Created
September 14, 2021 12:42
-
-
Save alonsosilvaallende/cd9ec5ae0f6e8b83991606bd8e0f5848 to your computer and use it in GitHub Desktop.
Split_vs_Bootstrap.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Split_vs_Bootstrap.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyMVtV3J6yM7jfaezPh3JqQX", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/alonsosilvaallende/cd9ec5ae0f6e8b83991606bd8e0f5848/split_vs_bootstrap.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "cEwJ4mw3MRq8" | |
}, | |
"source": [ | |
"!pip install -q scikit-survival" | |
], | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "q8tsUA-yMY8i" | |
}, | |
"source": [ | |
"from sksurv.datasets import load_gbsg2\n", | |
"\n", | |
"X, y = load_gbsg2()" | |
], | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "2vQfLWpMMcSp" | |
}, | |
"source": [ | |
"scaling_cols = [c for c in X.columns if X[c].dtype.kind in ['i', 'f']]\n", | |
"cat_cols = [c for c in X.columns if X[c].dtype.kind not in [\"i\", \"f\"]]" | |
], | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "yzZePe3PM1NT" | |
}, | |
"source": [ | |
"from sklearn.compose import ColumnTransformer\n", | |
"from sklearn.preprocessing import OrdinalEncoder\n", | |
"from sklearn.preprocessing import StandardScaler\n", | |
"\n", | |
"preprocessor = ColumnTransformer(\n", | |
" [('cat-preprocessor', OrdinalEncoder(), cat_cols),\n", | |
" ('standard-scaler', StandardScaler(), scaling_cols)],\n", | |
" remainder='passthrough', sparse_threshold=0)" | |
], | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "jdmci5AmTpFs" | |
}, | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"splits_seeds = np.random.RandomState(42).permutation(1000)[:10]" | |
], | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "BOQcJ9wTM9Bn" | |
}, | |
"source": [ | |
"from sklearn.model_selection import train_test_split\n", | |
"from sksurv.ensemble import RandomSurvivalForest\n", | |
"from sksurv.metrics import concordance_index_censored\n", | |
"\n", | |
"ci_splits = []\n", | |
"for seed in splits_seeds:\n", | |
" X_trn, X_test, y_trn, y_test = train_test_split(X, y, random_state=seed)\n", | |
" X_trn = preprocessor.fit_transform(X_trn)\n", | |
" X_test = preprocessor.transform(X_test)\n", | |
" rsf = RandomSurvivalForest()\n", | |
" rsf.fit(X_trn, y_trn)\n", | |
" ci_rsf = concordance_index_censored(y_test[\"cens\"], y_test[\"time\"], rsf.predict(X_test))\n", | |
" ci_splits.append(ci_rsf[0])" | |
], | |
"execution_count": 6, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "qGGkvh54O8ip", | |
"outputId": "8aba1b17-f1ff-45f4-cbc5-6626ecdc7f6d" | |
}, | |
"source": [ | |
"np.mean(ci_splits)" | |
], | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0.6946017467642212" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 7 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "czk3WPk6UwAK" | |
}, | |
"source": [ | |
"# Bootstrap" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "E4BEIHWlQAPD" | |
}, | |
"source": [ | |
"X_trn, X_test, y_trn, y_test = train_test_split(X, y, random_state=42)\n", | |
"X_trn = preprocessor.fit_transform(X_trn)\n", | |
"X_test = preprocessor.transform(X_test)" | |
], | |
"execution_count": 8, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "TSMfhe--QDYy", | |
"outputId": "4c56e32b-f3a4-4e97-d1f8-43d3b4479870" | |
}, | |
"source": [ | |
"rsf = RandomSurvivalForest(random_state=42)\n", | |
"rsf.fit(X_trn, y_trn)" | |
], | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"RandomSurvivalForest(bootstrap=True, max_depth=None, max_features='auto',\n", | |
" max_leaf_nodes=None, max_samples=None, min_samples_leaf=3,\n", | |
" min_samples_split=6, min_weight_fraction_leaf=0.0,\n", | |
" n_estimators=100, n_jobs=None, oob_score=False,\n", | |
" random_state=42, verbose=0, warm_start=False)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 9 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "XFnfFkrcQfSJ" | |
}, | |
"source": [ | |
"bootstrap_seeds = np.random.RandomState(0).permutation(1000)[:10]" | |
], | |
"execution_count": 10, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "YjHlvji6PNkg" | |
}, | |
"source": [ | |
"bootstrap_indexes = \\\n", | |
"[np.random.RandomState(_seed).choice(X_test.shape[0], X_test.shape[0], replace=True) for _seed in bootstrap_seeds]" | |
], | |
"execution_count": 11, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "s49YobPnShiZ" | |
}, | |
"source": [ | |
"ci_bootstrap = \\\n", | |
"[concordance_index_censored(y_test[bootstrap_indexes[0]][\"cens\"], \n", | |
" y_test[bootstrap_indexes[0]]['time'], \n", | |
" rsf.predict(X_test[bootstrap_indexes[0]]))[0] for i in range(len(bootstrap_indexes))]" | |
], | |
"execution_count": 12, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "IfrKoPHfTWij", | |
"outputId": "5df21d2a-3808-46ec-b874-a762b10e7221" | |
}, | |
"source": [ | |
"np.mean(ci_bootstrap)" | |
], | |
"execution_count": 13, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0.6869005705960908" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 13 | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment