", | |
" label=\"Had not metastasized (time varying effect)\",\n", | |
")\n", | |
"\n", | |
"ax.step(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(tv_met_hazard.mean(dim=(\"chain\", \"draw\"))),\n", | |
" color=\"C1\",\n", | |
" linestyle=\"--\",\n", | |
" label=\"Metastasized (time varying effect)\",\n", | |
")\n", | |
"\n", | |
"ax.set_xlim(0, df.time.max() - 4)\n", | |
"ax.set_xlabel(\"Months since mastectomy\")\n", | |
"ax.set_ylim(0, 2)\n", | |
"ax.set_ylabel(r\"Cumulative hazard $\\Lambda(t)$\")\n", | |
"ax.legend(loc=2);" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 392 | |
}, | |
"id": "YtUoQAe_rGtP", | |
"outputId": "a0733b3f-399a-4745-cbcc-f581c19f087f" | |
}, | |
"execution_count": 107, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 576x432 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAF3CAYAAACi+eJxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUZdr/8c9NJAJRASEiiNQH0HQgNEGKVAERQQREpay6P5aiu49RVARE3fVRV13UXUWFWJEmiIsooiB2CYo0CwIBA0gJBOkhcP3+mGRMZyZkUr/v12tec865T7lmJF5zzrnPfTkzQ0RERMquCsUdgIiIiASWkr2IiEgZp2QvIiJSxinZi4iIlHFK9iIiImWckr2IiEgZVyTJ3jl3qXNuuXNuo3Nug3PujlzWcc65ac65X5xza51zLTK1DXfObUp/DS+KmEVERMoKVxTP2TvnagO1zexb59z5wGqgv5ltzLROb2Ac0BtoA/zLzNo45y4EEoBYwNK3bWlmBwIeuIiISBlQJGf2ZrbLzL5Nnz4E/ABckm21a4FXzeMroFr6j4SewIdmtj89wX8I9CqKuEVERMqCIr9n75xrADQHvs7WdAnwa6b5pPRleS0XERERH5xTlAdzzp0HzAfuNLPfA7D/24HbAUJCQlpedtllhX0IERGREmn16tX7zCw0t7YiS/bOuYp4Ev0bZvZ2LqvsAC7NNF83fdkOoHO25StyO4aZTQemA8TGxlpCQsJZxy0iIlIaOOe25dVWVL3xHfAy8IOZPZnHaouAW9J75bcFDprZLuADoIdzrrpzrjrQI32ZiIiI+KCozuzbAzcD65xza9KX3QfUAzCz54H38PTE/wU4CoxMb9vvnHsIWJW+3VQz219EcYuIiJR6RZLszewzwJ1hHQPG5NE2A5gRgNBERETKvCLtoFfcTp48SVJSEsePHy/uUEQkQCpVqkTdunWpWLFicYciUmKUq2SflJTE+eefT4MGDfB0IxCRssTMSE5OJikpiYYNGxZ3OCIlRrkaG//48ePUqFFDiV6kjHLOUaNGDV29E8mmXCV7QIlepIzT37hITuUu2Re38847L8t8fHw8Y8eO9WsfDRo0YN++fWcdy8KFC9m4ceOZVyyAp59+mqNHjxZo27OJKyEhgfHjxxdo28xGjBjBvHnzzno/IiIlgZJ9OVYWk31sbCzTpk0r0LYiImWVkn0J8u6779KmTRuaN29Ot27d2L17NwDJycn06NGD8PBwbr31VvKqVHjeeedx//33Ex0dTdu2bb3bJyYmctVVVxEVFUXXrl3Zvn07X3zxBYsWLSIuLo6YmBg2b96cZV8jRoxg9OjRtG3blkaNGrFixQpGjRrF5ZdfzogRI7zrLV26lHbt2tGiRQsGDRrE4cOHmTZtGjt37qRLly506dIFgNGjRxMbG0t4eDiTJ0/2bj9hwgTCwsKIiorirrvuyjWuF198kVatWhEdHc3AgQO9PyLmzp1LREQE0dHRdOzYEYAVK1bQt29fAHr37k1MTAwxMTFUrVqVV155hVOnThEXF0erVq2IiorihRdeADwdu8aOHUuzZs3o1q0be/bsOdv/nCIiJUa56o2f2YPvbmDjzsIdnj+szgVMviY833WOHTtGTEyMd37//v3069cPgA4dOvDVV1/hnOOll17iscce45///CcPPvggHTp0YNKkSSxevJiXX345130fOXKEtm3b8sgjj3D33Xfz4osvMnHiRMaNG8fw4cMZPnw4M2bMYPz48SxcuJB+/frRt29frr/++lz3d+DAAb788ksWLVpEv379+Pzzz3nppZdo1aoVa9asoW7dujz88MMsW7aMkJAQ/u///o8nn3ySSZMm8eSTT7J8+XJq1qwJwCOPPMKFF17IqVOn6Nq1K2vXruWSSy5hwYIF/PjjjzjnSElJoVq1ajniqlatGrfddhsAEydO5OWXX2bcuHFMnTqVDz74gEsuuYSUlJQc8b/33nsArF69mpEjR9K/f39efvllqlatyqpVqzhx4gTt27enR48efPfdd/z0009s3LiR3bt3ExYWxqhRo/L9bykiUlqU22RfXCpXrsyaNWu88/Hx8WSM4Z+UlMTgwYPZtWsXqamp3keHVq5cydtve8oJ9OnTh+rVq+e67+DgYO9ZbcuWLfnwww8B+PLLL73b33zzzdx9990+xXrNNdfgnCMyMpJatWoRGRkJQHh4OImJiSQlJbFx40bat28PQGpqKu3atct1X3PmzGH69OmkpaWxa9cuNm7cSFhYGJUqVeJPf/oTffv29cae3fr165k4cSIpKSkcPnyYnj17AtC+fXtGjBjBDTfcwIABA3Lddt++fdx8883MmTOHqlWrsnTpUtauXeu9H3/w4EE2bdrEypUrGTp0KEFBQdSpU4errrrKp+9IRKQ0KLfJ/kxn4MVh3Lhx/O1vf6Nfv36sWLGCKVOm+LV9xYoVvT2Rg4KCSEtLO6t4zj33XAAqVKjgnc6YT0tLIygoiO7duzNr1qx897N161aeeOIJVq1aRfXq1RkxYgTHjx/nnHPO4ZtvvuGjjz5i3rx5PPvss3z88cc5th8xYgQLFy4kOjqa+Ph4VqxYAcDzzz/P119/zeLFi2nZsiWrV6/Ost2pU6cYMmQIkyZNIiIiAvBcrn/mmWe8PxgyZFwFEBEpi3TPvgQ5ePAgl1xyCQCvvPKKd3nHjh158803AViyZAkHDhzwa79XXHEFb731FgBvvPEGV155JQDnn38+hw4dKnC8bdu25fPPP+eXX34BPLcRfv755xz7/v333wkJCaFq1ars3r2bJUuWAHD48GEOHjxI7969eeqpp/j+++9zjevQoUPUrl2bkydP8sYbb3iXb968mTZt2jB16lRCQ0P59ddfs8Q3YcIEoqKiGDJkiHdZz549+c9//sPJkycB+Pnnnzly5AgdO3Zk9uzZnDp1il27drF8+fICfy8iIiVNuT2zL4mmTJnCoEGDqF69OldddRVbt24FYPLkyQwdOpTw8HCuuOIK6tWr59d+n3nmGUaOHMnjjz9OaGgoM2fOBGDIkCHcdtttTJs2jXnz5tG4cWO/9hsaGkp8fDxDhw7lxIkTADz88MM0bdqU22+/nV69elGnTh2WL19O8+bNueyyy7j00ku9l/0PHTrEtddey/HjxzEznnzyyVzjeuihh2jTpg2hoaG0adPG+0MgLi6OTZs2YWZ07dqV6OhoPvnkE298TzzxBOHh4d4+ElOnTuXWW28lMTGRFi1aYGaEhoaycOFCrrvuOj7++GPCwsKoV69enrcjRERKI5dXz+7SLrd69j/88AOXX355MUUkIkVFf+tSHjnnVptZbG5tuowvIiJSxinZi4iIlHFK9iIiImWckr2IiEgZp2QvIiJSxinZi4iIlHFK9kXMOcdNN93knU9LSyM0NDTPoWIzrFmzpsCjvKWkpPDvf/+7QNsC3HrrrWddHS8xMdE7ip2IiBQtJfsiFhISwvr16zl27BgAH374oXfUvPwUZ7J/6aWXCAsLK/D2IiJSvJTsi0Hv3r1ZvHgxALNmzWLo0KHetiNHjjBq1Chat25N8+bNeeedd0hNTWXSpEnMnj2bmJgYZs+ezTfffEO7du1o3rw5V1xxBT/99BMAGzZsoHXr1sTExBAVFcWmTZuYMGECmzdvJiYmhri4OA4fPkzXrl1p0aIFkZGRvPPOO95j9+nTh+joaCIiIpg9ezYAnTt3JiEhgUWLFnlLxjZr1sxbqGf16tV06tSJli1b0rNnT3bt2uVdHh0dTXR0NM8991yRfb8iIpJV+R0ud8kE+G1d4e7z4ki4+tEzrjZkyBCmTp1K3759Wbt2LaNGjeLTTz8FPKVgr7rqKmbMmEFKSgqtW7emW7duTJ06lYSEBJ599lnAM978p59+yjnnnMOyZcu47777mD9/Ps8//zx33HEHw4YNIzU1lVOnTvHoo4+yfv16b7W9tLQ0FixYwAUXXMC+ffto27Yt/fr14/3336dOnTreHyIHDx7MEne/fv285XhvuOEGOnXqxMmTJxk3bhzvvPMOoaGhzJ49m/vvv58ZM2YwcuRInn32WTp27EhcXFyhfc0iIuKf8pvsi1FUVBSJiYnMmjWL3r17Z2lbunQpixYt4oknngDg+PHjbN++Pcc+Dh48yPDhw9m0aRPOOW9hl3bt2vHII4+QlJTEgAEDaNKkSY5tzYz77ruPlStXUqFCBXbs2MHu3buJjIzkf//3f7nnnnvo27evt2BOdo899hiVK1dmzJgxrF+/nvXr19O9e3fAU2mudu3apKSkkJKSQseOHQFPad2MAjgiIlK0ym+y9+EMPJD69evHXXfdxYoVK0hOTvYuNzPmz59Ps2bNsqz/9ddfZ5l/4IEH6NKlCwsWLCAxMZHOnTsDcOONN9KmTRsWL15M7969eeGFF2jUqFGWbd944w327t3L6tWrqVixIg0aNOD48eM0bdqUb7/9lvfee4+JEyfStWtXJk2alGXbZcuWMXfuXFauXOmNNzw8nC+//DLLeikpKWf1/YiISOHRPftiMmrUKCZPnkxkZGSW5T179uSZZ54ho0DRd999B+Qs+5q5HG58fLx3+ZYtW2jUqBHjx4/n2muvZe3atblue9FFF1GxYkWWL1/Otm3bANi5cydVqlThpptuIi4ujm+//TZLbNu2bWPMmDHMnTuXypUrA9CsWTP27t3rTfYnT55kw4YNVKtWjWrVqvHZZ58BZClNKyIiRUvJvpjUrVuX8ePH51j+wAMPcPLkSaKioggPD+eBBx4AoEuXLmzcuNHbQe/uu+/m3nvvpXnz5qSlpXm3nzNnDhEREcTExLB+/XpuueUWatSoQfv27YmIiCAuLo5hw4aRkJBAZGQkr776KpdddhkA69at83bue/DBB5k4cWKW2OLj40lOTqZ///7ExMTQu3dvgoODmTdvHvfccw/R0dHExMTwxRdfADBz5kzGjBlDTEwMZbW6oohIaaAStyJS5uhvXcojlbgVEREpx5TsRUREyjglexERkTJOyV5ERKSMK5Ln7J1zM4C+wB4zy1ENxTkXBwzLFNPlQKiZ7XfOJQKHgFNAWl6dD0RERCR3RXVmHw/0yqvRzB43sxgziwHuBT4xs/2ZVumS3q5ELyIi4qciSfZmthLYf8YVPYYCswIYTrE677zzsszHx8czduxYv/bRoEED9u3bd9axLFy48KxL1+bl6aef5ujRowXa9mziSkhIyHX8An+NGDGCefPm5dp25513ekcQzP45e/fuXWpGD9y5cyfXX399wI8zdOhQoqKieOqpp/jxxx+JiYmhefPmbN682a/9rFixwjuGA8Czzz7LjBkzCjtckTKpRN2zd85VwXMFYH6mxQYsdc6tds7dfobtb3fOJTjnEvbu3RvIUMuEspjsY2NjmTZtWoG29UVycjJfffWVd8z/7J/zvffeo1q1agE7vr8yD7iUXZ06dfL8QVNYfvvtN1atWsXatWv561//ysKFC7n++uv57rvvaNy4sV/7yp7sR40axTPPPFPYIYuUSSUq2QPXAJ9nu4TfwcxaAFcDY5xzHfPa2Mymm1msmcWGhoYGOtZC9+6779KmTRuaN29Ot27d2L17N+BJMD169CA8PJxbb701z9HozjvvPO6//36io6Np27atd/vExESuuuoqoqKi6Nq1K9u3b+eLL75g0aJFxMXFERMTk+Msa8SIEYwePZq2bdvSqFEjVqxYwahRo7j88ssZMWKEd72lS5fSrl07WrRowaBBgzh8+DDTpk1j586ddOnShS5dugAwevRoYmNjCQ8PZ/Lkyd7tJ0yYQFhYGFFRUdx11125xvXiiy/SqlUroqOjGThwoDe5zp07l4iICKKjo73Jd8WKFfTt2xfwnGVnlOStWrUqr7zyCqdOnSIuLo5WrVoRFRXFCy+8AHjG+B87dizNmjWjW7du7NmzJ9fveP78+fTq5bkjldvnzLjqkpiYyGWXXcaIESNo2rQpw4YNY9myZbRv354mTZrwzTffALmXNM5uyJAh3kqEGf9t5s2bR2JiIldeeSUtWrSgRYsW3kS4YsUKrrzySvr160dYWBiTJk3i6aef9m5///33869//YvExEQiIjxdaOLj4xkwYAC9evWiSZMm3H333d71X375ZZo2bUrr1q257bbbcr0Sldfn6NGjBzt27PCOyvj000/zn//8x/t9vf76695RG//85z9z6tQpAN5//31atGhBdHQ0Xbt2JTExkeeff56nnnqKmJgYPv30U6pUqUKDBg2836WI5MPMiuQFNADWn2GdBcCN+bRPAe7y5XgtW7a07DZu3Jhl/obnv8jxevWLrWZmdvREWq7tc1ZtNzOz5MMncrT5okKFChYdHe19XXrppTZmzBgzM9u/f7+dPn3azMxefPFF+9vf/mZmZuPGjbMHH3zQzMz++9//GmB79+7NsW/AFi1aZGZmcXFx9tBDD5mZWd++fS0+Pt7MzF5++WW79tprzcxs+PDhNnfu3FzjHD58uA0ePNhOnz5tCxcutPPPP9/Wrl1rp06dshYtWth3331ne/futSuvvNIOHz5sZmaPPvqoN8769etniTE5OdnMzNLS0qxTp072/fff2759+6xp06bez3zgwIFc49q3b593+v7777dp06aZmVlERIQlJSVl2Xb58uXWp0+fLJ8lISHBIiMjLSUlxV544QXv93L8+HFr2bKlbdmyxebPn2/dunWztLQ027Fjh1WtWjXX7+aWW27xfse5fc6M+a1bt1pQUFCW72zkyJHe7zPjv8G9995rr732mvczNGnSxPt9Znj77bftlltuMTOzEydOWN26de3o0aN25MgRO3bsmJmZ/fzzz5bxb3758uVWpUoV27Jli5mZbd261Zo3b25mZqdOnbJGjRrZvn37bOvWrRYeHm5mZjNnzrSGDRtaSkqKHTt2zOrVq2fbt2+3HTt2WP369S05OdlSU1OtQ4cO3n+vmeX1OTIfw8xs8uTJ9vjjj5uZ5++xb9++lpqaamZmo0ePtldeecX27NljdevW9caf8W8n87YZHn74YXviiSdyxJP9b12kPAASLI+cWGKq3jnnqgKdgJsyLQsBKpjZofTpHsDUYgqxUFSuXNlbVx48Z1QZw/omJSUxePBgdu3aRWpqKg0bNgRg5cqVvP322wD06dOH6tWr57rv4OBg71lty5Yt+fDDDwH48ssvvdvffPPNWc7a8nPNNdfgnCMyMpJatWp5i/aEh4eTmJhIUlISGzdupH379gCkpqbSrl27XPc1Z84cpk+fTlpaGrt27WLjxo2EhYVRqVIl/vSnP9G3b19v7NmtX7+eiRMnkpKSwuHDh+nZsycA7du3Z8SIEdxwww0MGDAg12337dvHzTffzJw5c6hatSpLly5l7dq13svXBw8eZNOmTaxcuZKhQ4cSFBREnTp1uOqqq3Ld365du/D1qlHDhg2zfGddu3b1fp+JiYlA3iWNMw/1evXVV3PHHXdw4sQJ3n//fTp27EjlypU5ePAgY8eOZc2aNQQFBfHzzz97t2ndurX330+DBg2oUaMG3333Hbt376Z58+bUqFEjS3EkgK5du1K1alUAwsLC2LZtG/v27aNTp05ceOGFAAwaNCjLcTLk9TkyCibl5qOPPmL16tW0atUKgGPHjnHRRRd5b5NkxJ9x7NxcdNFF/Pjjj3m2i4hHUT16NwvoDNR0ziUBk4GKAGb2fPpq1wFLzexIpk1rAQuccxmxvmlm7xdWXLP/nHtiAqgcHJRv+4Uhwfm2F8S4ceP429/+Rr9+/VixYgVTpkzxa/uKFSuS/l0RFBSU7/1aX5x77rkAVKhQwTudMZ+WlkZQUBDdu3dn1qz8+1Nu3bqVJ554glWrVlG9enVGjBjB8ePHOeecc/jmm2/46KOPmDdvHs8++ywff/xxju1HjBjBwoULiY6OJj4+nhUrVgDw/PPP8/XXX7N48WJatmzJ6tWrs2x36tQphgwZwqRJk7yXq82MZ555xvuDIcN7773n03dSuXJljh8/7tO62b+zzN9nxn8by6OkcWaVKlWic+fOfPDBB8yePZshQ4YA8NRTT1GrVi2+//57Tp8+TaVKlbzbhISEZNnHrbfeSnx8PL/99hujRo06Y7z+/vvJ63Nk/KjJa5vhw4fzj3/8I8vyd9991+fjHj9+PN8fFCLiUVS98YeaWW0zq2hmdc3sZTN7PlOix8zizWxItu22mFl0+ivczB4piniLS+ayta+88op3eceOHXnzzTcBWLJkCQcOHPBrv1dccQVvvfUW4Ck1e+WVVwI5y+b6q23btnz++ef88ssvgOe+bcZZX+Z9//7774SEhFC1alV2797NkiVLADh8+DAHDx6kd+/ePPXUU3z//fe5xnXo0CFq167NyZMns5TK3bx5M23atGHq1KmEhoby66+/ZolvwoQJREVFeZMjeEoI/+c//+HkyZMA/Pzzzxw5coSOHTsye/ZsTp06xa5du1i+fHmun/nyyy/3ft7cYvVXXiWNsxs8eDAzZ87k008/9fYZOHjwILVr16ZChQq89tpr3vvdubnuuut4//33WbVqVY4fOvlp1aoVn3zyCQcOHCAtLY358+fnup6vnyOzrl27Mm/ePG//iP3797Nt2zbatm3LypUr2bp1q3c55P5d//zzz94fciKSt5LWQa9cmzJlCoMGDaJly5bUrFnTu3zy5MmsXLmS8PBw3n77berVq+fXfp955hlmzpxJVFQUr732Gv/6178AT8evxx9/vECPQQGEhoYSHx/vfbSqXbt23kuqt99+O7169aJLly5ER0fTvHlzLrvsMm688UbvZf9Dhw7Rt29foqKi6NChA08++WSucT300EO0adOG9u3be8vxAsTFxREZGUlERARXXHEF0dHRWeJ74oknWLp0qbeT3qJFi7j11lsJCwujRYsWRERE8Oc//5m0tDSuu+46mjRpQlhYGLfcckuetyP69OnjvbKQ/XMWRF4ljbPr0aMHn3zyCd26dSM4OBiAv/zlL7zyyitER0fz448/5jibzyw4OJguXbpwww03EBQU5HN8l1xyCffddx+tW7emffv2NGjQwHupvyCfI7OwsDAefvhhevToQVRUFN27d/feJpk+fToDBgwgOjqawYMHA57bSgsWLPB20AP4/PPP6d69u8+fR6S8UolbET916NCB//73vyXqEbszOX36NC1atGDu3Lk0adLEr20PHz7Meeed5/1RNGrUKK677roAReq77777jieffJLXXnstR5v+1qU8UolbkUL0z3/+k+3btxd3GD7buHEj//M//0PXrl39TvTgueIUExNDREQEDRs2pH///gGI0n/79u3joYceKu4wREoFndmLSJmjv3Upj3RmLyIiUo4p2YuIiJRxSvYiIiJlnJK9iIhIGadkX8Scc9x0k3dEYNLS0ggNDc1zqNgMa9as8XmUt+xSUlL497//XaBtwTP62tlWx8tcdCW7Xbt2eT9/9s+5aNEiHn300bM6dlGaNGkSy5YtC+gxPv30U8LDw4mJieHYsWPExcURHh5OXFyc3/v6+9//7p1OTU2lY8eOZz3yooiUPEr2RSwkJIT169dz7NgxAD788EPvqHn5Kc5k/9JLLxEWFlbg7c/kySef5LbbbgNyfs5+/foxYcKEgB27IPJLhlOnTqVbt24BPf4bb7zBvffey5o1a6hcuTLTp09n7dq1PP74437vK3OyDw4OpmvXrsyePbswwxWREkDJvhj07t3bW7J01qxZDB061NuWW6nQ1NRUJk2axOzZs4mJiWH27Nl88803tGvXjubNm3PFFVfw008/AbBhwwZvydCoqCg2bdrEhAkT2Lx5MzExMcTFxXH48GG6du1KixYtiIyM9JYjPXLkCH369CE6OpqIiAjv//Q7d+5MQkICixYt8o5G16xZM2+hktWrV9OpUydatmxJz5492bVrl3d5dHQ00dHRPPfcc3l+HxllY3P7nPHx8d6SqmdTdjezH3/8kdatW3vnExMTvQVrpk6dSqtWrYiIiOD222/3Dv/auXNn7rzzTmJjY3nkkUdo2LChd8jd33//3TufUX4WPAVoJk+e7P2eM0YX3Lt3L927d/eWLK5fvz779u3L8b3k9jleeukl5syZwwMPPMCwYcPo168fhw8fpmXLlsyePZu9e/cycOBAWrVqRatWrfj8888Bz8A4I0eOJDIykqioKObPn8+ECRM4duwYMTExDBs2DID+/ftnGZJYRMqIvMrhlfaXLyVubUbvnK+vp3vaThzJvf3b1z3th/flbPNBSEiIff/99zZw4EA7duyYRUdHZynLmlep0JkzZ2YpLXrw4EE7efKkmZl9+OGHNmDAADMzGzt2rL3+uifGEydO2NGjR3OUGT158qQdPHjQzMz27t1rjRs3ttOnT9u8efPs1ltv9a6XkpJiZmadOnWyVatWZfkcgwYNsmeffdZSU1OtXbt2tmfPHjMze+utt2zkyJFmZhYZGWmffPKJmZndddddWWLIsGXLFmvRooV3PvvnzDx/tmV3M4uOjvaWUH300Ue9ZW8zyqmamd10003ecradOnWy0aNHe9tGjBhhCxYsMDOzF154wVuOOHN53vr163vL8T733HP2pz/9yczMxowZY3//+9/NzGzJkiW5lizO73NkLwEcEhLinR46dKh9+umnZma2bds2u+yyy8zM7O6777Y77rjDu97+/ftzbGvmKUFcs2bNHN9XaaMSt1IeURpK3JYnUVFRJCYmMmvWLHr37p2lLa9SodkdPHiQ4cOHs2nTJpxz3rPMdu3a8cgjj5CUlMSAAQNyHTHNzLjvvvtYuXIlFSpUYMeOHezevZvIyEj+93//l3vuuYe+fft6C+Zk99hjj1G5cmXGjBnD+vXrWb9+vXd88lOnTlG7dm1SUlJISUmhY8eOgKe0bkYBnMz8KRkLhVd294YbbmD27NlMmDCB2bNne69iLF++nMcee4yjR4+yf/9+wsPDueaaawC8Y7SDpx/DY489Rv/+/Zk5cyYvvvhirvFmlN5t2bKlt8zwZ599xoIFCwDo1atXriWLv/rqK5/LB2e2bNmyLP0rfrzhGjwAACAASURBVP/9dw4fPsyyZcu8xZCAPMskBwUFERwczKFDhzj//PPPeDwRKR3Kd7IfuTjvtuAq+beH1Mi//Qz69evHXXfdxYoVK0hOTvYutzxKhX799ddZ5h944AG6dOnCggULSExMpHPnzgDceOONtGnThsWLF9O7d29eeOEFGjVqlGXbN954g71797J69WoqVqxIgwYNOH78OE2bNuXbb7/lvffeY+LEiXTt2pVJkyZl2XbZsmXMnTuXlStXeuMNDw/nyy+/zLJeSkqKT9+DPyVjofDK7g4ePJhBgwYxYMAAnHM0adKE48eP85e//IWEhAQuvfRSpkyZkiW2zIVm2rdvT2JiIitWrODUqVN5dj7MiLEgJWN9+RzZnT59mq+++ipLuVt/nThx4qy2F5GSR/fsi8moUaOYPHmy98w0Q16lQrOX98xcDjc+Pt67fMuWLTRq1Ijx48dz7bXXsnbt2ly3veiii6hYsSLLly9n27ZtAOzcuZMqVapw0003ERcXx7fffpsltm3btjFmzBjmzp3rrSHerFkz9u7d6032J0+eZMOGDVSrVo1q1arx2WefAeR5H7hp06ZZap4HsuxuZo0bNyYoKIiHHnrIe8aekdhr1qzJ4cOHvffe83LLLbdw4403MnLkSL9ibN++PXPmzAE8V3JyK1ns6+fIrkePHjzzzDPe+TVr1gDQvXv3LP0mMo5ZsWJF71UhgOTkZGrWrEnFihX9+kwiUrIp2ReTunXrMn78+BzL8yoV2qVLFzZu3OjtuHb33Xdz77330rx58yxnjHPmzCEiIoKYmBjWr1/PLbfcQo0aNWjfvj0RERHExcUxbNgwEhISiIyM5NVXX/WWjV23bp23c9+DDz7IxIkTs8QWHx9PcnIy/fv3JyYmht69exMcHMy8efO45557iI6OJiYmhi+++AKAmTNnMmbMGGJiYrw/XrILCQmhcePG3qSW/XP6K7+yu9kNHjyY119/nRtuuAGAatWqcdtttxEREUHPnj1p1apVvscaNmwYBw4cyNLB0heTJ09m6dKlREREMHfuXC6++OIcl8z9+RyZTZs2jYSEBKKioggLC+P5558HYOLEiRw4cICIiAiio6NZvnw54CnRGxUV5e2gt3z5cvr06ePX5xGRkk+FcKTYLViwgNWrV/Pwww8Xdyh+mTdvHu+8806uJVbzc+LECYKCgjjnnHP48ssvGT16tPcMvLgNGDCARx99lKZNmxZ3KGdFf+tSHuVXCKd837OXEuG6667L0m+hNBg3bhxLliwp0NgH27dv54YbbuD06dMEBwfn2bmvqKWmptK/f/9Sn+hFJCed2YtImaO/dSmPVOJWRESkHCt3yb6sXskQEQ/9jYvkVK6SfaVKlUhOTtb/DETKKDMjOTlZ4wSIZFOuOujVrVuXpKQk9u7dW9yhiEiAVKpUibp16xZ3GCIlSrlK9hUrVvQWbxERESkvytVlfBERkfJIyV5ERKSMU7IXEREp45TsRUREyjglexERkTJOyV5ERKSMU7IXEREp45TsRUREyrgiSfbOuRnOuT3OufV5tHd2zh10zq1Jf03K1NbLOfeTc+4X59yEoohXRESkLCmqM/t4oNcZ1vnUzGLSX1MBnHNBwHPA1UAYMNQ5FxbQSEVERMqYIkn2ZrYS2F+ATVsDv5jZFjNLBd4Cri3U4ERERMq4knTPvp1z7nvn3BLnXHj6skuAXzOtk5S+LFfOududcwnOuQQVuxEREfEoKcn+W6C+mUUDzwALC7ITM5tuZrFmFhsaGlqoAYqIiJRWJSLZm9nvZnY4ffo9oKJzriawA7g006p105eJiIiIj0pEsnfOXeycc+nTrfHElQysApo45xo654KBIcCi4otURESk9CmSevbOuVlAZ6Cmcy4JmAxUBDCz54HrgdHOuTTgGDDEzAxIc86NBT4AgoAZZrahKGIWEREpK5wnp5Y9sbGxlpCQUNxhiIiIFAnn3Gozi82trURcxhcREZHAUbIXEREp44rknr2IiIgUooSZsG6ez6sr2YuIiJRUeSX1bZ953ut38Gk3SvYiIiIl1bp58Ns6uDgy6/L6HSDyeogd+ceyUS7P3SjZi4iIFLe8zuAzEv3IxWe1eyV7ERGRouLvZfmLIz1n8GdJyV5ERKSg/Owol2dSz+2yfCFSshcRkbLJ30RcEH52lAt0Us+Lkr2IiJQOhXUWXZiKKXn7S8leREQCq7DOsEvJWXRJpGQvIiKBldfjY/5S8i4wJXsREQm8Qnh8TApOY+OLiIiUcUr2IiIiZZySvYiISBmnZC8iIlLGKdmLiIiUcUr2IiIiZZzfyd45F+KcCwpEMCIiIlL4zpjsnXMVnHM3OucWO+f2AD8Cu5xzG51zjzvn/ifwYYqIiEhB+XJmvxxoDNwLXGxml5rZRUAH4Cvg/5xzNwUwRhERETkLvoyg183MTjrnGpjZ6YyFZrYfmA/Md85VDFiEIiIiclbOeGZvZifTJ9/O3uaca5ttHRERESlhfLlnf4Nz7lHgfOfc5c65zNtMD1xoIiIiUhh8uYz/OVAJuBV4EmjmnEsBdgLHAhibiIiIFIIzJnsz2wG86pzbbGafAzjnagAN8PTMFxERkRLsjMneOefM4/OMZWaWDCRnXydAMYqIiMhZ8OnRO+fcOOdcvcwLnXPBzrmrnHOvAMMDE56IiIicLV/u2fcCRgGznHMNgRQ89/CDgKXA02b2XeBCFBERkbPhyz3748C/gX+nP09fEzhmZimBDk5ERETOnl9j45vZSTPbZWYpzrkOzrnnAhWYiIiIFA5fLuN7OeeaAzcCg4DtwDwft5sB9AX2mFlELu3DgHsABxwCRpvZ9+ltienLTgFpZhbrT8wiIiKlXupReGNQzuUxN0LzYXAkOWdbJr70xm8KDAWGAHvxJPgrzGynH2HGA88Cr+bRvhXoZGYHnHNX4xmsp02m9i5mts+P44mIiBSfhJmwLv18uFEn6HS3Z/r1gXDyeNZ1m/aE9uM90zP7ZG07kAgd7oSYYWcVji9n9j8Ci4EeZvZrQQ5iZiudcw3yaf8i0+xXQN2CHEdEREqgQ7/BkT2es9PgKvDNi7BhYc71Ri72vH8+DX7+IGtbxUpw03zP9CePwZZPsrZXqQ6DX/dML5sCv67K2n5BHRj4omd6yQT4bV3W9hqNod80z/Si8ZC8OWv7xZFw9aOe6fm3we/ZzncvbQXdpnimZ98EP7zrma7fIefn9Ef1BlDhHM/3lvH95CakRr678SXZD8BzVv+Zc24pMBf4yMxO+Rysf/4ELMk0b8BS55wBL5hZnkP0OuduB24HqFevXl6riYhIUTqyB078XtxRFK36HSDyeogdmXV5xg+WvOSX0M+C83UsHOdcCHAtnkv6LYH3gHlm9r6P2zcA/pvbPftM63TB0/O/Q/rAPTjnLjGzHc65i4APgXFmtvJMx4uNjbWEhARfQhMRkUD6x6We93sLdHFYfOScW51XvzafO+iZ2RHgTeBN51x1PJ304gCfkr0PQUYBLwFXZyT69OPuSH/f45xbALQGzpjsRUTkLGW+73w2Uo9AcMjZ70cKzK/e+BnM7ACeTnSFUvUufXS+t4GbzeznTMtDgApmdih9ugcwtTCOKSJS6hVWMs7Lts8872d73zk4BEJCzz4eKbACJXt/OedmAZ2Bms65JGAyUBHAzJ4HJgE18AzcA388YlcLWJC+7BzgTV9vG4iIFKtAJ2IovGScl7zuO/vruzcKJx4pMJ/v2Zc2umcvIsVqZh9Pj++LIwN7nMJIxlImnNU9e+fc3/JrN7MnCxqYiEiZdnFkwHpXA39cPVg3DzreBY27wK618P69OdftOgnqtYHtX8NHudwN7fUPqB0Fm5fDyidytl/zNNRsAj8tgS+ezdk+4AWoWhfWz4dVM7K21YmBDn874+NhEji+XMY/P/29GdAKWJQ+fw3wTSCCEhEp9TKeLc88SErm0c7m3JJzm1ajIGIgHEyCt/+cs/2KsdDsati3Cd69M/CX8QvLzjXwwyJdgShGvhTCeRDAObcSaGFmh9Lnp+AZbEdERLIrimfLc7unXjsq/6sJ9drk3964i+eVl2ZXe155iRjoeUmJ4k8HvVpAaqb51PRlIiKS3UXhnvfcEmtIjfwTbtW6+bfXbBLY2wNS5viT7F8Fvkl/1h2gP54x70VEJLsKQcUdgYiXT8neeZ59exXPMLZXpi8eaWbfBSowEZFS7dCu4o5AxMunZG9m5px7z8wigW8DHJOISOl3ZG9xRyDiVcGPdb91zrUKWCQiIiISEP7cs28DDHPObQOOAA7PSX9UQCITERGRQuFPsu8ZsChEREQkYPyperctkIGIiIhIYPhVCCe9tG0ToFLGMl9qy4uIlDsX6w6nlBw+J3vn3K3AHUBdYA3QFvgSuCowoYmIiEhh8OfM/g48Y+N/ZWZdnHOXAX8PTFgiIiVMbiVrG3WCTnd7pl8fCCeP/9H261dwQd2ii08kH/48enfczI4DOOfONbMf8RTHEREp+zZ/9EfhGV9UrAIV/LpTKhIw/vxLTHLOVQMWAh865w4A6rQnIuXD4Nfzb79pftb5zNXuRIqZP73xr0ufnOKcWw5UxTN8roiIiJRgPl/Gd8595JzrDWBmn5jZIuC5gEUmIlKSLJvieYmUQv5cxm8I3OOca5VR4x6IDUBMIiIlz6+rijsCkQLzp4NeCtAVqOWce9c5VzVAMYmIiEgh8ufM3plZGvAX59wI4DOgekCiEhEpaQ7t8lSy87Xj3W/r4OLIwMYk4iN/kv3zGRNmFu+cWweMKfyQRERKoCN7IfWI7+tfHAmR1wcuHhE/+NMb/4VchsuND0RQIiIlzjnnel4jFxd3JCJ+03C5IiK+qKkxxKT08qeDXsZwudvMrAvQHE+nPRERESnB/Llnf9zMjjvnvMPlOuf0U1dEyof9W4o7ApEC03C5IiK+SD1c3BGIFJiGyxWRsi23anUX1IGBL3qml0zwPCaXWY3G0G+aZ3rReEje7OmJHxwS+HhFAsCfDnrnAgOBBpm2iwGmFn5YIlLm5JZ0h82F4CrwzYuwYWHObTJ6vn8+DX7+IGtbxUp/FJ/55DHY8knW9irVPcVrUrZ5qtXV73B28QeHQMhFZ7cPkWLiz2X8d4CDwGrgRGDCEZEya9284hloptsUzysvVz+a//YZZ/iqYielmDMz31Z0br2ZRQQ4nkITGxtrCQkJxR2GiGT47g3Pe/NhxRtHQWUkez1nLyWUc261meVas8afR+++cM4V+Ce5c26Gc26Pc259Hu3OOTfNOfeLc26tc65FprbhzrlN6a/hBY1BRIpR82GlN9GLlHJnvIyfPiyupa870jm3Bc9lfAeYmUX5eKx44Fng1Tzar8YzOl8ToA3wH6CNc+5CYDKeCnsGrHbOLTKzAz4eV0RKgiPJnveQGsUbh0g55Ms9+76FcSAzW+mca5DPKtcCr5rnvsJXzrlqzrnaQGfgQzPbD+Cc+xDoBcwqjLhEpIjMucXzrsvgIkXujMnezIrqWfpLgF8zzSelL8truYiIiPjAn3v2JZ5z7nbnXIJzLmHv3r3FHY6IiEiJUJKS/Q7g0kzzddOX5bU8BzObbmaxZhYbGhoasEBFRERKE3+esw+0RcBY59xbeDroHTSzXc65D4C/p5fXBegB3FtcQYpIKZPbYD4FURxjBIgUEn9G0HPAMKCRmU11ztUDLjazb3zcfhaeznY1nXNJeHrYVwQws+eB94DewC/AUWBkett+59xDwKr0XU3N6KwnIqVIjUaw/euiH5xm22ee97MdQe/iSIi8/uzjESkG/pzZ/xs4jad+/VTgEDAfT9nbMzKzoWdoN2BMHm0zgBl+xCoiJU3yFjj0G4QU8S22+h08STp2ZNEeV6QE8SfZtzGzFs657wDM7IBzLjhAcYlIWZN2Amo21aN3IsXAn2R/0jkXhGdgG5xzoXjO9EVEzmzfT8UdgUi55U9v/GnAAqCWc+4R4DPg7wGJSkRERAqNP2f2tYD/w1PW1gH9zeyHgEQlIiIihcafM/vzgenAkPR59YgXEREpBXxO9mb2oJmF4+kxXxv4xDm3LGCRiYiISKEoyKA6e4DfgGTgosINR0TKrAtU0kKkuPgzqM5fgBuAUGAucJuZbQxUYCJSwmUfma7XP6B2FGxeDiufyLl+xcpQsUrRxSciXv6c2V8K3GlmawIVjIiUIuvmaQhZkVLC52RvZhqPXkSyujgy5yA5jbt4XtkV9TC5IuJ1xmTvnPvMzDo45w6RPqBORhOeUW4vCFh0IlJydZ1U3BGIiI/OmOzNrEP6+/mBD0dESo16bYo7AhHxkc+P3jnn/s+XZSJSTmz/2vMSkRLPn0F1uuey7OrCCkRESpmPpnpeIlLi+XLPfjTwF6CRc25tpqbzgS8CFZiIlHCHdsGRvb53vFPPfZFi40tv/DeBJcA/gAmZlh8yMw2ZK1JeHdkLqUd8X//iSE9deREpcr500DsIHASGOueqA02ASgDOOcxsZWBDFJESKzhE9elFSgF/RtC7FbgDqAusAdoCXwJXBSY0ERERKQz+dNC7A2gFbDOzLkBzICUgUYlIyXdhI89LREo8f4bLPW5mx51zOOfONbMfnXPNAhaZiJRswecVdwQi4iN/kn2Sc64asBD40Dl3ANgWmLBEpMQ7pgt7IqWFP2PjX5c+OcU5txyoCrwfkKhEpOQ7uL24IxARHxWknj1m9klhByIiPsrtufbw/tD6Nkg9Cm8MytkecyM0HwZHkmHOLTnbW42CiIFwMAne/nPO9ivGQrOrYd8mePdOz7LUI57e+CJS4vkyqE5GARyXaXHGvArhSOmQMBM2fwSDX/fML5sCv67Kus4FdWDgi57pJRM8g8BkVqMx9JvmmV40HpI3Z22/OBKuftQzPf82+H1n1vZLW0G3KZ7p2TfB0QNZ2xt1gk53e6ZfHwgnj//RtmcjdPgrtB/vw4ctIsEhEHJRcUchIj7w5Tl7FcCR0m/dPNj2WXFHUXAXhcG56X+K+T3XHlwl//aQGvm3V62bf3vNJn+0q2StSLF58+vtvLNmBwCVKgbxyqjW+a7vz3P2udazNDMNji2lQ/0Of0x3m5L/uhln6HnJOMPPS8YVgrxkXGHIy03z828XkXLtnTU72Ljrd8Jq+3Zx3Z979pnHxawE9AV+8GN7ERER8UPmM3iA2X9uB8DPuw8RVvsC7/yZ+NMb/5+Z551zTwAf+Lq9iIiI5C5zUo8f2ZrKwUG89mUiD7yzAYA2DS/Msv7ozo0579yKPu+/QL3x01XBM3SuSMnXqFNxR5BVwkxPP4LSTFXsRApNXpfl2zS8kGtjLuHGNvWyLL+9Y2O/9u/PPft1eHrhAwQBoYDu10vpEBLqSa5bSshToxmdBTP3IyhtVMVOxG+Zz+D/c1NLLgwJZm7Cr95En/my/M3tGnBzuwaFclx/zuz7ZppOA3abWVqhRCESaOvmlawz0fodPIkydmRxRyIiAZCR1J8aHEOdapV59/udvP7VNr7e6qkMn/2yfFjtC7g25pKAxePPPXsNjSul1+4N4CqoHKuIFKo3v95Om0YX0jj0PJZt3M2Ln24B8Cb17HK7LD8o9lIGxV4a0Dj9uYwfC9wP1E/fLmNQnSgft+8F/AvPLYCXzOzRbO1PAV3SZ6sAF5lZtfS2U0DGCCfbzayfr3FLOZMw84+z5c+nwc/pfUhP/K7R3kTkjLL3fs8w6ZowwutU5bNN+3jm403e5V9v3c/1LevyxKDoLOtnJPU61SoDcE10Ha6JrhPY4PPhz2X8N4A4PEn3tD8Hcc4FAc8B3YEkYJVzbpGZbcxYx8z+mmn9cXhK6GY4ZmYx/hxTyql18+DYAbjyb1mXa7Q3kXIne+Ied1UTOjSpyYadB5n67sYc69/dqxnNLj6P8yudw6Hjvt2lbtPwQlrUqw5At7BadAurVTjBFzJ/kv1eM1tUwOO0Bn4xsy0Azrm3gGuBnN+2x1BgcgGPJeXdLx95kn378X8ML6vR3kRKlf1HUhn9+uocy29qW59rouuwM+UYf529Jkf7bVc2oltYLTbvPcx9CzwXhLPfH89Py/oX8tLwvNfv0KQmHZrU9Hl/JYU/yX6yc+4l4CPgRMZCM3vbh20vAX7NNJ8EtMltRedcfaAh8HGmxZWccwl4OgY+amYL89j2duB2gHr16uW2ioiIFLHsZ9h9o2pzc7sGHEs9xYiZ3+RY//qWdel6+dmfIef12Fp4nao+D0ZTVviT7EcClwEV+eMyvgG+JHt/DAHmmdmpTMvqm9kO51wj4GPn3Doz25x9QzObDkwHiI2NteztIiJS9Pwd2hXgwpDgfBNynWqV821vHHpeuUvo+fEn2bcys2YFPM4OIHNXw7rpy3IzBBiTeYGZ7Uh/3+KcW4Hnfn6OZC/CoV1wZG/Oy/Yl6bE7kXIot6FdKwcHKSEXEX+S/RfOubDMner8sApo4pxriCfJDwFuzL6Sc+4yoDrwZaZl1YGjZnbCOVcTaA88VoAYpLw4lZpzmQaAESk2SujFz59k3xZY45zbiueevc+P3plZmnNuLJ6x9IOAGWa2wTk3FUjI1PFvCPCWmWW+BH858IJz7jRQAc89+4L84JDy4PzanpeepxcR8fIn2fc6mwOZ2XvAe9mWTco2PyWX7b4AdP1VfHP61JnXEZEiNX2l566rv+O5S+HRCHpStuzZUNwRiEg2H/2wB1CyL07+jKA3KbflZqZiOCIiIiWYP5fxj2SaroSnMM4PhRuOiIiIFDZ/LuP/M/O8c+4JPB3uREREpATz58w+uyp4npcXERHJU6WKQcUdQrnnzz37dXhGzAPP43OhgO7XS8lyXsksQiFSnr0yqnVxh1DunTHZO+f+B6iF5x59hjQ849fvClBcIgWjZC8iZUheJXf95cuZ/dPAvdkfvXPOXZjeds1ZRyGSl4SZnrK1mQ14AarWhfXzYdWMrG0HtsIFurskUpJM+8hT/3181ybFHEnx8zd5f711P+Bf5b7c+JLsa5nZuuwLzWydc67BWR1d5EzWzfNvXPsTh+BocmBjEhG/fP7LPqDok31hnRUXJn+Td16V+3Iz5//l3eZLsq+WT1tlH7YXKbgrxnrem12dsy1ioOeVmerWi5Q4ew6dYN/hEwx+4cszr1yICuusuDD5k7wLky/JPsE5d5uZvZh5oXPuVmB1YMISSZdbkheRUmXf4RMcPZFW5MctrsRaEvmS7O8EFjjnhvFHco8FgoHrAhWYCAD7PPf6qKl7fSKlWZVzz1H1u2J0xmRvZruBK5xzXYCI9MWLzezjgEYmAvDmYE99+ovPWFzRQ3XrRUqccyq44g6h3PNnBL3lwPIAxiKS05G9kHrkzOtlUN16kRKnaa3zizuEcu9sRtATKRrBIapPLyJyFpTspWTI/Dx9r39A7SjYvNxzVh8cUryxichZ2b7/aHGHUO5VKO4ARIA/nqfPLjgEQi4q+nhEpNAcPpHG4WLojS9/0Jm9lBwXR2a9XN+4i+8d80REJE86sxcRESnjdGYvJUPXScUdgYhImaVkLyXDno05C96AnpsXKQOCg3QRubgp2UvJsGoG7N8MdZpnXa7n5kVKHH8LzKSeOk1Y7QsCGJGciZK9lAwpiVAhSM/TS5lREiuuFRZ/C8yE1b6Aa2MuCWRIcgZK9lJwudWaB0+lumZXe8a1f/fOnO0d7/L0tN+1Ft6/17NMz9NLGfPOmh1s3PV7mTyj9bfAzIPvbmDTnkMBjkryo2QvBdekO+xeD3t+PPt96Xl6KYPCal+g4i/Axp2/F3cI5Z6SvRRc1brQ5595t9dskv9l+dpRf7SrDr1IiZPbrYjaVSvx9BBP35oH392QI5E3Cg3hHwM842Pc+/Zatuw9UmavcJQmSvZScOvne94jBhZvHCLl2GtfJvLftbtyLM+4ojB95WY++mFPlrZKFYN4ZVRrAKZ9tInPf9mXpb16lWCev7klvx44ytdb9/t8bz4vumdf/JTspeBWzfC8K9mL5LDn9+OcX6kiAMs27ubFT7fkWOepwTHUqVaZd7/fyetfbcvR/p+bWnJhSDBzE35l3uqkHO3xI1sXfuCZ3NPrMu7pdVme7ZOvCc93+4wzfCl+SvZScId2eUrQFsYleD1PL2XMviOpHCqC8eBvbteAm9s1yLP99o6Nub1j4zzbx3dtwviuTQIQmZQkSvZScP7Wms+PnqeXMuhE2mkAuoXVoltYrTzXuya6DtdE18mzfVDspQyKvbTQ45PyQ8lezizzI3YxN0LzYXAk+Y/H5fRsvIhIiaYxDOXMVH5WRKRUK7Ize+dcL+BfQBDwkpk9mq19BPA4kPGcx7Nm9lJ623BgYvryh83slSIJWv6QvfxsSA2Vn5Vyxd8R8Y6eSKPKubp4KiVDkfxLdM4FAc8B3YEkYJVzbpGZbcy26mwzG5tt2wuByUAsYMDq9G0PFEHoIiKA/yPiNal1Plc0rhngqER8U1Q/O1sDv5jZFgDn3FvAtUD2ZJ+bnsCHZrY/fdsPgV7ArADFKtkNm1vcEYiUCBoRT0qrokr2lwC/ZppPAtrkst5A51xH4Gfgr2b2ax7b5jo6g3PuduB2gHr1fBuzWXywdrbKz4r4acPOgwCE16lazJGIlKwOeu8CDcwsCvgQ8Pu+vJlNN7NYM4sNDQ0t9ADLrS+egR0JOZfrcTmRPE19dyNT3/Xl4qVI4BXVmf0OIPNDonX5oyMeAGaWnGn2JeCxTNt2zrbtikKPUPJ2ZC8EBesROxGRUqqozuxXAU2ccw2dc8HAEGBR5hWcc7UzzfYDfkif/gDo4Zyr7pyrDvRIXyYiIiI+KJIzezNLc86NxZOkg4AZZrbBOTcVSDCzRcB451w/IA3YD4xI33a/c+4hPD8YAKZmdNYTERGRMyuyh0DN7D3gvWzLJmWavhe4N49tZwAzAhqgiJQK/j7vXlhUfGKucwAAF+5JREFUplVKM434ICJForCS9NdbPRf2zrbsqr/8LdN6d69mAYxGxD9K9nJmGilPCoG/g9LkpU3DC7k25hJubFOyH69tWb9of4yI5EfJvjzKXNgGoFEn6HS3Z/r1gXDyeNb1DyZB1bpFF5+UWeVpUJrV2zxXIJT0pSQoSc/ZS1HJq7CNiBSax97/icfe/6m4wxABdGZfPlWpDo06wuDXc7bdND/nspl9Ah+TiIgEjJJ9eZRbkhcRkTJLyV5ExAdvfr2di84/l25htdi89zD3vZ3zVti4q5rQoUlNNuw8qEf1pERRsi+PXhsAe3+C6g18W18FbyQX/j5KV9qT3ztrdpB22ugWVsun9f19VE8kkJTsy6OkVZB6xPdkr4I3kgt/H6UrC8nvnAoOgMah5+X7VEF4narl5qkDKR2U7Mur4BAVtpGzVp4epRMpzfTonYiISBmnZC8iIlLG6TJ+eXTOucUdgUip89TgmOIOQaTAlOzLo5oq0CG+y6vXfWnvXe+vOtUqF3cIIgWmZC/lQnGVRS0L8qoyVxZ61/vj3e93AnBNdJ1ijkTEf0r2ZUH2wjYANRpDv2me6UXjIXnzH23bPoPzy9f/sAqr4lp5VFqqzAXa619tA5TspXRSsi8L9v7kSeD1O/i2/rkXQMUqgY2pBNJjYiJSXinZlwVXP+p55SXjDD+DCtuIeB1LPcWI/9/enYdJVZ15HP++NKuAIIJIK5uIRhA3eFDjRhQzGIM6RgeTSNQ4IZqoMXlmEo3zKDFP4pLNaJy4THBBHY2EKCYKRozLKCC0NrSAyC5bWAIiioDAO3/cU1BdS2901626/fs8Tz1969xbt97Tt6reOveeOueht7LKLxp8KBcP6cnGT3Zw9WMVOjMkJU3JXhJFncmKV65jM6B8f24ZORCA6598hzWbt1Vbf0LvA/jRiM8BcNX4CjZt3VFt/SmHd+W6s/oDcNm4t9j22a5q68866iDGnN4PgFH3T6u2bsXGrVw9rB8XDe5Zp/ibWx8FSRYl+yR48Ez48IO697JP8Fj3+a7N64M6flWrPmTG0o1ZHf3i0rPLfpS1aEG71mU1Xt7p0r61Lv9IyTN3jzuGJjFkyBCfNWtW3GEUxm09o7Hue9XjA2nQRTDkiqaLKSap1ps+nEWkuTGzCncfkmudWvZJobHuRUQkDw2XW0pmPRR1rnvq0r1lL42NWvUiRe7GiXO4ceKcuMMQaZbUsi8lVROi6+2HnV69vHV7aH9QPDFJs3bH5Pd4e/mmamU9OrXlrkuOB+Anz81l3uqPAHWSFImTkn2pOXgQjHps7/3hY2HFzLiiEakzdZIUiY+SfSnZsgY+WZ/9O/kE966X4pb6WVw+qZ/ViUi8lOxLya7PYOf27PKDB0W96xOovmPa61Rx4Vw1vgKA+0YPjjkSEamNkn0p6dwrujWjXvf1HdO+sU4VZ37JuPbM/pzavytzV2/m1ufmZW3/wxFHMrh3FyqWb+TOyQuy1t88cgADyzvxfws3cM/LC7PW//zCQfTr1oGX5q3lwdeXZK3/zajjKO/cjudmr94zRnu63186mC7tW/P0rBVMqFiZtf7hK4bSrnUZ46ct4y9z1mStT/1U8YHXFjN1/rpq69q2KuORbw4F4O6pC3lj0QZAX6xESomSfZxyTWCTSuRv3A3vT6m+bu1c6N78Tos2xpj2T8z4gI5tWzLy2HJWf/gp33+qMmubb512GMMHdGfx+o/58Z+rgOyZ3mQvXYMXKR0aVCdOD52bfb29Lsk+gS372oa53ddkP+r+aWzZtpPnv3da3ZL9xCrN9CYiJUWD6hSrgRdEt6Hfyl53ynXRLV2CJ7ApxDC3HdtGL/fyzu1q/PLQr1sHjcAnIomiZB+nFi2j0/hzn6nb9gnvdd9Yp+ufrVylGctERNIUbAQ9MxthZgvMbJGZ3ZBj/Q/MbJ6ZzTGzqWbWO23dLjOrDLdJhYq5yc1+CtbUY0SxBPe6byypMwSZdH1ZRJqzgrTszawMuBc4G1gJzDSzSe6e3q35HWCIu281s6uBO4FRYd2n7n5cIWItqHVzwSjZa/D1/VlcTRqz5T2gx/5cPCSatlQzlomIFK5lPxRY5O5L3H0H8CRwfvoG7v53d98a7k4HDi1QbNJA+VrRDaGWt4hI0ynUNftDgBVp91cCJ9aw/ZXAC2n325rZLGAncLu757zIbWZjgDEAvXqpF3UhNMZ1dhERaVpF10HPzC4FhgBnpBX3dvdVZnYY8LKZVbn74szHuvsDwAMQ/fSuIAE3A7X9LK6YPHzF0LhDEBEpOoU6jb8K6Jl2/9BQVo2ZDQduAs5z9z3jwrr7qvB3CfAKcHxTBivVlVKnt3aty2jXuizuMEREikqhWvYzgf5m1pcoyV8CfC19AzM7HrgfGOHu69LKDwC2uvt2M+sKnELUea/0degedwR1Viqn68dPWwbA6JP7xBmGiEhRKUiyd/edZnYNMAUoA8a5+1wzuxWY5e6TgF8AHYCnzQzgA3c/DzgKuN/MdhOdibg9oxd/8cs1LC5Auy5Q1qrw8SRYatx3JXsRkb0Kds3e3Z8Hns8ouzlteXiex70JlPZIMm33h+2boU2nuCMpWZeNe4ttn+2qVnbWUQcx5vR+QDQcLhRnPwIRkbgVbFCdZm3bR7kT/fr3Ch9LwhVjPwIRkbgVXW/8RHrn8Six9zi2enlMI+IV8xzxV42vYNPWHXvuz1m5mauH9dszxWo+pdCfQEQkLkr2hbBhAZgVzUh5cc0R3xDHHNqJrh3axPLcIiJJoWTfTBVb7/o7JkeXNO4bPTjmSEREkkfJXhos1+WAw7q157YLjwHgxolzWLL+k2rrB5Tvzy0jBwJw/ZPvsGbzNkAd60REmpI66EmDLVy3hRlLNzbKvtSxTkSk6ahlLw12y8iBe1rpuaRa+PncdYkGQhQRKQQl+0LYv2lbrIXoXX/H5Pd4e/mmamU9OrVVwhYRKQFK9g2ROSLeiNugxzGw+O/w2i+zt2/VDlrt12ThlFLvehERKTwl+4aomgD/qIp+J18kmrp3/Y9GfK7J9i0iIk1Lyb6hDh6U/bv5fl+IbpkeOrdRnjKuqWavGl8B6GdxIiKlSsm+IQ4ZHJ2yr2sSb6SzAPlO1zf1afn0Ee1ERKT0KNk3xKoK+HB53RN4Iw6LW2yD4YiISPFTsq/Nmjkw+cbqZevmQefe+zz8bVxj1D8x4wO+dmIvAB54bTFT56+rtr5tq7I9Y9HfPXWhBrwRESlxGlSnIXbvhM+27vNuUqfl66qxTtc/W7mK/35lUcGfV0RE4qGWfU1euAGWvg7tOmesMOh4cKM8RVyn5V9dsJ7vDDucMaf32zMnfC7XndWf687qX8DIRESksallX5PKx2H9/OzymKamFRERaQi17GvTun3RTE2bzxMzPmDE0QfTpX1rnp61ggkVK7O2efiKobRrXcb4act0DV5EpJlRsi+Apv59/LOVq1i64WNuOndAnbbXNXgRkeZFyR6qD3/7+WvgyHNgw0LY8UnUst9HjfX7+CdmfMCwI7tR3rkdz81ezWPTlwNU6+R38ZCeXDykZ959jD65D6NP7lO/CoiISElTsgd48x7YtCxK7C/9BN783d7e9u0PapSnyNURL9Xiz2z1//zCQfTr1oGX5q3lwdeX7CmfsXQjo0/qzU8vODpr32qpi4hIPkr2AJ+sj/4enDYla6v9oNfJTdoRr1eX/WhZZuzc5XXa/sS+XTgqnB0YeWw5I48tb7LYREQkOZTsU2LoiHdq/66c2r9r3vXDB3Rn+IDuBYxIRESSSMkeoOuR9dq8sUa+m7t6MwADyzvV6/lFRETqo3kl+8x56FO2fwTtu9V5Nw2dP75i+UbunLxgT3lqHxrrXkREmlLzSvY7PoZNS2H7lurluz7Lmexr+8lcXZN0xfKNOcvVsU5ERAqheSX7BZNh+8fVO+Kl5OiI11g/mUu15p/69slqxYuISME1r2T/8VrocFBWR7wnZnzAsxWroGJatXKdZhcRkSRofsk+h4a24Bev/5gfT6zKKr/2zP6c2r8rc1dv5tbn5ml4WhERiVVyk/26efDQubB7F6ybG5Vt/wja5E66+Vrwqz/8lFH3V2/x79ztXH1GP/p2q9voero2LyIicUpust+5I6toR8sOTG8xhHszknflig9p3bJFVlK/9KTeDO59QNZ+WrYw1m3ZzvAB3Ws8xT+wvJMuAYiISOwKluzNbATwW6AM+B93vz1jfRvgUWAw8E9glLsvC+tuBK4EdgHXufuUWp+wRYusa/Oj758WnVLPmJ5+YPn+7Ne6JZ/t2p21m/LO7ZSwRUSkpBUk2ZtZGXAvcDawEphpZpPcfV7aZlcCm9z9cDO7BLgDGGVmA4BLgIFAOfCSmR3h7rtqes7du8lqqada8Jm+OrRXjZPHiIiIlLJCteyHAovcfQmAmT0JnA+kJ/vzgbFheQLwOzOzUP6ku28HlprZorC/6pk8w3ZaVpsN7sD2rRl0SCc6tm3F1h07G6dWIiIiJaBQyf4QYEXa/ZXAifm2cfedZrYZODCUT894bK293XbTgqPTesB/+ZgemtpVRESapUR10DOzMcCYcHf7e1d9/t3Uuj8C34glqn3WFdgQdxCNJCl1SUo9IDl1SUo9IDl1SUo9oHTq0jvfikIl+1VA+kXxQ0NZrm1WmllLoBNRR726PBYAd38AeADAzGa5+5BGiT5GSakHJKcuSakHJKcuSakHJKcuSakHJKMu2b3VmsZMoL+Z9TWz1kQd7iZlbDMJuCwsXwS87O4eyi8xszZm1hfoD7xVoLhFRERKXkFa9uEa/DXAFKKf3o1z97lmdiswy90nAX8AxocOeBuJvhAQtvsjUWe+ncB3a+uJLyIiInsV7Jq9uz8PPJ9RdnPa8jbg4jyP/Rnws3o+5QP1jbFIJaUekJy6JKUekJy6JKUekJy6JKUekIC6WHSmXERERJKqUNfsRUREJCaJS/ZmNsLMFpjZIjO7Ie546srMeprZ381snpnNNbPvhfKxZrbKzCrD7Utxx1oXZrbMzKpCzLNCWRcz+5uZLQx/syceKDJmdmTa/77SzD4ys+tL4biY2TgzW2dm76aV5TwGFrk7vG/mmNkJ8UWeLU9dfmFm74V4/2xmnUN5HzP7NO3Y3Bdf5NXlqUfe15KZ3RiOyQIz+5d4os4tT12eSqvHMjOrDOXFfEzyffaW5HslL3dPzI2o899i4DCgNTAbGBB3XHWMvQdwQljuCLwPDCAaVfA/4o6vAfVZBnTNKLsTuCEs3wDcEXec9axTGfAPot+yFv1xAU4HTgDere0YAF8CXgAMOAmYEXf8dajLF4GWYfmOtLr0Sd+umG556pHztRTe/7OBNkDf8NlWFncdaqpLxvpfATeXwDHJ99lbku+VfLektez3DMvr7juA1LC8Rc/d17j722F5CzCfOowUWGLOBx4Jy48AF8QYS0OcBSx29+VxB1IX7v4a0S9b0uU7BucDj3pkOtDZzHoUJtLa5aqLu7/o7qmxr6cTjcFR1PIck3z2DBXu7kuB1FDhRaGmupiZAf8G/G9Bg2qAGj57S/K9kk/Skn2uYXlLLmGaWR/geGBGKLomnC4aVwqnvgMHXjSzCotGNgTo7u5rwvI/gO7xhNZgl1D9w6sUj0u+Y1Dq751vErW2Uvqa2Ttm9qqZnRZXUPWQ67VUysfkNGCtuy9MKyv6Y5Lx2Zuo90rSkn3JM7MOwJ+A6939I+D3QD/gOGAN0amxUnCqu58AnAN818xOT1/p0fmwkvkpiEWDQZ0HPB2KSvW47FFqxyAfM7uJaAyOx0PRGqCXux8P/AB4wsz2z/f4IlDyr6Ucvkr1L8ZFf0xyfPbukYT3StKSfZ2H1i1GZtaK6MX2uLtPBHD3te6+y913Aw9SRKfxauLuq8LfdcCfieJemzrdFf6uiy/CejsHeNvd10LpHhfyH4OSfO+Y2eXAl4Gvhw9kwmnvf4blCqJr3UfEFmQtangtleoxaQlcCDyVKiv2Y5Lrs5eEvVeSluzrMixvUQrXuP4AzHf3X6eVp18L+lfg3czHFhsza29mHVPLRB2p3qX6kMiXAc/GE2GDVGuplOJxCfIdg0nAN0JP45OAzWmnMIuSmY0Afgic5+5b08q7mVlZWD6MaIjtJfFEWbsaXkulOlT4cOA9d1+ZKijmY5Lvs5cEvVeAZPXG9709Jd8n+uZ4U9zx1CPuU4lOE80BKsPtS8B4oCqUTwJ6xB1rHepyGFEv4tnA3NRxIJqyeCqwEHgJ6BJ3rHWsT3uiSZk6pZUV/XEh+nKyBviM6LrilfmOAVHP4nvD+6YKGBJ3/HWoyyKia6ep98t9YduvhNddJfA2MDLu+GupR97XEnBTOCYLgHPijr+2uoTyh4GrMrYt5mOS77O3JN8r+W4aQU9ERCThknYaX0RERDIo2YuIiCSckr2IiEjCKdmLiIgknJK9iIhIwinZizQiM3MzeyztfkszW29mf2ng/jqb2XfS7g9r6L7y7L/czCY01v4KIcyg9rV9ePzlZlbemDGJFDsle5HG9QlwtJm1C/fPZt9G1+oMfKfWrRrI3Ve7+0VNtf8m0gdocLIHLgeU7KVZUbIXaXzPA+eG5cyR97qY2TNh0pPpZnZMKB8bJkF5xcyWmNl14SG3A/3CHOC/CGUdzGyCRXO5Px5GAMPMbg9zcs8xs19mBmVmZ9je+cTfMbOOoZX8blh/uZlNNLPJFs3hfWfaY0eY2dtmNtvMpoay9iHmt8L+smaYDGciXjWzZ0O9bjezr4fHVJlZv7DdSDObEfbzkpl1zxdz+J+cFsq+b2ZlFs1tPzPU/dtpz/+j8Dyzw3NfBAwBHg+Pb2dmZ4V9V4X6tAmPXWZmt4XtZpnZCWY2xcwWm9lVYZtHzeyCtOd7PNf/QSR2cY/qo5tuSboBHwPHABOAtkSjcQ0D/hLW3wPcEpbPBCrD8ljgTaK5y7sSjdjXiox5wMO+NhONx90CmEY0AtiBRKOspQbK6pwjtueAU8JyB6Bl+v6JWrxLgE4h9uVEY4B3Ixqprm/YLjWS2M+BS1PPRzRyZfuM5xwGfEg0Z3gborMcPwnrvgfcFZYPSIv934Ff1RDznv9nKB8D/FdYbgPMIpr//ZzwP90vI+5XCKOehXquAI4I9x8lmggFYBlwdVj+DdEIax3D/2NtKD8DeCYsdwKWAi3jfh3qplvmTS17kUbm7nOIkuhXiVr56U4lGh4Vd38ZOND2zv71V48mDNlANOlGvimA33L3lR5NnFIZnmszsA34g5ldCGzN8bg3gF+Hswadfe9c8Ommuvtmd98GzAN6AycBr3k0pzrunprD/IvADWZWSZRA2wK9cuxzpkdzhm8nGmL0xVBeFWKH6MvLFDOrAv4TGFiPmL9INFZ5JdHUpAcSjb0+HHjIw7j5aXGnOxJY6u7vh/uPAOkzNKbm1qgCZrj7FndfD2w3s87u/irRfBzdiI73n/LEKBIrJXuRpjEJ+CXVp/mszfa05V1Erdg6bRcSzFCiMwpfBiZnPsjdbydqNbcD3jCzz+1DDBCNEf4Vdz8u3Hq5+/xa9rk77f7utP3fA/zO3QcB3yb64lDXmA24Ni2Ovu7+Yo7tGiI91sx6pGJ/FLgUuAIY10jPK9KolOxFmsY4otPVVRnlrwNfh+h6NrDBM+bOzrCF6NRxjSyai7uTuz8PfB84Nsc2/dy9yt3vIJohMlfizGU6cLpFM69hZl1C+RTg2rQ+A8fXcX+5dGJvR8bUTGP5Ys78n0wBrrZomlLM7AiLZlv8G3CFme2XEXf64xcAfczs8HB/NPBqPWN/GLgewN3n1fOxIgVR07d2EWkgj6b3vDvHqrHAODObQ3Sq/bIc26Tv559m9kboRPcC8Nc8m3YEnjWztkQt3R/k2OZ6M/sCUat0bthfjxzbZcaw3szGABPNrAXRJYazgZ8CdwFzQvlSorMKDTEWeNrMNgEvE11zzxfzbmCXmc0mSrS/Jboc8Hb44rEeuMDdJ5vZccAsM9tBdEnlx+Ex95nZp8DJRC3ypy2ah30mcF99Anf3tWY2H3imYVUXaXqa9U5EZB+EMwdVwAnuvjnueERy0Wl8EZEGMrPhwHzgHiV6KWZq2YuIiCScWvYiIiIJp2QvIiKScEr2IiIiCadkLyIiknBK9iIiIgmnZC8iIpJw/w8JvfHNRRFLtQAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"fig, (hazard_ax, surv_ax) = plt.subplots(ncols=2, sharex=True, sharey=False, figsize=(16, 6))\n", | |
"\n", | |
"az.plot_hdi(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(tv_base_hazard),\n", | |
" ax=hazard_ax,\n", | |
" color=\"C0\",\n", | |
" smooth=False,\n", | |
" fill_kwargs={\"label\": \"Had not metastasized\"},\n", | |
")\n", | |
"\n", | |
"az.plot_hdi(\n", | |
" interval_bounds[:-1],\n", | |
" cum_hazard(tv_met_hazard),\n", | |
" ax=hazard_ax,\n", | |
" smooth=False,\n", | |
" color=\"C1\",\n", | |
" fill_kwargs={\"label\": \"Metastasized\"},\n", | |
")\n", | |
"\n", | |
"hazard_ax.plot(interval_bounds[:-1], get_mean(cum_hazard(tv_base_hazard)), color=\"darkblue\")\n", | |
"hazard_ax.plot(interval_bounds[:-1], get_mean(cum_hazard(tv_met_hazard)), color=\"maroon\")\n", | |
"\n", | |
"hazard_ax.set_xlim(0, df.time.max())\n", | |
"hazard_ax.set_xlabel(\"Months since mastectomy\")\n", | |
"hazard_ax.set_ylim(0, 2)\n", | |
"hazard_ax.set_ylabel(r\"Cumulative hazard $\\Lambda(t)$\")\n", | |
"hazard_ax.legend(loc=2)\n", | |
"\n", | |
"az.plot_hdi(interval_bounds[:-1], survival(tv_base_hazard), ax=surv_ax, smooth=False, color=\"C0\")\n", | |
"az.plot_hdi(interval_bounds[:-1], survival(tv_met_hazard), ax=surv_ax, smooth=False, color=\"C1\")\n", | |
"\n", | |
"surv_ax.plot(interval_bounds[:-1], get_mean(survival(tv_base_hazard)), color=\"darkblue\")\n", | |
"surv_ax.plot(interval_bounds[:-1], get_mean(survival(tv_met_hazard)), color=\"maroon\")\n", | |
"\n", | |
"surv_ax.set_xlim(0, df.time.max())\n", | |
"surv_ax.set_xlabel(\"Months since mastectomy\")\n", | |
"surv_ax.set_ylabel(\"Survival function $S(t)$\")\n", | |
"fig.suptitle(\"Bayesian survival model with time varying effects\");" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 431 | |
}, | |
"id": "xE_r2xxtrpDV", | |
"outputId": "cb6a7b82-d9b3-4d95-8895-d4f156c5f483" | |
}, | |
"execution_count": 108, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1152x432 with 2 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAGeCAYAAACw+tM2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xV9f348df7juxJBhDCBtkkYGSDCCgVEVdrwYnW+q11tP6qtnXVWv3Wr9rWqm3dRasiqAVx42CIoiwBGbJkhZ1AQvZdn98f5ySEEELGTS5J3s8H90HuGZ/zPnck530+S4wxKKWUUkoppZRSrYkj1AEopZRSSimllFJNTZNhpZRSSimllFKtjibDSimllFJKKaVaHU2GlVJKKaWUUkq1OpoMK6WUUkoppZRqdTQZVkoppZRSSinV6mgyrJRSLYCIjBaRTaGOoyFE5EMRuTYI5SwUkRuCEVMdjztWRLJrue0DIvJqA493pYjMD0Y8NZRRKCLdGlLG6UZE1ovI2BAcd6SIbLFf04tFpK2ILBaRAhH5S1PHo5RSClyhDkAppZojEdkBtAX8gBf4CviFMWZ3KOIxxnwB9ArFsYPFGHN+qGNoTowxrwGvlT8XEQP0NMZsrU95IrIQeNUY80KlY8Q0NM7TjTGmX4gO/SDwtDHm7wAich+QA8QZY0x9CxWRGUC2MebeoESplFKtiNYMK6VU/V1oJwvtgQPAUyGO57QlInrzVTW60/xz1hlYX+X5hoYkwkoppRpGk2GllGogY0wp8BbQt3yZiFwgIt+KyFER2S0iD1Ra976I3Fq5DBFZKyKX2D/3FpFPROSwiGwSkcsrbTdJRDbYTSv3iMgd9vLjmsSKyO9EZJu93Ybysu1100VkiYg8LiJHRGS7iJy0VlZEfmsfq8COZ7y9fIaIPFRpu6ox7LD3XQsU2T+/VaXsv4vIk/bPC0XkBhEJF5E8EelfabsUESkRkVQRSRSR90TkkB3/eyKSXtN7VKmcB0TkTRF51T6f70TkDBH5vYgctN+r8yptnyYi8+z3YquI/LzSukj7NTgiIhuAs6ocK01E3rbj3C4it9UyxkUicpn980gRMSJygf18vIistn+eLiJL7J8X27uvsZvh/rRSeb+xz22fiFx3kmM+DIwGnrb3f9pebkSkh/3zDBH5p1jN2QtF5EsRaSciT9ivwfciMqiu5y8iQ0Vkv4g4Ky27xP7cICJDRGSp/ZnYJyJPi0hYpW2NiNwsIluALSLyD6nS7Nh+D2+3f94hIhPsnx8Qkdki8or9eVgvIlmV9hss1ve4wP7czKr8ma/mXK4XkY326/GxiHS2l28DugHv2q/dTOBa4C77+QQRccix722uHVebSmWPEpGv7Ndht/3+3whcWamcd+1tq/3OKqWUOp4mw0op1UAiEgX8FPi60uIi4BogAbgAuElELrbXvQxcVWn/DKAD8L6IRAOfAK8DqcBU4J8iUp5ovwj8jzEmFugPfH6SsLZhJTfxwB+BV0WkfaX1Q4FNQDLwKPCiiEg159YLuAU4yz7mRGDHKV6SyqbZ558AvAFMEpFYu2wncLl9rhWMMWXAf+19y10OLDLGHMT62/VvrJq1TkAJ8HQdYroQ+A+QCHwLfGyX2QGrKeuzlbZ9A8gG0oAfA/8rIuPsdX8AutuPiVjJDfa5OYB3gTV2ueOBX4vIxFrEtwgYa/98NvADMKbS80VVdzDGlK/PMMbEGGNm2c/bYX0GOgA/A/4hIonV7H8P8AVwi73/LSeJ7XLgXqzPTRmwFFhlP38L+Gtdz98Y8w3W92VcpcVXcOxz4Qdut48x3C7rl1WKuRjrM90X6/s1zY4BEUkGJlDlc1bJFKz3OQGYh/1ZshPuOcAMoA0wE7ik+iJARC4C7gYuBVKwXs+Z9jl2B3ZhtyYxxkzDauL+qP38U+BW+zzOxvq8HQH+YZfdGfgQq/VJCpAJrDbGPFelnAuD8J1VSqlWQ5NhpZSqv7kikgfkA+cCj5WvMMYsNMZ8Z4wJGGPWYl0Un22vngecISI97edXA7OMMR5gMrDDGPNvY4zPGPMt8DbwE3tbL9BXROKMMUeMMauqC8wY86YxZq99/FnAFmBIpU12GmOeN8b4sZKH9lh9oKvyA+H2Md3GmB3GmG11eI2eNMbsNsaUGGN2YiVO5QnFOKDYGPN1Nfu9jnUjoFxFcmSMyTXGvG2MKTbGFAAPc+y1rY0vjDEfG2N8wJtYycUjxhgvVlLURUQSRKQjMBL4rTGm1BizGngB6yYHWInhw8aYw3Zf8ScrHeMsIMUY86AxxmOM+QF4vso5ncyiSuczBvhzpefVJsM18AIPGmO8xpgPgEIa1rd8jjFmpd0aYg5Qaox5xf4czQLKa4brev4zsW9+2DdLJnEskVxpjPna/j7swLpZUfX9/rP9PpQYY5ZhfSfLa0OnAguNMQdOcuwlxpgP7HP4D5BhLx+GNbbKk/br919gWQ2vzS/sODban63/BTLLa4dr4RfAPcaYbPuG0APAj8Vq+n0F8KkxZqYdS679eaxOQ7+zSinVamgyrJRS9XexMSYBiMCqiVkkIu2gounnAruJaD7WhW4yVDSrngVcZddeTcO6CAertnOo3RQyz062r8Sq4QO4DCtR2ClWc9rh1QUmIteIyOpKZfQvP75tf/kPxphi+8cTBkuyB2P6NdaF+UEReUNE0urwGlUdUOx1jtX4Vq79q2oBEGW/jl2wasLmgFUTLyLPishOETkKLAYSKjezPYXKSVEJkGMnQuXPwXot0oDDdsJdbidWTSf2+t1V1pXrDKRVeR/vpvobDlUtxbpZ0hbrvF8BOto1nEOwzre2cu3ErFwx1bzPdVD1tav6vLzsup7/68ClIhKOVbO6yr55gljN2N8Tqyn1UawkM7nK/lU/Z5VbX1zFse9XdfZX+rkYiLAT0DRgT5U+vTUNkNcZ+Hul8z0MCMc+L6fSGZhTaf+NWIltW6AjVmuPUwrCd1YppVoNTYaVUqqBjDF+u9bID4yyF7+OVQPc0RgTDzyDdWFc7mWsJHc8Vu3oUnv5bqzmwAmVHjHGmJvsYy03xlyE1YR6LjC7ajx2TdTzWAl6kp2wr6ty/Lqc3+vGmFFYF+sG+D97VREQVWnTdlX3tbev7E1grFh9fC/hJMmwnZzOxkqcpwHvVUpKf4NVuznUGBPHsSbE9Tq/GuwF2pQ367Z1AvbYP+/DSlIqryu3G9he5X2MNcZMOtVB7ZsTK4FfAevsFgNfAf8P2GaMyan/KdV86CCWVafzN8ZswLqZcD4n3iT5F/A91kjZcVhJddX3umrsrwIX2V0Q+mB9V+pqH9ChSveBjifbGOuc/6fKOUcaY76q5fF2A+dX2T/CGLPHXtf9JPud8L7V8J1VSilViSbDSinVQGK5CKsP6kZ7cSxWrWKpiAzBusCvYCe/AeAvHF9r9R5WreDVIuK2H2eJSB8RCRNrbtl4u0nvUbuMqqKxLoAP2fFdh1UzXJ9z6yUi4+wau1Ks2r/yY67G6gPcxq4R//WpyjPGHAIWYvX53W6M2VjD5q9j9cW+kuOTo1g7jjx7gKE/1O2sasdu+vwV8GcRiRCRgVj9bsvnB54N/F6sAb3Ssfp8llsGFNgDGUWKiFNE+ovIcYNs1WARdmsD+/nCKs+rcwBrkKb6auj+ldXn/F/HugEwBuumSblYrM96oYj0Bm461cGNMdnAcqzv1tvGmJJT7FKdpVg3uG4REZf9HR9Sw/bPYH0e+gGISLyI/KSG7avb/2E5NuhWin1MsPoFTxCRy+1YkkQk01533Pt2iu+sUkqpSjQZVkqp+ntXRAqxLtQfBq41xpRPnfJL4EERKQDup5oaXKzmrwM4llxh136eh9XPcS9WE87/w+oDCFb/4h12c9FfYCWKx7Fr2f6CdTF/wD7Gl/U8x3DgEaz5UPdj1Uj/3l73H6wBknYA87GaftfG69Q8oBFw3MBKaViDB5V7Aoi0Y/oa+KiWx62PaUAXrPdiDvAHYw12BNbAZDuB7VjnX3FTw67ZnozVzHm7HesLWINZ1cYirCRw8UmeV+cB4GW7me3lNWx3Mn/H6qN6ROwRvuurnudf3q/+8yq133dg3UwqwGrxUNvP2ctYn/2amkiflF0jfynWDZA8rObW72ENHFbd9nOwvqtv2N/PdVg13bX1d6zWJPPt3xtfYw0KhjFmF1b3iN9gNb9ezbG+zS9i9Q/OE5G51PydVUopVYkYnd5OKaVCQkSuAW60mzMqpYJIRMZg3WjqbIJ0sSMi3wDPGGP+HYzylFJKhZbWDCulVAiINR3TL4HnQh2LUi2NiLixmly/0JBEWETOFmsuZZeIXAsMpHFbIiillGpCmgwrpVQTE2uu1UNYTZhrbCqslKobEemD1ay5PVaT+obohdUVIA+rifKPjTH7GlimUkqp04Q2k1ZKKaWUUkop1epozbBSSimllFJKqVZHk2GllFJKKaWUUq2OJsNKKaWUUkoppVodTYaVUkoppZRSSrU6mgwrpZRSSimllGp1NBlWSimllFJKKdXqaDKslFJKKaWUUqrV0WRYKaWUUkoppVSro8mwUkoppZRSSqlWR5NhpZRSSimllFKtjibDSimllFJKKaVaHU2GlVJKKaWUUkq1OpoMK6WUUkoppZRqdTQZVkoppZRSSinV6mgyrJRSSimllFKq1dFkWCmllFJKKaVUq6PJsFJKKaWUUkqpVkeTYaWUUkoppZRSrY4mw0oppZRSSimlWh1NhpVSSimllFJKtTqaDCullFJKKaWUanU0GVZKKaWUUkop1epoMqyUUkoppZRSqtXRZFgppZRSSimlVKujybBSSimllFJKqVanSZJhEekoIgtEZIOIrBeRX1WzjYjIkyKyVUTWisjgSuuuFZEt9uPapohZKaWUUkoppVTLJcaYxj+ISHugvTFmlYjEAiuBi40xGyptMwm4FZgEDAX+bowZKiJtgBVAFmDsfc80xhxp9MCVUkoppZRSSrVITVIzbIzZZ4xZZf9cAGwEOlTZ7CLgFWP5Gkiwk+iJwCfGmMN2AvwJ8KOmiFsppZRSSimlVMvU5H2GRaQLMAj4psqqDsDuSs+z7WUnW66UUkoppZRSStWLqykPJiIxwNvAr40xRxuh/BuBGwGio6PP7N27d7APoZRSqhVauXJljjEmJdRxNHfJycmmS5cuoQ5DKaVUCxCMv81NlgyLiBsrEX7NGPPfajbZA3Ss9DzdXrYHGFtl+cLqjmGMeQ54DiArK8usWLGiwXErpZRSIrIz1DG0BF26dEH/NiullAqGYPxtbqrRpAV4EdhojPnrSTabB1xjjyo9DMg3xuwDPgbOE5FEEUkEzrOXKaWUUkoppZRS9dJUNcMjgauB70Rktb3sbqATgDHmGeADrJGktwLFwHX2usMi8idgub3fg8aYw00Ut1JKKaWUUkqpFqhJkmFjzBJATrGNAW4+ybqXgJcaITSllFJKKaWUUq1Qkw6gFWper5fs7GxKS0tDHYpqhiIiIkhPT8ftdoc6FKWUUkoppVQDtapkODs7m9jYWLp06YLVjVmp2jHGkJubS3Z2Nl27dg11OEoppZRSSqkGavJ5hkOptLSUpKQkTYRVnYkISUlJ2qpAKaWUUkqpFqJVJcOAJsKq3vSzo5RSSimlVMvR6pLhUIuJiTnu+YwZM7jlllvqVEaXLl3IyclpcCxz585lw4YNDS6nOk888QTFxcX12rchca1YsYLbbrutXvtWNn36dN56660Gl6OUUkoppZQ6PbWqPsNV/WX+JvbmlQStvLSESH5zXq+gldfY5s6dy+TJk+nbt2/Qy37iiSe46qqriIqKatK4srKyyMrKqvN+SimllFJKqdalVdcM780rIT0xKmiPhibW7777LkOHDmXQoEFMmDCBAwcOAJCbm8t5551Hv379uOGGG7BmoTpRTEwM99xzDxkZGQwbNqxi/x07djBu3DgGDhzI+PHj2bVrF1999RXz5s3jzjvvJDMzk23bth1X1vTp07npppsYNmwY3bp1Y+HChVx//fX06dOH6dOnV2w3f/58hg8fzuDBg/nJT35CYWEhTz75JHv37uWcc87hnHPOAeCmm24iKyuLfv368Yc//KFi/9/97nf07duXgQMHcscdd1Qb1/PPP89ZZ51FRkYGl112WUWN85tvvkn//v3JyMhgzJgxACxcuJDJkycDMGnSJDIzM8nMzCQ+Pp6XX34Zv9/PnXfeyVlnncXAgQN59tlnAWuArFtuuYVevXoxYcIEDh482KD3UimlmjMReUlEDorIupOsFxF5UkS2ishaERnc1DEqpZRSDdWqk+FQKCkpqUjQMjMzuf/++yvWjRo1iq+//ppvv/2WqVOn8uijjwLwxz/+kVGjRrF+/XouueQSdu3aVW3ZRUVFDBs2jDVr1jBmzBief/55AG699VauvfZa1q5dy5VXXsltt93GiBEjmDJlCo899hirV6+me/fuJ5R35MgRli5dyt/+9jemTJnC7bffzvr16/nuu+9YvXo1OTk5PPTQQ3z66aesWrWKrKws/vrXv3LbbbeRlpbGggULWLBgAQAPP/wwK1asYO3atSxatIi1a9eSm5vLnDlzWL9+PWvXruXee++tNq5LL72U5cuXs2bNGvr06cOLL74IwIMPPsjHH3/MmjVrmDdv3gnxf/DBB6xevZoXX3yRzp07c/HFF/Piiy8SHx/P8uXLWb58Oc8//zzbt29nzpw5bNq0iQ0bNvDKK6/w1VdfNeyNVkqp5m0G8KMa1p8P9LQfNwL/aoKYlFJKqaBq1c2kQyEyMpLVq1dXPJ8xYwYrVqwArKmffvrTn7Jv3z48Hk/FFD6LFy/mv//9LwAXXHABiYmJ1ZYdFhZWUSt65pln8sknnwCwdOnSiv2vvvpq7rrrrlrFeuGFFyIiDBgwgLZt2zJgwAAA+vXrx44dO8jOzmbDhg2MHDkSAI/Hw/Dhw6sta/bs2Tz33HP4fD727dvHhg0b6Nu3LxEREfzsZz9j8uTJFbFXtW7dOu69917y8vIoLCxk4sSJAIwcOZLp06dz+eWXc+mll1a7b05ODldffTWzZ88mPj6e+fPns3bt2or+wPn5+WzZsoXFixczbdo0nE4naWlpjBs3rlavkVKqFfCWEOUmItRhNCVjzGIR6VLDJhcBrxirqdLXIpIgIu2NMftOUW4Qo1RKKaUaRpPh08itt97K//t//48pU6awcOFCHnjggTrt73a7K0Y8djqd+Hy+BsUTHh4OgMPhqPi5/LnP58PpdHLuuecyc+bMGsvZvn07jz/+OMuXLycxMZHp06dTWlqKy+Vi2bJlfPbZZ7z11ls8/fTTfP755yfsP336dObOnUtGRgYzZsxg4cKFADzzzDN88803vP/++5x55pmsXLnyuP38fj9Tp07l/vvvp3///oB1IfbUU09VJNTlPvjggzq/PkqpFsoYKDwIOVtg70o4tJm0WGkf6rBOMx2A3ZWeZ9vLTkiGReRGrNpjoiWRX9/4ApdeEEN8nBOAgMOFNyIZT0Qy3vBEkJM3WhP7Ue26KiP+C1DdJAAupwOnQ3CI4HIITodUbCd26TVNHuAQwSHW8axyrGVOh1WewyE4xfq/unLKj3vs2DpTgVJKhYomw6eR/Px8OnToAMDLL79csXzMmDG8/vrr3HvvvXz44YccOXKkTuWOGDGCN954g6uvvprXXnuN0aNHAxAbG0tBQUG94x02bBg333wzW7dupUePHhQVFbFnzx7OOOOMirKTk5M5evQo0dHRxMfHc+DAAT788EPGjh1LYWEhxcXFTJo0iZEjR9KtW7dq4yooKKB9+/Z4vV5ee+21itdo27ZtDB06lKFDh/Lhhx+ye/fu4+L73e9+x8CBA5k6dWrFsokTJ/Kvf/2LcePG4Xa72bx5Mx06dGDMmDE8++yzXHvttRw8eJAFCxZwxRVX1Pu1UUo1I8ZAaR7k7YKDG2HfWig9AgYIj4XY9gQMgVCH2VwZY54DngNoL07zz+cP8syMXCZl5fLTsw/SNdWavz1MBBcOjrjbkhuWzqHwdHLD0ih1xp7iAHWIpdLG5UloeSoqdlHluWl1ldhSeYeKZWLtZ5duysuqIS5jrxcBt0NwOU9MiEWE/mnxjOyZTFp8hCbNSinVCDQZPo088MAD/OQnPyExMZFx48axfft2AP7whz8wbdo0+vXrx4gRI+jUqVOdyn3qqae47rrreOyxx0hJSeHf//43AFOnTuXnP/85Tz75JG+99Va1/YZrkpKSwowZM5g2bRplZWUAPPTQQ5xxxhnceOON/OhHP6roOzxo0CB69+5Nx44dK5pVFxQUcNFFF1FaWooxhr/+9a/VxvWnP/2JoUOHkpKSwtChQysS5TvvvJMtW7ZgjGH8+PFkZGSwaNGiivgef/xx+vXrR2ZmJmD1Mb7hhhvYsWMHgwcPxhhDSkoKc+fO5ZJLLuHzzz+nb9++dOrU6aTNvZVSpwFjwFsMpfngLYGAD/we8HutR+BkrWLMsf3LHd0L+7+DklxAwOGGiHiI61hz9aDaA3Ss9DzdXlYjIcAjZ3/AwsB5vL80hTlLUzmrTxkXnV3M6Mwywpx+Uv3FdPCuweFdCQaKw9pwIKYPRyK7kB+Rjs/ZclqsG2MIGAhUkzkbA6t2HeGb7bl0S45hXJ9Uzmgbi9Ohn0ullAoWaan9d7Kyskx5X9xyGzdupE+fPhXPW/vUSqruqn6GlFJBYgwUH4bcrVB08MTavoDXarpcdAiKcuyEV+xaOgNGgEClRLe6v20VdX92tRzgDLOSX1dkjclv98vuydl2OJDS4PNsRuw+w+8ZY/pXs+4C4BZgEjAUeNIYM+RUZXaLDjfX+Q2jHr6eEmcs7yyK4p3FURw47CQx1s8FI0uYMrqE9LZ+awdjcAVKifAVIAQodcWxrOPPKHOdora4BTHGkFfipajMR0KUm3G9U8nomEhMuNZnKKVaNxFZaYxp0Jyqrfo3qSauSikVQn4f5O20miZnL7eSYACp7k+TgCvcekQng6NV//lqdCIyExgLJItINvAHwA1gjHkG+AArEd4KFAPX1abcuLZtMLsOsmnOl2RcN5Hpk4u4elIRy9aH8c7iKGbOj+bVj2LI6lPGRWNKGJ1ZCu5ICp2RAER7DpGxbzYrO1yN3xEW9PM+HYkIiVFhJEaFUVTmY86qPbyzei9ZndswrFsSHdtEahNqpZSqJ72aUEqplq74MORnQ/EROJoNBfug8ACUFVKnDpdBJ3ZtrAMiE7Rp8mnEGDPtFOsNcHNdy3VFRjP4vH6s/GgdR889k7j0ZJwOGD7Aw/ABHg7lOXh/SSTzvojivmcTSIgJcP6IEqaMKaZzOz9F7mTiS7LpffAD1re9qNV9XqLDXUSHu/AFAhVNqNvFRzKmZzLxUe5aleEUIS0hkmitWVZKKU2GlVKqRfOWwKJHoeyo1TTYFQ6uCHBHQ0T107Q1qVaWzLR6rjDGTc1i7aLNbHpzEWfdftlxq1MSAkyfXMQ1k4pYtiGMeV9EMfszq8Y4o6eHy84pZuzgtqQfXUVRWAo72owM0YmElsvhoG1cBMYYCst8vLkym5OPwX288kG+OiZGMrBjAj1SYmgfH4HLWdsSlFKq5dBkWCmlWrKtn1mJcHzHU2+rqrV6a6gjaEEcbqLiIhl5xVgWvvAxh9bvJKVf5xM3c8Cw/h6G9fdwON/B+19FMm9xJPc/l0C7pFh+Oi6KK4Z8SmFYMjkxrbfLk4gQG+EmNqJ2tcLlyvshf7DWmgnL7XQQH+XCKQ4cDsHlKJ8u6sQEOczpYHJGe9rGtZyBzJRSrZfeBlRKqZaqKAc2fQQx7UIdSbO29getvQ4ap3UPfuRlw4hOiWfTmwsxgZqb6reJD3D1+UW88XAOj9x8hLZt/Pz9zQTG3ZfBp/9Ygid7Z1NE3qKICHERbtISIklLiCQxyo0/AGU+P8VlPvJLfBwu8nDwaOkJj60HC/jXwm0cKigL9WkopVSDaTKslFIt1fp3rGbIzrrVGqnjlXpCHUFLIhDfARcext9wHsXZOez5al2t9nQ6YMygMv7128O8cE8OwwaU8dqCZO65YTVv/2UZufuKGjn2lsvldBDpdhIVZvVJjgl3ERvhJi7yxEdqXAS+QIBnF23jSJF+OZRSzZsmw01MRLjqqqsqnvt8PlJSUpg8eXKN+61evZoPPvigXsfMy8vjn//8Z732BbjhhhvYsGFDvfcH2LFjB/37nzA7h1KqseRugz3LIFZrhRuq1KM1w0HVpjt4isgcn0FS9/ZsnfsVfo+3TkX07erjT/+Tz+w/H+Inow+z/LO9/Pm6z5j52LcczC5spMBVuaTocEo8fp5dvI38krq9d0opdTpp3X2GP3/IGmE1WOLTYdy9NW4SHR3NunXrKCkpITIykk8++YQOHTqcsujVq1ezYsUKJk2aVOewypPhX/7yl3XeF+CFF16o135KqRAJ+GHNGxAWB6L3PBtKa4aDrE032L4QcTg4/6bzefWOl9j+yUp6XDCszkW1Twpw29UBrvvRD7zySQJvLhJWfLabzDEdSEmPBqyb0OVTUp9xZgpd+rQJ8gm1Tsmx4RwsKOX5L37gF2d313mPlVLNUuu+SsrPhoTOwXvUMrGeNGkS77//PgAzZ85k2rRjM1gUFRVx/fXXM2TIEAYNGsQ777yDx+Ph/vvvZ9asWWRmZjJr1iyWLVvG8OHDGTRoECNGjGDTpk0ArF+/niFDhpCZmcnAgQPZsmULv/vd79i2bRuZmZnceeedFBYWMn78eAYPHsyAAQN45513Ko59wQUXkJGRQf/+/Zk1axYAY8eOZcWKFcybN4/MzEwyMzPp1asXXbt2BWDlypWcffbZnHnmmUycOJF9+/ZVLM/IyCAjI4N//OMfwXnPlFKnlr0C8ndD5GkwWnQLoMlwkMWkUn750X1wDzpn9WTnR8spKyiud5GxKTHcfnk+Hz+wlkkXJrBh2QHmv7qZ+a9u5uP/bOLjVzbx0SubeOa3S7U5dRClxkZw6GgpLy3ZTonHH+pwlFKqzvQ2XghMnTqVBx98kMmTJ7N27Vquv/56vvjiCwAefvhhxo0bx0svvUReXh5Dhoq20qQAACAASURBVAxhwoQJPPjgg6xYsYKnn34agKNHj/LFF1/gcrn49NNPufvuu3n77bd55pln+NWvfsWVV16Jx+PB7/fzyCOPsG7dOlavXg1YTbPnzJlDXFwcOTk5DBs2jClTpvDRRx+RlpZWkajn5+cfF/eUKVOYMmUKAJdffjlnn302Xq+XW2+9lXfeeYeUlBRmzZrFPffcw0svvcR1113H008/zZgxY7jzzjub6uVVqnXzFMN3b0JUsk5bFCQlZaBV7EEU0xYIWFN9iTDppvP51w1Psfndrxlwxbh6F+txRROd5OTRcz9jwxUXsDvhLGsaIXsuobycEh7/n4W88ZfV3PToCBwO/X4EQ9u4CLKPFPPYx99zXt92ZHZKIMLtDHVYDVbq9bPtUCHZR0qsz1Alxhh8AYPHF8DrD+ANBPD5Df6AsWZuN+bYZ68aIsK5fdvSNTm6kc9CKXUqmgyHwMCBA9mxYwczZ848odnz/PnzmTdvHo8//jgApaWl7Nq164Qy8vPzufbaa9myZQsigtdr9dkZPnw4Dz/8MNnZ2Vx66aX07NnzhH2NMdx9990sXrwYh8PBnj17OHDgAAMGDOA3v/kNv/3tb5k8eTKjR4+uNv5HH32UyMhIbr75ZtatW8e6des499xzAfD7/bRv3568vDzy8vIYM2YMAFdffTUffvhh/V80pYKpYD989xZEJUFse4hKhIh4CI8DRzW/Fh1OcIZXjITbIMaA3wv+suqvlMqP5XDWL5nd9hl4i6xzU0FR6gEcLh2FLFjcERCdYs2BHRZFatd2ZEwcxNpP19BpXCbx7erfjNnnjKBAUul78D3SCtYQkOOTspJpCfzlRR9fztvO6Iu7NfRMFFZi1z4+kmKPj7dWZvPu2r2M7ZXC0G5JxNVxyqdQK/X62XqwkFW7jrB+Tz5+Aw4B4cTfxSLW9FOV/xfsZvmVt6vmOB5/gBe++IFfTehJaqxOUaVUKGkyHCJTpkzhjjvuYOHCheTm5lYsN8bw9ttv06vX8fMmfvPNN8c9v++++zjnnHOYM2cOO3bsYOzYsQBcccUVDB06lPfff59Jkybx7LPP0q3b8X/wX3vtNQ4dOsTKlStxu9106dKF0tJSzjjjDFatWsUHH3zAvffey/jx47n//vuP2/fTTz/lzTffZPHixRXx9uvXj6VLlx63XV5eXoNeH6Ua1cHvYe+3EB4LPo+ddApgVyGdQMD4rUTZFWldzLsjqf4ypxrGb134e0vAV1pRI3by7QP1P9aRHRB36nEIVO2VegDRmuGgatMd9q6GsCgAxl13Lus+X8u2uV8x6H8uOCGhqIuAw83RiDTCfQUnrLsuYwefDhrDey9upPdZqaR0iKn3cdTxosJcRIW5KPP5+Xj9AT7ZcIAR3ZM4t287okPQn9gfMCzcdJCN+47WavuAgT1HivEHDOFuJ8mx4biqmWc5WA4XlfHSku3cOq5nSF4fpZRFv30hcv3115OQkMCAAQNYuHBhxfKJEyfy1FNP8dRTTyEifPvttwwaNIjY2FgKCo79Yc/Pz68YeGvGjBkVy3/44Qe6devGbbfdxq5du1i7di0ZGRkn7Juamorb7WbBggXs3GnN0bh3717atGnDVVddRUJCwgkDZ+3cuZObb76Zjz/+mMjISAB69erFoUOHWLp0KcOHD8fr9bJ582b69etHQkICS5YsYdSoUbz22mvBfgmVqr/930FkG4iqYw2UCUDAZw1Q5SmqPm+ujoiV3EYkWP/X5kK/vseKS9OplIKs1CMnVveohknqDruO3USNS4ln+I9HsuT1RRwYP4h2PRt2Q8eIA4/rxERXCPDHK3Yy7Y9pvPH4am5+fCQOp761wRTuctIhIRKfP8CX23JZm53P1cO7NGmT4PxiLzOX72Lz/gISomr/+zAlNgJnEzWfbxMdzv78El79eifXj+qK26n325QKBf3mhUh6ejq33XbbCcvvu+8+vF4vAwcOpF+/ftx3330AnHPOOWzYsKFiAK277rqL3//+9wwaNAifz1ex/+zZs+nfvz+ZmZmsW7eOa665hqSkJEaOHEn//v258847ufLKK1mxYgUDBgzglVdeoXfv3gB89913FYNv/fGPf+Tee48fGXvGjBnk5uZy8cUXk5mZyaRJkwgLC+Ott97it7/9LRkZGWRmZvLVV18B8O9//5ubb76ZzMxMzMk6zijV1Pw+yN0CEXF131cc4AyzamrDYiC8lo+waHBFWElqbXOq+h7LGVb381I1KvUYtM9wkMW2t7oCVDJy6tlExkWxe95XlHkbZzCmMmcsPSJ3c8XP09m+/jBfzP2hUY6jrLmL0+IjMQae/nwLH63bh9cfaPTjbjlQwOPzN7Ejp4j0xEhiI9y1fjRVIlyubVwEm/cXMG/1Hr1OUipEpKV++bKyssyKFSuOW7Zx40b69OlzbEEIplZSzdsJnyHV/OTtgoWPQHzHUEeimomL73Pw3ZYHy7YdKNLOfQ1U8be5rAA+vAviOh53g+jrt77k43++T+9fXkT6oO44GqFCPqbsEHtiB3DHv9qxaeVB7vjXWFI7anPpxuTzB9h/tJSOiVFcMaxTo/ST9fkDfPb9QT5at582UWHERDSPxo+BgGF3XjGXDUpn9BkpoQ5HqWZFRFYaY7IaUkbz+E3RWDRxVar1Obzz5EN8KlWN4rJQR9AChcdCeLw1kJzrWGKUNWUo38z5iv3vLyW+Vyfio+rQmqKWisLakF6wmitvvpmHbspl5uPfcstfR+LUZqqNxuV0kJ4YxaHCMv4yf3OjNJnOL/Zy4GgpafERuJrRe+lwCO3jIvnvt3sIdztIjDq+dY+I0DkpSptRK9VIWncyrJRqfQ58ZzVbVqqW7KmVtGNpsCV2tbosVEqGXWEuxv/sPN5+aBZFa7bgzupFVFhwL1WMOBEMvdybueyWgfznzyuZ+891XHrLAO0a3siSY8Lx+AIcyC8NetkOEdITI5vlexjmcpAcE8bsFdlUbakdMJAaG86Pz0ynW4q2YFAq2DQZVkq1HgE/5Gyy5uBVqpZKPKGOoIVK7gH71pwwDVi/sQNY+uaX7Jz3FTEDuuF1OoJeK1bsSqTr4S8ZPPYsdm/pzsK3tpHcIZqzL+0e1OOoE4W5HIS5tJazqvLRuKuTV+zh6QVbGdKlDZMGtm92U1YpdTprdcmwMaZZ3jVUoddS+9e3KgX7rDl+q5tLWKmTKLWSYf3DEWxxadW+quJwcN4vzmfG7c8TWLmR4qEDiIuQoP7t9jkjiPIeJrloG5Nv6Evu/mLmPbueNm2jGDCyfdCOo1QwJESFERfh5ttdR1ibnc9Fg9LI7JiAz2/w+AJ4/AE8vgBlvgBlPj+l3gAlHh+FZX4KSr34Ag27fnE7hfhIN3ERbqLCXESGOYhwO6vt058SG65NulWz0iRXhCLyEjAZOGiM6V/N+juBKyvF1AdIMcYcFpEdQAHgB3wN6SQdERFBbm4uSUlJmhCrOjHGkJubS0SEjp/TrOXt0v7Cqs5KtM9w44hpy8nuMXTO6ErvkX1Z/faX/Ghkfw6W+oiLDG5tmMcZTZcjX3Io+gyuvGsQ/7yzhFcfWcUtfxlJxzMSgnospRrK4RDaxUdS6vUze/lu3lyRXfHtqXxJa4z9Z04MTnHgdMgJTa/rKmDAFwjgDxgrAZbqv7m+gGFE9yR+fKYOUKmaj6aqHpkBPA28Ut1KY8xjwGMAInIhcLsx5nClTc4xxuQ0NIj09HSys7M5dOhQQ4tSrVBERATp6emhDkM1xP7vwB0V6ihUM1PqgQhHrWd6VrUVmQiuMKu1RjVzY0+48Uf88/onyP7gG5IvGkWxxxfU/sOlrjgSS3YR4zlAYUQ7fvbgEP5+2xJeuP8bfvX30bRpq78r1Oknwu0kPfH0/Gz6A4avt+UyonsyaQmRoQ5HqVppkmTYGLNYRLrUcvNpwMzGiMPtdtO1a9fGKFopdboLBODQ9xCRGOpIVDNT6gFtFNIIRCCxC+TvhcgTa2KTOiZz5oVDWDFvGdMvHMpm48DnDwRvpGAR/OIiPX8l36deQGxiBDc8NJQnf/0FL9z7Ddfel4XL7UAcgsMhiEOIiHIRHqndLJSqjtMhhLmdvLtmLzeO6aatMFWzcFr9RheRKOBHwC2VFhtgvogY4FljzHM17H8jcCNAp06dGjNUpVRzU7gffGXV1kApVROPVyBCa4YbRVJPyNlSbTIMcPY141j7ybd8+e9POOeun7A6O5/YcCs5DYbisDak53/LtjZj8bqiadc5lun3n8Vzd3/N/92w4ITt3eFOxl7WnXMu70FE1Gl1CaXUaSE5OoxN+wvYfKCQXu1iQx2OUqd0uv0mvxD4skoT6VHGmD0ikgp8IiLfG2MWV7eznSg/B5CVlaUXLkqpY/J2geYzqo4MhjKvoJ+dRhKfXmM//uiEGEZdMZbPnv+YoT/spWd6W7YcLCQuwhWUWicjLhzGT9vCjWQnWEOSnDEohV8/NYb9O45iAgZjIBAwmIBh65pcPnl9M0s/2MHEq3sx7PzOOHVkZKUqiFiDbc39NpvfnNerWc35rFqn0+0TOpUqTaSNMXvs/w8Cc4AhIYhLKdXcHVgHLu3DpOrG6zN4fdrUr9HEtuNUNxqGXjqC+NQEPn3mQ7omRdIlKYqjJb6gjfBf6oqlY/6K45Ly9B7xZE3oyFnndWLIxE4MO78zwy/owtV3n8mvnxpNasdY3n7qOx67cSHrvtqnsw0oVUlcpJsDR8tYufNIqENR6pROm2RYROKBs4F3Ki2LFpHY8p+B84B1oYlQKdVsBQJwcCNExIc6EtXMFJQGQh1CyxaVBO5IqwvDSbjD3Yy74Tz2bdnLd5+u5Yy2sXRIjKSg1BeU0eE9zmhiyw4Q5c2t1fadeiVy8+MjuP6P1r35lx5Yzj/v+oo92/IbHItSLUVybDjvrd1LsccX6lCUqlGTJMMiMhNYCvQSkWwR+ZmI/EJEflFps0uA+caYokrL2gJLRGQNsAx43xjzUVPErJRqQYoOgbcEnGGhjkQ1MwXFmgw3KocTOo+E4poT0QHjBtL+jA4seOkTAl4ffdPiSIkNp6AsCAmxCEaE1MJNddhF6D+8HXc+N5bLbhnA/u0F/PWXi5j9tzUUHNG5uJSKdDsp8QZYuElncFGntyZJho0x04wx7Y0xbmNMujHmRWPMM8aYZyptM8MYM7XKfj8YYzLsRz9jzMNNEa9SqoXR/sKqngpK9HPT6DoMBuOvcRNxOJhw40TyD+ax/J1vcIowMD2e+Eg3hWUNr3kqccWf0FS6NpwuByOndOX3/x7H6Iu7sWz+Lv583Wd8PnsrXo9fm0+rVq1tbDgLvj9ITqHeIFKnr9NtAC2llAq+g+vBqXPjqLrTZtJNIL4TRCSAt7jGecC7De5B96yefPHaAgadn0VETASDOiWybPthSjw+IhswB7HPGUlc6T5iy/ZTENG+zvtHxYZx8U39GTG5C/OeW897L2zgvRc2VKwXh1WbHBXj5tr7zqL7wKR6x6pUc+FyOnA6hFnLd9Ml6fjvttMhjOiRTFyEzvCgQkuTYaVUy2YMHFiv/YVVveQXaTLc6BwO6DoaNr4H8SdPhgHG/3wiz/3P03w5azHjf3YeYU4HgzolsHRbLl5/AHcDRq4NiIO2hRvqlQyXS+0Yww1/Gsrmbw+xff1hMGCMwQSs/9cs3svLf1rO7f8YQ2JqzeeqVEuQEhvOniMl7DpcfNzyojIfqXERDO6UGKLIlLJoMqyUatmKcsBTBJFtQh2JaoaOFmsz1ybRPhM2zLNuXtUwZVL7nmkMGJ/B1299yZCLhhGbHEd0mIuB6fGs2nWE2HB3vecgLnEnkJ6/im1JYzHirO+ZANb0TGcMSjlhedaEjjxx62JeemA5t/51JGERehmmWjaHCCmx4ScsP1RQxub9BZoMq5A7bUaTVkqpRpG3K9QRqGbsaInWDDeJ2HYQ1x48hafc9JzrziXgD7Dwlc8qlqXGRtAjJaZBA2r5HeG4AyXEl2bXa//aSO0Yw1W/P5O92/KZ/cQa7VOsWq24SBeb9hfod0CFnN6SVEq1DN5SWPmy1e+wsuIcHUVa1VuhJsNNQwS6jIHvZkN4bI2bJqa1IWvKEJbP/YbhPx5JcqdUALqlxJBf4uVwkZeYeta4BnDSvmAdeZGd67V/bfQd2pYfXdubD2d8T3qPeMb+uEejHUup01W4y0lOYRlHir20ida/0Sp0tGZYKdUyHN0De1dB4YHjHwE/RJ/YXFGpUwkYQ7EOgtp02g3A7mR7yk3HXHUO7gg3n7/4ScUyhwj9O8QT5hLKvDWPTn0yJe4E0o6uwRHw1mv/2powrScZo9vz7gsb2LTyYKMeS6nTl7A3ryTUQahWTpNhpVTLkJ8N4rQGyqr6EP1Vp+rO6w/g8dWv/6mqh+gkaNMNSvNPvWlCDCN+OpqNX6wne8OxrhDhLieZHRPx+AN4/QECAXPc41RNMgMON46Al8SSnQ0+nZqICFPvGES7zrG88r8rWb90P1u+PcSW1TlsXZPD1rU5HNhV0KgxKBVqLoew5aB+zlVoaTNppVTLcGgThOnorCp4PP4AXq8mw02qyxhYOQMiE0656fAfj2T53K/55NmPmP7EzxF74K34SDf90uLYfKAQf5X5xcu8fmIi3DhrGGTL7wgj7ehqcqMbt/lyeKSL6x8Ywt9uWcyLf1h2wnqHQ7jzubG07VRzs3GlmqvYCKvfsFKhpMmwUqr5MwZyt0BYTKgjUS2I1xegTJPhppXax2rJYQKnbNERFhnO2Onjef9v77B+4Xf0P2dgxboOCVF0SDjx5tiGffnszSslOvzklz8l7gTaFm5ko78UXyPPT57UPprfvjCOg7sLMZiKVuI+j58Zf1rBZ29s4Yq7BjdqDEqFSqTbyd78EgpKvcTqfMMqRLTtoFKq+SvNs6ZPcp04fYNS9eXxGzy+UEfRykTEQdt+UHy4VpsPnnQW7XqkMf9fH+ApOXUH73ZxEQRO0VTaiBMHfpKKfwBjCPfmk1S0lW65ixm05zWSirbWKrbaik0Mp/vAJHoMTKZHRjI9M5PpM6QtIyZ3ZtXnezi059QjbCvVHIkIgrA3rzTUoahWTJNhpVTzd3QvoDV4KrjKvH5tJh0KnUecOCr8STicDibddiEFOUdZ/OrCU24fHxWGU4RAoOaE2OOIovehDxn7w2OM2fEEg/e+TvfDi0go2c2Ze14lLX9lvadwqq1zftwDh0v47I3gJt9KnU5E4IdDesNHhY4mw0qp5k/nElaNoNjrx+vTP5NNLqUXOF0QqF21fMf+ncmYOJilby4hd3dOjds6RWgXH0HJKUabLnXFAwaPM4qC8PYUhLejILwtJWFtKApLZsCBefTI/dxqzt1I4pIiGD6pMys+3U3uvqJGO45SoRQb7mbDvqOhDkO1YvpXXinV/B3cqP2FVdCVePx4dTTppueOhLQzoajmxLayCT+fiDvcxYdPv3vKEaPbxZ+6qTQilLniCDhOnP/U7wjjaHg7uh9exID9/8UZ8NQ6zro65/IeiEP4bJbWDquWKTrcyf78UkrrOR2aUg2lybBSqnkL+OHIDgjXZFgFV6nXj9frIDyscZvDqmp0GgZ1mOs3pk0sY6dPYNvyLWz6cmON2yZEhuGoRVPpmhhxkh/egfYF6zlzz6uE+RqnmWdCciRDJ3Zi+fxdHDlYu6bjSjUn5aPA79H5hlWIaDKslGreig5ZzSkdOji+Cq5Srx+fXwhzaTLc5JJ6gDsafLUfWGfIxcNI7dqWj/7xHt6ykyfSTkftmkqfkghHw9sRV7qHAfvfbrQ+xOOnWlM8fT5ba4dVy7UrV2/2qNDQZFgp1bwd3RvqCFQL5DcGr9/g8Qrhbk2Gm5zTBV1HQ3FurXdxOJ2cf+uF5B/IY8nMRTVuW5tRpWtFhMKwVJKLfyCxZGfDy6tGYmoUZ53bia8/3EVejtaeqZYnOtzFRu03rEJEq1KUUs1b7jatFVZB5/UFEAGPTwjTZDg0OpwJmz60alyldn23u2R2o/85A/ly5mKKjhTicDpwOJ3W/w6hW1YPug3uQWLUsabSDkcD+4WLUOaMpmfuZyyLvL7WsdbF+Kk9WPbxLha8uY1Lbuof9PKVCqWYcBc7covw+AKEubSeTjUtvYJUSjVvOZshLDbUUagWxuMPIIDHC2FuQMd2aXpxaRDXHjwFEB5X693O/cX55O7J5fsl6wn4AxUPn8fH2k9Xc/sbd+F0OGgXF8GBo6VEhTf8UqjUFU9CyW6SSn4gN6p7g8urKql9NFnnprP0/R2M/2kP4tpEBP0YSoWK0yEY4MDRUjq2iQp1OKqV0WRYKdV8+crg6B6I6xDqSFQL4/FZU+Z4vFbNsE+T4aYnAt3OgTUz65QMx6XEc+MzN5+wfM38Vcx95C32btpDhz4daRcfwd78IDU7FsHjjKZnzmfkduwKEvzarfFTe7Lik2xe/tMKrv/jEKLjThzpWqnmyhjDrsPFmgyrJqdtEZRSzVfBfkAa5cJTtW4efwBjoMyrzaRDqt0A6/8gzOd7xrDeiMPBxiUbAEiIcjd4VOnKSl1xxJXuIbl4W1DKqyqlQwxX3X0muzfn8dSvl+jcw6pFiQpz8f1+7Tesmp5eQSqlmq+je4GGXyQrVVWp1w9yrGZYhUhkAqT2heLDDS8qLooumV35fsl6AFwOB6mx4cGb31SEMlcsPXM+DUryXp3MMWn84pHhFOSX8eSvl7B7c16jHEepphYb7mLrwUL8Qbo5pVRtaTKslGq+cjaBU/vOqeAr8fhxiuDxQhC6lKqG6DoavMFpztx7VF9yd+dwaOdBANonROIP4pRIZa444sr2k1K4OWhlVtVtQBK3/W0UrjAH/7jjSzYuO9Box1KqqbicDnx+w8GC2k+nplQw6J94pVTzlbMZwnXwLBV8JV4/TofYzaS19UFIpfQGpxv8Xuv/Bug9si8fPvku3y/ZQErnVBKj3IgIAWNwBGkU6BJXPGfkfkJOTE+MOINSZlVtO8XyqydG8/y9X/Pi/csY+5PuxMSHIw5wOARxCCIgYv2PHHvetV8bUjvGNEpcSjWEMbDnSAnt4yNDHYpqRTQZVko1T2UFUHIE4jqGOhLVApXaybDHK4SHabO9kHKFQ6dhsGspxLZvUFFxKfGk9Urn+yXrGX3lWFwOB21jwzlUUBaUUaUBPK4Y4kv3kFr4PQdi+wWlzOrEJUVw819G8Z//XcHns7bWej9XmIPLf51B1gT93alOL5FhTt5Ytos53+4JetlhTgfR4S6iwpzERLiICXcR6XYiQZ4KzRhDqS9AYZmXolI/RR4fRWU+OidFc83wzkE/nmo4TYaVUs3T0X2Ao1Hm9FStm8FQ6g0QFebUPsOni45DYPvioBTVe3RfPn9hPvkH84hPTaBTUhT78kvrNJ/xqZS4Euh16GOiyw4dv0LgQEw/isJTgnKciCgXP39oGGUlPgIBgwkYjAETMNbAYNa/iuWeUh9v/n0trz/6Ldlb8rnw531x6ryu6jTRJjoMX2QjpCYGAgbKfFZyuj+/FF/ANFr/ZIfDGpPA5RCcDiHM5WDtnnz25ZeSlqC13qcbTYaVUs1T/u5QR6BaKH/AEDAGEdFk+HSR2NUaTMtbDO6GTb3SZ5SVDG/6ciNDLhlOfKSb1NhwDhd5glg7HE2k9wjdjnxx3HJnwEObkp2s6HBNUG/khdchgbjp/4Yz77n1LJ7zA3u25XPNPVnEJoYHLRalGsLlaLybM2EhHCrJJcKy7blcPCg9ZDGo6untQKVU83RoU4MvipWqTvkcwwAeL4TpbePQczig69lQnNvgopI7pZLcKaViVGlB6J4agy9gMEEcTKvEnUhheNvjHvkR6bQp3k6MJ3SDXjldDi755QCuuGsQO78/wt9uXqSjUivVyJJiwvj6h8OUeHTS+tONJsNKqebHGMjdCuE6CIwKPo8/QHmdXZlPa4ZPGx0GW9/9ICSsvUf1ZceaHRTnFwMQF+GmfXwExY19oSpCQNx0ylvWuMephawJHbntb6MQh/DU7UtYtSA71CEp1WK5nQ58gQDr9+aHOhRVhSbDSqnmp/gw+ErBGRbqSFQL5PEFMIDPD36/EK7J8OkhJhUSO0NZwy8me4/qhwkE2Pz19xXLuqfGWP1ug1g7XJ2isDakHV1DuO9oox6nNtJ7JnD702Po1CuBV/+8io9f3dTo569UaxUX4WbBpkP6HTvNaDKslDq9GAN+H3iKrKS3YP+Jj5xNoY5StWBevzXqkNdn1Q9rzfBppOvZUNrwJDKtVwfiUuIrmkoDRIe5SG8TSVFZ49YOG3EiGNKOrmnU49RWTEI4v3hkOFkT0vn4lU289n+r8GpTTqWCLibcxf78EnYfDs686So4tCeUUir0SvJg66ew62vwlUAgAFLpXl11A824IpouPtWqlHj89uBZ1vOwhk1tq4KpbT/rd4Op8juijkSEXiP78O0HK/CUeAiLtFqZdE2OIftICYGAweFovJHqi91t6HLkS3YlDMXvCH0LF1eYk2l3DiIlPYYPZ3zP4f3FXP/AEGISdGAtpYJFRHA7HSz9IYdOSZ1CHY6yaTKslAqdskL4YSFs/hgIQFQKRCY26CJXqYYq9vhwOqDEqzXDp52IOGjXH3K2QnRyg4rqM6ofy+d+zbblm+kzpj8AkW4nnZOi2ZVbRExE490F8TvCcHtLSS3cyL64jEY7Tl2ICOdecQYpHaJ5/bFveeK2Lxh2fifEIYgIDoe1TdvOsfTOSg11uEo1S0kxYazceYQLBqYRE6TR61XDNMm7ICIvAZOBg8b8f/buOzyO8zr8/ffMzFb0ShDsvahLVJcs2bJkSbZcE8clia24xY4dP8mNf0muUxQnv8TJvfEvznWVS2Q7sWLHRZJtyWpWZ5FIiZLYewE7iA5sm5lz/5gFCZIgucA2LPB+nmc1u7Ozs4d8qN09QGWV4wAAIABJREFU877vOXrhKM/fDDwI7M7u+pmqfiH73O3AlwEb+LaqfrEUMRuGUUSZJOx9ATb/Arw0VE8z63+NCSOZ8bAtIZU2yfCENOd6OPR6/qe5ZC6x2hhbnt90IhkGmNMUZ9/xITxfsYs4Opy0a1nQ9SyHai6aUBcAL71pBg2tce77+5d4+D+2nPG8ZQt//Z+3UtdkZucYxlg5loWv8HpHL9cuaCp3OAalGxm+D/gK8P1zHPOcqr5t5A4RsYGvArcCHcBLIvKQqm4qVqCGYYzQ2wEda6FlKTTOAyePKXO+D927g/MNT4eunmamOxsTTiLjY4uQyq4ZnooFtM53IVpEZgPfA+qzx/yFqj5ckuBaloAdAi8TbMfJsm0WX7uMrS9swnM9bMcGIOrYzG+pYtuRfsLOqUmqANGQjRSgR3DaqaY2eZDGxB664vPzPl8hzVnWwF//5634ro+voL4GRfwPDfKvn3yG1Q/v5S2/t6TcYRpGRaqPhXhq61GuntdY1OUYRm5Kkgyr6rMiMnccL70K2KGquwBE5L+BdwAmGTaMUjj8Omz4KURqgpGL1uUw44ogMc51JDfVD4fWw57ng/uWDfFmsM00O2Pi6UtmSLke1RHnxJrhyBRbM5zjhei/An6sql8XkeXAw8DckgToRGDWVbB/DdRMz+tUS29YzquPvszeV3cz/4qFJ/bPboyT8Xxc79QLIRnP50hfipqoU5AfsRk7xtzuFyZcMgxgWYIVtk/ZN2NBHUtWtLDqV3t48/sXYTsTZ0TbMCpFVcSho3uI3ccHWdBiWkSW20SarH6tiLwKHAT+TFU3AjOA/SOO6QCuPtsJROTjwMcBZs82C9MNI2/HtkFNO8TqwfegaxcceZ1gfCTXH4IaHBtvgrr64sVqGHkYTLvsOjbAwZ4kIVuyBbSm7DTpXC5EK1CbvV9H8N1dOrOuDi6w5Wn+5Qtxwg5bV20+JRkO2RZL22rPOF5R9nQOsvVwP9VRB9vKLxlMOPU0D+6kKnWUwUhlXCC84e3z+M7fvMjrKw9z6Rvayx2OYVSkiGOzckenSYbzZdl557ITJRl+GZijqgMicifwALBorCdR1XuBewFWrFgx5X69GEZBDU9rjjUGjy07SGgxa1yMySPpeuzpHGRf1xCCUBN1TkyBncLJcC4Xou8BHhORzwBVwJtLE1pW47xgxkomCaHxL7UIx8LMu3wB21Zt4fY/ett5pz8LwrzmakK2xYaDfVSFwbHzSIhF8MRhXtfzHKq9+JSnVCy6Y7NRmSg/1QLLrpxG47Q4zz+42yTDhjFOjVVhXtnfg2XtPeO5qrBDe32UxqoIjVVh6mMhM536LOxYXWO+55gQn7Cq2jfi/sMi8jURaQYOALNGHDozu88wjGJLdAXFrfJYk2cYE9VAyuVgT4K9x4cApSriYJ2WCE3hZDgX7wfuU9V/FZFrgR+IyIWq6p9+YFFmbVk2zHsDbH0E6mbmdaol1y1j++qtHNtzhNZ5bTm9ZmZDHMe2eHV/D7EQhPKYLjwUbmL6wAbaBjaest/xU7zW9h4O1l027nMXg2UL1901h19+ezMHd/fRPu/MEXTDMM7NtoSmqjCbD57ZN93zlYyvJ7pKCtBcHdRs8VXx/JO34XONvFkipxzjq4LAB66aw8LWyTMS3T2YRkLheL7nmRCLPUSkTbKXY0XkKoK4jgMvAYtEZJ6IhIH3AQ+VL1LDmEL6D5U7AsMoKE+Vo/1JXtzTxcqdnew9Pkg8bFMdDZ2RCAOkpm6f4VwuRH8E+DGAqq4CosCovY5U9V5VXaGqK1paWgoX5YzLAR80v4sVi69ZCsDWVWdWTj6XttooV8xpIOV6pFxv3O+vYtMfaWMgMu2UWyJUz8zel8d93mK66i2zcUIWK3+x+/wHG4YxqnjYoak6csattTbKjPoY7XXBrbUmSsbzyXhBQTtbhLBjEQ87xMMOYcfCEsFXSLs+ibR3ot6BYwXH+j781+q9DKTcMv+pC2fzob6CTJMuSTIsIvcDq4AlItIhIh8RkT8UkT/MHvJbwIbsmuF/B96nARf4NPAosJmgWMfG0d7DMIwC6943odp9GMZ4ub7Prs4Bntl6lPX7exhMudREnCAJPsfUs+GR4Ygz5UaGc7kQvQ+4BUBElhEkw8dKGmXN9OCWHsjvNM21tC+ZwbaVm8f82ubqCFfObcT1NK+EeDQpu4b6ZAfRTE9Bz1sI1XURLnvjDNY+0UFiMFPucAxjUrMtOZH4xkI2kZBNxLEJOxZhxyLi2ERDNrGQTTzsUBVxiIWDfcPH1sVCDKU9HnzlAJrnBcSJQFVZufM4jDIbaaxK8ktXVd+vqtNVNaSqM1X1O6r6DVX9Rvb5r6jqBap6iapeo6orR7z2YVVdrKoLVPV/lyJewzCAzq0Qrip3FIYxbopyrD/JCzs62XFkgLBtURMNEQ3ZkENrnKk6TfpsF6JF5Asi8vbsYf8X8LHsRez7gQ9rqX9hicC8myCZf7K4+NqldGzuYKCrf8yvrY+HWTGngYynpAuZEIugAi2DWwt3zgK64e3zSCc91j6+//wHG4ZRdq21Edbu7Wb9/ol3gW2sjvWnONybBPXz/tA1wz6GYZzJ96F7D4Qnz9oSY2pJZDxe3d/Dun3Bl35NLIQ9xkJHaXdqJsMw+oVoVf0bVX0oe3+Tql6fvYh9qao+VpZAp2eLTuU5OLDkumWgyvY140s8hxPitKek3bwHKk5I2bXM6lmb91TwYpi1uJ7ZS+p54Rd7JsVIk2FMdpYILdUR/mdtB92D6XKHk5cNB3pzuaadE5MMG4ZxpqFO8F2wJkSNPcPIma/KnuODPL+9k86BNHVRh7Bjn/+Fo0hlfytMwTXDlSPWEPQ/H+zM6zTTFkyntrWObSvHtm54pIZ4mCvmNJB2PTIFSojTdpzqTCdV6fz+fMVy/dvncXT/ANvXT8z4DMM4VSxso6r8aO3+EwW4Ko2qsmrXcerjhflyNr90DcM4kymeZVQgRdl2pJ89nYNUR0PYebaimKrTpCvO0jvhmX8JRk/HOVQgIiy+dimvPvoybjqDM84rII3ZhHjd3m4gvyrT2cBQhNbBLeyOFLD4WIFcelM7D927kRce2s3iyyZefIZhnKmlJsLWw32s2tnJDYtO/f9WVUlkPNKuT8ZTXN/H9ZSMF1zgC9kWji04lkXIDqpXn68l3bCM69OTyNCbyHCsP8mh3iTdQxluXNjMpbPqc24fdaAnQfdQhhn1sbH9wc/CJMOGYZype68pnmVUnAPdCfZ0DlIbC+X85XwuqYxg28o4B5aNUmmYF4wOd++BqvEnZEuuXcbaB9ew++VdLLpmybjP01gV4fLZDbyyv4fkKGuIHcsiFs79H1XCqWNWz1p2N1w/4T6XQ2Gbq2+fzVP/s4Ouw0M0tuXd5cQwjCITEdpqYzz46kGaayJkXOVQb4I9x4c40D3EYMo78VFztm9SPeNOLm8cnM8POj0RDdnYlvCD1XtZubOTd10+M6cE97WO3lE7QIyXSYYNwzjTsa1mvbBRUbqH0mw82Ed11ClIIgzByPAUrCRdeURg2dvyHh2ee+l8wrEwW1dtzisZBmiqjnDDouYzpiGmXJ+XdncRVSvnf6euHaMmeYja1GH6ou15xVUM1981l+cf2M137nmRT/3LdVTVhssdkmEY5xF2LGKOzXeeO9keLR4OqlHXFeiCcq5qow6HepP8n8e2csPiFm5dNo2qyOgpqucra3Ydp7FAU6TBrBk2DON0vgc9+0wybFSMobTLK/u6iYYsbKtwX2tp16wXrhjDo8ND41+76oQdFly5iG0rtxSkIFTUsakKO6fcGuNh2uqiJNJjK4CqYtE6sCnvmIqhoTXO3fdcydH9A3zr86tJDk2ePqaGMZk1VIVpr4+duNXHw4Sd3C/UFYqI0FwdYVpdlOe3d/LFR7awoaN31GP3Hh9kMO0RCRVuypZJhg3DONXgMcAHy8wNNSa+jOfzyv4eFMZdKOts0hkx64UrxfDocHowr8rLi69dRv/xPg5tP1jA4E41t6kK19cxxZkINTCz9xVEC9vLuFCWXNHKh/5qBR3be/n2X68hnTQJsWEYY+NYFjPqY0RDFt95YTdPbz16xoXJ9ft7cPKsB3I6kwwbhnGq/kNjWwNiGGXiq7LhYC+DKZd4uPCrfkwyXGEa5sG0C7IX9MZn0dWLEUvYtnJzAQM7VW3MobEqTCKTe2LrWWFC/hD1iYnb0/fCa9v44J9fzu4Nx7nvC2txxzj6bRiGARAPO0yvi/LAKwd4YP0B3Gzxrozns25vNw3xwi7FMMmwYRin6t4z4Yq0GMbpFGXH0QGO9qWoOcvaonyZZLjCDI8Ou4lxjw5X1Vczc/lstubRYul8BGFBSxUZb2yjwz4ObQMbixZXIVz2xhm8908uZcvao/zgn9bheYXruWwYxtQRsi1mNsR5blsn31u1l0TaY9exQZIZj3C+VfpPYwpoGYZxqs5tEDHrhY2JS1F2HRtkV+cANdHQuAsmnU8qY9YMV5zhtcNdu6G6dVynWHLdMp6499f0HeultqWuwAEGGqrC1EQdUq6f89q3RKie6X2vsbX5Nnxr4v7DvPr22aSTLj//2gb+8cNPEo07WJZg2RZiCZYFliVItiWLWMGaweCY4GbbwfGWLdiOYFlWsLUF2xk+j2TPw4nzWzZYlnXiPCffh5OP5eRzI4+zbDntvCfPH8QZnEcswRre2qcee/rxJ57L/pmG9xmGcX62JcxsiLHlUB9ff2YH9fEwkSK0dzDJsGEYJ3ku9OyH6rZyR2IYZ7X3+BDbj/RTEw0VtL3C6dIZIWJGhitLASpLL752KU/c+2se+fdf0Dp/GpZjY2dvrfOmsWDFovzDRFjYWs0r+3pyToZ9K4Ttp2lI7OV41cK8YyimG985n3DUYfOLR/B9RX3F9xXf0+zjoJ+p7/moy8ljPMXzFd/1g/tucLznDT/28bP7hl9TgFpnJSUCdc0xPvoPV9M+r7bc4RjGhCYitNfHONqXYvuRAeY3VxX8PUwybBjGSYNHg60pnmVMUPu6hthyuC9IhIs8wpLKCLFIhf3SNk6ODh/ZCKHT+t5aNsSbzvny5tktzL10Httf3MqWF86s4PwH//4JZl04J+8wm6sjxMI2GdcnlOO0P88KM6v3JY7HFxRtRkShXH37bK6+fXbR30d1RKLtBQmy551Mrn09eV/1ZOI98pjhZFt9Tk3efQUlm3QrfjaJH5ncB/cZkZxnjxvlIsBwjGse3ce9//dqPvvlG2hoNb2ZDeN8WmsjtNSEi1Lp2iTDhmGc1H8I1KzxMiamAz1DbDrUS3Wk+IkwBCPD9dXm/4eKIwIXvxd2PnXm51nHi+CmwImc4+XCh770MWA48fHxMh6poRT3/uFXeeQrv+RjX/skkmcbL0uEhS3VvH6gN+dkeCjUwLSBLbQMbuNYdX69kCcLkWAKsl1B13AvecN0vvKnL3Dv59fwmS9dT7zG9GY2jPMpVssnUyXHMIyTunaDZa6RGYWlqqQ9f9Sb6/t4qugoJcwVxVPF9X0O9SZ4/UAv1REHu0Rr7kwBrQpW0waXvh8u++Cpt2kXQqo/59ME60ttQtEw1Y01vPnjt3No2wHWP/pyQcJsrY0QdqwT1VLPH5DFUKiBC448RMgbKkgMRum1z6/j7nuuovPgIN/92xfJmMrbhlE25levYRgndW6HsCmeZZxqOFEVzp+E+qoMpT2G0i69iQzdQ2n6Ei7+ORb2DT9lWYItw+cBz8++rwTnrQo72HmOxo1F2hTQmnyal8LB8SeyF91yCWsfXM2T336UZTdeSLQ6mlc4jmUxv7mKzYf6iJ6+dlggbFtnjIZk7DgR9wiLOp9k07S78np/o3wWXdrMBz53GT/4x3X81xdf5vc/vwLLnthT3w1jMjLJsGEYAS8DfR1Q017uSIwy81UZTLv0JTJ0DqQ5PpBCRGiqDtNcFaEuFiIethERPFUGkkHie6w/RfdQ+kTiKwTtEWJh+/yFrjRIuYcTY5Hg9eVcF2lGhiehunbymRQnItz+mbv41ie/xrM/+A23ffLOvENqr4/Rk8iQdk8dHU5mPIbSHlWjtA4bCLcwq3cth2suoCs+P+8YjPK47OYZ9B1P8uA3N/LANzbwrk9dWLSpoIZhjM4kw4ZhBAaOAGJ6DE9Ce48P0jWUzulY31d6Ehk8P0hOQ5YQcWwU5Vh/isO9SQAcS6iKOPQlXTSbweac+I5GgnHnifQ7MJURwo5JhieV2naCikjjqzQN0L54BpfdcQVrfraSy996Jc2zW/IKKWRbXDKz/oz9xwZSvLKve/QXiUXCqePCww/ywpxP4tn5jVAb5XPTexbQezzJ0z/ZyfqnD2CHrFPaPs1cWM/7/+xSnHAFLYo2jApikmHDMAL9h03xrElqf/cQyYyf01pbAaKOPUqBKiEePnmhxPOVRMajKjtCPBmlXdNaadIJxaCqFTJDEB5/i443/cGtbHrmdR77+sN84J8+VMAAT6qPBXP0VXXU/8fSTjU1qUMs6HqGbS1vKUoMRmm87aPLqWuKcuzAAJ53sup0OunyytMHiFY5/PZnLyl3mIYxKZlk2DCMwPGdYJkFkpONoiQz/vhHbM/CtgR7ErfgUjVrhietlsWwb01eyXB1Yw1v+L038fg3HmH76q0suqbwlZ1DtkVdLEQi7Z21F/FAuJW53Ss5Ur2c3tisgsdglIZlCTe9Z8Goz/3yO5v4zY92MHNRPdfemX9LL8MwTjXmZFhEqoCkqprSd4YxWbgpOLQeIrXljsQoMM8P+mwWMhGeClwPVM2a4UmpeTHseT7v01z9rmt5+Vcv8ejXfsX8KxZghwo/vtBWF2Xr4f6zJsMqNimnhosO/5yOuhVnPO+L4FthFAtfrOB4u5ru+NyCx2oUx50fXsaBnb387KuvM31eDXOXNZY7JMOYVM77yS0iFvA+4IPAlUAKiIhIJ/Ar4JuquqOoURqGUVzbH4NEN9Sbq86TTco1U9/HI50JLh6YZHgSqpkOOVRGPx875PCWT72VH/7l91jz81Vc994b84/tNI3x8/efTTm1xNJdLDr+xCjPKqIKElzcCdZJKytnf4rBSH5rnY3SsGzhd//iCv7tM89y39+9xJ9+9SZqm8waccMolFwq5TwFLAD+EmhT1Vmq2grcAKwG/llEfreIMRqGUUy9HbDlYVNFepJKu34BfvZPPal08Ldm1gxPQtXTsv268p/gtujqJSy8ajHP/uApBnsGChDcqaojDiHbwvPPfVErEW6kP9I2ym06fdF2+iLt9Een0x9pw8dmTs+qgsdqFE9VbZi7//ZKkoMu3/uHtbgZc5HTMAoll2T4zar690Cf6snqOqrapao/VdX3AD8qWoSGYRSP58LLP4BQHGyzOHIyyng+Jp0bu5QbbM2a4UnIdqB+NqQHC3K62z55J+lEmqe/92RBzjeSiDCtJkKygMnPULiJGX2vEM30FOycRvG1z6/jfX92Kbs3dvHA1zeQTnn4nvl0N4x8nXeatKpmsnd/Blw+8jkRuUZVV484xjCMSrLnOejZC3Wzyx2JUSQp1z/Ru9fInZkmPcm1LIVtj0E0/zoJLXNaWXHXVaz9xYtc9Y5raJk7rQABntRcE6GjJ1Gw86nYKBaze9aYKtQV5tKbZrB/ey9P/XgHK3+5BwgmOdiOhe1Idmth24I1vM+2EFuwBMQSxBIsKzg2FLEIhWxCEZtQxMIJWSfOYdnBMY5jYYes4JiwRShs44SDYx3HOuV9YjUhWmdWl/cvyTDGKJc1w+8lSIJrRGQZsHXECPG9wMVFjM8wjGIZ7IQNP4XqtonV3NUoqKG0l1NLJeNUw8mwmSY9STXMBQo32nrzh2/htSfW89g3HuGDX/xwwc4LUJ9dN3y2FkvjMRRqYnbPS+xpuJ60Y5KXSvLWu5fRNruavq4UnuvjuYrr+ngZH88LHvvZref6eJ6ifvamBG2b/OC5xIBLXzqFm/bIpHzctIfnnXydN44ZCX/85RtMkS+jouRS+vAFIAp8FPgSsEREeoCDQOEuVRqGUTqq8Or9IA44kXJHYxRRwiTD4zKZRoZNF4hR1Ba2RkK8roqbfv9NPPb1h9nx4jYWXrW4YOcO59Biaax8y0Hwmdmzll3NNxfknEZpWLZw5W2lmc2lGvQ7djM+mZRHJu2TSXtB8pz2T0m63bTPD/5xHS8+ut8kw0ZFyWWa9AHg+yKyU1VfABCRJmAusKW44RmGURQda+HwBlM9egpIZDxsM/I/Zuns4p9KXDNsukDkIN4EThS8NNjnr9ici6veeQ1rH1rDY19/mPlXLMCyC9eHu602ytYjZ2+xNB6DoUbm9axkX8PVuHasYOc1Jg8ROTH9OhI7//jZhde38eqzB3n3py7ECU/ePvTG5HLeAlqSnZMznAhn7x9X1XWqOjjyGMMwKkCqPxgVrm4106OngGTGjAyPR6qyR4ZNF4jzEYGmBZAqXAVoO+Rw6yfu4Njeo6z75UsFOy9AQ1VhEvaRfCuM5WeY0be+4Oc2pqYVb55FYiDDphePlDsUw8hZTq2VROQzInLKnAwRCYvIm0Tke8CHihOeYRgFd3QzZBJBBWljUvNUyXg+JhceuwqfJm26QOSiZSlkhgp6yiXXL2PupfN46j+eIDlQuJVkNREHxxI8v7D/HofCjczveg7bTxX0vMbUtOiyZmoaI6x9oqPcoRhGznJZM3w78AfA/SIyD+ghWENsA48B/6aqrxQvRMMwCmr/GgibgilTQcbN5kFmBsCYnSig5VReMmy6QOSoblbBTykivOVTb+Wbn/gqP/nCf9O2qD2ozOvY2I5NtDrK5XeuGPMUahFhWm2UQ71JqiK5/HTLjWdFCKW7aOvfwIG6Kwp2XmNqsm2Ly2+ewfMP7WawL01VbeFnNBhGoeWyZjgJfA34moiEgGYgoaqmQZ1hVJr0EBzdAjXTyx2JUQIp18ekweMzvGY45ChDxyrr6850gchR7XRAg4KCBbxg1LawnRs/cBOrf/oCu9fvwndPrVsWr42z/KaLxnzelpoIBwrYYmnYUKiehcef5lDNJfhW4RJtY2q64s2zeOZnu3j12YNc97a55Q7HMM5rTJ962SvJhwBE5Abg/ar6R8UIzDCMIji+A1CwTGGLqSDt+VTeuGZ5qa8MHjqOv/Eo7+EQ2/55B5neAWitqGUFpgtELiI1EKsHNwmhwhaQetNHbuNNH7kNCCryqu+TSbn82/v/hW2rt44rGR5usVTo5N21Y8STB5nX9Sw7m95oZpIYeZmxoJa2OTWsfWK/SYaNijCmZFhELgM+APw2sA/4SY6v+y7wNuCoql44yvMfBP4cEKAf+KSqvpp9bk92nwe4qrpiLDEbhjHCgXVgm1ZKU8WJadJTmPo+6YEkmf4h0v0J0gPB9sTj/iHSAwky/YlgO5BAPZ8wMIdaahfMpGXZDHh8Vbn/KDkzXSDGoHkxHHy14MnwSCKC2DaRuM2iqxazfc1WfM/HsnMp23JS2LaojYZIuh4Rp7AXNPsjrSzsehoVm12NbzAJsTFuIsIVt8zkV9/dTOfBQZrbq8odkmGc03mTYRFZDLyfoE3DMYIE+DpVPTiG97kP+Arw/bM8vxu4SVW7ReQOgmlcV494/o2q2jmG9zMM43RuGg6th1hTuSMxSiSR8SpmmrSqol7Qt1JdD9/1UM/Dd31818PPuHjpDF7axc9uvWQGN5nGTaaC+4kUbjJNeiBBum+IdP8QmYEEZxsed+IRwjVxwtUxYi111C2YTrg6Try1nqcPLuKrj83mqY8dIRKiopJhERENnNIFAjh++jFlCXAiaV4S1FEokUXXLOX1J1/l4NYOZi4fe6/Ytroo2w73FzwZVnHoD7exqPNJVCx2N9xgEmJj3C5/00we/o/NrPtNB2/53SXlDscwzimXkeEtBH0Jb1PV/eN5E1V9VkTmnuP5lSMergZmjud9DMM4h+7d2Z6aFdg41RiXobQLrsux1/bjZzx8z8PPDCeZHqiiSjDtUkGz6yfVDxLT4emd6o/YrwrZ7Ynn/JP31fdPJLVBQpt9nHHxMu7JbdoNktwRx+TDjoZxYmGcSJhQTYyqaQ00LJoRJLu1QcIbqokTrokRrokTqopinSOhSDxYDQjhylxC+ZSI/BR4UFX3De8UkTBBe6UPEbRfuq884U0gte3k1lijMBZetRixLLau2jKuZLi5OsI2+vFVsQqcrPqWQ3+kjcWdj+OLw976a0xCbIxLQ2uMBRc3s+6JDm774GJMB1ZjIsvla/7dBKPCz4vIY8D/AE+qqnful43bR4BHRjxW4DERUeCbqnrv2V4oIh8HPg4we/bYv2QMY1I7uB4skwhPJQNDKTZ+5QF6d4xlIs8oRBBLgh802a1YAmIF+y1BLOvk1g5ulmMHW9vCCjs4VVHskIMVdoKtYyOOhWWP2GZfFzwXbIdfb4dD2GEHKxzCjgT3nVgEOxwK4imgdAbCjlZqLjBaF4gYQdZnukCMVNNGcCXIByl+UhyriTH7ojlsX7WFW7JriseiOuIwp7mKvccHqYkW/vPct4IR4qXHHkER9jVcU/D3MKaGK26ZyY++tJ69W7qZu6yx3OEYxlnlUk36AeABEakC3gF8BrhPRB4GfqKqvy5UMCLyRoJk+IYRu29Q1QMi0go8LiJbVPXZs8R6L8EUa1asWGGmfxnGMN+Hjpcg1lDuSIwSUVVeu+9xenccZNnvvpn6Be1YjhUkmHaQaIoE67uCOwByRnKLyJS8qp92pVJ7DJsuEGPhRKB2RlBpP1KalnOLr1nK4998hN4jPdRNqx/z6+c3V3GwJ0HG9Qk5hU/gg4R4GsuOPkzEHSDlVAM+liqCj49NR/0KPMu0zTHO7pIbp/PTr7zGuic7TDJsTGg5f4qq6qCq/lBV7wIuAF4EPleoQETkYuDbwDuya5uG3/dAdnsQEHCHAAAgAElEQVQU+DlwVaHe0zCmjN59kBkCJ1ruSIwSWfnj5zi8ahPz77qGWTdfQs2sFqqmNxFvqSfaWEOkNh5MF66OEaqKEopHCcUjONEwdjgUjMxa1pRMhCHoM1ypybCIPCkiF8CJLhBXAp8WEfP9OZqWJZDqL9nbLb42WEO5bfX4apmFbIsL2mtJZIKlDsXgWyH6I9OY2/0CS449ypLOx1l0/EkWHH+a5cd+SdPQzqK8rzF5RKtCXHhtG+ufPoibMcUcjYlrXJcUVbVbVe9V1VsKEYSIzAZ+Bvyeqm4bsb9KRGqG7wO3ARsK8Z6GMaUc3ggVU0rJyNfWlZt54t5Habp8EQvuuq7c4VSkIBkudxTjNlNVNwKIyHXAD4DZBLO63lXWyCaipgWgbuneblYLjTOa2LZq/IW9W2oitNREGEwXa8VaNiGOTg9uken0R9oYiEwj6dQyve/1or2vMXlccctMBvvSrPzlHvZv6+Hwnj46Dw7S05kgnSrev13DGIuSlAYRkfuBm4FmEekA/hYIAajqN4C/AZoIpnTByRZK04CfZ/c5wA8LOS3bMCa8/iNQ1ZxfX2BV2LcKYmaa0lRwZOchfva/f8S0hdOZ+7tvLvha2qkilaFiR4aBvhH3fx/4hqr+eXa50UMEs6yMYbUzSvp2IsKia5ay9qE1pBNpwrGxTzcWhKVtNbywoxPPV+wS/n+edOpoGdyK7SXxbDPbyDi7pStaqWmM8MDXzxzHqqoL89f/eSvhSGEroxvGWJUkGVbV95/n+Y8CHx1l/y7gkmLFZRgT2t5V8PL3oH42XPoBaJg7vvMMHIFEF9SaIu2T3UBXP/d//gdE4lHu/PzvsGXAXHkfr3RGiFRuMrxDRH4LeBZ4J0EhTFT1qIiYRuOnizeDHQYvU7Jq+4uvXcKan77A7pd3suT6ZeM6RzzssLC1hm1H+qmNlW4ag4qNpT6Nib0cqzZtc4yzsx2Lz375Ro7tHyCT8XEzPm7a48DOXp756S4O7Ohh3gWm3aNRXrn0Gf7Tcz2vql8qXDiGYaAK25+ADf8DNdNhqAue/iIseCMseevYi7wc3Rxsp+jaz1wMtwnyXB8v4+FlXDzXC+67btAmKNtuyPc16IU73FpIFfWGWw0FzwU3D9/3Rzw+9ea53on2Q97w1h1+HLx3sC/otauq+L6Petmtr/he9jXZc/Z39pEYSHD3v30MqauGgd5y/9VWrEpeMwz8CcHU6PuBx4fbF2aLaZWmSlQlsSxoXAC9+0tWZHDORXMJxyNsW71l3MkwwOymOAd6hkhlPCKh0o2wuVaE6f2vm2TYOK/GaXEap8VP2bfkilae+eku9mzqNsmwUXa5jAzXZLdLCIpwPJR9fBdBES3DMArF92HTg7D1EaibGYxSOFGI1sOuZ2D/S3Dx+2DG5cEPuFzsWwWRuuLGXUEyyTTf/eN76TnclU0kg8Sz3KxsCyI7ZGNnWwrZ2ZtlB5WdLctCLAvLDqo929l2RE7YwbItapprWPH2q2lfMpM9xweDxnTGuKQqeGRYVQ8Dt4qIpaojK9e8kaC/sHG61mXBhcMSJcN2yGHhikVsW70F9X0k18/z088jwgXtdby4u4t0jr26LRGqwnZeF0gToTpaB7Zg+yk8y0w2MMampiFC0/Q4ezd3lzsUw8iptdLfAYjIs8DlqtqffXwP8KuiRmcYU4nnwmv3w+7noH4WWCP+97RsqJsF6UF46VuwbpQRADsEbZcEiXLTwmAEeagrGO2onVW6P8cEt/7Rlzm84yCX3nEFsepYkHSGbOxsf1sn5JxISO2Qk004s0moZSH2cFJ6svfuya0VnGfELUha7VP2ndxvneijW+iqzUNpr6TrCCebdAZqq8odRX5OS4RR1ccI+gwbp6ufXfLZM4uvW8qmZzdwaMch2hePf91yQzzMxTPrSOZ4Ua9rME3nQJqaqDPuzx0VGwuPhsQ+OqsWjescxtQ2Z1kDO149jqpO2a4FxsQwljXD04D0iMfp7D7DmFw8F1J9wS2TBLGCZFQExA4eqw+abWvhe8HjfIfhdj8LB16G+jnBe4wmXBXcRmun4btw+HU4sDZ43LQQatuD++aLBgDf81n9kxeYsWwWb/+zd0/qL+BE2jXJcB6CadKmHciUUTsd8IPP1hJ9Liy8ajGIsG3VlrySYYDpdbGcj53dpGw82MvBniS1eSTEroRp63/dJMPGuMxZ1sjLvzlAz7EEDa3x87/AMIpkLMnw94EXRWS4CuU7gfsKHpFhjJXvwcvfh/7DQUI48iYWOJHgZkez28iZXYYUSHbD4LEgCcYacYxkD5BT811hxH7Nv3ORWNlEOIcTjXaMHYLq1uC++sHfR+c2iJn1OMO2rtxM14Hj/NZHbpvUiTBAImNGhvNR4WuGjbGK1ASflW4SQrknlvmoqq9m5rJZbF+9hZs/VJBOlTmxRbiwvQ7HEvZ1JcadECedOqYNbGazn8azxl4R25ja5i4LliTs2dRtkmGjrHJKhiX4lPw+8AhwY3b33ar6SrECM4ycdW6H/ash1pwdvbWCKcZWCMiO3CYHQHuzI7pnGe2xHHBiwfraSk+UxArWvpVo/VulWPU/z1Pf1sCyG5eXO5SiUpRkxicWNi0rxiuVEcJOZSfD2crR7wHmMuL7XlW/UK6YJrSWJXBgXcmSYYDF1y7lN995jP7OPmqaa0v2vpYIy9pqsS2L3ccGqImGsMZ48cy3HCzfpT6xj+NVC4sUqTFZtc+vJRSx2bu5m8tuLm17M8MYKadkWFVVRB5W1YuAl4sck2GMze5nwImPvcqyMaV0bNrH/g17uf3Tb8OyJ3eS6PmKr4pV6Rd1yiidgUjputUUy4NAL7AOSJU5lomveTHsW1nStxxOhl98YBXzL194oiaBZVtUNVTTML14/eFFhMXTqnEsYfvRfmoiY0+IPStEW/9GkwwbY2Y7FrMW1bHHFNEyymws06RfFpErVfWlokVjGGM11AWHXoVac1XROLdVP36eaHWUy+64otyhFF3KNWtd85V2J8U06Zmqenu5g6gYdTOA8VV1Hq/WedNoaG/k+R8+w/M/fOaU5+yQzWd/+Dlqmoo3YiwI81uqcCxh8+F+qiM29hgqWyedetoGNrLZvxPfqvyrR0ZpzVneyLM/20km7REyM5mMMhlLMnw18EER2QsMkl1IqaoXFyUyw8hFx7pge7aCU4YBdB/qYvPzG7nuvTcSjk3+NiAZ1897CftUN0nWDK8UkYtU9fVyB1IRqqcFS2R8LyiaWAIiwt1f/jhdB46jfrZXue8z0NXPA1/8CZuf28hV77y2uDEgzGmqwraEDQf7qAqDY+f2nepbDrZmqE/upys+v6hxGpPP3GUNPOUqB3b0Mnd58WZBGMa5jCUZfkvRojCM8fA92PkkxE2BKOPcVv/0BUSEq95V3B+VE0Xa802L4Tz4PmQmx8jwDcCHRWQ3wTRpcxH7XOxQ0GJpqAuipevNXtNUO+ro7/P3P8OmZzYUPRkeNrMhjm0Jr3X0Eh9DQuyJw7T+TSYZNsZszogiWiYZNsol52RYVfcWMxDDGLPO7ZDqhbrZ5Y7EmMAS/QleeXgdF91yCbUtpfuBW04p1x+1+5aRm4wbbCfBmuE7yh1AxWldBtseLWkyfDbLb7qIZ3/wFANd/VQ31pTkPafXxbBFWN/RQ1Qh5Jw/IU449Uzvf50trbejMpYxFmOqq22M0jgtzt7NXcCCcodjTFFjmlsqIg0icpWIvGH4VqzADOO8dj8dtEsyjHNY94sXySTTXPPbN5Q7lJJJpE1bpXyk0sHfXaWPDKvq3tFu5Y5rQmuYN3of9zJY/oYLQZXNz20s6fu21ka5fHYDSdcjmfHIuP4pN9c7tSaBb4Ww/TT1iY6SxmlMDnOWN7DXFNEyyijnZFhEPgo8CzwK/F12e09xwjKM8xjqgkOvQVVzuSMxJjAv47Lm5yuZf8VC2hZML3c4JTNkkuG8pNzJkQwDiMglIvLp7O2Scscz4dW2wwRZZNA6bxpNs5rZ/OyGkr93c3WEFXMbiYVsHFtOuaVdn1TGO+V43woxq/elCXMhwagcc5Y20NOZpOdYotyhGFPUWOazfBa4Elitqm8UkaXAPxYnLMM4D1M4yzjNY994hD3rd+G5Hl7GxXd90sk0g90DvONz7yl3eCWVyHjYpq3SuKUzwd9dpMKTYRH5LPAx4GfZXf8pIveq6v9XxrAmtlgDhOLgpsApb7E9EWH5Gy7k+fufYbB7gKqG0rYPbIyHuWb+mTU59ncNsflwH5HQySJjg6FGpvdv4GDNxXRWLyllmEaFm7s8u254czeXtpSux7dhDBtLJpFU1SSAiERUdQtgPvGM0jOFs4zTdB/qYtWPn0N9n8b2RtoWTGfWBbNZdM0Sbv7wLSy4clG5QyypZMaMDOcjnQm24cpfM/wR4GpV/RtV/RvgGoLk2DgbEWhZDKn+ckcCwPKbL0J9ZfPzpZ0qfS6NVeHgzshRYLEYCjVw4ZGHCHlD5QnMqEjt8+twwlZ23bBhlN5YRoY7RKQeeAB4XES6AbP2yCi9zu2Q7IH6OeWOxJgg1j/6Mojwvr//Peqm1Zc7nLLyVMl4PtEcCt8YoxseGZ4E06QFGDmf1cvuM86leRkcfKXcUQAwbX4bjTOb2PzsRlbcdXW5wwEgHrGJOjaurzj2yX9OGTtOxD3Mws7fsHna28oYoVFJnJDFrEX1Zt2wUTY5/1pS1Xepao+q3gP8NfAd4B3FCswwzmr30+CYqTRGQH2fV3/9MguuWDjlE2EIegwDwQiXMS6TKBn+D2CNiNwjIn8HrAG+W+aYJr66dsZYX7RohqdK735lF0O9g+UOBwj6Ek+vj5I8bd0wwGC4ldm9L9EwtKf0gRkVa86yBvZv78VNn/lvyjCKbSwFtJ4UkTsBVPUZVX0I+GrRIjOM0ZjCWcZpdr+yi96jPVx6++XlDmVCSLm+GfrLU2qSJMOq+iXgbuA40Al8SFX/T3mjqgC17YA/YYpBLb/pItT32fL8pnKHckJzdWTUMmMqFgmnlguPPIDtp0oel1GZ5i5vwMv4HNjZV+5QjCloLJc+5wF/LiJ/O2LfigLHYxjndmRj8APFFM4ysl55ZC3R6ihLb1he7lAmhIznT5BauJVreM1wpEJbporI89ltP/A0QbHLfwSeExHza/N8QjGoaYfMxBiJbVs4nYb2RjY9U/qq0mdTGwthieD7Z37apJ0aople5h9/tgyRGZVozrJGAPaYdcNGGYwlo+gBbgGmicgvRKT8HemNqWf/ixCpLXcUxgSR6E+w+blNXHTLpTiToNpRIaRd//wHGedU6dOkVfWG7LZGVWuz2+Gb+QDNRcuSCVNEa3iq9K6XdzLUOzGKU9kitNRESLqjT2sdiLQyr/sF6pKm97BxfnVNURpaY2bdsFEWY7nuLarqAp8SkQ8DzwMNRYnKMEaTGoCunVA7o9yRGBPEht+8ipdxueyOK8odyoSRyHhmmnSe0tk+w5FwZSbDw0Tkn1X1z8+37yyvvR34MmAD31bVL45yzHuBewga876qqh8oSOATQdNC2PV00GIpkwhufiZYix+th0hNScNZfvNFvPDfz7J15SYuu2NiTMprq41ypC856nMqNmm7iksP/ojuWG7FLn1xGAi3kgjVkwzVknRqSdnVo84EE/WIuP1E3H6ibh+xTBfVqWNYnHkxMG3H6Q9PIxmqI+XUkHTqcK2IqaswwcxZ1mCSYaMsxpIMf2P4jqreJyKvA39U+JAM4yy6dgZbM0XayFr/65eZNr+NtkXt5Q5lwhhKm7ZK+UqlK3tkeIRbgdMT3ztG2XcKEbEJaoLcCnQAL4nIQ6q6acQxi4C/BK5X1W4RaS1o5OVWNwusUDBVunYm1M+Cupngu7Due0EvYss+/3kKZPqidurbGtj0zIYJkwzXx7OzcVRHTSyToTrCbj+NQ7tyOp+oz3R9LTglguADgi9n/lS11D15nPoggmuF0VEmPNrqYmsaHxsJzogrYdJONUm7hpRTHSTeTi2eNfoMIxUbxcIXGxULxUJQRD0EH0t9RD0YwyKVo1VLyThVOR8/2c1Z1sD6Zw7SezxJXVO03OEYU0jOybCqflNEGoBFwPC/0vuKEZRhjOrgerDD5Y7CmCCO7DrMwa0dvOWP3oqYK/wnJDKuSYbzVOnTpEXkk8CngPki8tqIp2qAF3I4xVXADlXdlT3ffxN0jxhZweljwFdVtRtAVY8WIvYJo7oF7vx/wBnlO6e3A3Y+BfWzSxaOiLD8pgtZ/ZMXSPQNEauNl+y9zybi2NTFQiTSHpHQ6BcG0k6eI+jqI6MkmIqM/8K4KoKH7bvEM13UpI9gqYvlu6POqtHh9xcJct2R3zcKIprNgZVcO5c5fpIdTW9kW8tt4/szTEJzs+uGf/LlV2mZWU0k5hCJOUSrhrchYlUO0XhwPxp3CEVsbNNG0MhTzsmwiHwU+CwwE1gPXAOsAt5UnNAMYwTPDZLhWGO5IzEmiPW/Xofl2Fz85kvLHcqEkkj72ObiQF5S2QJaFbwM/YfAI8A/AX8xYn+/quZSoWYGsH/E4w7g9Ca3iwFE5AWCqdT3qOqvRzuZiHwc+DjA7NmlSyDzNloiDLDs7XB0U9DdIF6676TlN13Eyh89x8anX2fF2ydGz+G2uihbD/efNRnOm1iFLwgoguLg2uWrkGf5LrN7XmR3w/VmdDhrxsI65l/YyL6tPWx/pZN0Krc2S5YlOGGLUNgmFLYIRW0iUYdI3DmRUIdjNuGoQyRqE44G98NRm2jcIRIPEusgyc6+Ju5g2ybJnirG8knwWeBKYLWqvlFElhJUpzSM4uvdB14K7Mr9dWoUjpdxee2J9Sy5binxOvNDYpiqknI9qiu1DPIEMTwyHHEqc2RYVXuBXuD9RXwbh2Cm2M0EF8mfFZGLVLVnlHjuBe4FWLFiRWX+pY4UisIVd8PTX4RIdclmLLUvmcHM5bP4zXcfY+kNy6luLO265dE0VUWAiVForJL4loPg0d7/Gnsbri13OBOCE7L49JduOPHY83zSCY/kkEtyMBNsR94fzOCmfTJpDzcTbDMpn0zKI5UIju07niSVcEklXNJJj3TSG7UC+qjxhC2isTOT6kj05P1oPES0yiFWFSJWFdyPVoWC10TtE4m1E7LMDLYJbCy/mJKqmhQRRCSiqltEZEnRIjOMkY5sItfpR8bkt231VoZ6Brns9omxdq4cUq5Hxjv1S931guIx5ks3P2lXsESxS7cktChE5HvAZ4cT1OxSp39V1T84z0sPALNGPJ6Z3TdSB7BGVTPAbhHZRpAcv1SQ4Ce6hjlwwTthw8+gfk5JijGJCG//s3fzzU98hUf+/Rf89j3lr1dWFbGJOBau5+OYkbQxSTgNzOt6nv11K/DPslZ5KrNti1i1Raw6BMQKck5Vxcv4pJIe6aRLajjBHpFop4ZckongudSIbTrpkejP0HMsSTqbYCeHXHzv/Mm17Qjv/vTFXHtnbsXkjNIaSzLcISL1wAPA4yLSDewtTliGMYIqdLwIMVO83Aisf2QdNU21LLhyYblDKalkxuP4YIoDPUl6htLIKBeITBqcv3RGCId0MhSbvXjkSG220NVlObzuJWCRiMwjSILfB5yeeT1AMPL8HyLSTDBtOrdKSZPFglvg8OvBGuLqaSV5y5a507jpQ7fwm28/xqZnXmf5TReV5H3PRhDa6mLs6xqk2iTDY+LaUeKZLloGtnKk9sJyhzMliAhO2MYJ21TV5j+jQ1XJpDySgy6JwQyJwQzJQffEaHQq4ZFOuDz3wC62vHTEJMMT1FgKaL0re/ceEXkKqCNYk2QYxTV0HAaOBdU9jYrjex7pRIZ0IkU6kSadTJNJpHEzLm46uHnZ+57rBbeMh+/5eBkXz/PxT9w8fNdn+4vbuP59N2JV+tAd4Kvi+dlb9r4/8r4Go8CHepL0JYPFrCHbojrimBHgIklnKnq98EiWiDQMF7kSkUZy+N5XVVdEPg08SrAe+LuqulFEvgCsVdWHss/dJiKbAA/4nKoeL9qfZCKyHbj8Q/CbL0AmGUyfLoHrf+dGNj+7kYf//SHmXjq/7EtFWqrD7D0+WNYYKlXSqWVh19McqVluOmVUIBHJrj92qD1HBeyO7T0c3NVXwsiMsRhLAa0I8B5g7ojXXQp8ofBhGcYIx7YFw13mh39Jqe+z5uer6O/sI51M4yYzQSKbzJBJZXDTGTIpFzedwU25uBn3RNKqvo/va/DYza0IxtmIJVh2UDHSsoNbfVs9l7/1ygL9ScdGNUhUXV9RDR4rnLg/Gk+VVMYnmfEYSLkMpl0S6WCas+efOgI58l+5jrgTdixqIo75/6AEUtmR4UngX4HVIvJjgn9av0WOtT5U9WHg4dP2/c2I+wr8afY2dVW3wCXvh3XfD6ZOl4Bl27zjc+/m3k9+jV9/5Ze8+/O/U5L3PZu6WBgRwVfFMp9PY5J2qqlNHaQxsYeu+Pxyh2MUSdvcWl57/hDplEc4UvkX8SebsUyTfpCgIMc6IFWccAxjFAdeglB1uaOYcvas382jX/0VdsghHAsTioYIR8OEomFCkRCReJSqegcn4uCEQ9ghG9u2EVuwrCBpFcsiFHEIxyLZW/jEuZxwCCfs4IRs7JCDE3KCczj2ie3wOYrJV2Ug5dI9mObYQApvlOIanq9kPMX1fNwzkldBg0Yf5zR8VlsE2xYcSwjZVvA68wNyQklPkmRYVb8vImsJuj4o8O6RvYKNApl5FWx6CNJDEC5Ny6NpC6Zz4wdv5pnvPckFN1/MkuuXleR9R2NbQkt1mK7BNLGwKd43Vhkrxryu50wyPIm1za1BFY7u62fmovpyh2OcZiyfWjNV9faiRWIYo8kkgpHh2vZyRzLlbFuzFTtk878e+DzhWKTc4RSUr8rR/hRH+5Mc6z+ZAIdsa9SRDQFsCxzbxgKTvE5y6YwQmQTJcHZG16VALcH3/W+JCKpqZnQVku3Akjvg1f+GcOlaR934gZvY8txGfvlvDzD74rnEagpTZGg82upiHOlLFajM0dSScOppGtpNdeowA5G2codjFMH0ubUAHNpjkuGJaCzJ8Mps24TXx/NGIvJd4G3AUVU9o1KABIvfvgzcCQwBH1bVl7PPfQj4q+yh/6Cq3xtPDEYFOr6ToKu9WUtTajvWbGXuJfMnXSIM0DWY5pV93YQdi6hjY1kmuTVOSmUgMjnWDJsZXaUycwVs+Cl46ZK1WrJDDu/4X+/hW5/6Ov/1F/fRMrf1xFKSkbNzLEsQO7u1LJbesJy2BdMLGktLTYR42CbteoQdMw10TETwJcSc7tVsbHtnuaMxiqCpPY4Tsji8x6wbnojOmwyLyOsE06sc4G4R2UXwpSoEy4YuzvG97gO+Anz/LM/fQdCWYRFwNfB14OpswY+/BVZk41gnIg8NFwQxJrlDr4JpOVBy3Qe76Nx3jCvuuqrcoRRFf8rFtoS4mdJnjGKyTJPGzOgqnXAVLHgTbH8c6maW7G2nL57BWz51J6t/8gL9nX0nCw0OFx30Najh4AVbgLUPrebT3/tTotWFG8e1RVjSVsMr+3oI25aZPTNGg+FG2vtfZUfTG0mF6sodjlFgtm0xbXY1h/aYntwTUS6/BN9WiDdS1WdFZO45DnkH8P1sUY7VIlIvItOBm4HHVbULQEQeB24H7i9EXMYE5ntw8GXTUqkMtq/ZCsDia5aWOZLi6BlKEzJtQIyzmETJcF4zuowxmnsjbH8s+O6ySjc6evW7r+Pqd1+X07GHth/kW5/8Kr/57uPc+cdvL2gcLdUR6uMhBlMesbAZHR4LFRsQFh5/it7YqZ0zfHE4XH0BvmUu3laytrm17HxtahXcrxS5tFgoVS/hGcD+EY87svvOtt+Y7Ho7gjXD8eZyRzLlbF+zlcaZTTTOaCp3KEXRl8gQss3IhTG6dEaojvvlDqMQbiC/GV3GWFQ1wYwVcPhVqJ6Yaz+nL2pnxduvZu1Da7jsjhVMX1S4ehwiwpJpNazZ3UVULdP6bYwGQ820973KjL71p+y3NUNq5t0cr1pYpsiMQmibU8O6JztIDGaIVZkZjxPJpBoaEZGPi8haEVl77NixcodjjJcqeBk4ugnOW6PXKLR0Is3uV3ax6OrJOSqc8XxSro9tfqgZZ5GaPH2G7wAWArcBdxHM9LqrrBFNdgvfBG4q+B6boN70B7cSr4vz8JcfPDF1ulDq4iGm1UYYSufXUm8q8i2H/uh0+qLtp9zSdpzWwa3lDs/IU9vcGgAOm6nSE85EmnNxABg5N2Rmdt8BgqnSI/c/PdoJVPVe4F6AFStWTNxvIuNU/YfhxW9Bsg+8VJAIA/guVE8rb2xT0J71u/AyLouuXlzuUIpiKO2ZdkbGOaUzQtiZFF8hHzrLflNNuljq50DTAug/CvHGckczqmh1jFs/cQcPfPEnvPLrl7n8zhUFO7cgLGqt4WhfJ6pqRocLIOHU0da/gS0tt2enUxuVaLii9OE9fcy7YGJ+NkxVE2lk+CHg9yVwDdCrqoeAR4HbRKRBRBoIrnA/Ws5AjQLb8isYOAKRaqhqhbpZUD8bGucHRUmMktq2eguhaJg5F88rdyhFMZR2mRRpjlE0aXdytFYCBkfcPIKR4rnlDGjSE4HFd0B6Yo/+XHzrZcy+aA5P3PtrEn1DBT13VcRhVmOcwZRb0PNOVb4VxvGT1KQOlzsUIw/1rTEiMdsU0ZqAch4ZzrY++iAwX1W/ICKzgTZVfTHH199PMMLbLCIdBBWiQwCq+g3gYYK2SjsIWivdnX2uS0T+Hngpe6ovDBfTMiaB3g7oeClIgE37pLJTVXas2caCKxbiTNJKy72JzKi9hA1j2GQpoKWq/zrysYj8v5iLycXXugziTZAegHB1uaMZlYhw5x+/nW9+4qs8+Z3HeNufFLalz7zmKjq6E3i+Yldq6zpVMp6S9rFd8FgAACAASURBVHKfSq4j/qOn7DxTPOKM4e9GaB7cSV/UlMypVJYl/P/s3Xl8HWd56PHfOzNnlY4WS7It71tsJ3EcO16yQfaEhCwsLYVyoVCgUApc6HZ7ub2XFroAbene0lIaukCbNJCSBEJCIBvZbWfxFu/7LmuXzjYz73P/mCNZtmVbsnU0c47e7+czmaM5M2ceK0fnzDPv+z7vlNl1ppt0BI3mavfvAQ3cRNDFqhf4HrBqJAeLyC+e43kBPnWG5+4F7h1FrEal2PIoOAmTCEdE256jdB/r4q0fuDHsUMqm2xTPMs6hWD1jhk+VJhhqZJSTZcOit8Nr345sMgwwZX4rq991NS8/+ALL71jJ9MVj99ZIxmzmtdSws62PTLKy/phcX5N3gzHP6bjDzPr0qKqXWEqhFKVFDdsFM1v02deRpS41st9N3qmjtXc9uya91QzxqWCtczJsesm08EfNaJLhK0XkCqXUawAi0qmUGp+Z5Y3q1LU/mDqpfua59zXGxbaXgiId1TpeWETozXukzbQfxlkUXUUiXvktw0qpDZxol7KBFsx44fEx/QrY+sOg95Mi+L8wkMTE0pGZMvDGD9/MpqfW8+hfPcRH//aTWGM45dzspjSHu3P05V1qEs64jx/WWoKu2mc47cDmk1pwFSQdmwWTa5mcSVKTsFFlKOTpac3h7jyer3FG8Dt3rRR1xSOkvC5ysWi8d4zRmzonw8uP7aO3s0CmMRF2OEbJaJJhVyllU/rcUEq1ELQUG8b52fIDcJKmVThCdry8lSnzW6lrqQ87lLLIexptiroYZ+F54OuqKaB115DHHnBURMxAzvEQS8FNXwAvB1oHBSG1Bz0HYd2/RCYZTtQkue2Td/DgH/0Xr/1oLSvuWj1mr+1YFqvnNrH1SA8Hu3Kk4864ze+eK3p4WlgwpZZp9anTnhfA11JaNF7pcU3CIZN0ypIAD+VYFvNaath2tJfMSH4nSiFAY3Y3ufpovHeM0RssorW31yTDETKaT6W/Bv4bmKKU+iPgOeCPyxKVUf0698LhN6CmJexIjJJcb459G/dx0VWLwg6lbLJFz0zWZZxVwQveIZU8Zlgp9e+lh+8Ukb2l5aBJhMdZLBkkvTVNkJkC9dNh2nKwYydmTYiAJTddzuzL5/LTbz5Otntsi2nFbYsl0+tZNqMB19NBS20Zp53SWujJuaRiNlfNa2Jecy3JmH3akorZ1CYc6lMxJtUkmJxJ0lqfoi4ZK3siPGB6QwpbKfwRTm9VtGuY1ruhzFEZ5XRieqWekCMxhhpNMjwF+CpBAnyY4Ev2gbJEZVQ3EdMqHEE7125HtGbhldWbDPcVvChP/2lEQLGUoyQqa5jjqVYopaYBHynNxDBp6BJ2cBOaHYPWyyHXGXYkg4JiWneT7yvw5L0/HvvXRzG1PsU1C5ppSMfozrvkiv4Zl3zRJ++ObCkMWbIFj/6ix4LJtaye10RdxMcqx2yLOc01I56TuWDX0pjbi+PnyhyZUS6ZxgQ1dXFTUTpiRtNNOkMwh28HcH9pbRij17kHjmyA+llhR2IMsePlraTqUky/uHrHcHdl3RGNzzImrqJb+S3DwD8APwXmAes4edSklLYbYZm+AvavOfd+42jy3KmDxbSuuHMV0xaOfdXiVMzmilmNHOzK0dlfHHafgb86kaAe87luXsrAzoBtKea11EY+CR5qRmOK3cf70VqwzlVZWlmA0JjbR1tt9d60rmZKKabMzpiW4YgZcTIsIl8EvqiUWgq8F3hGKXVARG4pW3RG9RGBNx8BJ2UqIkaIaM32V7axYNXCMS2gEjU9ppK0cQ7VkAyLyF8Df62U+rqIfDLseIxTNC0IEhvRkeoddcOHbmbjk2/w6F89zEf/5hMoa+xjs5RiZmOamY3pMX/tSpRwbGZPSrOnvZ/aESTxvoozpW+TSYYrWOucDOt+egAx9Usi43w+6Y4BR4B2YPLYhmNUvY5dcHSTGSscMYe2HiTb1c+CKu4i7WlNzvVxKnXOS2NcVEMyPMAkwhEVr4GWhZDrCjuSkyRrk9z6ids5+OZ+Xn/8tbDDmTBmTgpuDGh97s+cvFPPlL4tWNoM/69UU+dkyGc9utryYYdilIy4ZVgp9WvALxBMzfAA8CsisrlcgRlVSAS2/DCYVsLcDQuFiPDwnz3IsV1H8Ire4JLvz4NSLFhVnVMqQTCvowLz3jPOqlAaM1yl8wwbUTFjNRzbAuloDeFeeuty1v1gDT/5p8dY/JZLSGVOr8RsjK1kzGZGY5oDndlztg5ry8ESl7rCQbpSs8cpwpGzdQHBRlujGYU5sQxWlN7TQ+Nk8/cVBaNpGZ4JfE5ELhWR3zeJsDFqXfvg2GbTKhyiQ1sO8PqP1qEsi6YZzUxbNJ15Kxaw9JZl3PXr7yRdX71d17JFn8pv6zPKbaBlOFEFLcNGhLWUeuFErKKfUoq3f/Yecj1ZnvrWE2GHM2HMbkoH46RH8H4QLJr7t49DVCOXcLuZd/wpbtz5p8zpeC7scCJtyuygorQpohUdoxkz/PlyBmJMANseL1WQNi1zYXnjx6/hxB0+8NVfJlmbDDuccdWTc8dtygyjcg12k66OeYaNqEpPCqZaKvZBIhN2NCeZOr+VlfdcydqHXybTVEc8FceyLSzbxrItWma3MOMSUwBzLKXjDtMaUxzszJGM2Sc9pyCodVG6dso79Uzr2cCOpptPXE+Jpr5wiEnZ3Tg6jxKNEkGhUeIP+82Xt2s5mllCf+L8GyhqC0eZ1fUy03teB6BgZ5jd/RJ7Jl2Ltkz3muHU1MWpa0qaIloRcs5kWCn1nIi8RSnVCyc1rChARKSubNEZ1aPnMBx6Feqrt1Jx1Pmux8an1rPomosnXCIM0JUrmuJZxjkNtgzHKzcZHub7evApzPd2dMy8CjY9GLlkGOCmj9zKzjXbefKfT59qyYk7/NaDv0sinQghsuo1r7mGvOvjnzJ2OO/6ZIuadCK4ZPfsJJn8YWqKbSiEyX1vMrN7HXG/D1BoFSTTgoKz3AC2xWVBxzN0pmaxt/Eajqfnnz2BFU3S66GmeJxM4Sgt/dtpzO/BJ0ZfvAUpnbcu301z/3aOZS65oN9HNWudk+GIaRmOjHMmwyLyltI6ep/WRuXY8QRY8UhVzpxodryynVxPlqW3LQ87lHEnCL0577Q77oZxqmKpLk0lF9Ay39cVYvLFsCnsIIaXrE3xqX/5HMWci/Y12vfRvubwtkPc9//+nW0vvsllNy8LO8yqko47rJx9+hjyvoLHCzuOnzL9kmLVgX8l5mcRZZF36ulNtI7+pCLUFNtZdvh+XCvBvvrV5GMN2LqI4+eJ6Ty2FEi7ndTnD2HJicJdRTtNT7z1tN5+RbuGOV0vcqz2YtMT8Aymzsnw/CN70L5gmZv0oRtNAa2visjvnGubYZym/zjsewky08KOZEJb/8RrpBtqmL/yorBDGXcFV+PLCOZxNCa8QnGgmnTIgYwRpVQjcBEw2B1ERJ4NLyJjUN00SNaBm4NY9ArpWLZNsvbkG4iZpgyZ5jo2Pb3BJMPjpDbhMKe5hj3t/WRKBbb6483YUiTvTL2whFMp8rF68tRj6yJzO5/DQiMoBAtRNhoLbcXIxhoQde60Ie/U0ZDfT23xGH2JKecfWxVrnVOHV9S0H+mnZXpt2OFMeKNpprt1mG13jFUgRhXb+SQoGyzTKheWfF+OrS9uYclNS7Gdiff/IVs001AYI1OooqmVlFIfA54FHge+WFr/fpgxGUMoBTOvhFxH2JGMmLIsLrn+Mna8so1Cv5kaZrzMba4hZlu4vgaCqtKuPbYzc/hWnL7EVHoS0+hNtNKXmEJ/vJlcfBIFJzOiRBgApdDYTOs203OdydQ5Qecd01U6Gs6ZDCulPqmU2gAsUkqtH7LsBjaUP0SjouW6YPczUGumpA7Tpqc34rsel9868bpIA/QX/OFHUBrGKQbHDFdHAa3PAquAvSJyI7AciNbkthPdlMtAdNhRjMqlN1yG7/psfeHNsEOZMGK2xeKpGbJFP3IVyIeTjU1iZs86bN/cMBnOlFkmGY6SkbQM/wdwN/BwaT2wrBCR/1HG2IxqsPvZIAkxc86Fav0Tr9I8q4XWhdPDDiUUXbkithmXY4xAsYpahoG8iOQBlFIJEdkCLAo5JmOoxjlgx8F3w45kxGZcPIO6yfVsetq0h4ynqXVJGtMxcq4fdijnpK0YtvaY3L817FAiKZFymDQ1zWFTUToSzpkMi0i3iOwRkV8EeoApwGxgiVLqunIHaFSwQh/s+IlpFQ5Z5+EO9m3Yy9Jbl6MmaDGL7pxLzDbF24xzG+hRH6uOMcMHlFINwPeBJ5RSDwF7Q47JGMp2YNoVlddV+rol7Fy7nXxfLuxwJgylFBe31uH6MqL5iMOWdzLM6XyhIlqyw9A6J8PeLZ289tRBNr9ylN2b2jm0u4fOY1n6ugoUch6+X1m9RirVaApofYygy9UM4HXgKuBF4KbyhGZUvL0vgPaCu95GaNb/JJj/b+ktE7PYia+FbNEnkzC9E4xzK7oKxxaq4d6JiLyr9PD3lVJPAfXAYyGGZAxn+nLY+xzku095QkGiNpKzMFx6w2W89N3n2frCm1x+2xVhhzNh1CVjzJqU5kBnltpktO/YFe0a6gqHqS8cpDs5I+xwImfukiY2vXSUf//yurPuZ1mKWMIiWRMj05igblIyWJoSZBoTJFLO4BJP2SSSDom0Q6omRiLtmMKhIzCaq8OBsUcviciNSqnFwB+XJywjknwP1v0L9BwY2f49hyEztawhGWcnIqx/4jXmLJtL/ZSGsMMJRdYtNfVN0FZxY3QKrqqWLtIopX4DuF9EDorIM2HHY5xB0wKYsRoKpyTD2U7oOxbJ79HpF8+kfnIDm57eYJLhcTavpYbD3TmKno9SCq0FLcH3vRZBJBidpmDYaYZFTjw30Gg78PV4pm9JKf3HshS2pbCVwrLUsPtbqvSCSuGrGNO71tE91STDp7rxPfNZcfMM8v0uuX6XQr9HLuuR73dxixq34OMVfTw3eJztc+ntKNDVlmPf1k76u4sjanRPpB1SaYdkTYx4yiGZsoN1Okiga+rj1DYkSkucTOlxOhObML0JR5MM50Ukr5QaHHuklDJjjyaSPc/CgTVQO8JS+XXTTKtwyA5uOUDHgXbe8ovXhx1KaLKF6I+vMqKjWEXJMJABfqyU6gDuBx4QkaMhx2ScKpaC1R87ffuh1+Hlb4x/PCOglOKS65fw8n+/SK43RyoTvamhqlXCsbm4tY5tR3txLEUsZhN3LOK2RdyxcEoJqzWQtCqFECTMWgStBV8HibNtKWzLwlJglfYdLv/xtVD0NFnXJ1v0yLs+eVef1l1bBLRAbTJIL7LxSUzrXc/25ltwnZrx+PVUDKUU9U1J6puS5955GL6n6e8uUsh7FHI+xZxHobTksx75fo981iXXHyTY+X432C/v0dtVoJD1KeQ8sr3DJ9V2zKKuMXGiNbopQaYxWfo5eDywzYlFr/fKaIwmGT517FEnZuzRxNF3DDY+CJlWcBJhR2OM0Bs/fhUn7nDJdUvCDqXsBKG/4KNP+VTvzBbPeLfbME5VdCER7d6HIyYiXwS+qJRaCrwXeEYpdUBEbgk5NGMkGmeDklJTXvQ+xS694TJefOA5tj6/mWW3rwg7nAmltT5Fa330bkB0ZIus3XNi/LsoG0s0U/o2caBhdYiRVR/bsag7z0R6KO0L/T1F+roKpaVIT2eeno4CvR3B+vjhfnZv6qC/pzjsa2QaE0Fi35KioTlJQ0uK5mk1tMyooXlaDfFktIepjTg6M/ZoAtMaXvtOUBHaJMIVw3c9Nj21nkXXXkyi5sI/MKMuW/R5cefx07ZrgVRs4s2tbJyfoqtIVE/L8IBjwBGgHTAVDStFsgHSzeDmIJ4OO5rTTFs8g/opQVdpkwwbwInaHENu4ORi9Sw5+ggXt52cMgiKPY3XsGvSdWirSu5AViDLVmRKLcDn4nua3q4CvR0FejsL9HTk6W7P092Wp+t4jo4j/eze2E629+Tq+PXNSZqn1zB1doZp8+qZNq+O1jmZyCTJ5xWFGXs0wex7Edq2QMPssCMJhWiN7/n4ro/vabTvo32N9jWiBa11aZ9gm/aC533fR3u6dJyP53qDj33XO/GaA4+94Fh/4PUHfy6d0wviGDj30DhOOra0n1d0yfXkWDpB5hbuybmIQCZlvlSN81dlY4Z/DfgFoAV4APgVEdkcblTGiCkFrZfDrmcimQwrpQYLaeV6sqTqohejMb5itkVtwqHoC3EnSIZdO01X8vRWbEt85nX8jJb+7ayf+m76E+Y+XdTZjkVDc4qG5rP3SshnPY4f6uf4wT7aDvTTdrCPtoP9rH1iP4XcHiCoC9gyrZbWeXVMnZNh6uwMrXPqaJqWxh7nCpbnTIaVUr0MGYtfMvCziEhdmWIzoiDbAevvh9qpkeymBbDtxS1senrDScmh9nQpSQ2mIBCtS2s5kTwOSSiDZPREIhk8DhJU0eNT2t6O2Vi2hWXb2E6wthwL2y5tdyxs5+R9bMcmloifeH7gGMfGcmxqJ2VYsOqicYk/bO19RWxTNdG4QFU2Zngm8DkReT3sQIzz1LIYdj4ZdhRndOkNl/HC/T9jy/ObWX7HyrDDMSKgJZNgz/F+4s6QhGaY60etHHqS00i5HVyz7x/Y0nw7+xtWRrJ6ujE6ybTDjAX1zFhQf9J2rYXOo1kO7uzh0K5uDu3q4cCOLtb/7NDguGU7ZjFlZi2tc+tonRskyK3z6qhvSpatoNc5k2ERyZTlzEb0icAb9wW3PmLR7GbbeaiDB774H8SScVJ1qcFE0bKs0mOFUgplBWuUwknESNSU9hmSYA4kkME2ZzDZtGPBdru0BK8bLMqygoqKljVsAmvH7MHXCNbOiZ9Lj524jbKsCVO1rxwE4XhfgYRjvkSN89fTr+josUgnqyMZFpHPhx2DcYEaSz2yIjpuuHXhdBpaG9n8zEaTDBsANKTjCP0j3j8Xm4Sti1zS9kNa+reyvfkWtBrD7rMR+bvxrAQFZ2KnVJalaGqtoam1hqVvaR3cXsx7HN3Xx5G9vRzZ08PhPb3sfOM46356YvaaVCbG1W+fzZ0fuXjMr5dHM8/wF4bbLiJfGrtwjEg5sA4Ovw4Nc8KOZFgiwg//8iEsx+ZX/+kz1LXUn/sgoyrlXU3R1yRipou0MTrHuyx+9nqCp19N8urWOL6vuPst2bDDuiBKqedE5C1DenYNPoXp0VVZEplgZoZifzDncMQopbj0+qCQVrY7S7redJWe6DJJJ/jUGcUNHN+K052YRmN+H1ft/yZjfTvybFGM9FwXmn4pNF3JmeyvX8Hx9AJTXXuIeNJh5sIGZi48eQrQbG+Rw7t7ObS7hx2vt/Hk/TtIpBxuff9C4l4f9fmDNNj5Cy5mNJpbL0Nv8ySBu4A3LzQAI6LyPfDGf0DNlMjcVTvVxifXs3Ptdu74zN0mEZ7gevPuuXcyDCBXUGzcGeO1bXHWvhln064YIoqZUzx+8dZ+rr+iwMVzKvv9JCJvKa0ndjNEtWi9HLY9HslkGODSG5fy/H3P8vKDz3PjL98adjhGyJKOTTJu42nBsUdx/agU/fGW8gUWNhFSbgdLjnwflKKtZhEH65ZRtGsIyokJSs5/WJ4ohWAB6sIz91JEQ6mB2wYipceCOstEx9pycK0knpXEtZOIOlFczdYFYjqPo/PE/PwZX6PRhukLgAUKuaWFf47l+NG/bGElz/PeVXsRFA12YfySYRH52tCflVJ/Bjx+oQEYEXVkY1DBsiaaH0y5niyP//0PmL54BivvuTLscIyQtfcXsSJ608YIlwhs3BnjuTcSvLYtzpt7Yvi+wraERbNdPnZPH9dfUWDuNC+q9/3Om1LqN4D7RORQ2LEYF6B5IWz9UdhRnFHrRdNYeutyfvadZ1h87SW0LpwedkhGyJprExzqyuGMcyGkSFOKglNHwalDiaYxu5uWvi3IKWOkz+dr6NSU9EK/ys6U4qohzwWzV6tztrqrUtLsWXG0cojpXOlY66S9RmLZu+BTR+bxx/82iYY6xdVLi2jUBXckuJBO+WlgxoUGYETUwTUQj+ZdaICf/NPjZLtzfOBPPoJlPmwnvOO9hZOLdRgT3v6jNo+/lOKxl5IcanOwbWHxbJf339bP8kVFLlvgUlMlY4PPIgM8oZTqAO4HHhCRoyHHZIxWw6xgLTqyxYVu//Rd7Hp1B9//6nf5la9/CicejSlTjHA01cQ50FnZw03KSZRFLj4p7DDGjwgKHyVC3smc/+dYAr706Syf+pMk//cfG/jb3+449zEjMJoxwxs4cUPAJpiqwYwXrkbFfmjbFoxTiqC963fz6g/XcM1738rU+a3nPsCoagXPJ1v0qYvIfHVGOHIFxY79Dpt3x/jJmiSbdsVRSlixuMhH7gpaf2tSVZ/8nkREvgh8USm1FHgv8IxS6oCI3BJyaMZoxFJBIa1sJySjOSQolUlxz2++m//4P//KM//2U27+2NvCDskIUcZ8HxtDKYXgIGPQ+6omKXzts518/MuT+K2/aqTx7LM8jcho3q13DXnsAUdFxLvwEIzIad8R2TvQvuvxg7/4PvVTGrj+l24OOxwjAnrzpe6t1dbH1RhWNq84fNzm0HGb/Udttu2LsXVvjH1HbaT0TTt/usunfr6H267M09I4PlOjRdwx4AjQDpjJPCtR63LY/FBkk2GAi65axLI7VvD8fc+y+NpLmH7xzLBDMkKSitvEbAtfi5ny0BhzTfWaP/9cJ5/4ctOYvN5oxgzvHZMzGtF3cB040ZxK6fn7nuX43jbe/+UPEU/Fww7HiIDObHEsakUYEdGXVRxpt4Olo7Rutzh83ObwcYeuvpNv0k2Z5LNwlsstq3MsmuWxcJbL5EkmAQZQSv0a8AsEPbkeAH5FRDaHG5VxXprmhx3BiLztk3eya23QXfoT3/g0TtxU+J+IFIqmmjjH+wqkTJd5owxmT/X508908tV7L/y1RtNNeiXwu8Ds0nEDUzQsHeHxtwN/RdDF+psi8pVTnv8L4MbSj2lgsog0lJ7zgQ2l5/aJyD0jjdsYJd+Fw29Aamzutoyl3vYenv3201x6w2VcdOWisMMxIqKtt0DCscMOwxiBogsdPVawdNsc67RKrbwOh9qC1t7e7MnJbtwRpjT5TG3yuf6KPK3NPtNKy/TJHvW1E6vr80ipYCLGFcDnROT1sOMxLlD9zKD3i/bBiu7nXbI2yT2/9W6+/Tvf4sl7f8Jtv3pH2CEZIWmqjXO4J88Y9GI1jGFdtmBsZn4Yze2a7wC/TZCUjuq2u1LKBv4OuBU4AKxRSj089A61iPz6kP0/Aywf8hI5EVk2mnMa56lzT5AQ29G7m7v5mY34rscNHzbdo42A62v6Ch6ZhLnzPB5EIF9U5PKKbEHRl1X09Ft091v09AePe/ot+nOKvpxFf1bRl1P05yw6e63TEl2AmCO0NvlMa/G5ZJ7LtGaP1mafKZM0U5t8GjMaK3ojNiJPREQpdaWIfDTsWIwx4MShaQH0HIJUY9jRnNX8VRex4u7VvPjAc0xfPJ1J05pQtoVlWVh2sCilUKXus8pSKKVKz9lYtoXtDNnXfABUpLpkzPTaMirCaK4g20Tk4fM8z2pgh4jsAlBK3Qe8AzhTd61fBH7vPM9lXIjD60FF867zpqfWM2XeVJpnmSFvRmBwfmEzXnjEtA6KTfVmFfmiouAqCoXSuqjo6Vcc67Rp67Jp67Ro67Rp77bI5hW5ohocl3smqYSmJiXUpoSalKauRpjW7NJYp2ms00yq0zSV1i2NPk31Jtkto3VKqVUisibsQIwx0LoMjm+NfDIMcOsn7mDnmu1890v3XfBrKUudniQ7NrZtYzkWtmOflDhblgrW9skJ9tBk3HIs7JgTvGbMxnac0to+sR7yePC4oa837HLm5068jk08Fa/6its1CQdLKbQWLDNu2Iiw0fwl/p5S6pvAT4HCwEYReXAEx04H9g/5+QAw7OSwSqnZwFzgySGbk0qptQSFu74iIt8/w7EfBz4OMGvWrBGEZZxEazjwCqSjV+69+1gX+zft46aP3hZ2KEaEdOXGpotMNXtlU5yvfy9Db1bRmw1abfUISjrW1WhaGnxaGjULZrrUpoR0UkglhFRSk04ItWmhrkZTXxMkvZkaTay6r+8qzZXAB5RSe4B+Rjm8yYiYSXO58BlEx0cineBXvv5rHHhzP+IL2vfRWqN9QfsaEEQLIoIIiNZo//TF93y05wePfY32/GDbwD4Dz5XWogWtS+uB13CLJ7+mXzrG9Qdf3/d8vGKwRso/9CKeTvCpb32OupboFkS7UJZSNKbj9ORdkhHu2m8Yo7ls+WVgMRDjRDdpAUaSDI/G+4Dviog/ZNtsETmolJoHPKmU2iAiO089UES+AXwDYOXKlWYg2Wj1HIRCLyQbwo7kNJuf2QjApTdcFnIkRpS0mfmFz+nxl1LsP2pz3RUFalOaTFqoTWtqU0IyISRiQiIerJPxIMFtafBJmPp01cDMb1NN6qaDFQPtgRX9u07p+hoWXrU47DBGbSC59l0f3/VOTswHk2ofPSTh1r6P9nQp4denJevB8cF+xVyRn/zT46x95BVu+sitYf9zy6olk6C9r0AyZpJhI7pG82m6SkTOt2rRQWBojf0ZpW3DeR/wqaEbRORgab1LKfU0wXji05Jh4wIdezPsCM5o01Prab1oGpOmR6+wlxEOT2t6ci41ZrzwWe086LBkgcsXPtoddijG+PvQGbZ/aVyjMMaG7cDkxdC+E9Lmu7BcBro1xxLlq52yb8Me1v3gFa77wA1VXXG7LuVUSmcGYwIbTZPKC0qpS87zPGuAi5RSc5VScYKE97Txx0qpxUAj8OKQbY1KqUTpcTNwLWcea2xciP0vRbJVuOtIJwe3HODSG03PYWNEpQAAIABJREFUPuOEvryHAMqMFz4jX8OeQw7zp5sp4Seo/iGLD9wBzAkzIOMCTV0Kxf6wozAu0JU/dw3Zrn42PrXh3DtXsNqEMzA2I+xQDOOMRtOkchXwulJqN8GY4RGPPRIRTyn1aeBxgqmV7hWRTUqpLwFrhxTmeh9wn5z8V3Mx8I9KKU2QvH/FzJNYBv3t0HsY6maee99xtunp4MvikuuXhByJESXdZrzwOR04ZlP0FPOnm9/VRCQiXxv6s1Lqzwi+h41KNfniYGolrwBOIuxojPM0d/l8WmZP5uXvvcDlty2v2pu6jmVRl4qRc30zBaIRWaNJhm+/kBOJyKPAo6ds+8IpP//+MMe9AJiBouXWtgVQkazKu+npDUxfPIPG1ugV9jLC09ZXIGab8cJns/NA8BE/f4ZpGTYASBMMUzIqVXoSXPIu2PgANMwOOxrjPCmlWP3uq/nhXzzE/k37mLWkev9fNtcm2NnWZ5JhI7JGfCUpInuHW8oZnDGO9r8C8dqwozhNx8F2Dm87aLpIGyfRInRlXVM86xx2HYxhKWFOq0mGJyKl1Aal1PrSsgnYCvxl2HEZF2je9VA/E7LtYUdiXICltywnWZvklQdfCDuUsmpIx9ACBdc/bTHdp40oGHHLsFLqC8NtFxFTiKPSFfqgfXtQqTJiTBdpYzh9BQ8tghXBngxRsvOAw4zJpjL0BHbXkMcecFREzJ2RSmc7sPwD8PSXIVlfEZWljdPFU3GWv30VL333eXrauqt2mqX6VIxp9Uk8fXLi25v3yLs+qSqfb9mIvtG8A4dWbEgSfMlGt/ywMXLtOwABFb1Wtk1Pb2DmpbOonxy9wl4TQbbocbQnj6UUlqVQBHMHBhUDghZagWCKCRF8HVR59rXga8ErzSNpWQrbUjiWwrYsHEsN2yNfBDxf40tw7MDrnMr1zd3kkdh50GHBTJP7TDRKqVXA/oHeW0qpXwJ+DtirlPp9EekINUDjwjXOhotugx0/CVqJjYq0+p1X8dJ3n2PNwy9z80dvCzucsnAsi6UzTr+G29Pez7ajvSFEZBgnG3EybApxVIF8Nzz9lWA9lPYhkQknprM4vq+NozsP87ZP3Rl2KBOSL8IbB7rozrpYSjGQfqqB/winbVMESa4a+jjYFRFB5MTjM1EqSLqVOnH8cGrM3eSzyhUUB9ts3nZVLuxQjPH3j8AtAEqp64CvAJ8BlgHfAH4+vNCMMbPoDjiwNvhOT1Znq2K1a5jayKKrL2bdI69w3QduLOt0TlFjvsONqLiQd6IpxFFpjm6GXNfwd5Ej2N1009PrQSkuvd7UTwvDnuP99OQ86tNV2MdWBEtctIpF8r0/FnYfshFRZlqlicke0vr7XuAbIvI94HtKqddDjMsYS7EUXPFL8NxfBDe0I9i7yzi31e++mi3Pb2bjk2+w/I6VYYczblJx20xBbETCaMYMb+BEQ5ANtABmvHAl2fdC6QuzMj5+Nj29gdmXzSbTXBd2KBNOT95l57E+ahNVeOdWhLrCYVw7ieMXEGWhSs3cnhUk/hYaJT4KjaLUoq0cfOWgLQetgkVG+FWu0FjiYWsPS4JFoU98op4cIKJstHLwrVjpXDZnbiM/9WjQymHXwaCF4bRK0iJBLOKiRA/7GgPnFqxx+7ywdZGE14etC6VzCkoo/c5tBBtL/NLvzw96GJQu/gd6HwxEKif9xOA+wWsKolTwb1QOQR8GjRJ9Yi36tN+2hVTGB2fAVko5pfHBNwMfH/JcFf5RT2Ati2D21XBgDdSZ9olKNGfZPCbPncLLD77IsttXVO00S6dKxqzgK1CkYq5Ljep0zi9FpdQCYAqnF+KYCxwuU1zGWMt1wvEdFTO26Njuo7TtOcYd//PusEOZcHwRNh7sxrEtLKv6vqBqi8doT8/jtWm/iEJIul2kvC7SxePUFY6hlcJXCVwriWcn8a04SjQJr5eE30PS7SXh9xL3s5whmz2NKJuCXUshkaHgZMg5dbh2LXqYlhxLeyS8XpJ+Dwmvj4TXS1xnR/zvs7RPTOfYv9chGdMsrDuEXQieG0jyinaaglOLa6VOO16hSfj9pN1OLO2CUiNO+k+8Bgz+bkQjyi4l1qfsV0o8UeBaaY7VLKQ9PR/XSePoAjE/S9LrIeH14ugcRbuGgl1Hwcng2ik8K3HiZoFSaGxEKYIEV4IbGiKDSa6jC8R0nrjXT8LrIeH1YOHhqwSelcCzE3hWEk/FT7s4a/ceq6T+5v8JPKOUOg7kgJ/B4Pd599kONCqMUnDpu+HYFug+MLJjtBdcC1hmqpsoUEpx5buv4ZGv/Tc/+cZjZJrqsGM2tmNjOTaT50xm2qLqu9HhWBYJx8bXgm1X37WGUTlGcof4L4HPnzqNklJqUuk5k61UgqObg3XE7r65BZf//N1/48iOQ/ieRvulxfNRluKS60wV6fG253g/vXmPulT1jV2qKR6nL97CG63vQVvBv68/MZn+xGSoWRhydGNIhJe7XqBldpGX534SRxfxVQzXTuHaKUSN7CLY0i4xP0tc57D0yLtbW+Lh6AK2FLF1kbifxdGF08PEoifZSm9iKjmnIXKfT0P16rgbdgwjJSJ/pJT6KdAK/FhODNK3CMYOn5NS6nbgrwh6gn1TRL5yhv1+DvgusEpE1l5w8MboJevglt8Dd4T3a7b+EPa9HMkZJCaqy26+nGe//RQv3P+z056LJWP85gOfJ1GTDCGy8sokHbpzLra5L2OEaCTJ8BQR2XDqRhHZoJSaM+YRGeWx93lIRK+78dP/+lN2v7qT5W9fSSKdwLKtwaVlzhRqJ0WvsFc168657KjS7tEpt5Oinea16e/Hs09vEa0qSnF4Tx+LV00mG28+75fRVoyCVU8BU5yn0ojIS8Ns2zaSY5VSNvB3wK3AAWCNUuphEdl8yn4Z4LPAyxcesXFBYqlgGYlFdwbJsO+CXX03PStRLBnns9/5Lbyih+/5+K6P7/kc2XmY//w//8bGp9az4q7VYYc55upTMdr7ChAz2bARnpFc8Z5tTpsqv6KsEtkO6NgduS7Sh7Ye4MX/+hlX3LmKu3/zXWGHM+H5Wth4qJt4FXaPTng9AKyb/gEKTvRuCo21vq4CvZ0FWudU/7/VKIvVwA4R2QWglLoPeAew+ZT9/gD4KvDb4xuecUHSk4JpmbY9FrnrgolMWRaxZJyhtycyzXW0zJnMaz9aV5XJcE3CGeFgI8Mon5GUHlyrlPqVUzcqpT4GrBv7kIwxd3Qzpblqwo5kkO96PPSnD1LbmOHWT9wedjgTmiD0Fz22H+ulL++RjFfuHVpbF3D83ElLwush5udZN/2DF9RKWkkO7w6S/9a5pmeFcV6mA/uH/HygtG2QUuoKYKaI/PBcL6aU+rhSaq1Sam1bW9vYRmqcn/k3gR0HLx92JMZZKKVYfsdKDr65n2O7j4YdzphLmRZhIwJGkgx/DvhlpdTTSqmvlZZngI8SdI8yom7vc5HrIv3cfc9ybNcR7vzcO0jWmg4G483Tmvb+AluO9PDstjae33GcfR3Ziu4eHfd6SXo9aCt20lKwM7w67f30JKeFHeK4ObynF4DWudH6uzeqg1LKAv4c+M2R7C8i3xCRlSKysqWlpbzBGSOTqIWL74b+Y2FHYpzD0luXYTk2rz1Wfe1PqQq++W5Uj3Ne+YrIUeAapdSNwEA1ox+KyJNljcwYG/3t0Lk3Ul2h2vYc5dl/f4olNy5l0bUXhx3OhNOVK7J2TydaBIUiGbPIJCt/3FjS6+X11l/gWOaSsEMJ3eHdPdTUx8k0JsIOxahMB4GhXxozStsGZAiuB54uTQMzFXhYKXWPKaJVQWZfC9seh2I/xGvCjsY4g5qGWhZds5j1T7zGLR+7DTtWuTetTxWzFY6l0FqqbniWUTlGPEO7iDwlIn9TWkwiXCmObgrWEekirX3NQ3/6IIl0gts/c9e5DzDGlBZh86EebEuRScaoTTo49og/BiIr5mfJO/W01VZRRegLcHhPL61z6ibMfJXGmFsDXKSUmquUigPvAx4eeFJEukWkWUTmiMgc4CXAJMKVJpYMpmXKHg87EuMclt++kmxXP9te3BJ2KGNKEVyLuP7wc94bxnio/Ktg4+z2PgfJ6FSCfeW/X+Tgm/u54zN3UdNQG3Y4E86h7hy9eY9klY3TSbnd7Gy6DlHVc8f8fGktHNnTw9Q5ZrywcX5ExAM+DTwOvAn8l4hsUkp9SSl1T7jRGWNqxkqonQx5M/10lM1fdRGZ5rqq7CqdSTp42pTRMsJjkuFq1tcGXfsjM16481AHT977Yy66ahFLbro87HAmnKKv2Xakl3SVjdGxdQHXTnAkY+akBug8mqWY9814YeOCiMijIrJQROaLyB+Vtn1BRB4eZt8bTKtwhbIdWPLzkOsEMQlJVFm2xeVvu4Idr2yjp626blzUJWNokwwbITLJcDU7ujEyVaS1r/n+V7+LZVvc+bl3mO6bIdjV1oenpSq6RQ+VdjvZ3fhWfMuMjwVTSdowjFGasgSa5kN/9VUrribLb1+BaOGNJ14LO5QxlYrbUbhMNSaw6roqNk4QgT3PQ/Js00SPnxcfeI59G/Zwx2fupn5yNGKaSHrzLnvbs9RUcLXo4VjaQ7A5WLcs7FAi4/DuoJL01NmmZdgwjBGwLFj5kaAXWZ9JiKNq0vQmZl8+l9d/tA6polb8VMw2cw0boTLJcLXqb4PegxAPv3Xo6K4jPPWtJ1j8lktYeuvysMOZcARhy5FeHFthVdnt17R7nL0Nq3EdUwl1wOE9PUyamiaZrq4bH4ZhlFFNM7z1NyA9CXoOhR2NcQbL71hBx8F29q3fE3YoYybhWFhKVVWCb1QWc7VU6bQPa/4ZuveDdsH3QTzwXVBO6F2kvaLHf3/5AZK1Se76jXea7tEhONZToL2/QH0VTJ80lBIfhbC/YVXYoUTK4d09ZrywYRijl2qEt/w6vPj30L0PMtNDv4YwTnbJdUt49K8f4bXH1jH78rlhhzMmlFLUJBxcTxNzzPvNGH8mGa50B1+Fg+ugdirYSXAUKCtYCP9D5Zl/+ylHdx7mfX/wQVM9OgSe1rx5uId0LPwbI2MtXWznUN0y8jHT7X6AV/RpO9DPZde2hh2KYRiVKJGBaz4Dr3wDjm+FuplV991RyWLJOEtuWsqGn7zOZTdfTiwZx4k7ODEbO+bgxBzswcc2dszGsqNfNDOTdDjakydmOqwaITDJcCXzirDxe0H3plgy7GhOs3/jXp6/71mW3bGCRddeXNZzeVojAralUCqYu+5sBEFrcLXG82Xw+KgRwPcFV2tcT1MoLf4wlRelNOpm6L/D9YP961LV1SqMaGzx2NNwddiRRMrR/X1oLbTOMS3DhmGcp3garvokrLkXDr8eVJweSgRqp4AdDye+CW7Fnat49Qdr+Pb/+tbIDlAKy1Ioy8KyFUoFj+2YPZg8Bwm1M5g8246F5djYto3lWNiOjWVbWLaFKq0ty0JZKljbFpalqJ2UYdU7rsKJjy69qEvGONSVO4/fhmFcOJMMV7J9L0G+Cxpmhx3JaYq5Av/9lQeon9zA7b92Z1nP1ZN3WbOnA18LIsFNbMdSpcT49KRYJEgSfS2lxDnKFINproCyFLZiRN3NB/bIJCvgz1yEpNdDTGdHtLujixzJLKE/MbnMgVUWU0naMIwx4SRg9cegYxeIPvm5fS/DoXWQmRZObBPctEUz+OQ/f5Zsdz+e6+EXfTzXwyt6+J6P73r4brAt+NlHtEZrQXyNiKC1xnf90hIc65WO076P5/roXBHf02jfR/t6mMUPXlNrtB+sB17nre+/YVT/pnTcjvi1mFHNKuAq2RhWMQtvPgQ145cM7Nuwh9d+tA7t+WgdfBiKlsH1wAesaKGvo5fOw5186M8/SqKmfK3WBc/ntX2dWEqRLiV9IkFSLMiwrb2WBTHbNuOXRyDpdhPzcxScDEU7Pfbd5USTdjtwdIGu1EwO1t2MqJF1k+pIzRnbWKrA4T292I6iZYYZkmAYxgWyY9Cy6PTtyoYDr4x/PMagyXOnhB3CsO7/f9/mue88zfLbV1A7aeQ3ZVNxU1HaCI9JhivV7meDhDjdPC6nO76vje98/l+xLEUykxrsImPZVtD1xlIo60T3m0RNkjs+cxdzLp9Xtph8EdYf6Mb15aQpg5RSpZzNJLsXIu71odBsmfw2ZnWtoa5wGN+Kk401IuoCxiCJYIlH2u1AieZo7SXsnXQ13QlTrOVCHd7dw+RZGWzHjLsyDKNMJs0NEmXfDdaGUXLrr97B3/3yX/LkvU9wz2+9e8THJWOla4qB7n2GMY5MMlyJ8j2w9dFgzM44KGQL3P9738aJO3z8Hz4ViXmCBWHb0V46+ovUVUI34Arj+HkSfi+vzPgI3amZ7K9fTX3+IDO619LauwElPiO+2VC6MSGo0n8F10qyr2E1B+pXko03lfFfEn1aC27Bp5j3KOZ9CnkfN1/6ueAH23IeuT6XXJ9LPhs8zve7FAt+6dhg6TyW5fLrTNdFwzDKyI7BtBVw6NVxuw4xKsOk6U2sftfVvPTd51n9zquYumBk30e2UqRiNp4WHNskw8b4MllEJdr5U9BeMKanzESEh776Xdr3t/NLf/aRSCTCAAc7c+xtzwaJsLmLOKYs7VHjHuf11vfSnZoZbFSK7tQMulMz2NZ8K5Nye7DEG9HribJwrRRFu4ainca102irMloTtC8U8x5uUeO5Gs/18d3gsVs8kYQW8/5Jialb8CkWvMGfC3mfQtajmPco5DwKWZ9CKfl1C/6I41EWJGtipGpiJNMO8aRNPOlQW58glrSZf3kT1941p3y/EMMwDIDpV8D+l8KOwoig6z94I288/iqP//2j/NLXPjriIWmZZIyO/iJO9ItfG1XGJMOVJtsB238STKU0Dp7/z2d582ebuO2Tb2fOsvJ1eR6NrmyRTYd6qE2Ycb9jTjSZ4hG2Nt/G0cylw+7iOjVnfK4SiAg/+/5uju3vO5Gc5vyTH+e8oIV2FInqUEpBPGkTSwRLIukQTzkkUza1DYmTEtmBdSI15OfE0OeCx6naGImUec8bhhEBTfODu3PaB8tkL8YJydoUN3z4Zn7014+w9YU3WXztJSM6rj7lcKw3D5j3kzG+TDJcabb+KPgCGodxOjvXbOfJe3/MkhuXctXPX1v2841E3vV5dV8XiZiFbZlxkWNKhLrCYfbXr2JPYzT+f5dD24F+vv/1jSRrHNKZOImUTSLlBC2sg4lqKTlNOSSSNk7cxolZwVJ6HItbg4lqLBEksEHia2PHLJO0GoZRvWIpmLoE2rYH0zsaxhAr717N2ode5ol/+BEXrV6IHTt3ujG09othjCfzzqskvUdgz3NQN73sp+o83MH3/ug+WuZM4e7fendkLuz3dmTxtCYTr4xutpWkttjG8fQCtrTcUdVdz7euOwbAb/799TS11oQcjWEYRoWasRoOrQ87CiOCLNvmtk++ne/873/hle+/xNXvecs5jxksomUY48w0rVWSnU+B5ZS9S5L2NQ/8/n8gWnjvF/8H8VS8rOcbKU9rDnRmSY9yMnfj3OJeH66dYkPrz6Gt6v79bnu1jaZpaZMIG4ZhXIjmi4ICiafOQ2wYwILVC1mweiHP/vuTZLv7z7l/Oj6korRhjKPqvuqtJvke2Pv8uFRu3PHKNg5vP8S7Pv8eJk2PTqXf430FfC3YVvW2WoZCNCmvm7XTP4hrp8OOpqx8T7PjjeOsuHlG2KEYhmFUtkQGmhdCzyFINYYdjRFBt/3qHXz9Y3/D137+y9gxG8u2g6k5bYumGc287w8/SCqTAsCxLOK2hS+CXcW904zoGbeWYaXU7UqprUqpHUqp/z3M8x9WSrUppV4vLR8b8tyHlFLbS8uHxivmSNn3cqlQRfnvX6x56CUyTXVceuPSsp9rpARhb3uWmG06M4y12mIbB+qW0Z6eH3YoZbf3zU4KOZ+FV0wOOxTDMIzKN+sqKPaGHYURUS1zpvC+P/wAV//CW1l5z1Use9sVLLlxKQuvXsyBzft45M8eRIa0BGeSDp5vWoaN8TUuLcNKKRv4O+BW4ACwRin1sIhsPmXX+0Xk06ccOwn4PWAlIMC60rGd4xB6NPgubP8x1LSU/VQdB9vZ8co2rv/QzdgRqm/fX/DpyrpmTuEx5vg5tBVje/OtVT1OeMDWdW0oCy5aZgq+GIZhXLDmhYAKurZOgO8QY/QWXrWYhVctPm1788wWnvjHH7HukVdYec+VANSlYnT0uyRMWRhjHI1XM9tqYIeI7BKRInAf8I4RHvs24AkR6SglwE8At5cpzmg6sgGKfUH1xjJb8/DLWLbFirtWlf1co3GwK4elmHhftuUcOyNCjdvOpsl3U3Rqy3eeCNn6ahuzFzeSqjXftIZhGBcsPQkaZkGhJ+xIjApz9XuuZf6qi3j873/Isd1HAKhNOPhaTmotNoxyG69keDqwf8jPB0rbTvVzSqn1SqnvKqVmjvJYlFIfV0qtVUqtbWtrG4u4wycSTKeUrCv7qdx8kdd/tJaL33opmabyn2+kBgpnpSZY4ay410dDfj91+cMoOb/5bs+mpnicYzWLOVo7sjkAK122t8j+bZ0svKL8PSwMwzAmjJlXQaE77CiMCqMsi3f+zs+TqEny3T+4DzdfpCEdZ1JNjP6CR2/epSfvki14eL7G16cv+nwTZxG0lmFf09ca39d4pcU9ZRnYPnB+U/Cr8kUpu3gE+E8RKSilPgH8K3DTaF5ARL4BfANg5cqV1fHu7NgF3fuhflbZT7XhyfXk+/KsesdVZT/XaEzEwllxr5e4zrNmxodpzO1hXsdzFO00+VjDmLy+rQug4M3Jb58wre3bXz+OaFi0wiTDhmEYY2byxZiu0sb5qJ2U4V3/+z18+3e+xeNff5S7fv2drJ7bhK+F/mKQEHf2u3Tlivj69Mt6LYLr62AQZemtd6Z34NCjRcCxFc4ZrisVCqWCt7NVejxwnCCIgNbgS5Agq9LrW0oN1rYJEmsZPK8CapOmV1oUjVcyfBCYOeTnGaVtg0SkfciP3wT+ZMixN5xy7NNjHmFU7fgpOMmyf8GICGu+/xKT505h1tI5ZT3XaEzEwlkJrwdbu6yZ8SG6kzNor1nAsdqLWXLk+9TlD9EXb0FbF/CBKkJN8Tibptw9Zsl1Jdi6ro1E2mHWIlP11DAMY8zUTg5qmrj9EJ8YQ26MsTN/1UVc877reOG+Z5m3YgGXXLcE21LUJWPUJWNMP8dliiBoHfQi9LUMmzQDWJbCtoIE2FYKNUbX1UVfky16ZIs+3VmX7pwLQDoeoybhkIrbxG2LV/d1IiJjdl5j7IxXMrwGuEgpNZcguX0f8P6hOyilWkXkcOnHe4A3S48fB/5YKTVwBXsb8PnyhxwBfW1w+DWoK/80MAc27+fIjkPc+bl3ROoPdaIVzkq6XSiENTM+TG+ydXB7T3I6L836BLO7XmRB+5MoBJGT/z8pJRTsDAW7dtibJ0o0abcDW1yO11zEobrlZf/3RIWIsG1dGxdd3oztTJwbK4ZhGGWnFMy6BjY/ZJJh47zc9JFb2fv6Lh75swdp338cy7ZQlsKySuvSdEwDi7JKa6VQlkIRdLtWSoHipPXgYpXWdrAeeO2TnhtcW1i2QqkT5x947sR5T2xLWYp03KIlkUQ1pU57HoLiYHnXJxGh4rRGYFwyDBHxlFKfJkhsbeBeEdmklPoSsFZEHgb+p1LqHsADOoAPl47tUEr9AUFCDfAlEekYj7hDt+dngA2q/Bfvax56iURNgqW3Liv7uUYjzMJZSjSgEexxOX/K7UJQvDLjw/QnTp/6R1sOuye9lWM1i6krHDrteUfnae3ZSH3hAACulaLg1GHrIimvE1AcqV3C/oaVdCVnTqjubMcP9dNxNMuN76n+6aMMwzDG3azVsP0xKPZDvCbsaIwKYzs2P/d/38e3PvsNnvznH4cdztgqJdAzVy9i8j3XkmiOTk0eIzBuzW0i8ijw6CnbvjDk8ec5Q4uviNwL3FvWAKOm2A+7noba8o9v7O/sY/MzG1hx12riqUTZzzdSIy2cFfOz1Ljt6GHezqJATqkTNzC24+RtwRZBBY9FEMtBKxvHLyBKIWcciXLqaw0MXxndsPWCk2Ht9A+SjZ992p/+RAv9ieHfF/sbriTh9dKY3UNr73qaszsp2jVsa76NI5klFJzMqGKqFtteDQrqLTTjhQ3DMMZeqhGWfRBe+QeIzR6Xm/hGdWmcNonP3fe/0L6P9gXRGhFB+4L2fUQL2tdDFj8YwyulIlqlolhIMKYXCcbrSqnI1sDriQ4WrYOxxieeD9Za62BfHbyeaB3EM/AaemCfE8cMHA8Mee7Ea+R6srz66BoObdjDpR+6lcnLFoT6uzZONjH6nkaZ1tCxM5hLeKj2HcE2O172EF59dC2+67PqHVeW/VyjMZLCWbYukHK7WDP9Q3Sk557yrGCJj6OL2LqArV0cXcAWd9jX8lUM107h2ik8K4mvYqAUSjxifp6YzuP4eRydD15dWQjWyWtlobGgtJZRXBC4VhLfTo54/zMpOBmO1F3GkbrLsHUBrRxETexuOVvXtTFpSprmaabFwjAMoyymLw8qSx9aNy7Du4zqM9ANuhpddscK7v/D/+L1v32IaddcyqL33UgsHZ0GqInMJMNha9sCz/8VnFYQSUPN6V1lx5r2fdY+8jJzr5hP86zyn+9UgnCoK8/2Y73BHb0hPC3Ez/KhaGmX2uJxXm/9Bdprhr/L5isH30oA598iKsqh6NRSpPLGQgX/9onN9zU7Xj/OsuunR2o8vGEYRlVRCpa+B9rehEIvJCZmTyTDGM6sRTO48nffz64fvMy+x16h/c29LHjnW4hnUifGF1vBWOOgI2JwvaKGDBVUSsHAOGSlTjw3pCCYsk7eFwbGQgf7DpwLdeJ8lm2hbHvw2InGJMNhEoGhO5QyAAAgAElEQVRtjwVfGOmmsp/up998nF3rdg7pJqLxih49x7q5/VN3lf38p/K0ZuuRXvZ35kjHbWKnFDZKEFT/G44Sn0zhKJsn38nRzKXjEK1RqfZt6SKf9cyUSoZhGOWWyMCKD8Pzfw2xNFgTu1eSYQzV0pCmeOdVTF02n433Psb/b+++4+S4y8OPf56Zbde7eq+25SLbwr0XsA3YYCDYBgMmiUMgIYRfCgn8gn8kIZSEkBASIGCMwXRjkA0uYHDBRbYsWb33cqfrdW/LzHx/f8yctDrdna5sufK8X6/R7s7OfOfZ0dzOPjPfsuXbTxQ6pJMJx5PikxL0oCMxMjoYO55Q2xZWyMYK2f5z20ZCJ+ad9Docwo6EsCNhrL7HYN6JRxs7HLwfDWesE/IvFOSAJsOF1HEYmnfmZQzh9oY2fv+D55i+cDrl0ypO6klv0aolLL/sjJzHkCmecthwqJ2upEN5LDSyO3bGozxZz56aqzlUeVHuglSTwo7XGhGBJSuHboutlFIqC6avgEXX+J2AVsw93dJKTRnVxREOtcapWDSTSz99N91HWzBu0JbZPdHW2G/0HPRvE1Sa7GsXTUYbaeP5C/ivM5c58fz4e31tpPvmZbRt9lzP334weZ4HXhCTOdE+moybaX4ZQftpx8Vz/HbcnuPgJVy/nGC+cV28tP+em0wfb189UqHiKLHqcmLVZRTVlBGrzk5nZJoMF9Ke3/ptgvNQdfO1x15BBO787PuomFbYsWWbuhJsONyBCJSNdAByYyhPNnCoYhW7a66dUj0iq9HZua6JucsqKSnPfft7pZRSwFm3wbEt0NsORVNnPHulhlKWMUyoFQ5RPn96AaMpHM9xcVMOXiqNm3bwUs4gj2nclONPyTTp7l4SrZ0kWrto330EJ56EacVjjkeT4UKJt8KhV6Bs5umXHSM37bD+8bUsu+SMgibCBsPeph52N3ZTFD61WvRwlKSbaCpZxrZpt2hvleq0envSHNzeznXv1p4blVIqbyLFsOoeeP5LkO4ZYIG+O0PBBW1j/IvbZnR3jEbO+L8homX+2Mj9f0+4Kb/dcyqeo4vuBopq/P2kpoyiiE3Ytk7bOexk11eFmjF2IOb0JnnwH8c+2JAmw4Vy4AXA5KU9zbbfb6WnrYdVtxaut2jPGHY0dHGgpYeyWHjQtsBDsb0UIGyd9maM6KGrTrb5pQYObm/DSXs4aQ/X8ehoTuB5huUX5r9zOKWUmtJqFsN1nwInMcCbfdU5vYxHL3+xuSloOwDN26H9oD8OIy5g+bGFi6FmKdQtD4a4zHLi0n4Qtv4CIrlvJqfGD0GoLonQ0p087bCh6vRCWRoOVv8nCiHdC7ufzktv0QBrV6+hcmYVi1cV5u6Y6xk2H+2gviNBeVF41D36lqRa2FH3RpLhiixHqCa6jpYE3/mntXiuRzhsY4ct7JAQCtssOqeG+WdWFTpEpZSaespzX/tt1GatBG7zh7HsqoeuBggXQflsf9zkXDbDqpoP2x8DzwFLf4pPJbWlEY51DnSBSBWK/gUWwpF14CYhlPthb5oONHJgwz6u/+M35awXtqGkXY8Nh9tp7U5REQuN+uQScbqJhys5VLEqyxGqyeB3P96NcQ1//+3rqZmpYwkrpZQaJjsMlfP8KV8iJTDnIjjyGpTNyN92VcGNuK8clXPa6DLfPBd2/BKKqvOyubWPrsEK2Zx/84V52V6mpOPy2oE2WntSfqcBo73KagxFTgfbpr0Z75TxmNVU19WW5KVfHeDC6+doIqyUUmpimH8ZeKlCR6HyrDQaQhC8vLWPV6ejd4bzrXGr33lW5fycbyrVm2LDk+s566oVlFSWjr081x8XOJ5yhrV8POXiembMV8FK0i00liyjpXjxmMpRk9OzP9uDk3K5/o6lhQ5FKaWUGp7qRRCr9Dvp0o60pgxLhKriMF1Jh1hYx+EeDzQZzidjYMfjECnLy+a2PLORZE8iKx1nxVMO6w6205tyiISG98cbsmTMf+iW52CZNDvq3qTDKKlT9HSmeGH1PlZePZtpc8d+wUcppZTKC8uCRdfC1p9rMjzF1JZFaY2nNBkeJzQZzqf2A9C6L2+D0K9dvYa6BdOYd86CMZXT0Ztm3cE2PGMozXNbh5J0M/uqriAeqc3rdtXE8PzP95Lsdbn+Tr0rrJRSaoKZfSFsfcTvSVuHi5wyKoq0yd94on95+bT/Bb+jhjzc4Ty64zBHdxxh1VsvHnXvzQDHOhO8sq8FAYrz3A182I2TtorYX3V5XrerJobenjTPPbKXcy6fwayF5YUORymllBqZkhqoXQ69bYWOROVRWcz/PW203fC4oHeG88V1/F4Di2vysrm1j75COBbm3BvPH9X6BsOBljjbG7ooidiE7NxdNwm5CYqcNky/azOWcdkw4x04dixn21YT1wur95HocbjhzmWFDkUppZQanUXXwJqv5+33oSq8kGVRGg2Rdg2RkDYBLDRNhvOlbb8/8Lxdl9Vim/YfY8eL2/FcF8/1jk+bf7uBc65fSax0dIlkc3eK7Q1dlEVDWFbu/lAtz6Ek3cyWaW8hHqnDIHhiY8TClTA9kezuLzU5JHsdnn14L2deNI25yyoLHY5SSik1OtPO9IfadFNgRwodjcqTurIo+5t7iIS0km6haTKcL/Wvg2S3oXzb0Va+/bFv0NvZe3yeWBaWbREtjnDx7ZeOuuz9zT1EbSuniTDGoyzVwI7aN3K48qLcbUdNOi8+tp+ezhQ33qV3hZVSSk1goag/zNK+56F8VqGjUXlSWRzB0FPoMBSaDOeH58KhNVCcvbGFkz0JfvDJBzEGPvLAx6ieXYNY1pjaB/fpSqZp7UlRHsvh4WEM5ckGDldcqG2CpwDPM7iOh+v0PXp4nsFzgyl47joeTtrDTXs4jv/ouiao8WCC54ZnfrqHpefXsuCs/IzXrZRSSuXM3Ithz+/8UUd05Iwpoa/dsP6fF54mw/nQfhBSPVCUnR/unuvx8D//iOZDzdz9hXuonTctK+X2OdzaiyWS0z/O0lQTrcUL2VZ3i34JjFPNR3v4xdc2092RCpJW73gyarwTienxRNXz5xvDSY99yW42icCb3rsqq2UqpZRSBVE5D0qnQ6obovkZflMVVjRkURS26Uo69P8VbAyEbCESsrFzWUNTAZoM50fDJrLZcffT33ySXS/v4Ja/uJWFFyzOWrkAKdfjSHsvxZHcjX1WlG4jES5nw4x34lnavfx4dGB7G9/6v2twPcO8ZZVYtmDZlv9o+ZMdkuB1MN8WxBIsAbHEv8Yhgm0LdsjCDlmEwn45ti1YIf9RLDlebihsYYctQseX98v2txU8t4VILERZVbTQu0kppZQaOxFYfB289m1IdJz6XukMsHRM2slEEFbOrSTheKe8l3JcmrtTtPakiKe848uPNS8uithZqUE62WgynGvGwMGXslZF+vUn1/Hij55n1W0X84bbLslKmZkaOnrxPJOztsIRpxsxHutm3UU6VJKTbaix2fJSAw9+9jXKqqLc+8+XMG1uaaFDUkoppSa3OavAS/ujj2Sqfx16mrS36UmoLBZmsHoAsyuLMRh6Uy5dCYeO3jTuGIZi6k25NHUlKdcxjk+hyXCudR6B3g6onDvmog5tPsBjX3qEhecv4qaPvCULwZ3MM4b9zXFi4dxcfRTjEnM6eHXOPcQjtTnZhhqbFx7dx8++uok5Syr5o3+8iLIqHdZKKaWUyrlIMSy5/tT5RRWw7kFAk+GpRhCKIyGKIyGml4/t95jjeby4p4Vk2iWao9/5E5X2551rDZuy0ia2rb6VH336e5TXVfCuT9+FHcr+gdzak6I37RLOUTfvpclG9lddTlvxgpyUr0bP8wyPfWsrD39lE2e+YTof/uJlmggrpZRShVa9qNARqEkgZFmcPauchONhxnCHeTLSO8O5ZAwceAmKqsZUTLwjzkOfeADX8bjrs++jqLw4SwGebH9LD2E7N9Wjo04niXAFe2quzkn5angO72rn+19cT2t9HM8zGON3bmWCJiuXvWU+b//IOdi2XidTSimlCq6kDqLlkE5AWC9Sq9GrLokyp6qI+vZeSmNaXbqPJsO51H3Mb+dRMfoq0k4qzQ//73dpb2jj7i9+MOs9R/fpSTq0dqdOdPWeRX716C7WzP0grqWdHhWCMYaXHz/II1/dRGlllMveusDvuCqYxIK6OaVccO1s7VxBKaWUGi9EYNZK/+ZKeEaho1ET3NJppTR2Jki7HmG98QFoMpxbx7b4X2KjTC6M5/HIv/yEQ5sP8M5/uIP55y7McoAnHG6LH+/9N9tKU03sr7yU9qL5WS9bnV4q4fDT/9zI2t8cZvmFdbznExdQWqEXJZRSSqkJYfoK2Pd8oaNQk0A0ZHPmzHI2HO6gIpbbYVQnCk2Gc+ngSxCrGPXqT339CbY+u5kbP3QzK645N4uBnSztehxq66U4kv3DIep0kQiVsbvmmqyXrU6v8XA3D3zmVY4d6OJN71vOjXcuw8pRVXillFJK5UDVAsD4ze80eVFjNKMiRn1HgtaeFCVRTQV1D+RKT7Pfk3T56KpIv/zwC7z8k99z0dsv5dJ3XZGVkIwxNHUn8fq1m+/qTePmYDglMS5Rp5NX59yDa+eunUuiJ03TkR6M8du+ZraDNQTtYY3BmL73/Efj+sv5ywbP3ROPxgvW8Qxe8OhvI6OMjO1hTp13fH335Pa5x5cj87X/H3OirBPzT2w/M46TP5/ncfJn8QzHDnQRjtrc+9lLWH5hbqrYK6WUUiqHomV+k7tkp99+WKkxEIQzZpTxwp4WXM/DEsH1jD/1/VYdYD1LhLAthGwLaxJdlNFkOFcat4HhtFfwnn3waQ5vPYTnehjPw3P96dDWQ5xxxVm86cNvzlobzgOtcbbVd2IPkPSWRIbXO3XE6cEyDkYsDHL8EU4tszjdyoHKS3Lae/SWlxv40Zdep7s9lbNtjJRYICJ+DXlLsEQQ23/tt8/12+ki/nJWUD39pPWCRzLW8cvyl81cv68mfl+5dtg6/vzcK2Zy8wfOpGpaUYH3ilJKKaVGbdYFsG21JsMqK4ojIZZPL2VbfReWCNGwRUk0RFHYpihi0z9VMEAi7dHZm6Y76eD19UgdVFaw+36DimBbMqH6n9FkeKySXdC0E/pfQ9n3HMSG/sKq33mEZx54muo5NRSXF2PZFmJZhKJhLrhlFTd95M1YWWrc3h5PsaOhi/JYeHR3gI1HWeoYiVAF7bG52F4ay6SxjYPlpbHwTlmluXgxe2quzUL0p0r2Oqz+xhZe+uUBZi4q5x1/di7hqH08KTzxOHhyeeIxY54ddCplZyyTkahamWUHyan0W0YppZRSKqvqlsI2HRJHZc/c6mJmVhQRsgUZ4KbWYIwxJByP3pRLb9olkXaJp/zH3rRLT9LFBLfK+o7YkGURsWVcjlaiyfBYeC68+i2/oyy7364UC8pmD7n68w89Q7Qkxh//90eIleauGnHK9dhwuJ1oyBpVImx7KUqTjRwpX8m2abfktMrzcBzc0cZDn1tH89EernnnYm75wBmEhnlnWymllFJqwqmYC1YIPMd/VGqMBBnVkKoi4t9BDg/829tgSDkeibRHIu3Sk3LoSji09qToSaUJ2f764+UGkv41jcWuX/vVoasWjrhDg8Z9x9j2/BauuvvanCbCxhi2Hu0g5XijGlMs6nQScXrYMv1WDldcWNCOG4wx/OYHu3jywR2U18T40OcvY+nK2oLFo5RSSimVF3YYpp0BLXuhuKbQ0Sg1KEGIhmyiIZuKohO5h2cMrT0pDrXGaepOAlAUtgkV+G5x3pJhEbkJ+A/ABr5pjPlcv/c/DvwR4ABNwAeNMQeC91xgU7DoQWPMrfmKe1Ate2DrI1A+e1QJ4u+//wzhWISLb788+7FlONQWp6EzScVIxw82htJUE2m7iFfm/SEdsTm5CXAE1jxxkMcf2M7518zmnR89l6JSHTBcKaWUUlPEzPOhYROgybCaeCwRakuj1JZGSaRd6jsS7G/pIZFOUxoNFeyGW16SYRGxga8CNwKHgVdFZLUxZmvGYuuBVcaYuIj8KfAF4N3Be73GmJX5iHVYEp3wyjcgVuVfqRuhlsPNbP7dRi591xUUVxTnIEBfR2+a7fVdozrASlPHaCtawKYZt5MKleYowuFrb+5l9de3sPjcGt7ziQuy3vO1UkoppdS4Vr2IgTosVWqiiYVtFtaWMKeqiC1HO2joSFA22n6Nxihf96UvAnYbY/YaY1LAD4HbMhcwxvzOGBMPXr4MFP5W5EA8D17/PqR6Rj2G8O9/8Cx2yM7akEkp16M3aLTeN/WkHDYcbiccsgbsPXooxalW4uEaNsz8g3GRCBtj+Ol/bMR1DX/wl+dpIqyUUjkmIjeJyA4R2S0inxjg/Y+LyFYR2SgiT4vI/ELEqdSUUjrNH2YpnSh0JEplRdi2OG9OJctmlNGddEg7p3bIm2v5qiY9GziU8fowcPEQy/8h8HjG65iIrMWvQv05Y8zPB1pJRO4F7gWYN2/emAIe1P7n4Og6qFwwqtXbG9rY+NR6Vt12MaXVZWMKxfE8DrTE2dvUPeh4YCMdTDvidAOG12fdgVPgjrL6vPb0YbauOcZtH1pB3ezCJ+dKKTWZZaE2l1IqF0Rg5ko4+DKEZxQ6GqWyQkRYVFtKeSzMhkPtpD2P4kj+urUad/1bi8h7gVXAFzNmzzfGrALuAr4sIosHWtcY8w1jzCpjzKq6urrsB9d+EDb+GMpmjbpe+ws/fA5EuPzdV406DIOhpSfJi3ta2N3YTXEkRFksfMo00kTY9lLE3E7Wz7qTeGR8tEfpbE3wyP9sZsFZVVx526JCh6OUUlPB5KnNpdRkM+Ns8NKFjkKprKstjXLp4hqKwzbdSSdv281XMnwEmJvxek4w7yQicgPwSeBWY0yyb74x5kjwuBd4Bjg/l8EOyEn6wyiFSyAUHVURXc2drH98LStvuoDyutFVsU6kXTYd7uDV/W14nqG8KDv168V4lKYa2TLtLbQVLxhzedlgjOHhr2wknXB598dXYo2i+3ellFIjNlBtrqHGCuxfm+skInKviKwVkbVNTU1ZClGpKapqgf9oxuGYw8aMz7jUhFEcCbFqQTVFYZveVH4S4nwlw68CS0VkoYhEgDuA1ZkLiMj5wNfxE+HGjPlVIhINntcClwOZVbXyY8cT0N0IxdWjLuLFHz+P5xquuOPqEa/reoaDrT28sLuZY50JymMhooOM7zVixlCWbOBA5SUcKb8wO2VmwevPHmXTCw3c9P7lTJ83tirlSqmpw+iPsbwZpDbXSXJea0upqSRaBhVzINVV6EhOcFPQeQQ6DkHXKfe6lBqRsG1x/rxKPENe2hDnpUK2McYRkT8DnsQfWul+Y8wWEfkMsNYYsxr/RFoK/CQYhLlvCKUzga+LiIefvH+uX7ul3Gs7ADufgPJZoy6ip72btY++wrk3nEfVrOEn1MYYGruS7GjoojftUhwZ/XhcYlxKk03Qr4WxZRyaS5axs/aNBenWvLs9SXd70r+gCGAMqaTLz766ibnLK7n6HQPWildKDVN30iE+wBVWS4RIyCJqW4RDFlbG378xhpTrkXL8ybKE4rBNJGQhA3xPGGP8DvxSLu4AyWjIsiiLhQjncDxBYwz1HQk8Y7BEjn+d9X23VBaNvPnIFDXS2lxXZ9bmUkrl2Kzz/WZ7yb6E2GTclR3BxUAJ+Z1yjWJkFMDffm+bv/7i62DamfDCf4LxQMZdS0w1gZREQqycW8lrB9qwLclp57l5+1VgjPkV8Kt+8/4h4/kNg6z3InBObqMbgpuGdQ9CpASs0e+u5x96FjftcMVdw78r3B5PseNYF+3xNLGwTXnRGMbVNYay5DEOVayitXjhKW+3FC/CG8PnG42OlgS/fmgna544gOuc+uVth4Q7Pr4Su8CDcSs1kRljaIunuGJJ7Sk9yyfSHi3dSVp6UrR0JsD418P6ksfyWIjqkgg1JRESaY9DbXGae1JYAl7wm0sEf6QPA3VlURbOKhkw4WyPp9h5rJuU42GA4ohNWSxEyMrO37fjedS3JzhnTgXvWjUXYwzxlEtP0iGecmntSfHszkYOtcUpi4aoKAoPmNQrIKM2F34SfAd+nx3HZdTmuimzNpdSKg/mX+7foAkVQbgIwsX+YygGw/1O7WmBvc/4k3GgZPrpmwF6jp8Ap7r91yV1cMH7YOZ5EAmGCp12pn8TqaR2tJ9OKcBvQ7x8RhnbGzopj+XunK2XyE9n99N+1Y/K0Y8a0Vbfyqu/eJmVN11I7bxpJ73Xk3LYVt+J456cDHrG0JVwCNsW5bGxD0RdkmqmrWg+O+puynvS2193e5Knf7SLFx7dj/EMF980nyXn1YCIP3qe+B93+rwyrR6t1Bh1Jx1mVxZx+wVD92/keYbulEM86VIUtimNhQYclq035dLcnaS5O0lHb5ra0ii1pVGqSyJEQkP/CHM9w7HOBAdb4mw+2sHuxm7Srkd1SWRMPUcm0y7HOpNcf9Y0bj575vG4y2InX0C8fEkt2xs6+c3WYxxsjRMJWVQVR4Y7aueUyZzHWJtLKZVrsXI/AR2Lkho45x2w9AbY/wLsegqchH+3uD/j+nd6LRtqlsKMc6B6AVTMOzX5XnwdvPTVscWmVGB+dTGdifTxcYhzQZPhoXQcgW2roWzmmIp55tu/wbKEa95//UnzE2mX1/a3kXa9U6o+C1AWC2XlKkjYjeNZITbNeHtBE+GezhTP/Wwvzz2yh1TSZdUNc3nje5ZRM7OkYDEpNdl1JRyuXHb6dpqWJZTHwpSf5mRTFLGZW13M3OriEcdiW8KsyiJmVRZxyeIaEmmX1w+289TWBg63xSmPhUf8vdeVSNOZcLjrknmsml815Lq2JayYVcFZM8s52BrnmR1N7G4cXrs7Yzx32EFNAqOtzaWUmmBiFXDGLbDoGji6HpKdpy4TKYOq+f7vYfs0vyPrzoBoKaR7/bvVSo2BiHDWzHK/llfSoTgHTZ00GR6M68D67/pVTuzIqItp2H2UjU9v4PI7rjqpB+m067H+oJ8I5+I/to8Yh+J0G2tn300iXJmz7QylszXBsw/v4cXH9pPsdVl59SzedLd2iqVUPhhg2fTx+bcWC9tcsriGVQuq2FrfyZObGzjS3ktxJERV8dBVojxjaOpKErKED1+zmEV1wx+DXESYX1PC+y8b/oW4f+poPHT6pZRSaoKKFMOCy8dejh3y7w5vexQq5p5+eaVOI2RZrJxbxYu7m3EGuIE45vKzWtpksv85aNvvVwEZg6e/+RSx0hhX3HliXGHXM2w43E530qE0R7f8gePthHdVX0NLyZLcbWcQrcfi/O7Hu1nzxEFc1+P8q2dz3R1LmbWwPO+xKDUVJdMuJVGbmeWxQocypJBtce6cSs6eVcGepm6e3NLA3uYeisM21SWRk5JizzM09yRJOR4rZldw63mzqC0d3XB3SimlcmDORX4yrB1pqSwpCtucNaucDYc7qIhJVjv81WR4IN2NsPlnUDpjTDt737o97H5lJzd+6GZipX5VEc8YthztoLU7RVkst7u/JN1MS/Ei9tVcOeaykr0Oz/98H7s3NPvDlvR1XIjBeBwfV84E/3ie4dDOdkTgDTfO49o/WEzd7OHfuVFKjV1bPM2li6tz2gtjNlmWsHR6GUumlbKvuYcntzSwu7GbWNimqjhCc3cSx/U4b24l1585nVmVWgVPKaXGnZIamH42tOz2O9lSKgtmlMc4WtpLWzyd1ZEhNBnuz/Ng/UN+z9Gn61VvCMYYfvO/T1A+rYKL3naJPw/DzmNd1HckstIpVrAhitJt2CZ90mzBI20VsXnG2zEDdYYwTE7aY83jB3jqoZ10tSWZvbiccNT279SIX91QBLCEoPur473LXvm2hVx9+2Iq6/QHq1KF4BnDilkVp19wnBERFtWV8qGrF3OwNc5TW46xvaGLC+dXct0Z05lRMb7vdCul1JS36Bpo2FToKNQkIiKcObOcF3a34HpmwE4+R0OT4f4OrYGmbVC5YEzFbH12M0d3HOG2v30noYhfFfpQay/7m3v8IZKydHu/NNVEV3Q6TcVLT3mvqXQ5ydDoqiR7nmH9M0d44jvbaamPs+icGu759BtYcNbwx0hWShWO43mIwLyakXd0NV70te39oysXkkh7FEXsQoeklFJqOOqW+71ea0daKouKIyGWTi9lR0PX2IaczaDJcKbeNtj4ozFXj3Ydl99+6ymmLZzOuTesBPyeo3ce66I0Sz1EAxSnmolHqlk36y7Soez1yBzvSvH1v3+ZQzvamb24nD/+50s4Y1Wdjsmp1ATSEU9z5sxyoqGJn0CKiCbCSik1kVg2LL4Btj6iHWmprJpXXUx9ey+9qewM8qDJcB9jYONPwHOHfQXLcz02PLWenrZujDEYz8MYQ+vhFlqPtHDnZ9+HFfR4tutYF8aAPdzB0E+jKN2GYxVlPRF20h4PfGYtR/d0cNffnM8F182ZMO0NlVInJNIe580pTA/ySimlFHMuhK0/1460VFZZIqyYXcHLe1r8vorGSJPhPg0b4cjaYVePdlIOj3z2x2x9bvOA75911dksvXg5AG3xFEc7ElnrMCvq+ONivjYnu8MlGWP46X9uZPeGZu76m/NZdYNeyVNqIjJBh3aLp2mndUoppQqkuBpmnguN26F0WqGjUZNIeSzMwroSJAvtTjUZBkh2w/rv+T3eDWOfpnpT/Pi+h9jz6i7e+Ke38IbbLvY7krIk6FhKjlcp9oxh69FOIiErK9WMw26csNvLK3PvoSdSO+byMv32R7t55cmDvPG9yzQRVmoC6046zK4qoiJL7WmUUkqpUVl4NRxZB51H/Nd9w45gIBTT3qbVqC2sLQHjjbmutCbDANt+Aek4FJ2+c6hEdy/f//sHObz1ILf+9e2cf/OqIZc/3NcRTRYAABouSURBVBanO+lkpZG37SUpSrezdvbddMZmj7m8TK8/d5Rf3r+N86+dzZvuXp7VspVS+dWVSHP1cv2BoZRSqsBql8GV/wcwYIfBjoIdATcJL/03xJuhOLs3d9TUELIscJK9Yy4nG8FMaM27YN9zUH76O6E9bd1872+/TeP+Rt7xqTtYcc05Qy6fcFx2HuumJBsdvxhDaaqZTdPfRmvJ4rGXl2H/tla+/4V1LFxRzR3/Z6V2lKXUBGcQlk0vK3QYSimlpjrLgrplA793xcfg+X+FeKtfpVqpETPeWEuY2slwuhde+w7EKv1e74bQ0djOd//qfjqaOrjzn+5myUWD/GFn2N3od6xl22PvNKA01Uh92dkcLV85qvWNMWz8fT31+zoxfa3NjT//5ccPUFET455Pv4Gw9tiq1ISWSLuURUPMKNexeJVSSo1jpdPg8o/B8/8Gve1QpJ0+qvyb2snwtkeht/W0Xb53NLbznb/8JvHOHt77+Q8w/9yFpy26PZ7iSFtvVjrNijjdpO0ittXdMqohn7rakvzkyxvY/FLD8XnHixGoqCnij/7xYkoro2OOVSlVWO29KS5fokOhKaWUmgDKZ8Hlf+EnxIkOiFUUOiI1xUzdZLh5F+x+ekSJ8N1f+CCzzzyxvMHQ2JmkviNx6nq9qax0miXGIeZ08uqcD4xqCKVNL9Tzky9vIBF3uPXeFVx1+yIdKkmpScz14KyZWkVaKaXUBFE5L0iI/x08x29bTMZdm6z8bC3wb18rBCG96TQeTc1kON0La78NRVVDVo/uaGznOx8fOBFOuR7bGzo52t5LxLZPuWErArHw2KsclyUb2Vt9JW3FC0a0Xm9Pmp//92Ze/fUhZi+p4MN/cz4zFpSPOR6lJoNk2qUtnh728pZA2LYI2eI/WoJtybAvdhljcDxD2vVw3ODRMyeaLGRRyBLmVWdv7HGllFIq56oXweUf9WttGg+M8Se8oFloDk6Y+dTTAt29fu/Z4aJCR6MyTM1keOtqSLQPeVe4s6nDT4Q7enhvv0S4uTvJpiMdOK6hPBbOWXXE4lQbndFZ7K2++pT30imXXeub2fRiPU2He/xxRc2J8UVbGuL0tKe48T3LuPGuZYTCOti5Uo7n0dSVJGQJVyytJTzM9vxJx6WjN01nb5quhENbPE3KcUfUbKE4YlMWC1FTGqY8FqK8KOz3hJhlsypjREL6966UUmqCqV0KV3680FHkRjoBB1+G7Y9CT5PfXjqkfXuMB1MvGW7aCXt+e9pE+IG//F962nu4+wv3MCdIhNOux67GLg629lIUtimN5a6zKdtLYpk0m2bejmf5/029PWm2rjnG5hcb2P7qMZK9LtHiELMXlWPblv+7PKhNMn95FdffsZT5Z1blLEalJgpjDM09KZJpjyuX1XL9GdMoi41tuDPXG/5VagFtnqCUUkpNVeEYLL4G5l0MB16E7Y9Bd6NffXqiEMufLNufpG86aSH/wQr50wTov2QC/Q9kQSoOrw1dPbq9oY0H/+pbJxLhs+ZhjOFYV4Lt9V2kXI/yWCgrd4Mtz6E43YwMUPVDjGHz9NvY3xRj68t72LrmGHs2teC5hrLqKBdcN4ezL5vJ0vNqCGkP0EphjKEz4eD11ZII5rueIZF2OWNmObeeN4sZFdm5EmtrcquUUkqpkQgXwZLrYd6lcPhVv6bqROGm/aamfZPTC06SU6qwG+N/LqcXsPz82JigurucWIbgpYTADp1IoK2wPyQX4ifTYp1Yz037Y1S7aXBTWCJjToKmVjK89Rd+T3WD3BVuPtjEd//6flK9yeOJcEdvmu0NnbTH0xSF7THfTQK/U6zSVAuegUcOX8yW9jl42EHzCL8dYXtLki2vtNJ4+LcAzJhfxjXvXMzZl85g3hlVepdJqQyO63G0o5eFNaVUlvh/o4L/HWqJcMH8KpZPL9MelpVSSilVeJFiWHRqM8hJJZ2AZBckO/38Kx3352d2mGI8SPVAsgMSXZDqgmS3n/B6LngeGPdEO/JYOZTU+uNSF9fS1PNfjWMNc+okw91NsO85KJ894NsNe+r57l/fjwi8/9//mIp509h0pJ2j7QnCtkV5bOy3+sW4lKT8O8GvpC/iSw+VsuXVVmDPKcvaIWHJebVcfusCzrp4OjUztUMcpQbSk3Ro6Ulxyzkzuf6M6XqhSCmllFKq0MIxfyqty9kmOpJ0j7WMqZMMH1kb3CY69W76oS0H+f7fPUCkKMp7vngPidISfr+7GYCyLFWJFuNSnqxnb8kb+NZzC/jl9w8i0sGt967gwuvn+NXwRfzaACKEI5ZWf1bqNFp6knge/MlVizhjpvaWrpRSSimlhm9qJMOeC3ufgeLaU97au243P/zU9yirKeNd//IBDjpCS30XJVEbO1s9vRpDebKBXzVdxpf+LUr9vn2cfekM3v6Rs6maVpydbSiVIyYX4/+MkQHqOxLMKI/y/ssWUlemY/cppZRSSqmRmRrJcMtuv6565fyTZu94YRs/+cwPqJlTw42fuovNXQ5AVqpEH2cMxYkG/vmp8/j+oykq62w+eN8bOPuymdkpX6ksS6ZdOhMOadfDMD6TYYAL51dx+wVzsjKet1JKKaWUmnqmRjK8//enjOW14an1/OILDzNj6UzO++jb2R13KImECA1z3NHhSrS28tEHVrB2W4iLb5rH2/70bKJFU2O3q4kh7Xp09KZJpj1E/KYB58+rZPmMMuZUFVNVnLuxtJVSSimllCqUyZ+VJbvgyGtQNuv4rDU/e5En/usx5py7kHn33EynsajI5t3gwM4dCf7mf5fTFo/w7o+fy8U3zctq+UqNhjGG7qRDV8KvCRG2Lc6cWc45cyqYV63Jr1JKKaWUmhomfzJcvxEwYNkYY3juu7/lmQeeZs4bljHrzhuIFEWIhLJbzdIYeOTXNl/+6Xwqp8X4889ewpwlFVndhlIj5XgeLd0p0q7HzIoirlhSy5JpZcyqjGW9RoRSSimllFLj3eROho2BPU9DrBLjeTz5P4+z5uEXmH35Cma/61rKiiOjGoalqd1i/Y4I67fZbNkTIpG2ThoyK+0Kje0RVr6hnHf93eUUlY59bGKlRiuecmiLp7EFVi2o5tLFNcyuLNK7v0oppZRSakqb3MlwxyHorMctmcWjX3iYDU+tZ9a1K5l/+1WUDrNatDFwtNlm0+4wG3ZFWLcjwqFj/m4rK3JZemYR1ZXVmKCsvhKvWl7JJbcu0TFPs8jxPFp7UjiuAfH3tSHzHwkSPNNvfn/BEFacWNYYg2H4/1cS/HNqDAMuefLLEfZH1feZMjdj+pcsA24NY/w2wLetnMXKuZWUxfTCjFJKKaWUUjDZk+FDa0gmPX782QfZu3Y3s2+5mKVvvZTIEL3PJpKw61CYzXvDbNodYdOeMC0d/vIlRR4XLu7m3Zd1MfvCRVjnXY4bLc3Xp5mS+tq3dibSWGJx4fxKVsyqIBa2iYasYLIJh4S0Y0g6LknHI+l4JNIu3gA9IVsiREMWkWDdaMgiGrawhnmn1BhIuZ6/rbQXbM/F9QbOciVIvo+/HsH1EUGIhISIbRMJYo6ELGwRPGOCyd9Pg2ye8lj2O4ZTSimllFJqopu8ybAxdK17iu//02Mc23uMhXdez6Jrz8POuFMbTwi7DoXYcSDMjgNhth8IcaA+hGf8ZWbVOlx4RopzlyS5aH4zy2d00lSxgt01NxOP1OAW6rNNYKmMxNH1DK7xHz3v1GX9e7XC9PIob1oxg7NnV1ASHeKQjQDk585nEXbetqWUUkoppZTKvrwlwyJyE/AfgA180xjzuX7vR4EHgQuBFuDdxpj9wXt/B/wh4AIfNcY8ebrtOT0dfOuvf0h3Z5Jl976VmrOWsnF3mJ0HwmwPkt8DDTYmSHyry12Wz09zzQVJls1Ps2JhmrqKNCXpFizPpb7sbF6pvpyu6Izs7ZQpIpl2aY2nMAaiYYsZ5TGKIjZFYZviSIjiiH93tj8RYWFtCXOqtH2rUkoppZRSKrvykgyLiA18FbgROAy8KiKrjTFbMxb7Q6DNGLNERO4APg+8W0TOAu4AVgCzgN+IyDJjzJA3Zpt27aMjEmPD0g/w7UcXsv/rJ+741la6nDE/zXWrEpwxP83yBWnqKj0wBsukCXtJIm4PpOBw+YUcqLqYeKQ26/tlPHJcj+6kQzzl796+mrfGb6aLNYLatp4HCJREba5cWsfZs/2he2xtR62UUkoppZQqsHzdGb4I2G2M2QsgIj8EbgMyk+HbgPuC5z8F/kv824G3AT80xiSBfSKyOyjvpaE26HgW/5H4KN6+Ss6an+Da8zo5Y36Cs+bGqStLYeFiGQcLg4cFcRA8knYJreE6WopXcrBsJYlQhZ8RJp0Rd3xkMjpy6uuk6cR7wy7kpHX95yfK73t/kFWD9w3G+OuZQZbuay8bCVksqC1hybRS6kqjuJ7B8Twc1xxvGztcYdticV0psyuLtCMxpZRSSiml1LiSr2R4NnAo4/Vh4OLBljHGOCLSAdQE81/ut+7sgTYiIvcC9wLYlpiZVV/pBjh0zJ+eWAOewXiI5xoxnhHPQ4xrxDhGPMdYnoccTzXHzM9WTb/Xgy7upRMlVjjWk1mC6Xs4KY8O0lwzaBfGJ1Y3xx/Nyal5/417jnHTaTzXOe3nOlkt0DzCdQpNY84PjTk/NOb8WF7oACaD1157rVtEdhQ6jhGaiMerxpwfGnN+aMz5MRFjHvO5eVJ1oGWM+QbwDQARWXuouXtVgUMaERFZ6yTjEy5mY4zGnGMac35ozPkxUWMudAyTxI6J+H+vMeeexpwfGnN+aMz5kY1zc77GWzkCzM14PSeYN+AyIhICKvA70hrOukoppZRSSiml1LDlKxl+FVgqIgtFJILfIdbqfsusBt4fPH8n8FvjN5RdDdwhIlERWQgsBV7JU9xKKaWUUkoppSahvFSTDtoA/xnwJP7QSvcbY7aIyGeAtcaY1cC3gO8GHWS14ifMBMv9GL+zLQf4yOl6kg58IxefJcc05vzQmPNDY84PjTk/JmLM49FE3I8ac35ozPmhMeeHxpwfY45ZMns4VkoppZRSSimlpoJ8VZNWSimllFJKKaXGDU2GlVJKKaWUUkpNOZMuGRaRm0Rkh4jsFpFPFDqegYjIXBH5nYhsFZEtIvIXwfz7ROSIiLweTLcUOtZMIrJfRDYFsa0N5lWLyK9FZFfwWFXoOPuIyPKMffm6iHSKyMfG434WkftFpFFENmfMG3Dfiu8/g2N8o4hcMI5i/qKIbA/iekREKoP5C0SkN2Off20cxTzo8SAifxfs5x0i8qZxFPOPMuLdLyKvB/PHy34e7Dtu3B7TQ8Q8ro/piULPzbmj5+acxqrn5sLFrOfm7Mes5+aBGGMmzYTfOdceYBEQATYAZxU6rgHinAlcEDwvA3YCZwH3AX9V6PiGiHs/UNtv3heATwTPPwF8vtBxDnFsNADzx+N+Bq4CLgA2n27fArcAjwMCXAKsGUcxvxEIBc8/nxHzgszlxtl+HvB4CP4mNwBRYGHw3WKPh5j7vf9vwD+Ms/082HfcuD2mh4h5XB/TE2HSc3PO49Zzc+7i03Nz4WLWc3P2Y9Zz8wDTZLszfBGw2xiz1xiTAn4I3FbgmE5hjKk3xqwLnncB24DZhY1q1G4DvhM8/w7wtgLGMpTrgT3GmAOFDmQgxpjn8HtRzzTYvr0NeND4XgYqRWRmfiI9YaCYjTFPGWOc4OXL+OOCjxuD7OfB3Ab80BiTNMbsA3bjf8fk1VAxi4gAfwD8IK9BncYQ33Hj9pgeLObxfkxPEHpuzj89N2eBnpvzQ8/N+aHn5oFNtmR4NnAo4/VhxvmJTEQWAOcDa4JZfxbc8r9/PFVrChjgKRF5TUTuDeZNN8bUB88bgOmFCe207uDkL6XxvJ/7DLZvJ8px/kH8K4p9ForIehF5VkSuLFRQgxjoeJgI+/lK4JgxZlfGvHG1n/t9x02IY3qA7+U+E+mYHk/G1f/vcOi5OW/03Jx/E+l7TM/NOaLn5hMmWzI8oYhIKfAw8DFjTCfwP8BiYCVQj1/FYjy5whhzAXAz8BERuSrzTePXTxh3Y3WJSAS4FfhJMGu87+dTjNd9OxgR+ST+uOAPBbPqgXnGmPOBjwPfF5HyQsXXz4Q7HjLcyck/JMfVfh7gO+648XpMDxbzBDum1RjouTk/9NycfxPse2zCHQ8Z9NycZbk8N0+2ZPgIMDfj9Zxg3rgjImH8/9SHjDE/AzDGHDPGuMYYD/hfClDtYyjGmCPBYyPwCH58x/qqTASPjYWLcFA3A+uMMcdg/O/nDIPt23F9nIvIB4C3AO8JvlQJqjO1BM9fw2/js6xgQWYY4ngY7/s5BNwO/Khv3njazwN9xzHOj+lBYp5wx/Q4NC7+f4dDz815pefmPJpo32N6bs5ZfHpu7meyJcOvAktFZGFwxfEOYHWBYzpF0JbgW8A2Y8yXMuZn1sN/O7C5/7qFIiIlIlLW9xy/4fpm/P37/mCx9wO/KEyEQzrpCt143s/9DLZvVwPvE98lQEdG9ZaCEpGbgL8BbjXGxDPm14mIHTxfBCwF9hYmypMNcTysBu4QkaiILMSP+ZV8xzeEG4DtxpjDfTPGy34e7DuOcXxMD/G9POGO6XFIz805oufmghi332ODmYjfY3puzj49Nw/CFLhns2xP+D2f7cS/EvDJQsczSIxX4FdB2Ai8Hky3AN8FNgXzVwMzCx1rRsyL8Hvv2wBs6du3QA3wNLAL+A1QXehY+8VdArQAFRnzxt1+xv9BUA+k8dtk/OFg+xa/V7+vBsf4JmDVOIp5N377kr7j+mvBsu8IjpvXgXXAW8dRzIMeD8Ang/28A7h5vMQczH8A+FC/ZcfLfh7sO27cHtNDxDyuj+mJMqHn5lzFrOfm3Map5+bCxazn5uzHrOfmASYJVlRKKaWUUkoppaaMyVZNWimllFJKKaWUOi1NhpVSSimllFJKTTmaDCullFJKKaWUmnI0GVZKKaWUUkopNeVoMqyUUkoppZRSasrRZFhNaSJiROR7Ga9DItIkIo+NsrxKEflwxutrRlvWIOXPEpGfZqu8fBCRBSJy1xjW/4CIzMpmTEoppcYvPTfnnp6blfJpMqymuh7gbBEpCl7fCBwZQ3mVwIdPu9QoGWOOGmPemavyc2QBMOoTLvABQE+4Sik1dei5OfcWoOdmpTQZVgr4FfDm4Pmd+AOpAyAi1SLycxHZKCIvi8i5wfz7ROR+EXlGRPaKyEeDVT4HLBaR10Xki8G8UhH5qYhsF5GHRESCMj4nIluDsv+1f1AicnVQzusisl5EyoIruZuD9z8gIj8TkSdEZJeIfCFj3ZtEZJ2IbBCRp4N5JUHMrwTl3TbANq8RkWdF5BfB5/qciLwnWGeTiCwOlnuriKwJyvmNiEwfLOZgn1wZzPtLEbFF5Isi8mrw2f8kY/t/G2xnQ7DtdwKrgIeC9YtE5Pqg7E3B54kG6+4XkX8JllsrIheIyJMiskdEPhQs86CIvC1jew8NtB+UUkoVnJ6bT6yn52alcsUYo5NOU3YCuoFzgZ8CMeB14BrgseD9rwCfDp5fB7wePL8PeBGIArVACxDGv9K6OaP8a4AOYA7+xaeXgCuAGmAHIMFylQPE9ihwefC8FAhllo9/VXYvUBHEfgCYC9QBh4CFwXLVweNngff2bQ/YCZT02+Y1QDswM/hsR4D/F7z3F8CXg+dVGbH/EfBvQ8R8fH8G8+8FPhU8jwJrgYXAzcE+Le4X9zPAquB5LPhsy4LXDwIfC57vB/40eP7vwEagLNgfx4L5VwM/D55XAPuAUKGPQ5100kknnU5M6LlZz816btYpT5PeGVZTnjFmI/6J7E78K9GZrgC+Gyz3W6BGRMqD935pjEkaY5qBRmD6IJt4xRhz2Bjj4Z/QF+CfhBPAt0TkdiA+wHovAF8KrmxXGmOcAZZ52hjTYYxJAFuB+cAlwHPGmH1B3K3Bsm8EPiEir+OfxGLAvAHKfNUYU2+MSQJ7gKeC+ZuC2MH/AfGkiGwC/hpYMYKY3wi8L4hjDf6Pj6XADcC3jTHxfnFnWg7sM8bsDF5/B7gq4/3VGbGuMcZ0GWOagKSIVBpjngWWikgd/v/3w4PEqJRSqoD03HwKPTcrlQOaDCvlWw38KxnVsIYhmfHcxb/SOqzlgi/5i/Cver8FeKL/SsaYz+Ff2S0CXhCRM8YQA4AA7zDGrAymecaYbacp08t47WWU/xXgv4wx5wB/gn/yHm7MAvx5RhwLjTFPDbDcaGTG2v9z9MX+IPBe4B7g/ixtVymlVPbpuXngMvXcrFSWaDKslO9+/CpHm/rNfx54D/htdoBmY0znEOV04Vf/GZKIlAIVxphfAX8JnDfAMouNMZuMMZ8HXgUGOnkN5GXgKhFZGJRTHcx/EvjzjHZR5w+zvIFUcKIzk/efJub+++RJ4E9FJByss0xESoBfA/eISHG/uDPX3wEsEJElweu7gWdHGPsDwMcAjDFbR7iuUkqp/NFz88jouVmpERrqSpVSU4Yx5jDwnwO8dR9wv4hsxK8u9f4Blsksp0VEXgg60ngc+OUgi5YBvxCRGP7V2I8PsMzHRORa/CunW4LyZg7jszSJyL3Az0TEwq8mdiPwj8CXgY3B/H34V75H4z7gJyLSBvwWv13RYDF7gCsiG/BPdv+BX6VrXXDybwLeZox5QkRWAmtFJIVfLe7vg3W+JiK9wKX4V41/IiIh/JP610YSuDHmmIhsA34+uo+ulFIqH/TcPGL3oedmpUakr5G9UkpNCcHV7U3ABcaYjkLHo5RSSk11em5WhaLVpJVSU4aI3ABsA76iJ1ullFKq8PTcrApJ7wwrpZRSSimllJpy9M6wUkoppZRSSqkpR5NhpZRSSimllFJTjibDSimllFJKKaWmHE2GlVJKKaWUUkpNOZoMK6WUUkoppZSacv4/87e8oppMYaQAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import theano" | |
], | |
"metadata": { | |
"id": "c4wciYUer3f2" | |
}, | |
"execution_count": 109, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"theano.__version__" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 36 | |
}, | |
"id": "tcPcnlkW8JFq", | |
"outputId": "ce43ac27-e056-4399-ffd7-454d6e1f6eef" | |
}, | |
"execution_count": 110, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"'1.1.2'" | |
], | |
"application/vnd.google.colaboratory.intrinsic+json": { | |
"type": "string" | |
} | |
}, | |
"metadata": {}, | |
"execution_count": 110 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"metadata": { | |
"id": "z_0jtY3u8Kto" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment