Created
June 1, 2022 11:48
-
-
Save alonsosilvaallende/95916cf121e62663a45e7e3e001b4d18 to your computer and use it in GitHub Desktop.
Untitled5.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-06-01T11:49:05.038806Z", | |
"end_time": "2022-06-01T11:49:06.030822Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "import numpy as np\nimport pandas as pd", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-06-01T11:49:06.033663Z", | |
"end_time": "2022-06-01T11:49:06.041484Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "nbetat=961", | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-06-01T11:49:06.045060Z", | |
"end_time": "2022-06-01T11:49:06.114820Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "NE_1=np.arange(0,100,1)\nNE=np.arange(0,100,1)\nmatr = pd.DataFrame(index=NE)\nfor b1 in NE_1:\n matr[b1]=[0 for b2 in NE]\nprint(matr)", | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": " 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \\\n0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n.. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. \n95 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n96 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n97 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n98 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n99 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n\n 97 98 99 \n0 0 0 0 \n1 0 0 0 \n2 0 0 0 \n3 0 0 0 \n4 0 0 0 \n.. .. .. .. \n95 0 0 0 \n96 0 0 0 \n97 0 0 0 \n98 0 0 0 \n99 0 0 0 \n\n[100 rows x 100 columns]\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-06-01T11:49:06.120291Z", | |
"end_time": "2022-06-01T11:49:06.703146Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "NE_1=np.arange(0,nbetat,1)\nNE=np.arange(0,100,1)\nmatr = pd.DataFrame(index=NE)\nfor b1 in NE_1:\n matr[b1]=[0 for b2 in NE]\nprint(matr)", | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": " 0 1 2 3 4 5 6 7 8 9 ... 951 952 953 954 \\\n0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... \n95 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n96 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n97 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n98 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n99 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 \n\n 955 956 957 958 959 960 \n0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 \n2 0 0 0 0 0 0 \n3 0 0 0 0 0 0 \n4 0 0 0 0 0 0 \n.. ... ... ... ... ... ... \n95 0 0 0 0 0 0 \n96 0 0 0 0 0 0 \n97 0 0 0 0 0 0 \n98 0 0 0 0 0 0 \n99 0 0 0 0 0 0 \n\n[100 rows x 961 columns]\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"ExecuteTime": { | |
"start_time": "2022-06-01T11:49:06.707266Z", | |
"end_time": "2022-06-01T11:49:06.859412Z" | |
}, | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "NE_1=np.arange(0,100,1)\nNE=np.arange(0,nbetat,1)\nmatr = pd.DataFrame(index=NE)\nfor b1 in NE_1:\n matr[b1]=[0 for b2 in NE]\nprint(matr)", | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": " 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \\\n0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n.. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. \n956 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n957 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n958 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n959 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n960 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 \n\n 97 98 99 \n0 0 0 0 \n1 0 0 0 \n2 0 0 0 \n3 0 0 0 \n4 0 0 0 \n.. .. .. .. \n956 0 0 0 \n957 0 0 0 \n958 0 0 0 \n959 0 0 0 \n960 0 0 0 \n\n[961 rows x 100 columns]\n", | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": true | |
}, | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.8.5", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "Untitled5.ipynb", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment