Created
May 25, 2022 11:33
-
-
Save alonsosilvaallende/895232a1f78d988f5d752f9416c77545 to your computer and use it in GitHub Desktop.
Untitled Folder/Untitled1.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:37.064167Z", | |
"end_time": "2022-05-25T11:34:38.437882Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np\nimport pandas as pd", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:38.440374Z", | |
"end_time": "2022-05-25T11:34:38.458690Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "t = 1\nalpha = 1\nt, alpha", | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 2, | |
"data": { | |
"text/plain": "(1, 1)" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:38.462137Z", | |
"end_time": "2022-05-25T11:34:38.474538Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "zeta = np.linspace(1,2,5)\nzeta", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 3, | |
"data": { | |
"text/plain": "array([1. , 1.25, 1.5 , 1.75, 2. ])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:38.483936Z", | |
"end_time": "2022-05-25T11:34:38.491698Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "lam = np.linspace(1,2,5)\nlam", | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 4, | |
"data": { | |
"text/plain": "array([1. , 1.25, 1.5 , 1.75, 2. ])" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:38.497917Z", | |
"end_time": "2022-05-25T11:34:38.517347Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "y2 = [[np.exp(-t*((1+z)*alpha-l)) for z in zeta] for l in lam]\ny2", | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 5, | |
"data": { | |
"text/plain": "[[0.36787944117144233,\n 0.2865047968601901,\n 0.22313016014842982,\n 0.17377394345044514,\n 0.1353352832366127],\n [0.4723665527410147,\n 0.36787944117144233,\n 0.2865047968601901,\n 0.22313016014842982,\n 0.17377394345044514],\n [0.6065306597126334,\n 0.4723665527410147,\n 0.36787944117144233,\n 0.2865047968601901,\n 0.22313016014842982],\n [0.7788007830714049,\n 0.6065306597126334,\n 0.4723665527410147,\n 0.36787944117144233,\n 0.2865047968601901],\n [1.0,\n 0.7788007830714049,\n 0.6065306597126334,\n 0.4723665527410147,\n 0.36787944117144233]]" | |
}, | |
"metadata": {} | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:38.524551Z", | |
"end_time": "2022-05-25T11:34:38.542956Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "y2 = pd.DataFrame()\ny2.index = zeta\nfor l in lam:\n y2[l] = [np.exp(-t*((1+z)*alpha-l)) for z in zeta]", | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-05-25T11:34:38.554079Z", | |
"end_time": "2022-05-25T11:34:38.588683Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "y2", | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"execution_count": 7, | |
"data": { | |
"text/plain": " 1.00 1.25 1.50 1.75 2.00\n1.00 0.367879 0.472367 0.606531 0.778801 1.000000\n1.25 0.286505 0.367879 0.472367 0.606531 0.778801\n1.50 0.223130 0.286505 0.367879 0.472367 0.606531\n1.75 0.173774 0.223130 0.286505 0.367879 0.472367\n2.00 0.135335 0.173774 0.223130 0.286505 0.367879", | |
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>1.00</th>\n <th>1.25</th>\n <th>1.50</th>\n <th>1.75</th>\n <th>2.00</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1.00</th>\n <td>0.367879</td>\n <td>0.472367</td>\n <td>0.606531</td>\n <td>0.778801</td>\n <td>1.000000</td>\n </tr>\n <tr>\n <th>1.25</th>\n <td>0.286505</td>\n <td>0.367879</td>\n <td>0.472367</td>\n <td>0.606531</td>\n <td>0.778801</td>\n </tr>\n <tr>\n <th>1.50</th>\n <td>0.223130</td>\n <td>0.286505</td>\n <td>0.367879</td>\n <td>0.472367</td>\n <td>0.606531</td>\n </tr>\n <tr>\n <th>1.75</th>\n <td>0.173774</td>\n <td>0.223130</td>\n <td>0.286505</td>\n <td>0.367879</td>\n <td>0.472367</td>\n </tr>\n <tr>\n <th>2.00</th>\n <td>0.135335</td>\n <td>0.173774</td>\n <td>0.223130</td>\n <td>0.286505</td>\n <td>0.367879</td>\n </tr>\n </tbody>\n</table>\n</div>" | |
}, | |
"metadata": {} | |
} | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.9.7", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "Untitled Folder/Untitled1.ipynb", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment