Created
September 14, 2021 11:24
-
-
Save alonsosilvaallende/81a55cbe798ce5a33fd838af99a00a25 to your computer and use it in GitHub Desktop.
Lifelines-sklearn-adapter-predicts-the-expectation.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Lifelines-sklearn-adapter-predicts-the-expectation.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyPc82HOXEGYVhL8hKHO93lu", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/alonsosilvaallende/81a55cbe798ce5a33fd838af99a00a25/lifelines-sklearn-adapter-predicts-the-expectation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "0_IujgLW_1Ia" | |
}, | |
"source": [ | |
"!pip install --quiet lifelines" | |
], | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ufiyPcyx_52n" | |
}, | |
"source": [ | |
"from lifelines.utils.sklearn_adapter import sklearn_adapter\n", | |
"\n", | |
"from lifelines import WeibullAFTFitter\n", | |
"from lifelines.datasets import load_rossi" | |
], | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "E1wEfK1_AFPZ" | |
}, | |
"source": [ | |
"X = load_rossi().drop('week', axis=1)\n", | |
"Y = load_rossi().pop('week')" | |
], | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Q3lbnorYAJaA" | |
}, | |
"source": [ | |
"WeibullAFTRegression = sklearn_adapter(WeibullAFTFitter, event_col='arrest')\n", | |
"sk_waft = WeibullAFTRegression(penalizer=1e-5)\n", | |
"sk_waft.fit(X, Y)\n", | |
"pred_sk_waft = sk_waft.predict(X)" | |
], | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "6ez2TJ27BJIO" | |
}, | |
"source": [ | |
"waftf = WeibullAFTFitter(penalizer=1e-5)\n", | |
"X['week'] = Y\n", | |
"waftf.fit(X, duration_col='week', event_col='arrest')\n", | |
"pred_waft = waftf.predict_expectation(X)" | |
], | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "QO71Mv5qCCz6", | |
"outputId": "8304d2a6-570d-440f-d830-d165c28a95a1" | |
}, | |
"source": [ | |
"all(pred_sk_waft == pred_waft)" | |
], | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "EDgHNSZvC6NL" | |
}, | |
"source": [ | |
"pred_waft_median = waftf.predict_median(X)" | |
], | |
"execution_count": 7, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "4-5fPR45CwAO", | |
"outputId": "1c494dcb-9b2b-4878-beaa-26c67e1a5c22" | |
}, | |
"source": [ | |
"all(pred_sk_waft == pred_waft_median)" | |
], | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"False" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 8 | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment