Skip to content

Instantly share code, notes, and snippets.

@alonsosilvaallende
Created June 1, 2022 11:48
Show Gist options
  • Save alonsosilvaallende/95916cf121e62663a45e7e3e001b4d18 to your computer and use it in GitHub Desktop.
Save alonsosilvaallende/95916cf121e62663a45e7e3e001b4d18 to your computer and use it in GitHub Desktop.
Untitled5.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"ExecuteTime": {
"start_time": "2022-06-01T11:49:05.038806Z",
"end_time": "2022-06-01T11:49:06.030822Z"
},
"trusted": true
},
"cell_type": "code",
"source": "import numpy as np\nimport pandas as pd",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2022-06-01T11:49:06.033663Z",
"end_time": "2022-06-01T11:49:06.041484Z"
},
"trusted": true
},
"cell_type": "code",
"source": "nbetat=961",
"execution_count": 2,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2022-06-01T11:49:06.045060Z",
"end_time": "2022-06-01T11:49:06.114820Z"
},
"trusted": true
},
"cell_type": "code",
"source": "NE_1=np.arange(0,100,1)\nNE=np.arange(0,100,1)\nmatr = pd.DataFrame(index=NE)\nfor b1 in NE_1:\n matr[b1]=[0 for b2 in NE]\nprint(matr)",
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": " 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \\\n0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n.. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. \n95 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n96 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n97 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n98 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n99 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n\n 97 98 99 \n0 0 0 0 \n1 0 0 0 \n2 0 0 0 \n3 0 0 0 \n4 0 0 0 \n.. .. .. .. \n95 0 0 0 \n96 0 0 0 \n97 0 0 0 \n98 0 0 0 \n99 0 0 0 \n\n[100 rows x 100 columns]\n",
"name": "stdout"
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2022-06-01T11:49:06.120291Z",
"end_time": "2022-06-01T11:49:06.703146Z"
},
"trusted": true
},
"cell_type": "code",
"source": "NE_1=np.arange(0,nbetat,1)\nNE=np.arange(0,100,1)\nmatr = pd.DataFrame(index=NE)\nfor b1 in NE_1:\n matr[b1]=[0 for b2 in NE]\nprint(matr)",
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": " 0 1 2 3 4 5 6 7 8 9 ... 951 952 953 954 \\\n0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... \n95 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n96 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n97 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n98 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n99 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n\n 955 956 957 958 959 960 \n0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 \n2 0 0 0 0 0 0 \n3 0 0 0 0 0 0 \n4 0 0 0 0 0 0 \n.. ... ... ... ... ... ... \n95 0 0 0 0 0 0 \n96 0 0 0 0 0 0 \n97 0 0 0 0 0 0 \n98 0 0 0 0 0 0 \n99 0 0 0 0 0 0 \n\n[100 rows x 961 columns]\n",
"name": "stdout"
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2022-06-01T11:49:06.707266Z",
"end_time": "2022-06-01T11:49:06.859412Z"
},
"trusted": true
},
"cell_type": "code",
"source": "NE_1=np.arange(0,100,1)\nNE=np.arange(0,nbetat,1)\nmatr = pd.DataFrame(index=NE)\nfor b1 in NE_1:\n matr[b1]=[0 for b2 in NE]\nprint(matr)",
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": " 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \\\n0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n.. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. \n956 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n957 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n958 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n959 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n960 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n\n 97 98 99 \n0 0 0 0 \n1 0 0 0 \n2 0 0 0 \n3 0 0 0 \n4 0 0 0 \n.. .. .. .. \n956 0 0 0 \n957 0 0 0 \n958 0 0 0 \n959 0 0 0 \n960 0 0 0 \n\n[961 rows x 100 columns]\n",
"name": "stdout"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.8.5",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "Untitled5.ipynb",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment