Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save alonsosilvaallende/7fa2eea59d4d79c1974804baba9a9921 to your computer and use it in GitHub Desktop.
Save alonsosilvaallende/7fa2eea59d4d79c1974804baba9a9921 to your computer and use it in GitHub Desktop.
OpernRouter-Langchain-Palm2.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:35.338211Z",
"end_time": "2023-07-18T08:42:35.351674Z"
},
"trusted": true
},
"id": "5cba39c2",
"cell_type": "code",
"source": "%load_ext autoreload\n%autoreload 2",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:35.924920Z",
"end_time": "2023-07-18T08:42:35.951924Z"
},
"trusted": true
},
"id": "8f128ebc",
"cell_type": "code",
"source": "# get environment variable: OPENAI_API_KEY\nfrom dotenv import load_dotenv, find_dotenv\nload_dotenv(find_dotenv())",
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 2,
"data": {
"text/plain": "True"
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:36.464296Z",
"end_time": "2023-07-18T08:42:36.561677Z"
},
"trusted": true
},
"id": "c9b1c45e",
"cell_type": "code",
"source": "import os\nimport openai\n\nopenai.api_base = \"https://openrouter.ai/api/v1\"\nopenai.api_key = os.getenv(\"OPENAI_API_KEY\")\nOPENROUTER_REFERRER = \"https://github.com/alexanderatallah/openrouter-streamlit\"",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:37.119244Z",
"end_time": "2023-07-18T08:42:40.032169Z"
},
"trusted": true
},
"id": "a2914371",
"cell_type": "code",
"source": "output = openai.ChatCompletion.create(\n model='google/palm-2-chat-bison',\n headers={\"HTTP-Referer\": OPENROUTER_REFERRER},\n messages=[{\n \"role\":\n \"system\",\n \"content\":\n \"You are a helpful translator from English to Spanish.\"\n }, {\n 'role':\n 'user',\n 'content':\n f'Translate the following text to Spanish: Hola. Please add emojis related to the text at the end'\n }],\n temperature=0)\noutput",
"execution_count": 4,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 4,
"data": {
"text/plain": "<OpenAIObject at 0x7fec98095250> JSON: {\n \"model\": \"chat-bison@001\",\n \"choices\": [\n {\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Hola \\ud83d\\udc4b\\ud83c\\udffb\"\n }\n }\n ]\n}"
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:45.132017Z",
"end_time": "2023-07-18T08:42:46.452174Z"
},
"trusted": true
},
"id": "0fb56eac",
"cell_type": "code",
"source": "output_gpt = openai.ChatCompletion.create(\n model='openai/gpt-3.5-turbo',\n headers={\"HTTP-Referer\": OPENROUTER_REFERRER},\n messages=[{\n \"role\":\n \"system\",\n \"content\":\n \"You are a helpful translator from English to Spanish.\"\n }, {\n 'role':\n 'user',\n 'content':\n f'Translate the following text to Spanish: Hola.'\n }],\n temperature=0)\noutput_gpt",
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 5,
"data": {
"text/plain": "<OpenAIObject at 0x7febaac01970> JSON: {\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Hola.\"\n },\n \"finish_reason\": \"stop\"\n }\n ],\n \"model\": \"gpt-3.5-turbo-0613\",\n \"usage\": {\n \"prompt_tokens\": 31,\n \"completion_tokens\": 2,\n \"total_tokens\": 33\n }\n}"
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:47.498022Z",
"end_time": "2023-07-18T08:42:47.517576Z"
},
"trusted": true
},
"id": "ec816a7d",
"cell_type": "code",
"source": "output_gpt[\"usage\"]",
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 6,
"data": {
"text/plain": "<OpenAIObject at 0x7febaac01490> JSON: {\n \"prompt_tokens\": 31,\n \"completion_tokens\": 2,\n \"total_tokens\": 33\n}"
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:42:51.296951Z",
"end_time": "2023-07-18T08:42:51.329960Z"
},
"trusted": true
},
"id": "f78db741",
"cell_type": "code",
"source": "output[\"usage\"]",
"execution_count": 7,
"outputs": [
{
"output_type": "error",
"ename": "KeyError",
"evalue": "'usage'",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43moutput\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43musage\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n",
"\u001b[0;31mKeyError\u001b[0m: 'usage'"
]
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:43:27.676716Z",
"end_time": "2023-07-18T08:43:29.657346Z"
},
"trusted": true
},
"cell_type": "code",
"source": "from langchain.chat_models import ChatOpenAI\n\nchat = ChatOpenAI(model_name=\"openai/gpt-3.5-turbo\",\n temperature=2,\n headers={\"HTTP-Referer\": OPENROUTER_REFERRER})\nchat.predict(\"Tell me a joke\")",
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": "WARNING! headers is not default parameter.\n headers was transferred to model_kwargs.\n Please confirm that headers is what you intended.\n",
"name": "stderr"
},
{
"output_type": "execute_result",
"execution_count": 9,
"data": {
"text/plain": "\"Sure, here's a classic LativiaQ think:\\nWhy don't scientists trust atoms?\\n Because they make up everything! Laughter\""
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2023-07-18T08:43:37.482302Z",
"end_time": "2023-07-18T08:43:40.285012Z"
},
"trusted": true
},
"id": "b82e29ba",
"cell_type": "code",
"source": "from langchain.chat_models import ChatOpenAI\n\nchat = ChatOpenAI(\n model_name=\"google/palm-2-chat-bison\",\n temperature=2,\n headers={\"HTTP-Referer\": OPENROUTER_REFERRER}\n )\n\nchat.predict(\"Tell me a joke\")",
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"text": "WARNING! headers is not default parameter.\n headers was transferred to model_kwargs.\n Please confirm that headers is what you intended.\n",
"name": "stderr"
},
{
"output_type": "error",
"ename": "KeyError",
"evalue": "'usage'",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[10], line 9\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlangchain\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mchat_models\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ChatOpenAI\n\u001b[1;32m 3\u001b[0m chat \u001b[38;5;241m=\u001b[39m ChatOpenAI(\n\u001b[1;32m 4\u001b[0m model_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgoogle/palm-2-chat-bison\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 5\u001b[0m temperature\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2\u001b[39m,\n\u001b[1;32m 6\u001b[0m headers\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHTTP-Referer\u001b[39m\u001b[38;5;124m\"\u001b[39m: OPENROUTER_REFERRER}\n\u001b[1;32m 7\u001b[0m )\n\u001b[0;32m----> 9\u001b[0m \u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mTell me a joke\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/base.py:385\u001b[0m, in \u001b[0;36mBaseChatModel.predict\u001b[0;34m(self, text, stop, **kwargs)\u001b[0m\n\u001b[1;32m 383\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 384\u001b[0m _stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(stop)\n\u001b[0;32m--> 385\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mHumanMessage\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcontent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_stop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\u001b[38;5;241m.\u001b[39mcontent\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/base.py:349\u001b[0m, in \u001b[0;36mBaseChatModel.__call__\u001b[0;34m(self, messages, stop, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m 342\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\n\u001b[1;32m 343\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 344\u001b[0m messages: List[BaseMessage],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 348\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m BaseMessage:\n\u001b[0;32m--> 349\u001b[0m generation \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgenerations[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 352\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(generation, ChatGeneration):\n\u001b[1;32m 353\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m generation\u001b[38;5;241m.\u001b[39mmessage\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/base.py:125\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, **kwargs)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n\u001b[1;32m 124\u001b[0m run_managers[i]\u001b[38;5;241m.\u001b[39mon_llm_error(e)\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 126\u001b[0m flattened_outputs \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 127\u001b[0m LLMResult(generations\u001b[38;5;241m=\u001b[39m[res\u001b[38;5;241m.\u001b[39mgenerations], llm_output\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39mllm_output)\n\u001b[1;32m 128\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results\n\u001b[1;32m 129\u001b[0m ]\n\u001b[1;32m 130\u001b[0m llm_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_combine_llm_outputs([res\u001b[38;5;241m.\u001b[39mllm_output \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results])\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/base.py:115\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, **kwargs)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(messages):\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 114\u001b[0m results\u001b[38;5;241m.\u001b[39mappend(\n\u001b[0;32m--> 115\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_with_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 116\u001b[0m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_managers\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_managers\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 119\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 120\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 121\u001b[0m )\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m, \u001b[38;5;167;01mException\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/base.py:262\u001b[0m, in \u001b[0;36mBaseChatModel._generate_with_cache\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 259\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAsked to cache, but no cache found at `langchain.cache`.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 260\u001b[0m )\n\u001b[1;32m 261\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported:\n\u001b[0;32m--> 262\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 263\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 264\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 265\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate(messages, stop\u001b[38;5;241m=\u001b[39mstop, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/openai.py:372\u001b[0m, in \u001b[0;36mChatOpenAI._generate\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ChatResult(generations\u001b[38;5;241m=\u001b[39m[ChatGeneration(message\u001b[38;5;241m=\u001b[39mmessage)])\n\u001b[1;32m 371\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcompletion_with_retry(messages\u001b[38;5;241m=\u001b[39mmessage_dicts, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mparams)\n\u001b[0;32m--> 372\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_chat_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/langchain/lib/python3.11/site-packages/langchain/chat_models/openai.py:394\u001b[0m, in \u001b[0;36mChatOpenAI._create_chat_result\u001b[0;34m(self, response)\u001b[0m\n\u001b[1;32m 389\u001b[0m gen \u001b[38;5;241m=\u001b[39m ChatGeneration(\n\u001b[1;32m 390\u001b[0m message\u001b[38;5;241m=\u001b[39mmessage,\n\u001b[1;32m 391\u001b[0m generation_info\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mdict\u001b[39m(finish_reason\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfinish_reason\u001b[39m\u001b[38;5;124m\"\u001b[39m)),\n\u001b[1;32m 392\u001b[0m )\n\u001b[1;32m 393\u001b[0m generations\u001b[38;5;241m.\u001b[39mappend(gen)\n\u001b[0;32m--> 394\u001b[0m llm_output \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtoken_usage\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[43mresponse\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43musage\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_name}\n\u001b[1;32m 395\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ChatResult(generations\u001b[38;5;241m=\u001b[39mgenerations, llm_output\u001b[38;5;241m=\u001b[39mllm_output)\n",
"\u001b[0;31mKeyError\u001b[0m: 'usage'"
]
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"_draft": {
"nbviewer_url": "https://gist.github.com/alonsosilvaallende/7fa2eea59d4d79c1974804baba9a9921"
},
"gist": {
"id": "7fa2eea59d4d79c1974804baba9a9921",
"data": {
"description": "OpernRouter-Langchain-Palm2.ipynb",
"public": true
}
},
"kernelspec": {
"name": "conda-env-langchain-py",
"display_name": "Python [conda env:langchain]",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.11.3",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"varInspector": {
"window_display": false,
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"library": "var_list.py",
"delete_cmd_prefix": "del ",
"delete_cmd_postfix": "",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"library": "var_list.r",
"delete_cmd_prefix": "rm(",
"delete_cmd_postfix": ") ",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
]
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment