Skip to content

Instantly share code, notes, and snippets.

@amaarora
Created December 13, 2021 14:43
Show Gist options
  • Save amaarora/f272ee40df8b9c8f04893ed9b071724f to your computer and use it in GitHub Desktop.
Save amaarora/f272ee40df8b9c8f04893ed9b071724f to your computer and use it in GitHub Desktop.
reports/GRAD CAM .ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {},
"id": "e436e33c",
"cell_type": "markdown",
"source": "# Grad CAM "
},
{
"metadata": {
"trusted": true
},
"id": "2bda6d2b",
"cell_type": "code",
"source": "import pandas as pd \nimport numpy as np \nimport pytorch_grad_cam\nimport pytorch_lightning as pl\nimport timm\nimport torch.nn as nn\nimport torch \nimport torchvision.transforms as transforms\nimport torchvision\nimport albumentations as A\nimport matplotlib.pyplot as plt\nfrom torchvision.models import resnet50\nimport torchvision.transforms.functional as TF\nfrom PIL import Image\nfrom fastai.vision.all import * \nimport cv2\nimport wandb\nfrom tqdm import tqdm \nfrom pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM\nfrom pytorch_grad_cam.utils.image import show_cam_on_image\nimport os",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"id": "c63ed2bf",
"cell_type": "code",
"source": "if not os.path.exists('./resnet34_a1_0-46f8f793.pth'):\n !wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a1_0-46f8f793.pth\n !wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a2_0-82d47d71.pth\n !wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet34_a3_0-a20cabb6.pth",
"execution_count": 2,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"id": "8857082a",
"cell_type": "code",
"source": "tfms = transforms.Compose([\n transforms.Resize((256, 256)), \n transforms.ToTensor(),\n])\n\ndef __getitem__(self, index: int):\n path, target = self.samples[index]\n sample = self.loader(path)\n if self.transform is not None:\n sample = self.transform(sample)\n if self.target_transform is not None:\n target = self.target_transform(target)\n return path, sample, target\n\n# hack to return image paths, along side Image tensor and target tensor\ntorchvision.datasets.ImageFolder.__getitem__ = __getitem__\n\nval_dset = torchvision.datasets.ImageFolder('/home/arora/imagenette2-320/val/', transform=tfms)\nval_dataloader = torch.utils.data.DataLoader(val_dset, batch_size=32, num_workers=4, shuffle=True)\n\nbatch = next(iter(val_dataloader))\nbatch[1].shape\n\n# sanity check\ngrid_img = torchvision.utils.make_grid(batch[1], nrow=4, padding=10)\nplt.imshow(grid_img.permute(1, 2, 0))",
"execution_count": 3,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 3,
"data": {
"text/plain": "<matplotlib.image.AxesImage at 0x7fa5a8cb9550>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 432x288 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKEAAAD8CAYAAAAfQcSfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADwpUlEQVR4nOz9d5xs13XfiX733idX7Orct29OAC4iQUQmiSQoksqZlDyyxpon2R/L+eMg+834jcPY4+enN+8zzrY80ngkyzIlWaJIMSeQBAgiAxc3x86pcjhp7/3+ONV9L0ja4iU1EMgPFz6N21V1qk712eusvcJv/Zaw1vId+Y78SYr8k/4C35HvyHeU8DvyJy7fUcLvyJ+4fEcJvyN/4vIdJfyO/InLd5TwO/InLq+5Egoh3i2EOCeEuCiE+Fuv9fm/I68/Ea9lnlAIoYDzwGPAMvBl4P3W2ldesy/xHXndyWttCR8ELlprL1trU+A3gR98jb/Dd+R1Js5rfL59wNJNj5eBh77yICHEzwM/P354vxACASBAiOK+KSy4ZdeS2+Llr/ykr35G3PyqwFiLGL//xq7wFe/bfXjzyxaEsEghXnWAtRYhBMZY7PhkArBf+QXHx0kpb7zwqu/2zcvu17XGYIxBKvXH8Klf6ySv3k2NMVhrv+4/4bVWwq/1xb7KH7DW/hvg3wBIKe3P/Knvo17yUX7EO977faxtXmV99SzrG1dpNpukecLq8pCZ6SlsKvCFQmcwUSljBFhrcAMPa3ImqzU8z2WqXmNhJuTxp85TjwKefOUqX3j6DE79CF65XnwRJ8ACUbmMchTxsI9EUJucxPabPBys8SNve5D5uRkCZem0Wly5col9M/v59U9+gU9s+6SlBRqNCZpb2wgE9dlZTJ6x9PJTvP8H382f/fN/HiklcqyQQgiEsCAExX8Ud47g1XfQqy/Yqy+mLW4GC1gDn/vsZ/jn/+x/5xf/+l9HjD/LYgCBsGJ8ruLz7fhUxlp0oUx7H28BbTTWiMIY2OLaWquxtvi8TqvJ//K3bs3Vf62VcBnYf9PjRWD1v/UGIaAS+kRRRJJnrFx/hsFoSGNimm6nT88bMtFYwJUbHDn8EFfOXcK3lqiqqJRChNTkWAIFiYmohh4ohzRJWVoeMVMroa2HEHJ8sSVRpcpwMCgWQLmMRgmu7yGdEIDhKMdxSoiozuRknYlaFZ3llP0RD546AY7PsemQpV6LM6ZBklmkH1Gu1XFDn1HfglCUShETlRDluHieh+cHCCGRgkIZbrKkxTbw37649iartLtTGAuTjTqO61KdmEBIicCirSlOQnEegcCM3yulwJrimD1rai3GGHKtsbbYRaQodhKtc6RQCCHQ2nxdinCzvNZK+GXguBDiMLACvA/4qT/qTdPVEtrC8maH+8JZjhw9zOzsfhYWL9Jur/L0lx8nciqcfuYZksGIgzNz+I5DnmXUSi7CaMJ0SNer4GtNZgXDUY5C024P2eo2aVQ9SpFP7jjEwyHGWEpTUyAFSa8PacrU7Azt3pD6RIXWTotXuj7tEcQrm1xc2uJt9x4mMkOWtptsDXPmqh4XdnbwwwMYKdFW09rYxBpQStJvb7N67kWstUxMzzJ94Ah+EO0p4qvFsmem7E3P3SS7ytobDIkCDyEsVmus0VhryTKNUhYrLMYIDGbPwBoKt0QKibaisHDcUD67a13trgskMBa0LRR915XR+tYD3ddUCa21uRDiF4GPAgr499ba03/U+7rDNlJIQldx4sQ9HD50jDAsU4pKnD3dIRIOJmwwM9tntANR4OJ7Lg4GVwqyRNOxLlXfJ1IwtAolJZGvcMs1Vl+6QClwECiUH5LmmvrUFG4YMBzFOL6PIwXVWomddpf+YIQVkiYVPv3iBd586iB3Lc5Sr05hkxYOG+g4Ju32mTAZUxMOzaHH5k6XPDdEpTKO5zHqtmlvrZMNujhCI01KWG3gl6qUag2EKKxWIQKEHTuvN576Gs4M1Sjcvd54SqKEwFrQutg+DQZLYbksxXaKEAgp0Cbfe2+hgIz9XDv2X29YaAsU/g5YbPEVv/ru+SPltbaEWGs/DHz4Fo7n2qU1GpUSaxst/q9//ss0JuuUJ6ep1AL8ZIVI9mjrLsnAUKk2SPKMsnSRFqyxeDZDhRUwGukHeBhGgxStApSrcB1LFDlYQHk+lfoUSZLgWIvjuGRZitZwfa1JGPpoYwgqFQKdsDJM8AzMzzboJTmuE2BUwH13HeVDn3yaB2ZLPH/uCZLZB3F9H9dxyHKNUorOzhZby0vkplB60hGdtWu4UZWD9zyM55eIkxidJ5TK9a9WuF1fzRp0rnFcd88nvFmEUAgBriuQSmKMLLZeAcaC2FXIPcW72fIJLMXNcCOQumEhhbQIbmzBhW94a/KaK+Gti2D/TImZWoTIE9zRkKwZU54L0IMeoyxn2EkJhOLobUd54ZUNRJZQqyhC5ZKkOf1eStVN8YTAWoUUIESOdCUKQ6PqUK1HVEo+XaNRrodIM3Jd/G5zh7l988RJzvxkhY31TUZa0Es0Z3JoJYLtUYarU1RZkaI4dvQwB1+5zIX1LRphRG57qPIsmdHkaUrqKlo7OywvXeLooYO0Vq7iey7KcanOumxev0J9ZgFjYRgPGWjDyBqMp4iUQ19qRlmMdlw2m002VlY4dOQwh5wqE15I4HjsBqjaFNbLdR2ElBhj0NairUVSKKgQAmPNnpUzxiCl3NNnKRWOo5BC7G3TujCtWMBoi7EGxLehEgphWZhpUw97ZDZmdqLK5HQN6W6TaoUQHiWnxjCRTC82QOeIPKXkKYhj8hRM7GDjDG0Fzc4WtekGwmhykzEYDBFKosgxOkW5LlmWU6lV8QMf4Xhs9Tpk8YjQD9HG4IUenZ0+aabZTlL+7cc/z5+69wj3HDqAX5ti0N9EmB5HDzZ44domc6WY69vXEYuz5LkhjRN6nR66npMnfXqbywwdiQV86dLeXMO/8DzlagM3qrI5GPG/PfllOm+7i9tnI6J6mXPDjJO9JpfnprB+wFS8weDiJTYX5/lb4W08Fu0v0kTGYLQGGAcU4yhXF8ojhcRR403fCowprLRShXUsUlEgVeHCKCELBTQGJYuUjzGaHAPaIsWtp4Fe90qIBRGnqLBMNRR02j1MklIul3CDiImFWagabJ7h+n0W7p0jiROU55OaFC00o9SiM4PQDjbR9LsZ7eU1+tsjOt0BWW4xYRlpJY7rYrKEQZaRjBJqUw1cz2Nrq4PnDdgwlsZEiclKwI6UJNsbPL90mZ2tdf6nn65QX425cO0SjcYM3fY2J6ZcJuemeeHsGtmwRb0xjy2HbF+UhJ5DoxyAMOR5jpSC3GjMQJMNIGltkUiXM2stLr10ifk79nEySBju7DDVHKCFpH5mmUa1TGVrk1ZquPToPSy7KRfFddJRH53mrFy6gLGWLM9RVmGsLbZYIRDyxu4tkEhZpGR2raMUkiL/Wbg2OfpVUbsxRQAjJEi7e/ytyetfCYFMaNIsJkAyMV3HmJTJww9y7N7vx0iPj33gN/HMgMWFKp7j4rku/eGQONH4gWLQG9CNE5I4YXLmJCMJid2hUhJkIuXC9SG6m5DpHC8I8fwyg24HqXw6rQ65NggsQehTq5RotnvMTddZ37hGsr0MgLUJVy5/gZnZY7zhLT/E3PQkz/EHOGKFp69skgwSOue/yNzd92OqB3E8D8dNsQiGaYYnBb7r4UiJQpNkhtwYhlmKi6Di1emfuUrZOUlzZZsnfuN38L0ArXM6/SEIi+s41Chz7VjAYrZVbJdAp7mJMZY0M0gzViA5TtLbwqOT0uIphbWCXBexshrHGGZXKSl8QqUKa5ik2V5aR6liq3acb1MltLkiTxW5sCT9PrOLJ3j4vb9IuTZLs7XF6YubXDt3lh//0TcBGcNRH8dVeJ6D7ms8IfGRlGaOMuqEfOaDf8D17S7veMcJavUGD89OU6kpPvHF00XaQRuEFIx6fUqVMioI6LXbjGKf0BlhrGCz1ccROSIbMhsJTk25yOgQC4fvwgtC4hwiH6rzh3EuXkVrQTpqcfqpzzJ117v20jRCQKoNoe8X6Y40wcPiWstG39BOLa+sNDHKw3HgD37vg8zP1rn73kO8cHaV2FicKCBLM6xU0AhpNfu88vI5pKvIrWaQpWBtUR2yu4lwKDbmIsnsSAdHqb3ktJACKSDXBtdRuEphEUgpUFKO/UfIcoGQRQQuEAwD/5bX93WvhBZYbu/gdgSOa/FNieYwR3zok1RnZzhw+BCH77yLz33285zpTFM7cpSwdRrTb+LikGuBwKFaPsThe97GP/0bv8T9D9xJ+/Fnefa567z1kWOUwpDORoxOQecGzwWEg3Q0XhiQxgkSS1SK2G510NbihyF5bwtXaI5NRWS55pOnN3jDvS4Xzpxhdn4f17aH/ObTV7i/rgi6ApkJTJoy6jWxWGatQ5ZqosglHsR4jkRYg5XgSodcW+JMc361jXNwP9XA5/id+4m+/36uv7JKbFzsKCUfpshuD9Pu4huYPD7Lmw9PsbSyhJOP+MwXzoIA5QgcWVgzqRTu+CYw1qLGUa+UEt8TOMopFI0c0+szVC5TMzWUEkVQk4MSHq7joI1hHGzjqFtXqde9EgJoLZiqh9QqM1w432P14mW2tn+fLz77Cm/7vu/jnvtOEWtodzuMonmydIfR2lO4oxlGQ4txqiTxJjHPsbOzRX+4iPJcdtpt+v2cJO6yMDdJ4LkMbU6v08NoQ32yRrfdxfd99odDyhtfwu326RkHarPY3iYVX5IYyXZviDva4tf/468z7DRp1BuspJLDM9Ms1CTi+gbWFEo15TnUyiErjs+Cu5/t9S2sjVDCMuEmHKxadCa4R9a54PU5sFjhxcqIxvQU8cDlk7/3BQYXmphRShAbYmkgchB9xWBrhe3ZChdX2pzemcCfOM5za68ghSD0CldFCLEXfJhxqkXelH5RqqiaaC3pNQe88MGPs//Nb2Z6tgbYoqKjZJEb1IUFVEqglCT0vw2VUAAVBIGS5GmLK1s53/32dzMc9tnY+Bwf+8OPU5ucIjcGTwq67SbOyGN1bZP1jYvkts57v+eHePJzz9IRDsM0ZWunw1qrw10n9nHwwBSeEkTlCKUkOhlRmpjDJDG+7+BJj2PuCk7zHMN4hO0ntHuWeyuQzlS4ttxheScjcB2O+jmD9pBhZjkyUeNPvfd7OXtxhe7aM4wSO/57BNloQKfd4fl+mU5lgBm2mZ2r0NzYYH075X0PHyHMOviTVd7y2E+y+qEP4CUjLi7v8Huf/jK5tggh8cISeZxgkwRjDI6B9FOn2Xmhy+Cdj4HZ4vSXPsL5l57m+NF9RWnQdcegi8KPs9ZipUQqMQ5GoMBUWKSE2mSVO77vXUw0quQG3L1Axo6VVSI8hZICrEEqe8voi9c9stoCvV5GlsZsd2J0KpmYqnHx4iWGaUy3vcOZl88wOzdFrV5mNBhy/fJVPvH0gGfODmnttGitneXq6gpR5HPk6GH+wt/5n3jX97wTI1MuXlmhM0iI85TcGHQ8pFwKUa5L5Cnurbc5Ut6gl+UMRppQSXzl8he+9xF++Rd/jANzU0jloKwGqzkwN807H7ybn/rh93Bo/yzKUySAclXhTylJr71Dri2dnQ0uXrpK6h+gZ/bTyhYozd7BC/1JRkPNA/Iy+7MnuWMyJdhuEqQWr5njrA/wdxJmwjn2NQ7QEB7R0BAYiYpzaLe5uLzKyvI1ut0hC/sPIqXEVQpHqWI73gNLCFxX4rnguQLX2UUHgaMEpZJDtRogBDiqiKBhN3IG15G4qoiStSmqMl9dxflvy+veEgL0+5Jhx2OUeuy0B7S7Xc6dPY/BEg+HjDob3H3fnWRas7O+xpc+9zhrKx0CX6AQXDjzHLMzPvNTPuGDd9G89Dxe3uXZV65yLqhycH+fk7dNM4hzMhtjdY4beBxrwJsrfXLRoLkzZJSNSF3Jkblp7jgyh3AtE75kEAZ87937ec8jd3PwyBFcz0e6PsqNeMtD97N+aJEPPP2rbPabWGNJhz3CqEbS65HHA7Y3NwhdiHs7zAQWr7vNhh7xxNWcH9//MhM5vDDo4oZ1Fo6cIE2H+L6PCjx6vSEyLDMzOcuhxQVeXLnCU70m/bNnmQwEIutQC4to13UdXEcV4YixCLEbHBWRsrCQ28LSybFFNAaiUriH4LH2Rr0ZinKgGcPSxKtqil+/fEsooUKxujIiHo34sfe9n7DW4PT1DaSATOeMBn22th3Onr9Er7lDd2eTWsnjjuNzzM9G1OuKMoaNpSf43h/9c2jZ5VAz5NG1ffT7MUrAles7xHGC9gR5liOV5GjQ4oGHH6a7ucLm5TWqgUunD/eenCFurtPqDfnxBw9z/OgRpmdncYIIWZ4kRSGsxpcOVirSNKPsuXtwKSmgHHq0AWszBu1tdnyHarLFpfMrXFMOh2cr3HXX/ezUKuxsnmXp9LOooE05rFCamsIPfbIJFylLBEOXoFpjeXPIaKdPPIq5PrpAd6LC9atXcB2XAwcP4Kri3AZwVJETzHWReJZjRTSMt+RdACd2nMzehZZZlJJFTlMXqBohZPF5WHxH3vJ2/C2hhH23xoVrqywcOMj7f/ZP85knvlSUnKRCCAcnqnPuzHlGzTWm6w5vOFbj4NwUyD4BAfFIUVucxvUMr5z9EsN4wAtffgpZjvC0Zd+cj0FSLXn0gggjBFURsz+yzBx6lIWjfS4/9zJ5awcdeNQjSX80ZGJ6hrkjx3HDOsoL0dLl2mYXKwVT9To6dxHSw8ly/v7Pfi9/7zc/xpPnloiHA4yIsGMogcXS3N5hvbmBEBkZArFQ4/i9p3gmHrIsDpBrQ7a1TeZ16WxvofMMawxWCISjcF0XmyZkuUWUynT7A3JcpBPQaW8jDx3AH1dl7FjJBIUfl5ubgMHCosZuA4AS6gZw14KShUU1WJIsLx4rp8gdGoPnfhsGJtbCucvL7JsM+bmf+Qme+oPf41KzR7VaIQxc8jRnc+kSDdnnjXdVqVdcssTQjzvEwxEtYsJKg5Jf48kL54ndC4Sewg4TvKDHoX0VpusxRtSR0hJFAcN2mwm5xaATkI261I7eQ31qnpcuXebYkQWi+RP4lUmcWg0VVTEqYnWnwxef+gyf+dIzBL7H/iPHuf3IYe47th/PgdlanZNTVZ48B0LnpElCNSyR6QQrFV44xezB45QmS/Q2NpmbWeSVy2t88DPPo7WC3pA8zZCqildZQKdDkkETxw3wwgZYw2BwGWE1MsshmiDFIbcCY0AKgZJjtAvyxjYsBI4ZhwaiyAPKMaKmgJSJse9IoYRKgQBpLcJzwDp7VRIjwHWcXSju1y2veyUUAg7Nw7HFGjN1WDUJwUaXn/szP8nS5Sssv/wUw1GTR+6oEVHk81qx5uB0jTVRIktyhFPFihKRM8PO8joLhyvkrgKa9JsJ6TBlYqq40wNf0Y9jyDrsNPtceuYTrF14meZOi0stwW1TJwka+xGui1YRyxttPv3FT/Ll518kSXpYa2hUpvnAp57i+webLARt7jt5CpNmxHkBmTJ5jklHlOZPMnv4AXreJLOz80xHA6p2m4/+l9/k9LkrnL2+hM5zTKao1abIsmERuY7WwBhCX2Btgh2uAQrl+mNwqgAVIJUimpgtQBgAAhwpEWMlBHDGkP/dioiQAivkXjuFkhIhJMZo7NhimjHCRlIgsa01GLMb/d+6vO6VEAvNlqDpdPnCEx9n7vZHOfPSc0TlMqJ9mca0zwGpqaiE3iBluWsoe5IXXrpOJ7e4pTpquMJ6u0OkchYmFb4YcefhSVq9Pr1ORrs7QHmzDEY5sttDOj4VN2Npq8ezz7yAzJ6mMxjgSU2iHVIRMWy1qPo90k6bpfU1Ohp2YpdqpMhzw8G64qHbZlioVyg7lp1hwlZ3gPQipvfto7m5zdbyGY7c9SaG3RYbm4LRxDTVYJ65/YdZuXKJqcoijuPRGW1Tnz9WlNSMLqJ4bRC2AJYWCiYIrBhXOyQIOUaLG6SrxxdToGQRpRfWTY5TMkWkrKQslG43cS12qyMFYsZYS651gcoeyy4iR0iBIxVSfjsCGICJsot0JadfPMdHP3uaXEM1cqlXFHffc5Tu9iomdkmxjMSINLX0beFMe2ZIYjUiTpiuBExULKW6xlE9fBwGnoMZDel2WjiOIktT0szguDm1CvT6HYaDmP4oBZvx0nNf4PTl67zh+DwTd51isVrmr//0LP1ei+trG+gkZroaICUErmDf5ATGWobDAdvdPm5jkeqhU3S6X8bicPaFJzh09zu4cvYZNk3K5PwJJoNpnFpGc2ALBIwzSToChAKcG81dpkBNY80YTLpb7GXcp1JEstbsRrY30LC7KRZHFeU6JYtgo9iG1U3BSfE+JSXGWJRUWOyeNdztMBOiSN6ErnfL6/v6V0IBBIY2GtebolTvkYxSvDL084CXzw/Y2Rxxx2SVnZ5hs5uw0AgoOzGlRkCkfKzfw3MyGj5UKw71mcN0tpskiUNU9SiLnOmFaZRapR8nSFcS+Q73nqyzsT6i3etjrCGWLpfbKT/0wBG8EDLhIa3FGgjKk9x52ySuMDgKHGExyQDylFx6NNs9trpDTCjY2eqQ5bqAdeUx7c3LvPGB+9i6fp7Dtx+G4B7m79QMhj0uP/c4vdbmuB2kiETtnp8mCvgKRUcdY+Ap7KKhdyFaZq/nRIgiuBAUlst1VFH3dQpfkHGqZa9DcG8diuS13LOMRZtAIePY2RbH3Kp8w8lqIcR+IcSnhRBnhBCnhRB/afz8/0sIsSKEeH78896b3vNLY+aFc0KI7/l6z5XJhMEgxY4GNDctDKDhCRw3Jmtv4CN45uoSqXCwRuDlCWXHMOUZ9s1VqIcujakqlapDteEze+gAE/umcCsBE15IBcFotfCzhLAI12Eg6kgD6TDDKslWbNlKHdwgZLvdRgUlllZW+PwXn6SfgXYiEhmQuWW0W0aEddzaLEKFZJllaatLN9N45SpeGFCvldFpglUBG1eeJ/eq7L/tfga5ptXapL2zRG97iSwbYEyMNTnCGsAUSmWKhqNX9X4YjTH5noU0OsOYDGM1Uoyj2HGX3K4S7/p+uzjDcSNtUc7b/Skw/sXzWBAWJUFiiwBlDwjx2vuEOfDXrLXPCiEqwDNCiI+PX/v/Wmv/6c0HCyHuoGhsOgUsAJ8QQpyw1mr+W2Kh1xfk/Rwdd/GNIM81V5ddlJLkmcU4gqHQnF9eZSKCiuthtcNc5GG9Do7IyBIHb8LQ3R5ismfxXEtqYoSVTE81WFnfQWcx0hPMzU+znsW8fP40SWrY2Ek4u5aQ5ob+0jKpO8HU3Bz9q19Cjq5w7vNnOHDfe5jedxytJMYB7boIx8Gv+cStJqeXtjGOh1eqMzFZJR4EbGCwaQpWsLG6wSCSrJz/MkpCv99HZyk6H1sZqdHCgnUQShYRqaCwhEYg7K5F1FiTY9HsqpbRKUKUcVXhD5pxgllbgzBFQh8AWUTBuzlBi8Vq82qruregY2s7XqPdnutbT1V/E0porV0D1sa/94QQZyia2/9r8oPAb1prE+CKEOIiBSPDE3/UuZKhwKaG1UHGMIHA94k6GdFkjYAhZpRwrOZyXWgOTzrMNcAlpFyvkBLj5R4TVYlnij6KrY02Qd0SD3Ok7+B6ZdyKA2ikhCRNGMaCl5MylXSdpVaKa6GfgYvl9IULbPcGTJQD0o5isdbki0u/S2XhHt56/xvYN9OgVgkIhA9uSHsIz1/bwIaTZLkljTPavRGzi7dx/IEfxw9KRI0p6F/n3NY6xmY4pVmU4xbR714gYMDmCKNuctj2VmSc5ytaGNhr6tfj/uAC1KrHyiqkRNsi2SxVES0rKZHjVs4b2/Fu3/GNYGRXIa0Yb6V2r+GdPM//qOX8Kvlj8QmFEIeA+4AvAW8CflEI8TPA0xTWskWhoE/e9LZl/itK+xUMDGSpy8hkdBNDpDyiSoTo9VFWMMozbCrYznOmJhz80MNxLFHVZSs2OCiiSogXOVy5tslOxzA3NYUbx0yUXRzhUp9aoG1clLtFt9kk0RI3rHI22o/b7DCRxwhjmQwkyvHYsmXOrLaQWAyCZzcUQmaIM8/we59/iblGjUPz09x5eD/3nTzB0uomZzd7mMpRwsBDKUWe5TgMESKhtbXDhdNfIB7skDt1sJBlhpIvMCSkeV4EC7Loj7FFrexGB+huoLLr+1mDHXfNaZ1idU6e57R6nQJ8KuVeP/1ek/24nqzErjJKboCkd/3EsY0Ue+s0PscNn3M47HOrpbtvmhBJCFEGPgv8Q2vt7wghZoHt8Tf5+8C8tfbPCCH+OfCEtfb/Gr/vV4APW2t/+4/4fOu7cpyPAowtEB+7ia9xeKYkSKeAmHtynKaQsojmbAYIkjQvOuqUQilTMA4Y8PwQC2w3B2RGIKVCuQ5KOQiTo3Q6rqUKcivIhYuwutiwxqhjO2573PWJrC2UJHRdpHIYZRlWeiiniG7T0QApFI4fkWcpmLFXIhRFTTYvzqHccaF2t2mpQHk7ytlToldLsZ5ZposeE2uxJiPwFfsP7N9THLjZf7upsXS3knLTAeIreku/Mhl98yacZRnnz1147WhAhBAu8NvAr1trfwfAWrtx0+v/FviD8cNbZl/YFSnG8CMpQN0ongtx4+Ls9kBoC8ObGr6EMICzq6ogIMuAbDfBZhmOUqBo/jl8cJrZmRqL0xNUyhFRFCEch3oU4bqKiSggwxK6TmGJximKeDRkkMZgDN1RTGY0fQuO5zFIczzfZaZaQzkOSZ7zkQ8/QblxmLd+//fTa25RKlWpT07CuIxnbD5OEBu0MWitGcYpn3zhaUo65394+9sJSxFhEOE7Ekd5BQOCFfQHI/7Zb13hwsVN0n6LuHOJO49k/Kt/9S/3MINfKVprnn/hJWrVGgcP7se9ufx2M5HOnmrthjHi5ifZ2Njg3e9+99ezrHvyDSuhKDTgV4Az1tpfvun5+bG/CPDDwMvj338f+A0hxC9TBCbHgae+nnPJsa+ym4+qVMs89PAjnDh5gpWVFT7z6U/T7XTGvs8N63jjyxafceDQIW6/4w563S4vvvACvU53nOm3u9+dO44ucOrQPI1KCelKPD+gWvKpRBFR4OEoh2acUC1FRI6in4zItWYwVCx3cjr9ESMPjJFUwsJ1mDaKdpzQzmOEtkRWUIpcSpUy+w7sp7l6lmZzhcU3/nRhncewMK2Ln9xo8jynP0qIli9T0ilh2SfwfY4dPkDo+7hugNGG3/vDj/ChD3+UncECbngK6U5gTZdyucupU6dwnFcv+e5OuL6+wRe++G/J85z3/eSP867H3rH3ep7nJElCksRFr7EQKLVLXeLgjBHa4FCv179ODboh34wlfBPw3wEvCSGeHz/3t4H3CyHupVjZq8AvjP+Y00KI3wJeoYis//wfGRnvSaFUQggmGg3+0l/5S3zPu7+HSqWCtZbHH3+c//nv/l02NzbHqjf2YKwdN+coHvued/EX/uJf5ODBA+R5zpNPfol//I/+EVcuXy5IgcaS6pzYZPTTIRNeiDUpvWFOoxxSCQOklDSqVfrJiCSJIc+plSMG2QjHcylHmoOlCSyCUZYxEopSyWN6qkGa5Gy2W9SCkHq5zDNPfgGdDjhedpmcnUbsRpe7Pl+uuXzuDG4QMDk7V6SQjGE0HPLr/+E3GCY5//Pf/hu4M3O4DqytLPP0Zz/O5voqzd4y3uwR3KBK5paA7quv6E1umDGGT3zyU6xtbBAEHrVadZz2MXz2c5/nS08+Rbc/IMsVjqoRhg2i0iSOcgkDQWMCTp6c5fjxo7egPjfkm4mOP8/XTgv9V9kVrLX/EPiH39AJBTiuy0//d3+Kt7/j7URRhOu6eJ7LY489xnA45P/5t/9HRqPRjfMhQQjuf+CN/NW/9ldZXFws7l7P47HH3onvufyVv/xXaTdb2L3oz2KyhKjkUfJcNpMUqxXRoM8gS6lFEeWKQUpBo1bh+s4Oab8PSc6s5+HXq3huwM6gx77JSbbiEUEUUq9PkI5idtY3WB4NWd1uM+h2uPDsU/iH5inNzDEaDIlKYcGoYAyrS9f5z7/yf+B5Hg+//bvodrqkZORbm7xj3uHq+oBms0m9WsN3faLA4a59ZZau56QOxIB0HKTjvGqlbgQyhc+402zyqc8+DhZ+8sd+lDfe/waEELTbXT7ykY+zs93F8RepTxyhVKoghaLfS+n1l0jSJoFv+dRn+rz1zXfz6KP33/LSvv4rJgC2UKY777qbt7/9u/HcIkfouQrHVQghec973sNnPvNZ/uD3Cxd0lz+lWq3wM3/6Z2g0GoDBc3cpMVweeeRRfuJ9P8G//df/BsY2uazAERCbnI3hgMD3qIYBvvIIXI84jhFK0hzFOFjW+32MzpDWUgp8riyvsdEd4IcOjXIHx/E4VWswGAxYa7exUqNHMVrHKCVpVAMmqz5Pndnikj3Nux87RRQ6GGPYXl1D6iL95Fx5mkPlgFe6kkpYQtmMo/sXyPKMJI0pYwiiiHo14g37y7y45nPVLVoWhPzqZbbWcvHyVS5fucrS0hJIxT13n+I97/6eAimDpdfvk2YOfngHUbSAoyTDQU67vUG7tUIQBJQrs8Qjh2rV5YtPvsD995+65eX91lBCLEo5vO273kIYBmP6CfZg6o7vYLTmR374h/nExz9BPIqBwse79w33ceLECazVOI6D4zh4nk+cxPi+xw//0A/xOx/4bbY3NwFIjEU4Ai0kFVdRDgJcIZksh7iex3K3y067jR8EVPyQWpYROBFLK1uESA5NTjHMMja2umzs9KmWAlbaXbqDEXmaUCr7OLK4QcouzFV94lwycKdIdkZcuXiZk3ccJR4NybdX+MF79zM1VaPbHxH6Lgup4Ni976Bz+tNsrK7w7Mp/4qfe/34mJmZQbsBIu2y3esxOzdARHr3E8rUyIN1ejw/89u8SZ0WWYN++A9x5+zEcxy2uuIXBIGZ27g66/QCtLZ1OQqvVJR3FTM8ewPcj4jQjjjP8KMCgSJL0llf3dd9jAoCAyekpjhw5TJZlAOR5Tp5rpJCkaYKUkvvuu5fb77i9eIsQuK7LW97ylj1nPEtTer0ecTwqIEzWsLi4yCOPPrKXuhhkKaMko9MfEjo+JtPExnBtY4unz52n2emxf3qa6XKVzV6HNM+JTc7BfdOUSxHNXp+t9RaRG5BkltYoo9PuUY9cqkHA9lqb7ihDWMVkSXGkobA6xqOHaV9j/ewLrF69wsaVi7id69x2aJFASC6tdXjhwhUmVZl3f9djnHrXT3LvnUeoZJt87vEv0Ol2sUIwjOYZTpzg0KPfxTu+q8rcpN3LGd4sm5ubLC+tFNF9brl26TLLy8ts7+zsHZMmlsbEPOVSiU47ZnOzU3Q+ztQ5dWqREycmOXl8hlO3z1GKXDxnmiSNb3l5vyUsoQAOHjhAFJWQUtLp9XBcFzkYIITA8zwMlqhU4qGHHuT5Z58HLLVajYMHD5JlKUlS/KnVao3BYIDjOGNFVbzpTW/iw3/wIQDmooiDlQo69Mh0RncQ00JSDnwCxwEHVtstpiolpkoRoe/TGvbp9rrMRGWiUoRdmGUkBCUdMjSGeujjuYIBA7zpBnkArpLFvm9TpPA5EazgOBUuvbLFuQuXeO+Dxzl65BSXN5u019aZmqjhxQmL5T6DnS3C6UO0YsUr6yO6lz7LVrPDX/yzP8+ODjj88LtJlSQZNJmbyrh4E0nRrlVsTE5x8OBh0jznytXL9HpNbjtxnLm52b1jRyNDqRRy4cI2re0ubgBKBsSJ4MUXN4CMSjlCKUWaafJM0O8Nbnl9vzWUUAjm5mfJssKSbfcSrq5uc+eJIxgLpSjao9y95557cFyJzjT79u2jVCphjCFJEjzXo9vtUi5FZFnB/WKt5fjxY5RKEf3hgI3RiJU0ppcOSHZyfM9nIvTIjGWxPs1EucIgibmwtEyjXqU1itlptagpyUgm6Dxnx8TEAvoahAtDbViYnWayVGbQGXC21SQ1Bh3nbOykLBwIMFKx2hmQOSGtnR2uX5+kc9f306sPsM3f4UpvgfvmG9wRrXH5s/+BnhuQxAadGlKt+fLTz/KHn/o8TjTFdBSwmkKu+3iO/irCzZW1dT7y0Y+x3WzieQ4//b4f5cjhQ8zPze81wVtjiUcGrXO2dvosLPq853vu5YknL3HhYheBjxQOuclodWOshcj36HT6t7y+3xJKqKSkUikhxtQTrVaLx1+4yMpGC1yfdz50FwcXZpBSMjc3RxCEDLIB8/PzCCHGfoql2+tRr9cZDEaMRn10NmR2/iAzM9NMTc+wsbUFGDr9Hp7vc3JuigRopylaQnMw4NJqiyj0CX1BcxQTOJJGucwrV9do5iv0+hkbmx2UgtpkmempOspxuLKxwcZOl621NjmWOElpDwXHwwbTtZC+jZiYO0E92cbpuNzzxrfyyeuaVrNNxbuXMPSIvZT1MCJ+/rO0jzzK8duO8eJLz9Hq9OjEGc+fu8jJ2yexGy/Qig5QcgsU9c06mOU5/+k/f4Cr15bo90e887vfzJseeQjf97k5hNbGMhhltLoZg2HOe99zkttvqzMzc4Jnn9vi85+/ilQeD9w/wdlzMcsrA4Tj0usNb3l9vzWU0HWIoojRcIR0upSiiKmJKi9cuIZUDo/ec2K3fM/09DQTExMM+kNKlcpYCROUEriuR6fToVqtcvHCRRybMjN/EN/3mWhMAFALPOpBQC3yqTkOiYLUWqZLEVls+dDHThOFHt//9tvp9/uksabUi1lLRlRrEd0kYbIcYSX4UhFJSPo9hp2cbj9l0rjoAJaEoFSr0cxDrvfBm51joZqS6CpvvnMCM1EmP9unVJ8lHYZIlXNgdobN3lW6OwNGhzxIe9x7qEZzu0O3n+M2rxKli2xnluVzL3LgyBGUjF5Vyk3TlJdffonl5TUO7l/k3e96J2vrG3z0Ix9h//79PPTQQzQaDfJc0+nE9LoJjjQs7qvQ6fTQecp9907S68WcPdvkyqU+21tDhCh6TfqDW9+OvyUCEzEGYcpxLdhkCaNBh0YlIMs1E5XSHmF3EASUy2WEENQnJgoYPAn95ovE3csIvc322jk2rm+RZz5Yi+M4zM7MAFAtldhXr1L1A/bPNCi7HpOhx1y1wvmlJn/6J3+MNIMPfOQ5Xjq9yoc/+gpbnZxpP8TdGBHFltXllOZOio4z7p2dZsHzqDqGQ77H9ESZ24/OUQ4DDi6E3H7bIuUf+HO4++9AZXkBVslyWmsbYAyt9cvEcZ/BoM+TTzzJv//IeT6TH6c0f4SV9Q3iuMdCw8NXMGhtcOHJj9JbO8sxsU3vwrMMrp8Ga/aQNK+cPke1OsW+hQV+/ud/jizL+Of/4p/TaDS47777+PznP8/S0hJxnHL1yho7220qJZ/52WmmZ2YRaoK1LcOpOw8yM11hZT3h/jcsEoUCJVz6veSW1/dbwxKqItk6HA3x/YD5mUnefluNzUTy6BvuJwrccXQrUNLB81yEtON8FyRJTLL6qyTSoexbokqNLX4Glbh74M4iUIEpIMhSTOhzZX2LjtakWUqgoVryOTBb403338FTL53jwOwRRn2fZ69u8d5H7yEMNHJzkx9615v43Y99lPqBMle3drACavVJZhbLbCcZl9c2kVLSH7RI+leZHvVoH34D8bUXULUaZ86cpTTjIGKN0S5ZGuOIIZW6R9AqszIUtDtdcKfJ/Qa3H69zqeVRrZaYblT48sVVIpswWY2QvgZTWPm1jU0+/bnPUy5X+b73vIu7776LP/jgh/je93wvb3nLm1FK8dBDD/H444/zlrd8F4cOOQzjFiZ3cVzLi69s8unPXsALHVxcDh6epNsbEWcDjLZYRxDH2S2v77eEJTRGYynaCfWYjd41OSfnStxz2yEcp0juwm6TjwArxv0QgHBxKg8SlhdwJ96ACg6RacHE7MIeYNP3i96I7f6A9TSlNUqIZRkRzfLK5SaffnmJ9eGAykSJv/tLf503nrqd/XOzPPa2h2n1BtTrk7zrve/GUYKQEffcdozBMKc1zJiZnaM9dLnWK3pBbju4j1C5bG8a1tdyNl9+nqSv6fhTXPry59jY2WLGW+MtMy+yrzxif6nNPnMFqwRRqUyaZjS3NxmmmpdXBX9w2qWZ11jaGKJMyv6jx2j6k1wdhZzbLjhk4iTh45/4NL3eiOPHDvPIww/QbLbIs5xHH31474admJggSRJKpZC3vuU+vudd96JkQm+g+fIza3QHOdvbKaubTcqVAM/3OP3yNo5S3BjDcWvyLWEJhZAYrcm1xvU9jM7R3SbR/H4cqTDGFPS2CIzWZGmOtZY4jlFSoVRE7s2Qd1/AqUyS+T/M2pULHDl8dHzxBYPhEAtc6Q25ckmjM4kvByjH4+LVbULf5a/84o9z+eo6vv0SIJicmeeBO4/xysVrnF9a5Ye//11830//LL4juNb6DJ98/MvUahMM3jhNLy9x7Ynned/334enwGqN4xXluea1s2wcWqHXjJkaxNw2X8fzXYaDEQ9VXmCyUebqpubZy1votIa2ktPntwgCybV1jc2G6GzE9ThhamOAXSxTn1vExpLltRms3mJza4uLl65QLld425sfJopCnnjiCU6ePInnvZpTUEpV8BOi2Npq0R2kLC23aXcHu3g6otBlerJCKfKYnmwghEO7q4td6xblW0IJ8zwv6CZkQWWmrKVWm2GwvEV6LKFarQJFKidNUvq9HhZLnt0Yh1CavBen3iAsVfBKi7zpji0euGO6eN3AcDAEBDvDlAMTkyTaZbu5Q7c/wFrB97/7e/mJH/kxtM744qc/wk+9/8e447ZjhGGJ//FvLtLa2WL26J1MHMj47Q/8Dk+/eI5RrDG2z1PPnqe5tYkS8OKZFu949BiGAqLv+Clxdws96lO7+0HCtWfItQQl+NJymZ2dAXcdSKlVfQZpSp5sg4lYW15HSonOR5hsiM41Wmi2+iOmpEsQKVB5sUtow8z8NG97yyNMTExw4MAi1lqWl1d44xvv37t2xayTnMnJSbIcPvTxl7l2tY0VZVaXuzgyQwpBnufMTNaYnggJAsn2dsJw0EM5Ho39wS2v77eEEppxZ1oQhoRhiBkNEEEDu9Vj6/pLTEy+lSAIwBa9GYPBEGuKVI4QglIpwnFqROERPM8lGcTcdc/tzE7Wiu4xM6TZagKWdJizttaiGtXJtcZ3XZI0Y6EeYeIuw0RzZaPL+996G1deeprZuQUUivvufwOjTovhaIjnh7zh1Ak2N9YZjmI2lq8CkAvBVruP9Arsn80V2chCmCHjEUllmlIQMcozPn8VjFenbQJe6XmciHaolnyMTsiGW2TpcLfNHaMNxgpcpQlFSp4llCp1MhNjhcDohMD3eft3vw057k9JkoQ8zymVSq+61sPhgGq1guc4SBkyM+Ow09rg+tImb37kKOfOrjA1VePRhw8jhYPnhkjZQrqSLDFUqt+mSqi1ptftFtuuVLhBxOTiQZLJPr32pWIQjVIYbVhZWaHX6wKW7e3Nvd4H13XxfY/AD7BxhteIcByHPM9pt9usr20gEDy0uEDbKP78n/0FfuO3f58H3nAvxhpuE9s89zu/Qmn/CX70HY+w8fHfonfuRU7LMuUT9zMzN825j/0nVrfblGpzvPme27nvnrv4//3rX2V9YxOtc3zP47EHT3GbiTk4NcXqyhatjmFrecjMiVWyxiKx1URRxCfOtkmNi8FyeJ/myKEGO5vX6fc71IKcoTAMh3kBgS2a4ZCqYEKIRwNqE5Nox8VkGVYXpTQpRNFtR9FBNzU5tecL7kqr3aI2UcfxHMqlAKOhFAasrcbYzPIjP3Q3164usbp0mXJ9gThJqU5IOtdTDJKJ1xhP+JqJtZbV1TUcx8EPfBqNeYIgZPHYURR30WttU6pNkaU5ly9fJstyrIW1tVXSNCGKpvE9H8/1CMOAfrPFxNQUQRAQxzFra2sFKBY4uW+KcinCrF3gbYfqqHibt733B0guPk/73EvErS9w/vSXYXsDtzHNnDU0l85w5cuSpLnGXB7T2ewTZ5bDC7P8+EPHOL9a54uvXOVHf/AHeOzND8H5p4gEbDb7CJ1zrOESbrzIdXyGG6ts5lU6Oz6liRLTU2Xe8tBxkm6Lyfn9SDdkatDhzKXxDWaycVDmIB1Jvx8z2GihwinyEaRZhjUZxQCt3etZxG6e778K7g+ws73D0WPHxsRHEqUUUUmRpIpPfvICjmcRDOl1egwTn153wMbWgCxTlCuaWr18y+v7LaGECMHG+jpJku4hZ8rlYhtxg4iFwydAFJRuX3zii+NGcNjc2GRra5uFhQUC3ycIAqRUjEYjKtUKudYYY/jCF79AEhf5rX5vyJHIJ1m6yoHQoxQYWi8/ia8z6oePYRyXzrVruPMHGFXrHDu0n2zYYmtzjanDJ3A9FzHImJycwfckOqjy/hO3sd5s43gBjusw8ca34j95BUvOsSmXmbJDt7VE1BRUJvdxeW2Z+ux9zC40uO3UIaZmJvjYl57AR5FnmtW1HnFsxv0oBSulpWg8z6wkFwGZDBl0u5Crr1LCXeoPx1F72YFdabU7VCoVpIRSyWNlpU+eUtRdpMOnPnGJR990kDvuPskXP38JQU5jOmRjzeB7GbVa5ZaX95vtMbkK9MZXIrfWvlEI0QD+E3CIAln9E+NuO4QQvwT83Pj4v2it/ejXe67NjU3W1tY4fvwYnuchpSSKSgSBj5SSOI5ZXl3m+eeeL2on4+j4pZde4sEHH0Qphed5hEHIiVN3IJVCaE2v1+ezn/ksRTYX1ta3YHkZx/Ool3wmowAxM0PdZJRqFZKwih8PqTQm6A4TFrVBWsHG+hbBzgZetUonczDr69QaNUatHqPla+yfmqRnNKtnz+AvzqHTDClga6ip+ZKKr9lXcVna7JIOEwIy/FKJoFTl8qWzXLy+ztpWnzwWkOT4fkBqQetsXCsqRk9kuShuBGtIYqcIXHQMvNpXE0KSJPFXAVx7g9GepYwiF6lgcbHG5laHdjtGBhGPf36FT3zqEp4b4AcZa8tdQFGvZZSiErcqfxyW8Luttds3Pf5bwCettf9YCPG3xo//5jfc/A5gLWmW8dRTT/PwIw+PeVAoQAiqIPPJteaDv//7bG9v7/FXWGP43Gc+ww/+4A9QqxR3qHIUfuCPoWCGT37qk1y8cGH3RDiVCjsjhcoN3WFOnPRJMkul16NR9tgOykwMukzOTpPsP4R0ArZPP8Xlc1cg7RNFIRe1w2HfYeA7LPVz/Kun2TKaeHaRrctLaE/SOnsRRwl6acYwlThpxmw4YtNTDBCYUUy33UM6EZeuNsndEoO0hR9MEZYaSCdisLZCHnf2QL8SSK3AGzNlVSuS5sYIbUdAHbjRGSiEoN/voXUxwWmr2WRtdZ2NjQ2yLEMQFnlAT1IKHYypsLbap9neodvpMT09TafbJUlyDCUcscTc/DxB+PoYIfGDwHeNf/814DPA3+SbaH4HwFqeffppXjl9hpmZmUIRjcXkFm01Fy5c5AMf+O09+jIoyvHLy0t86lOf4uDPHsRYS5ymuONjVlZX+NVf/VXSLBu3sQhq1TqNuWnMTpPAd3FdtxiqOD/PYDTEWEEe+NjpKZrdHn/4sU8y51kyN+JappmrNBBGcSlJ2FeqUpossxwnzJQsA+uwnECSa7QfIhUYDNuDDN9VTIuc+ShhLc0IhU+mLVbCxY2MIQ0WTu6j1WzT7Q9IB11snmBNEWgIqXCVIUMhHR+UiydWceQIo7+yilGUQKNSmfXNTRYX9vGhD3+Eixcv8lM/+ZMEvoe1UC75tFoxy0sJozim0+4wGmVMTjXIs5wsBStchOmgnE1mpu7Zo5q7FflmldACHxNCWOBfjye2z+5221lr14QQM+Njv+Hm910ZDgb8n7/2ayzsW+C+++4jzVKMtWxtb/GP/5d/xPLS8qu+GLagsfiPv/4bHD9+gsfe+Q4c1yXXmp2dHf7pP/1/8/KLL76KzmKUZRhculIQJwl1LJ6rOHriKN3rqyyEPuU8plIpseCHXOgnVIdN3lj1yMMadtBntl7lWlSjESom6h7KrRDOL5C0W8xOTXNteZl6e4g+V0zQ3B5aGmFOc6vFRktTCRS4isMnTuD5AWF9niRwEcqn4naQagXdXCOoT6KTFJ2lWAFKWoYIpOOgsxSPPkf3wyVtdq8Iu73aQgiOHDnCl770Zaa/d5p3vfMdvPtdjzHVaDAcDvA8h0rZpdXcYHVlk2HcQkrFxORCMSRSm4KBQY/Q5jJhmDI9M7lHK3cr8s0q4ZustatjRfu4EOLsf+PYr9UU9TWLPGNl/jdQNL/vNnBaC1cuXeYf/v1/yPve/9McPHCAdrfDf/6t3+KF557dC0h2OVEEBWlPq9Xk7/+9v8e5c+d45JFH2Nra5IMf/CBf+NzjWLPbsG5BwEy5wrRJuf3uO1lZXmZxdhpHWKquw+TJo/S1wem1MX6ICgOqOAx9Rbc3RCHQnRa5EzK5sEhvexMda2aq5aK26voFbZtStFqdcU80aGXYGmbU0oSdfo5C4Pkhs/MLhf+rPPYfPIxyXfJc0+8tsnX9PLmBnXKdzQsvIRC4ZGAKQkxrIU4hkDml8Ks9Hmstnueh85zRcMj0ZGNvqKLruvR6fRoTIW//7n189KObNNuzWBOitYPBIInRbIPcwneGTDfmOXzowN4wx1uRb0oJrbWr4383hRC/S7G9buz2Hgsh5oHN8eHfcPP7Xh+xLVjnr129yj/9X/8x0ilKdjrPbzrGvqod21qLFILWzjb/5l/9S3713/878lxj8vzGCC1xw3KurK9T2j+P3WkhhCLNMkb9AcOtHRwBZmYWe/40tcYEUa1K1O1RveMuWrnPkYVZ8tGQytQklekpzn7pi6T5AMUA5ZSo7d9PzQvZf/dD/IuPPgdWFAMNjaSVFjCroxOC1bYuatnGgDb0Oj36ZgudZVgsaVKMNlNKUpuep7t6nXTQxlUWlVvSfoehdPGcEv3NC4yGQ/ZGw950XY4cOczhQwdJx20PN4+ZzbKMXq/PIw/fz/3338fKcpPl1R1W1rbodtqkoxGWEp5boVar8MAD9zM1Ocna2hq3Kt8wDYgQogTIMRlSCfg48PeAdwA7NwUmDWvt3xBCnAJ+g0JRF4BPAsf/qMBECGGVkmPqiRuMCzcozeQuB8MNRgz7ahMrXv0/vqYBtpBpzVTkE0UhpCmO4+C6Do7vFdM/jSG3oHsdfNdFKok1IKOIUZrhKwcpBZ7vIT2fQbsJJi8Iy+3et0T6IZfWdugNhriOOybXskS+g6tglGoI61QmJlFSsL25jZW7dCBFwGV1doMLJkvJkyGhMiRGIoMygmI8RDbsYLShVCpzzz33flVe8MbVuHFNdskvrbWIMW/N7suWG5H0eH1uUIcISJKEJ774xdeMBmQW+F2x23oPv2Gt/YgQ4svAbwkhfg64Dvz4+A/7hprfhYA3Pryfes1DIFhb6WKMw+EjRzl0+C7KQUTWvsr8ZMDikUWko7BpxrDdptXskmQpvpKUyhHVxgTScTB5gbQWUpInKegMY+Ef/IsPcm1ph1E6ACvQJtuzpMXcj4KOraDLTW7S6x5BVObgm7+PCT9he+UcW2urZGnCsN9HWIk2gLQYY/GiPvEw5f63fjff/yPfx0w1ZGhcLncF7VTgKSi5AmMFO5nEkRa/oNahl0tSowr+EWvxlSWQ0MnUHvuEpYBHFXQisHHmOU5/+D8zmH2QV7NYvvpmtLZAH4HBjqmHC4CjQVmoSsiNpastEkNoBaEoyjWt3JJYSEUHxNcXa+7KN9P8fhm452s8v0NhDb/We76h5veJqYDAU5SjSU7d/hb2HzhJ1VWI3nVstkVlts6p244SVcuE1TKO4xB3u3S3drh+bRlHWHzPwbqWSjmgFJVRTjEfS1qDch209KhXI1bMDoHnYyjYSIWAPDNjeysRUuBSEBMZW1gAJSVTlRIPeleIpOV6ZAgWFllbuQZBXoAL7Jg+TQp0WjTPz802eMO9JwnCiFiUOC596qGgpHTBvWhdLgxcro0UrgCDYGAkfS33zo2wBEIwZQrOQUTBmCoAJcARBmkyLnz6I0wfvrMYXPe11wYQY2rhXSUsSp5VYalKmHEscW5ZToth3iVhmJKWUFg2E8tGbmh2m5z/mu7/f11e9xUTIQSHD9/DgcU7aVQayP4a+c7LaAW+Elg03daQ08+/wMFDi9Qn6jhhQV5UrgQcOjhHq9kGVUykHPSH9PoWz1N4vk8QeLh5grUj0EULqTVij1Z3l/e5mCo9noCELXJz1uBIieNK7lys8AOP3EWjPskrZ57mhYvr/P6ywfNdEmMweTHE0NhiAHhuNINYc3apj1aaShX2TxnSGPpj9rDEKAI3YMqrkKHo6cIKKgWusChRWC9PWEoCUiMYmYJ5QgJyzFxW/B3FzbLLq/pf1RO5y+dTkKn4AupKEArwhUULgSsMJUfQkIKahFRbSgrqRmCkvEUV/JZQQskdRx7A6V+DtUtIGxMIsBqsHTMECksv1ly6ss5sN6ZaKVGKXFzPI4jKLFQmsFKQxilhPGA4ShgOR2RZccdrVyGEwgqJQWKlLaZc5pqC81GMSZWKxdydcq7NOLBxBJNTsyi/TuC5zB+4m53YYer8Dpu9oqPN6AwNONKSG4m0ggSfri3jaU1g+lSkIHR9uplme6AZGRcVWGJPMEIwyjUhhrovWQg0ZaXJrEQbwcgImrlkKy1m6e1GyMYKpCoS2Y4UZLv+G+Md/as0ZvykMEgEU0qw3zNMODDhSDbiYkSZNVBVII2lrwUZFlcIInnrMcbrXgkBsu1LuGanIKXUCRqFcIqOfyUs0mT4XjGUujsYkGNo9cHBFIhf10M5PkoYrDUkuUEGETZPabYKx12YvKD4EMVcYJMWiB2sRboSo4toWthi8bQxIAvSIJsr9k82mC8HxJ0uxxYWiAcDatWLbPRahCV3PLwxxxYGFSUlgefgu4KqLyh7hm63y3DoohyXyUhSDiReYMmdjHYOg9RQlpqKayEbYYxCKqfg6sbDk5KGV7DqpOPvGVvwlMVXgkhJeqagAd5lW705TtmrI48J0UMpOOgLjkWKGQ/aiWHSlQhjaGcFG2NmJT1jyLREYxh9OyKrrTUk/XWiQCBMjnBcciNZXlnhI8+skOkC6mXMbmFeUYlCSq7DKNd0BqO9iG4XwmStHRNIGrSxGANG56xvtnCtIssKeBTWFsz2loIpVdhijxOFf+8Ip5jvlhuWNptEgUecl7AKlptNrqysMurFRKUKQZCTJhlaF2mmPNeFXzhZZSrM6HZabLdHWASu71OvlEgyjez1KIcd6kHIpOejLcjWFdx4gzZTbIXHcSOfNe2QIZl3NWWVo4TBE5aREaRBzhNCMBs4xLHeo/LU4obFfDXrf7FbTyjBrC84VJIMM0M7Mwxzy2C87UfKEDqWmgYrLa1c4HyN6PuPkte9ErLrw5gcHAcjFNJxcMIqg3SJNE1ZXt3eYyadn57n3UfvwWleJ6+U+T+vrLM+pra4OR1180W/WZSS2NwUJOISjDU35sAJi+srrLBIxyFP9K5O8tLVFdZ7HSJCOv0u17a2GAxjcgO9ToLrCRxHoTON1sU5q17OvqCHKwV9axiMcrqpwnFy+nGfcuSCNSiVMFG1TNUVJQ9yYejJKTzHZ64EpTBnXgpa2qWbSVqmGKIjjKGuclw0viPYFzn0jSDWlsxaYmv2OPe/Ek3jWph0BFUHKo7EaEPFKUaUDYBQGiIpqQhD6liksbgWtsVrXzF5TcSVFsf1wPEAiZQOrhdQrdfodXsYY/A8DxDM1eqMWqv4aRcpU+bLJZq9HlmWfUVua5zE+AollELguuOhCNqglMRQEENKRyCswZoiYja62JaVEqxuNnnuwlXedOcJrm42qVVr3HfffTz9zPMkSYbr+ziORFtLIg0mB5unbO60iJOcJNWYTOPZnKpvmKqWqdarrG93GGYG249RUjJQhkDHbF0+y+Ltd5LrnHavT+AKpjyP2cAjER6JFsRGoq2HkcW8uYNVj4pn2I41rVSznkqGphjyqG9SRIWgLC2znmXGl7hSECpJWUmMo8k0hFKirCaSMOVYdDHZgt2ywa3It4QSen6E9EC6Pt6YWavdSzl18gTr2y0uXlrGdYpGp8X2JotzIfHB48xlHSaurvEfQo+zeV4okiwSx7ujtcaxxt6AGCEo0hSORVI0/AhtUaoACVhb5N6stnu5Q2sgM5blTsJLq9t0Bn3uOXaAxm0Pk0iL72esb3r0+pvkO8v4gcAMYKuTcWFpOEYCGbI0Jwg8ELCx3SVJc4IwouYHpHlOZzAizjTltIkOJtjY3iGbOEgpihgkUDIQ+AZPJQhclNBFrlAIEmPpJIbUFlH1tCeZ9QVbmWFlpBma8YwSwAUarqDhQdUtrpc2xSBuLIQSXGtxKIKTqhT0MsiUJhTfhoGJAJSTU/IDwsDDcwQEVdxWRqe/xYWLV8mNQeSWQ6WAnz1+gPyOu7mcDZiYPcJ9b/9ZvEvn+OXf/S021ouSkjCGMCrj+n4xSmEMbu13OwUTvbRgBMYaMAKtIdcgdU4QKpRU5GnhY4IAJTh28k4ee8fbCPprTNQPUTl6J5/49cep1Oss7vOKNE04w2g4INc7OI4m8CS1skQ5Dko6tLt9PN8l1ZJmJ2NzmDI9IamUcnJjyYzEDUpMOi7OaAVPzjFSIxzp0dEuiVAIHOJEg01wpMCXhhoxw9zw1E6C60hqjsC30PAFB5UiFIKl2NDXoLEoWyhiKMEb8/UkFrq5ZWgsCosrLIEo8qwehozieefWXcLXvxJaLNcuXiSfmqJeqzM3P0cUBJTDEJNZNlfXkBRkSO/+73+BqR//BRwvoLx2hSAqoWYO8OY8pXTvG/mbf/XP0et1Oei6nJieprVwnMOHb8NkCRevX+b8S09gBkXrpxpbSWPGpTa5G0lKkpHF6GLrCkKXIycOEASzfPliwvt/6L006lU+9PgZLly4TuRIqqWISnlIK/YozxwlHbUQwuK6EjcIyZIER6WUSy7aWqJAUdtfx3U9XM9lJANE3Gc6MAT9C1RChwOPfA/tzS3ipWcxM8eYbexD2xQTF/PpPNcrGr8S6CZFxNwzFpsZtFZEwtLMcmZ9yfGywhNwaWRJTDESzQpLoIrqjTYFb6Me0y8XhGISRxu0LhTTGotjLFNSf/vlCa2FNRkSypC4Y7iWXOW+Yx5JknP13Is0fEUp8Dh48h5++Kd+gdyEnL94ma3V80Cd+kSXRtXn7rvv49E3v40//NDvsYYiS3JKrQ3OJn0EgjzPsEbjiN3ZvhqdgxSyGJYYFr6ocl2UKCovWgtO3X2AfQszLK1bvvDkC5w5f52p2QYXLy1hdUqe9yhHU9SrCde2QMkSVhRTOONRwnCUgJUMeinCDUhHQ3Q6oBS45I6LiEL2TeQ4ySp0drjtDQ/QmKxjTJvJuUMcvO0kl04/T+fCBdJwBur7sU5AnGQIkxOWa5S93dygoKIUhwLQGpo5WG1YH8JMIMmMZTWxY0YEA7JoZs8MgMVQpGGshcQYQgvhbqHeQkla5pX99lNCgPUrTfq5ZnupRUkJLr24xuTUHNvdhMBRpDLgkYe/m0F3wLC/zoVzl3ClxNoBxgoalQY7azt816OP8sXPfQohBZ1ei+6wi+sUzAtJkjIaDSk7blEf1hYrRFGdUJJDiwscWJylUfEoBYX/6StDbH2Mv4Ce0YwSTbfbpt3pIR0HP4gIiJAG6mUXV4JWAY5TxtohSZISD7pM1QISDJqYqamITnfAVism8GPCZAO6A2YO7Kc+c4CdZ59gffMSg+0dRtahfvQODtx3F7P77mJrZY3W6hcZUUUs3IdWLjbpY7IhUkAgBZEU+MCGgQlHMOUYlhPDSBsmXEkgoZVZHNdlLswZxpoRgtxCUlDa4AjIKHLaFoEjDdkYjSRvOSz5FlFCp7KfpAelUoWJiSmUSMkcxQOPvIWwUsarTnL49hPE3R2am2vcddsiE40polI45px2ee4Pfw157Sn+8p/7M2iliOOYOE5J05Q0S4njhE9+6nMMWwMQ46hZCBzf467bFrjz9kMszASEviL0PBxhEbnAypy17Tb5wIAnCaMy+4+c4uDh/Rw9vsgf/M5/xIoe1YrPZGnA1qiLF0wg7BbaWPI0o9/XjFLGdd+UwHOIHMH0zjNkz14ixeV8b4dRt02aJChpyXURQF1+/Mu89Bse3sQE0cFF9t17L0898TT73uixuDhHU1Ro9hIk0FCSBLicWpq5pToeDqSwjDRgDVUFkStIjOH0wKWkLf64euIoS2aK6U7euE0gA7DF8bmxr85+f73r+8eqLf83iBCCBx99J/v27cN1/QI+PoZwCVFsJ1iNHQ248Af/jukHvo/pmVnyPGM07OEJH7c8yfyxU6w//wXeePIw07fdhzGQ6xysxViDMXDm7CXONc+RaYFC4nqKk0dnOHVyln3TIY2qQxj4+I4CneF5AQKLEkOqYcJWN2Wjo5ktW+48sY8DR/dx4dhJXnz+kzSbI0QyxHMkpYk52luXkGkHz3TZ3ASnNsNM1WM4GjHUKXkS87H/8BmqpoeDKfKVSlIuO0S+y1YzwZVglUT5kLfWGZ7ZhC9e5eHvfgPPP/UMwt7B5L6jlMIAISDDspXvpmMEsYYdA7NSUpYghSUxBQqn7giGgxGZkkx5AiUsroAhFl8WNeXEFtcpBgbWYlDc+mb8LaCEAHOTHlO1kDQeFPVekyC9EMetIIMSSkhGvQ6uExQgASxZWrCm1sshRrmUpg9SO3CSzeXrTJ14AKkUvhtiRYHHywYDCrC9RRiDcl3m52Y5uL/BRDUk9CQgUcJirSIql/CiaaLGISpxQnPtJSb6HZyrLa4+9zHOv/ApVKlMGmekSZ/BSOD6Hr4zgc1jnGiWraWr9JdfwCkvMlueIuls8dkPforeTovjDzzE4fsf5P3f+wj/5O/+A0aDBCUKeJUSko1mjJICYwQjYupzs/y1f/B3+Du/9Pdp1Cyf+8KL7J9MiPs7GFMit7CdFywQALv9DBrBprV0NMxYwZwqHLzcQtkRRI6g5oC2isxaIiUJpKVkBSUEJodESDJh0RR4y2/LPGGeDsmGbSK3glur4CiJVIqwUicIfJRSbKQtmq5CuUXAgPSp1Gs4fkSaGxrTUzz8gz/Mi5/+BLPzM7iei9WG0bCPMC59E4+nW1qCKODA/CRHDzao18qgzRhrB9Lx0Lkkz6DqejSm9tHaWqFerVMet6LO9TJSLbAyI4s9ru/Aei/nDffdxfTiKf7lr3wQJRSDTpczn/8sRkVcqsyzud2n2R4VFZiPf5A3P3iCxpETnF5PcbVhpuQy4zk4gaIbW3RuGA6KuX1+ZKjNzBIKTWUiAtWns7NKsO8kVlfILcRFnM8uAFiwO7VOkABNC44RTDvFBLehcImEQQpLZor6s5IgrCCnqC0Lp+h07AhRUI6Ir5x890fLt4QSlicPENWrhL6P7/qEfkCp3kApiRQWz/fQC/NccAI215fIVBHhdqRlLU+RQjJV85mbnaLX6rN84Qwz+46Qm4w0HiFsTpoUQ3hKYcDDd84xN13BZBA6Dko4CHJ8P0RSApuiRwm95ipZ/Al0MSwPCVTKARKHifoBmjtrrCdNIt9HiREr166wubbDlDdiA1OMktAQOTGu3imazKWgUZHUSyn1SoqSmjumJP2upBoJyoGlFsCBKYWjJK2WxfMs84uGKBC87Q01aqWQKJQ898JZ7qwfJpg4eeNi7iFxLWq3JIpFIvClwAqIlEZZgwaMhXQcHVcUOBaSXLCTSyJpOeRrTGaoS0HHUkT+tyjfzGy7kxRN7rtyBPifKBpc/x/A1vj5v22t/fD4Pbfc/C6EYGGyzPTUFEK6GCuIRzH5ThOpCgCmUpLm8jqeF7DZXKLZWcVasHlMrg0TkzPouVme+OwfMthp4V/fYJBAlqW4AjzHKwZca8PMVIn77qhh8xwlfWZnG4ySEVK4hEGA52h0BhqPZJjsUcslaYbOClIi17OMupvcue8YNXOVne1lyGH5+hLHGop3HXXYWYnZalnyVFAJLDU/xlcesdBUIoOjEqy1+L7DG++fJCo38MIyfuDgSsvinRJHKaRXjK71ylVK1ZD3/Kmfw1FtZJbR78bkyRDH83av5g0rddOuLCh6lUuyqNTHVuAjCZTBGQ/pTo0g0RaXguWhbyBXAlP2UaMOFW1Id6sqtyjfDLL6HHDvWFEUsAL8LvDf88c5+R1Y3uwTZz7D1CClwiYZQkmU0ShPsba9w7UvfIZQaQb1WRzPwfNDNtY20VZQa8ySZim33/MGymENEUQIKfDdIkkbBQHpyOI4iqWtHpdXR5TRzNZDIschTQElcB0HzxHkvoMdFrXoYWeE5zjoLC/SGDYnyTStYcqZ1VcIdcraoEPFg+2mYZRHVCOXyQiWNgxpbshGElXTHJnNePk6RF5MkhQDd7zAJ6o2GHmHOPXWt/Cm73qYz/67f0Z/uUl9/yHe9ou/yPbKNS698iJ+EDJ/5E6aK08RKIvKNJ1Lz7DTyl4FZN0Db1DUyiUQCIqkP6bo6R4fm1qBQ1EbbuUSn4JTUQpLkhrObcTsExBIKGGJ9gaEf/3yx7UdvwO4ZK299rUaacbyg3wDze/WWrbbAzIb4CAweYoXRugsK2g8dgZ84dOfZHN1iaP1KrXOgE6jQVCu0+snOF4xbzjLNLVaFV9k+GWHtN/DVQpXSbLhzrjoZBmNEj74qQvUQ4+HbzPI0hR+bZKG9Oj3hsiooNPwfRdtcoa9lCEpCk2iLam19FPLyD/ES9deJs0GgEapmMh1eOHyNlNuif6oaEiPfEE3tcwZTcNPuH1RFq0AsqjXFj0eltMvvMTsgQPYt72J0ZmXSC5eIzAxAgdhMqTZRkqD67ooFZCnOcdKhlJzg+cvfgTsIQC+cn12FdER43YACn+vOKtkZAxGQG4EHQMRAteCtoLMCnIjmZCSshREylIVf3JK+D7gP970+Jua/P6V4ipFELhFWsYUyWQhXXJpGPaa9K6eYbC5zplWhUML+xhmhmgwYvHgIYbDIYPWDq6O2NqpMxhlCHOJ7uYmw+0dqpUIgyHXedEGYAXWGJqdmPbIQw0lL16/yvSdR+j1eugoJgr8ouKRFUiYUZqCMPSGKUlqaeewGZ9jOGqTpQm5tSBSLi4t0ShFXNpy2RwpyqEkTg3T1YDNdsp01VBVltZQMooFJi8iVUcppE2RwiKFwvcFVxLDojWAxFjLsNsZs08IlOtS9QUnZiwjV5J7htPdYuMdV7v3AhMliyETUsDQFsRHqZYoaRhai7WCipRIW8AbBlbgW4GwgsTCwLpsGMiFJpSS4NYJGL55JRRCeMAPAL80fupfUkx8t+N//z/An+EWmt9vZmAQQtDqt5FugNIWFYboPAWhUNKhOjnPY+94Nxtb6+SOi1+aYOnsE0y5DgsHj9PZuMbaFz+Emp/HiSbQRuA5LlZ6+NMLaCxpnGCFQefFnBTHUaR5zpMvn+Oli1e4746jnN+oMl9ziZUmTkckqUFoie9lDFNNb5QyiHN6mWCYG8rTJaqN/WRZTBC4vPTyGXZafbZ2epxf3iJOM2brkmFSoFtKpQJcW9WQW4ETCpRbcG5L5XDk2Dz79s9gTIJRirWOZqfTZdReIowiZhdmkFKh0YCg7gmyNggfsnRsncQYxjZejIKvsADtJoCLIMCSIOiaAnZmLCg0oRAIYcnseNiONYXFtrBlFbmwTKKw4rWnAQF4D/Ds7sT3P47J7zczMCilrCBgFKdg86K2S1FK01ojpYt75C7mF09grEGkXXqvDKhTwXE8atMHaIYBNh+SxR1UUCPLRkSNCfI0xVPg0SDtd5G7U+VvIlQajTKeefkCcZYyM1Gl6lvm9s2BDHB1TBRYcmtZa2aMLCRIHNdjcqpe9OHGilazw9Wr22RZjsBijMAajXIksbFUypKpSVBa0O5AlgqksASOxOZ9Dh+e4n0/9pepTR8kG3VwyiEELqIS4gRVSqUpqrNHyOMWWTICHFINWzEoTzAczzzcTcmIsR8ohUCKonHLMiaZE6CNoEfxQFuLawQpomgbAOIiRY8nNL6E2AjaRpEB+k9ICd/PTVvx/x2T35NkRLlcxRjI0mQ8y6Qo0BsrChygLNIyjpE4nk82GmCyBKNzlBAko4Sy0eB4RSBhUuLRiFGeo0WXUlTG9UtIKCwiFHkvC2mW88r5a1zy3AIKdWaZk6fuolEv0b2+zmY/JjcJE1PTSAWlasSgP2KYpMRJTG8wpNeP0bnZg9Nra3BcQT+1VD3NqAuVEtSmwEssfWNAXOXxD/8yabfFxTOfxLkcYQY9tG1y3/3gT2zywuf/PVpIFJY8a2NSB5G2WWwMGSkwVZ+4mdzYgscWrZgLI8a50eJLaQqLiCh8PotFC4iFwNiiKhwD2fi1kF26FUOOZWQVqX2NlVAIEQGPMZ7uPpZ/8sc9+T0ZDui5Oxid4whJIBVYifUcdJ7h+SHGQJrFCMclnNlP3t9hFBc9GzKskI56WHx0ZuhlfYTNMVKA5yGFpNfrFpPcx327tvjSGDTSCrLcYESKtoq8Zzh34TzzCwssX1vGcUC4hbfhhiFuJSRrD8gyTZKnbGx26PdHBSCWYvvDgufBbQddrNWU6xlOVZApg5E5AZZcb/H8C1s4ruWV3/4nSCsJHUHoWXQFNgZXER/7tyiKkps0IIVX5E5DCAKLlj32TeewDjc8IjGOisXuOgJgxvVgO/5djhEyqRVYihsyKfobQUBsFRrGwYgYK/Gt5wm/YRqQ10qEEPbUPffjui5G6/F2VvR+mDwf094G407F8RVMB5AOkKU6xkr0oIXNYvzJ/UjpYK0u0hDjxietNQjBlUsXyUajQgnHzeVF9DjOsMldayJRQhKVIoajEY4jsULg+w4WSbVWRqqixGatpd3u0W71sEYXgY8oPr9RlczXFF5oEF6RBtEF8SrKCnAExhiEFRhhkUKilNi7MTBFICHH0UZB3yHAFqVLp/go2kPDUrfKzPF7iy1ZFO/btY7AHj5X7NGV3EDECLvL6DBuirJjFLYtjnGxSFuUPPM04cWzT79mNCCvjQhBWrVY32Acl+FOh6Dkk6YpfhAggExochxslhPWa4SqTKfZYfvaOtV6mSTwcGdqtNpNcgwqMzhRwaqlswwtcqzW5EJzz9vuQQQZniNQRqL9Jqpbpj5TYyTWqFXKJKYHRrB1wYdUs7U9pFFroMmQTlGJMFKghIPJNWHV5ba7DlCtl8nyDITl0rlVVreHDOaPUZqooYVBaEU+6JFnKb7rsWZGjHQCRnNn7SCRcAk9n0znjHpN0mG7QFwLS1Sq8dzzL+K4Hm99y5s4fuw4v/kff5Od5g7GWBYXy/zCj7wDJQQmL8hFpeNhi8bqQhmF5Hy7hwgmaZQqdDJBqgWeLGg/5qOcM688zwtPP8nC3CwLc/u4eOFlTp68i9XmVcJKicnaEV46/+wtLfHrXwmB6qFZGgszZJkhdEM6vR16nT61Wp2wFBG3W+Sm2Ob2HzyEg6Xf6+BKhTNRpVQrgZBsX1khGcZU9k0hUo0epKSBS/XwIkmnS29lm7DssHBsgtpMGVeHJFmf9rU29951L6m6QjNdoTY7ickN7dkaG+dSypWMKIjo9LtEJRfXFWgrWTy0n85mC6stkzMNwnpEyohKKcJowdrgGuFCBTtRxyifQ9UpLlw5i4lHZEKgahV8naNyy4nFuylpwUS1Sn84pLW5TNzbQiNxfQ/luLz8yhnuvvtefuRHfoh6vcHVpTaf/fSH6fdbzM3N8r6f/AkwBpNmKNfFC0N0mmLywiuyQvDBp/8zQ2+Ou+/7CYZaMsiLKkhZWU7Vcz7y+/+BqYkaJ06cZGt1mcCL+bn/4c+y2d7ik0/9Fx66/9382r/6F7e0vt8SSqiTDIXDMBshzBDP8Yl8Q8UrkWeaYWeEUC7SKFYvr+L6EWGk8CqTpKMehD7Kgicl3tQE8UaLLE5pLM4xO10ltoLeKAFh2VhZZWr2MPlkF5Mauq02W8sD1udXcWtt8iSh04Iai5gtj1JoMfkAx1OYriZLBWiHiZkKo2xEalLSfkxOzlRWJ/NSdKbpNPuEQYgUNTIq+K7HVr/PsJeQdYfoPGXK7CN0q4hcs3V1ldXRcMw7mOE5Cp0b/CDg5OI0W9s7OI6DzmNcZWju7ODImMbkFMNBB2PMXtcgShWRbnzzlPaidzVMU3aaF9jauY4/cQjfFcx4Bl9ajLUs7j9K6IZMz0yzevUS1WoD/Boz0yUmG/tpdm+dGu51r4QCiMol3EDhpw5hUEI6EIUR1gqSbhdchZ9JGkIyYxQqzbHKIQ8mWG11yfyEw3edwAkiNpfXsFmOsgbPhcr0BP2dHVypkCi6Oz2un9tmY1tz+OAR+hsgFKQMyIVLO3GpG40bRNx9+wkuXL6GtYbeaEAQOcRxwjBLyAeaYBSQ9gsKt63ldUp+xFSthhEW11VM+RPcUTmIzC3JTszOzjbOWodht4mjHHzZpzFZDBDyPYeVjsFxHB5+53v57kce5A9/83/jxXNrZHkFrQ1SOhijKVdKXH3lMstL18izPuVyCWMsUjjjsX8GoRRKKazWY4ev8POyfo5dXyXZPE04fYhp13C4bEiznP4o5fDxOwj8iK2tVUrlCkG9wfJWB09owql72N568dsTylWbmGD/xAzPr5zFjjQT8zXizohMWHJtEKmmJnx+6r4HuOvQbTieT7/X4vMvP8tvbKxjhCGohNQnIrrDKtaR1KOIJEm4+OVXEOWiDKiNxlU+s9MzzBycZtDfpjY34NijPptnhoguqKhOtTeN6U+zmbcx2nLnHXfQG3Q5ffoFpn2P7UFMc6mD4wzZPz/HqN9jOEpYXd/E2ozJ2YMMBxnDQUI86tFpb7G9uclg0GOiUefIQ29lulHnrbcvcuL4ifHUJcP//i9+lc9+5uPM758leOytnLz3zZy98Btsbmxy3wPv5MmnnyeKAgLfpd3cplYLaHci8iy7Qe+hi4DOkRKUxGqDkAU0zuQZaxsZvjdHtTTDdGi4t6oZJJpOnNEbJBhj8GtT9K5dZGp6Gu1UiJMcXMHsvju4tPLMXp7165VvCSV0HYc0t4R+RNJuY2tlfM8n6fbRg5xSucoPPPw93HPoDlSeobBk7SYLoceRCZ/2hEfcGzIAtBA41QhvokKNOutrW6TDmGS7hc01g9GQV06fxcgEaHNgUWDTBZxGFy13GLUrrK70EbZJWAo4ML1Ab7vFgf2L3PFoSOT7PPPKeV5YW2Fjp4MUmqNTJco1D2MlcS6ZnTuGkk+RJF021jaZmGhw9OT+AjUuM970nh8icBwqFEobhh5SwL333MHnP/84F8+8zPmXnqIauZR8w5eeepbNzR3KoeDH3zNHxb3C8UXN+kqZ/qCBo+QY9lYwiVlThODGWLK0mAW4026ztLrC5WvrCDfg5aVf4543nkPec4rSxBQj49AdaZK0AG5YFTI1WUNFk6z1La7KSXfOsLzxylcRCvxR8rpXQgssX1gB4dBvdzh6aI6FxTnMEF7JLjPqdZgoTfPggWMYbbBZRmfjKka4TJRrPLhvkWsm5eXNLYTnE0Y+1VqJzaV1vOkZphZn2VhaozozycbSGpiUZDAiyizv/9H34kcOL66+wmT9GMtphdEo5uXzFyh5isnJSXrbQw4fOEQ6HOGFkolqhduOHuRSa4ttZUhGffp+lZofstPvsm/fbSAsaT7k2PHbOHnHKVauX2D56kWGgyG33/kI3a1Vbn/jm1hfatHudAjDkEqlzD133s6pU3eztn6N/+NX/jVHj54ktQ5plnPpylXK5QrWvZOLl0cI4SKVoFKJMCYHK5FSYYRGjDv+kyTjA//l97l89QrD4YDBcEir1aTdblGtlOitX+Gzvy+YmJzlHe/7eSqzB9FSkecZ0cQ80unjVxu01s7RvP4C51fP0d1u3fIav+6VUADViRKOazh1z3Fmp2Yhy1lrr7GxtIHAsLW+wcrGGvcdPUkyFGwNeizsP8zVnatk2nB+e5NgYYq408YNA7J0ROh71Ccn2NrewSQZKvJxfBcziqlPRPyZBw/x2P3vwW5e5m6vwS9/6EVkZZZKpUd5osX68hqZFvhS4iiHIHCYK9WI04RSKaIW+dTKFYznECegZIJySjRmDtDcWiX0Q557+vM89/Tj5Fla5AYdxdTMfq6fe4UDd91H3/Gp25jNrQ2UlExPNziwuMDLL38Z14Fnnv4SpaDoL06SjCDUdHqa/kCR2zr7D91Bml+k3e6yC95K0oSl68usbW7yyrlznDt/njiOyfOMJMnwPJd6vU48HHD74WlCX1KrVehd+RJb68ssnLiLsNogcmcIY0ngO/hhxMp1SbNl2Fk1334+oRCCff9/7v47WrLruu/EP+fcXLnq5dc5N0IjJ5IixSSJipRk+yfJv7Fka5bHsmc89lrjNTOWx8szY3vs3yTbE5xlW7Jl5SzTkgCKBEiCIAE0ETrH1y+nylU3n3N+f9zqRiMRaFCSCe213npVt6reraq73wl7f8PiPPsPLJBqzebONlrlJHaGW/YI19tYZc2vvfQ59k41yLd3yccRm5tX2Orv8vzmBl3fwmzvIqQhsCQID9+3yZKIsD+gXAoYZRlaGTxXcv/eOh+qhsS/9y/5zLWEZ3dzNtsD6ocPUmo1OPbIvcRWTCMIGGyOGWcJr1y9Sn+3xBOn7uL5MxfZ3Olz/4kjrO50cB2PMIqY23OUWr3FbLXEC36VNA4LfORtYkTra9dZ2LOPynCFRw7N0u9Z7LbbrG+us2/PXk4cP8iv/GqI8YtNRqO5QBSlRNEIo3LG/R2MVcILAnSecvjIEdJUsbGxjhAWF69c4//9x/8vcZJgWTbzMy2McSiVAoqavSHLUi5ub3N1dUCrUWKj3SZVu2RKEgQOtVMP0+9u0dlZZ28ecfTwcfbMLzK3/BjnX3qBZ3/nC3d0jb/pk9AYwziPuLS5ikgLyFG300N6PtIPqFSn8H2bsdY8d/kyR6t1xr7H9soKq72Y0JqBbIQWEQ4aq2ajLAjKTcIopFzyccoBntHcMIp9e/ZyxNWMN7b5Dytl1le2eKWTMj0zxXSUcu7qLqEzQPoxpf0VGnuOcPGFc6SjhK+OU373uZfY7cc8fO8+Fqst7r3nLjZ3Nri4vE6lMUN3d4u1q2e4dPkS1XoLlWdE0bj4rECnu0lqcja3trn70B5mZmbIVU673WZzc5N9ewqzyNFoSL1eZm19Fd/xGQ6LXmCvvcW3fPx7idOEOElIkoSN9TKbGxQ9Ya2Ynpklm3jA5FozGAzxPJ88L2SKpbQ4sH8/4XjIxtoamS589BYXZnnls7/JjdOfR2UKjU3nwAE+9AMPUPNczr/0PHXnpjzKu49v+iQESFOFFglGZUTjhFrDozeMyEcxszMP4ZuErBfx9MvX+IpMyNMYrVLiTBENumTKQVTmSW0P1XMxZozdEFh2jlMt011eRdbKYNlEYYSVOpw/t8Mvrkd8ix2xOQzZt7CASkJqQRnLkkDO7s6QRx8vYfwS6y8oBsOQjXaEa3skScYwiZkWkmatwYkjU+ROk68+/VmWly+ilOLkvY9x4u77+PyzT5J6Lv2rl1GuzQUv4UOzh9jOKzStIbMzs2RZTr/fA6PYv38vL738EnFsI4QgcF2CoMw4GvP0s1/hrnvuZ3H/UTzfJ8ty6vU6ll08N8szNjY2SNMUBOzfu5dKpYrjFC5OUoqJXW2I7dk89MiDtLs9KuUK5y9eQVoOEYJGs8Gf+KEf5zO/9G9Je1tUmnM88MjjvPzlZ+74+n7zJ6EAv+STCgMiZ25hnnY4ol52MPUKTddnT32Kkoip2jG26ZKGA4TK0Qg6wwrrfU23f4NITTFMKqhghnY7Bz2gXFeUmg16UUQWJ2wlY171GxzZ3GUhLvHTpo6SLpc31oh0AlN1jj1+D1sbFbbaryCbZ3iofpLx+ctkuk+lUWJ+oYVXmeLi0hoHj99POaix3uuis5DezhpB2cN2LNI04erqMlmjTOXoCeyDM4xWVrBwyOOEK7sDLEfxYEOwMD+PUhnt9i4n7zrK6a+dZjSKmJ6eYnp2EbO9xTgaEeeG02cuM7/3yK3eNcZQKpWo1euUSxWq1TJpWvBOVJ5NIHFqIpdXdIldx2Fmukmaa7BsjCjqitNzsyweOUazUWOxWaJeLrFx+RyPfqDO8VOHqSXdt7Sp+HrxzZ+EBgbDkOPHjtEf9OnHIYFoMiVmOXRsiik/xhNDLJ0hkjaenbB410fxjc329nNsDSDYTqnus9gewnJPczlM0V4ZbfYR9rbwgy7ZTh8yRW4proSKi7bLUTvlqcEIq1yhH41Jt1IO7vOptiokoxbNwy3sLEP1PFa2xhw8vJ9v+cQR9hwu89n/eIbLyxnD3/hVGo05jt33CCuXX8XKQ6xmhXK1jC0dwlGb0e4WYxUX8nbjiLVnn+alxRMcOnaC+elptoIShwLB4vwiSRxz5PAB6vUmaZKxZ3GR4ajP9MwM7V6HvXv2ceb8RR5+5DFqlTJpmqKUKsSbfB8hBUmSkGU5lmVjuy6eNuR5TpoWHRTHcbnv1P1cvHyO3uo6vu/jzFgE5RJpFJKNB0jf0N/dwqC4cvkiSa4olcpsb6z+8duYGKC7usmFOMMTAbPBFIu+oCRu4I4u0e8moEEpTTyuUCvnuJyn7M4zU3mAla0lzi9fxSlX2MzLjLKA3HYw0RCtFZT2IPIRJoqBgszUT3O+ZgdMZRGJynDiiGYgCALBXR8KqCy0CWZ8Ll0fcth/nBv9Hg88ejeHT03zyQOn6Fzd5uXWGv3VAWI2w3JKhNGItavn0Bjuvu844/AS8Tgv/JtHEbZj4yiIekPyJOV3//0/5uD9j7D/6El+p27zt7/zU1Q9lz2Le+j3exw9cohz5y8UlmDT04zGY6rlOn5Qpt6o8NJLp/n4Rz+JnReonziOGA561Oo1LMsmDCPyPKdSrhCFEVJalEoO2hiq1QoXr1xkPB7hOQ779s5ihEuepozHY3Kdce3KGX7zN3+X2dlphu0tfv7f/wxxmhBF4S17t3cb3/RJCIAy1MsHKSUBYrTL7u4Kx6er9Ds+V7qCXgyJU6OuQ77z4QeYrlVJs5DcaMIwZrpk0apPcWU9JrcspMlRloN0PIxKqVRbtE6UuHbmcmFbm+dciW2uGZcgUMTDEfOtWQ7PziK2HiSq56TWOfZNPYDXcpm1p2il9xJtT/HV3ztNr32DvTPHGLnnybYMsw/OsXz9MktrO8zMTmNpm0G3R7k0R1BroEcRSZqQOQ62ZaGEQA17XH7297n66vPU9+2h86EPUJ2ZphSUmJ9f4N57T3Lt+jJKWxw8eIBnnvkCtUpApVJibm4vUmrSLJkUpgUra1f4p//6b3PyyLdSq1XwXJskzVEaPM+n022TJgmVSoU0cWjvbpPFIafue5B0lNHtrOE4XqETN+gx7Xs88cQ9rG5s49qKfUencPwKL5/+2h1f3vdFEiok4yikbgUkqQVpwEce+A6q1Wm++PLX+LWzWyT1RZZ7W/y7M20O3uhyakZQyUIGox73zk4hHBujc4wOQXqFWWHUQ2cJN7ZvIOkU+DopyPKcWEpcz8F3LGyrjH/gJJYXc/7lbeTyPu55+NsJqg693TJxp8bXnn+OM6d/lampNgfLHrMx1JKQb58tszTcYTzsUA58KiUfkRjyWGPVFMJycP0y47CPVBrjOoVnX5YjshzV7jLyXX75+mX+66kWlhA0qjUOHdxPEASsr6/x7JcT+oOiRz7VOkWWKZqNgDSJyNKMLEsQxsLWHms3LtDtbLO2toVlu1y8eJFKpczu7g4z01M4jkOucrQu4HGpyhFpSisI6ApBFIeE4ZhGuc7clMOw67JwYI79x/YyFgOOn/D5R3/3N+/o+r4vkjDpjxnVN9nwpiglinsWD7Ewtxfb8/nIgw/xpaXPElk+QmvCLONyWGdpKSbPXSp5lU/PzvHstXVSrbEtDXaxS5TSAwuk0ySPd9FAqR4QDkK0mbDcXJuFfY/A3g8g5jT20kWuXLrAeHgEz6+ws/Uy8bjN9sarLBwd87F7avzlqQ/xL15eItIJ6c6A7UGMXw+YmqnjolHdIc1KlX17ZmmPFeVKg2Fvt5jGtMb2PaRloVSG8FxK+2f5zKWX+cj+/Tw0M4/rucxMtzh69AhfevbLbG9vcP8JjzOXItZWN5id20eSOiSpvuUusGfPAT796T9Du9PHC0r86q/9No5TYmNzjVazRcUTBKU6CwsL5EmfcCQRgYsyErtaod/ZJs8yovGY3W1NyU7w/RJ2ljC32OQDj34CK6izurbJ/8Vv3dH1fUcsthDiXwkhtoUQZ2471hJCPCmEuDz53bztsb8uhLgihLgohPiO244/LIR4dfLY/yXuYAtl+TbJKGWsy6xlFT6/6/HTv/85Xnr5OTY3ruFX6oVWjOVisMmyjDCOSe0yPbvJz7y0zKXQYNkOSmXobIzUKVgW0naw3ApaeUgEtZkG5VoAFOvRRnOGY3d9hP3776bUeJTmzKMIKbl49lleev4zLF1+ns3Nl9h/b8KpjwZ8olqjGseME8Wj++bwXI+WlRAHq5hSiHB9cAsjRj8osW+xVfT7Nag0R6U5eZIibYl0LKSUjOOUcbfLU9cuobVGSsnCwgJHjx7Acz1KQQ2vchSDxaWr17ly9Qr9/oDxOGI0Cif9XsiV4bNPf5nllQ3mZgs+zPzcHEkc4QQBliPJ4gGVwGV2psV4NCAKQ2q1MtKWdHs7JFnhr5wpwTiuMFPzqJRT+junSdIQr1S9493xuyEE/BvgU2849t8DnzXGHKNw6/zv4U0qC58C/vFEnQEKKuh/QUFwOvYWf/NtI+uHJFFOMo5Qlk0aNHh5ucPW5hqXlle5urpEMtopOBwqJ48GqCQFrUmHW8RxRJYrdJ6htUKlCTqP0HEPlQwmDLuin3rsrhM0Z5ogBEYaqrUZPL/KeNxnfeMG/eEQx3GJwjbD7gq4Wxx8fMDeBwxJPsYdKHZXbzCVjEjCAX6WcC3r0c+GZOUB4yzEDSpYjkccx+zdu4AzEXo2SqGVQmc5Silsz0UqhVrbwcQJG70O2hRKqfVqnUOHDlAqB2xtb7K23qXsS47fdQJpu2zv7JAkEXEck00QQlmW8rFveZRSuUKSqYLcpDQ77TaXr97g7IVLXLq2zKWlLdI0p1opE8chUTwgS6NbovNuqUSjVadWK7P/5D3sP/ltNA98lFJ56i1c5t853nE6NsY8I4Q4+IbDnwY+Orn908Dngf+Ot1FZEEIsATVjzJcBhBA/A3w/8B/fzZt0KiWk5yH9Cn5QxpbQkQ1GcUxiWexsrpCJdVBZYcNqdGETtqYwTKa4Sgu3XC9YdKbQ+9NKYZTGZCEmHaHznIceehxpFFsrO9i2TVBuEsUxW711kiQq2HsWLO4HfyEimDa4fs5gmJFnI37n/AoPhB6eVeYV4RBlKWedEU6WY1ILz01Z2dwiyxWDwYB6rcaB/XvZXFlC5dktlLOIJZbtYNkWqttHf+0ic4fvmvBeDFLazE7PcPDgfkaDATrrMwwThkNNOOohZRUhwfM8bNvGkhblcplms8mf/pE/wSc/9mG63R6OLdna3ODM2XO88uo52p0Bnf4QTOF4r43mypVVtFKcO38V1/P5+Mc+xkOPPcTB/XN4E1NwY0DrHNf6o1NqnbtJ65yYa89Ojr+dykI2uf3G428Zt5PfAbTJMWmCEAadRaRKkWaKX7zSRsdDlLSxHB/pTWE5ZQwW2XAHIySW45MPt9HJmFzaCCkBXSBLtEKrjGS8gVEFiODq0kX2HJ6nNlVCaUOUauKtFQbdbaJkTOCX8BzDo586zI3xFlkuGfYM405ENahTmZnhmS9f4UQrI/NqfC4a0EfhbNjMtfbg1euMeyFZnt+q39111zFeOf0iSVyUN7QW5FkG4wjbdRBao1c38XNzi2RpgHKlwrGjh7l48RL9UU6uDJcvvsyBA/spl6vsdnaZak7fmsJ9z8N1HBAuBw5WOXCwAIjce8+9fPSjHyZLYuIk4dylJb74hS+wtLSC7fqMh0MGgyHVao2DB/cRpym9wRilLYRdJGCuFUkSEUZj/lO37d5OZeFdqy/A68nvQkoTd/tYQU4SbOJWZlFhj3zUJo5D8jTF5Cm27aKTEJMlIG2kX0JjobMU6dZQWYTKM4zOwWToLEVIizzuINyUXBcXdnvrIvPBEZqtKrvtAWAxHu6wtXmlgEDpFn5zju3ODiM9JhoJ8r6FL6rcvfcTPDF/gJ8599O8vLONU824ZCn0rkO5UcF2A9o7AzzHYRANaOhCIXbvvj0s7J2n3+sUm5NJcqIUqnBERGvDk5cv8n3DIXtKZbQxlHyfhfkZAj8gS2OajQbNZp0bN26wZ+9+Nrd28L1SMXaqlHF7nQiNEYJSdYqgXCt4yLaPg4fvVagYzUdmFnn8kYe4cf06cRzjuTaO59Hv9/EDn6np2cJYXNoFZ8VoDAbHdnBs746T5s5JokVsCSEWoCC7A9uT42+nsrA6uf3G4+8cxqDTDEyOitdI+5uk7VXycIc87KHCHml/AxW2MekIk4wwyRAd9yDqouM2OhsgyDAqRucT/m+eYlSKsF1k4GGXi26CUiBqIQv7W4W7k1sijsakSUiSjBgMd3E9HzU6QfeCS943eLLJXQd/lGbwKQahYOBpKuUS59KINC6k55rz04w6Y/IkZ/pgBcsrNGS0Nti2yz333o3tOEDhJGVbDhYSSxWm38Kx2Llxg19+5SWSLCNNUxzHIY4LA3FtDLV6hW//9k9RrTYpV8oMBmPiOGM4LvjUbhAQ1OrUp2ZxPQ+lUvI8IUsiVJ6itUFpgcoNQrhUak1WNtp8/kuv8sKL5zh//jpnz13mypXr9HoD4jglN0WdUQibKM7Z3uneKbD6PY+Evwn8GPD3J79/47bjb1JZMMYoIcRQCPEE8BXgR4H/+92ezCp5SM8hDi/D8ComNxhVeGfoJMQSILRBxwlM3NkxBq0yBKBVgp5MvSqNwJIILGy/giZBKJC+A5bEq0f0g02q+8A775FlOeNRmzgeIoRBSovVlYsszH8bC/6HiNIBDzzwI7S3c547/wyr5iK+0MzOT7O9sYYd2zTnG+RpVugAuhYrF3eRrl1c9FwhbMmxYydoTjXZ3tjCmKKNVvZrZFmMRBZm3Z0eT774VR6fgkOllFLtEdrtHgsL82xvb/H444+zb99hjh49Qb8/xLI9sjwjHI+LxBASa+JWYIxCykJbEa1QSYJSOevr64xHEeubbYKSx6DfZxSFbGztYFmSxYUmeyyHbnfAK2evsbq5y+F988RpRrcfce36jT94ZLUQ4ucoNiHTQohV4G9RJN8vCiH+c2AZ+FPFB/u6Kgt/kWKnHVBsSN7VpgQBVi3AKZVIOl2MZzAS0p0+tlvDEhIQKJVPkq+ArpsJU1sbXUjkmkKBXkuJ1jmObWGSIZRBSL/wR9AGrJwoC9FOGSdwyFWh7ACGNB7j2DYjDJcvv8qBQ5/g2PwB2rsbnD/3Zfrtc8T5Kj/YqPEbq12yVOLZLsoI0kwhpCbJNK2DTaKsh1GaPM9BWJTLVe665x52t3dwHOeWKHuaZhzYe5DuYIdwHDO4vsR/uJTyX57SjKITDMcxzWaDwXDAww89Tq3a4u577uXJJ/8De/cemqBlDJZl4/nlYrTXGqMzyIt/UjHZzGEMc7PTDIMBp189y3AYsn9xio88eoJRGLLdGbHVHrG106PZrLO5M6A3CHn+lSvEmUJYklLJ+4MHMBhjfuRtHvrE2zz/7wJ/9y2OvwDce0fvbhIqzRANg2VZKMsgjcSRASqJERIsp4TKEhDphNBTJKaZjIYmTzFaFT8mx5iczBiE7+DVG+g8x1CMrFEyIhw5RIMM7eRYToDjVfD8BJVlhMMuZSnZWL9EEucs3zjH7uZ58rxLZjZodGO+mtns2B4fefA+Xj53GSEgiVKkFBgFvY0enZUuwfwsaZ6DFDi2xan77+P08y8QjUOEFNiOizCGqam9LO47wAsvfRm91eG5K7M8MT2gYb5GjkILied6eKUywzjFL9XY3NpG2g4zs02kZSOlhRtUsR0brRR5mqDzBKUylC58nI0pLHZL5SrHDh/kxVcu0hnEjOJ10lRx36mj3HdvmVwLzl64TqfXoVUt47oO/VFIkil2d9t3PBK+L2RAGntmcWoBOp0kUqQgdyYqU7qQ/xCFjBp6wq0tdNAAinZdnqFNfksq3BiNcG0s30WnGTrNCUcjjj4yg1tR5Immu6EJ3KOMxyPCsE+ehOR5jOMFOE6AZbkYnZDnCUIkxSZJgyVt9s1Ps2dxjpfOXwKhcTynkBxJDY5rMx7GVKvT7D90ENuysKREGcWZl19h0OvjekGhlJUlSMulNT1Pu7OBtm2YqnP0sE9loBgnAdE4Ik0S7n/gUXY7fbY31tjcWKZWbzA3N8t4PEZlGX/iT/wA0pIYXRg9KJVNliwTERoK/5bin1fR7nZZ3ShsfMM4xXMcatUSiwuzlAKP/nBEEiekWUavP8aSgnEYcvr06TuSAXlfJOHh+3wsh8kOzJqUMBSOI9EGPMfBGEGeK4SlSZJCJyUouWSpvqXYZbQCLYlVStl3CvojBssSJLlm40rG/pk91Kol4iQlVwrbsrGkvGXQ7bkOxsA4SdD6NRSx0ZpyKXhdnVJaRXF3OA7xXRcB2I5NmitWVjfZtzjLvScPIYREyIlMm5goZU1+mPy+6Up6s9DQ7fVoNRsTDODNL+vm23lNT8YAL567yPbaNt/3nR9AvgtR6bcrZxSPTfRpbrFWXv/cwTDk3/3iZ9Fa//HRohECjj1cQ8kExyoW8xiJ7UsGw5SS5aN0huMWTksV3yZKDXmWoQVkGZPkUCQaSp6DsEAnYywrRxmJpQVhruhv9Vmcn2ZxfhojBL5blBtsq1CwyrVGqRylNd3hGCEFRhvKgUeWpTRrjWJDYMniYlnFWN3uFgkjhcR1PTq9Hr3BiHtPHuJP/+C3I6XEmpDRLWkVilkTLrBlF627mz83k/PqtRVaUzWmW61b09+t4cTcnoSGf/Yrv82Z51/hr/3lH8K2rVtZU7xOvM6E6a2Ovf4xvu6ab2Vtm3//S79/R9f4mz4JARpBCeP5ONIhzmPyXKGxKNsWmYZqqUKe5YQJWOST0UggSbG0S7cTEpQEcSbwbYuycIiUM/E70WRaEdh2oSqlNWEY0R+PmWo0qFbKVMtlskzhCUMcGUZ5hmNZVEoBcRRjGUO1XkUKQ6NeJUtTjDHESmGMoVmvk6qcwWCM1gZLCmzrtYQSt0Y7eYuOefP+W/0IITh8eB9feeEV6g9WcD2vIEvd/MKEuHXfTDCSQgikZSGtm1pdf7AhBMV3Lu48pd4XSZgLCGyP3e4Y1zNInMLF0pLUfBfbgXJQQSvIjSJw3SIBshDLglzmxCNDOFJUjUZVA7KsWCMGgUBJQ5qm5HnRynMdi0N7FqhXq1i2je+5ZE6GUTlGe3iuRzBjEycJfqsy+afQVMoVNnc61CplcGzEcEgSjlHCol6tgDJ4ro1ROWXfoxhxbkvAW8qpFKPj5EdIeWs6vunNLAwc2L+PS5euc8+pE68fuczN0a6wfXVtG5BI6WFJhz+MJASKSoZ0334uf5t4XyThOAxBe3iexJI2Wgt8P8NogeMYZO4wTl1qpRM0S0eJRqCHIY89cpDB4AZLGy8SjdYpl3IcR5AbDTZkeYKKLbQFOi+mW9+xaVRrVOsVAt8jDGN2dtsYIdnZbTMaJ3i+R9kvTBZLQcBUq0a5VOjFWLZblDukJHAdwlJArgzStqnOBwS2YBSGk5GQ10ZCbq4JJ7K+BaqCfm/A6to615dvsLGxSb83Ik4SlFZIy0blOQef28v+fXs4dvQQh48cxhIuhf6+wBgLx3Imie4i5B/uJRfCuePXvC+SUGsQNngSxmGMbds4eHiey3gsqAYPsqf+MeZmjlGvBEzVHHwb5hemqJRsoqjLK1e+wGe/+m8I0y18YUOmCCyXcWKQBlSssKTFVKOGaxlefOUCw3FEkqQ4toPKFZnSWJMpEa3wPY9qrcJ2f4zvSOpVnyTTNFrT1CoBUTQmy3Ka1RLGgOP6aKAelKg36twcMm6KmctJMorJdPo7v/c5Xn7lLONwhO95lMtlgpJPuVKZiIVq8lyxs73D0rUlPvfZL/Bjf/ZPc+rU/ZPBrhDMLEZCAdJGSPvWQ28VYqKz+abjGLSKiONdyuUmRlQwRhKGMZocgSqMHO0/QkenP8rIM0EU5ZN1m2QchlQCnyirMTv9aRrlxyh7JWYbZaZbAQszZaolj1o9wLIktlXl4IEf4e7jD/PLv/u/s3TjhUKyVwnSPKdiW+AU65owikDWKfsOKs+Iw4juKERIi0wpjNG4rotjWeRCELZ7bHd6xHGMMYZ6c4r/74e+i//wyz9Le2cX3/c5dniRA4szJPGQPNeUAq+wMxO3LfLFbQkpBFs7O1y8eIH7Tp3kvlOnaDQalMoVXMfBmqwnDRSllHabX/zl3+DqtWt0uh2EuFmwL0SQHGkjhETaNtJ+7ZJ//V3wa7cECosNdPoc8fAFdHaQxP0OLlwb8PxXn+bAYoUDC3X2HziCkLNv8xffPt4XSRgOInQuUL5dKOwjSdKAhanvpe4/jissZlsBgS/YO1/BEoJq3cf1bFxX4DgCrR0euvd+php/h//1p/4KV26cpmSDIyTDoSpGOAReEBAnOXcfO4QlLC4vLfP0V19BWBZKa7IsKyBeE4jUTQUFYzSWZZNlOc9+/rMsr6xSrTeIspwXXrqALQ0H9+8hHIeAxC5qToVV7m2mhDeT8uKFy7Sade65+yRHjx0u1owUYFghzWT0LDYcwyhEC40G5ubmXivlGAlCYTuFLYG0nMnG5J1CoBDs9Ma4DkyV1rCSXyFLlrh01SB5hUHS5tr1iMcefJwHHnockXcY9FaR1swdX9/3CmD4Iw3HeAhdaLrkmY1G0qx9gOna4wSeQ6XiUS1L9i/WSbOMqakytgWOY/D9ouxRKbvYtuTgvkP8lT/zPzJfnkVoSDPNKFRkcU6ea8bDEbYl0XmOUglL6wXAU6tiM5DnOWEYMhwOGY1GDIcDhsMhYRgxHo9ZWVnic09/jp1uj7k9C1QaVQbjkKvLGwghmJltUa+XcT0XIURRgnmDKWGWZawsr1AulZienrp1XEhd1OCxJwkoSdOEf/tzv06n2yczNs+/fIWtnS4gi/qjsPAsd1KLdOFtfzyQLka6rO8MSZTDs1+7yj/6Z/+C3fVfIE+/xpdOOzz1bM5g6PHVr1zh7uN7OXrybobD60TxKo35x0BW7vj6vi+SUDia2dkWjicQjmG2fJSFxscpeQ5VH2bqHrYxOLYsYEeORArwvWK0cT2DkKaA1HsOJ488wJ/87v8CEyuyfoaIFaNBjtZMlAgMnX6f4XDM5tb2BM1sCk+3Cbo4yzKSicxGksTEcUSSJOS5KrCCWnP6xdNcu36NMI1Z2y7cBPJMFRzfJJ7Mha9Nw1DU9dqdNkma4rk+tVrjdY9PvpHJVG5ASKZaDWzbZxgmfPXlc/y1v/W/8a9+7lfY3N5F2haeWzhQCeki3/bHufU7zgTPPHua4wfnsaTi6tUlVBiyUBvyxN2KhdqYTzwa8NyXn+PMcz+HyLvUpj+GdA8g5B8dlOuPLAwQjjP6owShHMKhwHUewLUbOJYmcB0go9YISJKYmakSUZRQrQUYo/E8G8tyCsV9ywJhcD2HDz323TQr+9jZUmz1Fe0dQ5YZpFXU6nzHxZICx7JwHWtip1DAqjyn+Hs3lf9vlk20VreSFEDlikcefJBatUYpCEhzSDJFqVKnXCoX6veT8szNEMDW5iaO7dBoFDQDpYrEzbKMLE1Js4Q0jcnyBFtKDu5bIFU5a5vbPPfC19jc3ubf/sJv8F/99f+JX/nt37tVNJfC+TpJWCSgJV2OHNjH4vwcF17+HT54yuJXn8w5d2kf5A62tAhDw1wj596jAcdOPMT0nu9F2HuQ0kP+cd0djwYax8lxSx62CWjW7sWzLKQwxOmAl89fojXVouQJ5qY/gcFw/uoy+xZnCEoeWoO04OZyWwjB3NxePvTE9/LsC/8IKQ1JIsiUwRKCWrlU8DKUZrpZI8s75Lnh6MkT7JmbZndthRub22xOtPiMea19pyc8X8uSPPjg/fzET/wlfvGXfpnrl85i2w5JmtPtDcmz/E3F6iRJkNJie2uXXCm2d7f5/NOfo1wqFRQFqXAkE0svibQgSmxWNnYQ2rAw0yLJMuI0Zd/iIh969H5+7TefotmqM0F6wLtYEzoGHr7vbmbqmnOn/wn1ss+vP5XyxD1lPvfldb7jW8q4juLIicfYc/xPYOwpbm1xLJu33+68dbwvknAcGYhCFgMbl304dgVLZuS5RW/YJRx0ieM+s3PT/PQv/Ab1hSZZlnHPiUPMTtUxSnFg3yLtXp8TB/dTLvnYts2D932CJPp/EGlKGgpQAktKMMW0nOuMsufhSovZ+RY/8sM/wtq1M0SdNR656xBXV8t0hxGdXp9cKfYtzLPv4EGEUVy8eIljhw7w4leeY35qinGjQsmGLIvZ3WozjgqT75vTbKfT4frSGsNhv3B/UpqNzR1W1tZxHYdS4DNVk5Q8i6DcIAsTemFML9LkuWB+qsWxQ3tZXllls9MjaC7w6089Q80vsXRjjT17Cw8XKb/OSHWr9wx5rtkdV/jihQUO7inxhS9dwRIZH31sgXLZpn7g4xy469NIdxZ96+XiPdUhv/mT0EB/S2O04XJvyN2HpjCpYZRGlColyr7H0QOLlAJJKQiw7Jy5uTqeq6mUDA4xlUadK8trlHyX8XhMuVRQOg8fPkqJBmsra0hA5wbft/F8D8d2qFUUh/bvQZice+97CN+36W6tIw3ce+IID9x3D+1Rxu999mlubO5w770n+OATjzPqttk/P42L4gtP/R4P3Hc3j566C9/3ENIwOzfHxaVNhBBoo1lZWeOFF19idXMHKW0818WSEs8LcJ2ALM/o9EN6Y4drV6/QnGpSkZJYKZI4Q2c5+/fvpXngAGdfOcug06HTG1DxfYZhyHA4Ys++A5OR8I1JWCwFbnnqGEN3OOILX32FS8sbyNpxlvs75G7Kc+fXmZ7Zy8kP/EkO3/stxfpPgLw9Df+4Tsfp2NDLMowSmEWXNAsJvAqDwYBjh2aIOwOOHdnDKMs5tLdBkuTMTAfk5MzPNbD9CqXA4/y1DY4f3D9BnijqtRJzs/MsLa0CBa9DSJtGo0EaxxgtOHzsCMfvu599R+5iZ+0Gni145P678SyJ6wgWpxscPbDATrfH6so6w2Pb+JUah/cvUpueJx4MCawc3ykQ31EUIyyLLC9qeUs3VvgPn3mKbrfHZqdLvVrj6MEDheO6ykmShOvLq9i2TaVcxrE9XOlipA3piEAaXE8St7d59dkudpZhIUiylL/w4z/MuUtLLC2tkAiBJW2sN41Ur3nR5UZzdXmNL714hijTeKUyd023+JZHvg+J4bO//3nuOraf4w8+gWCCygYKa8YipPWHUKwWQvwr4HuAbWPMvZNj/xvwvRSmj1eBP2eM6U2ooeeBi5OXP2eM+YnJax7mNWT1Z4C/Yt4ljkxaUK7YBIGH5TlopRkOB/ieS7c7ptXaw9ZQUG/VSUSDyrSL1yhTsgylxhSu61CpSarVJoFftLQMMZaE6ekWQhZgTjDkyZjRoE+WJFTLJUrNWaqzC0SjHqtLVyh7HpZl49jFhieL+pzcP8+NG6uMh0OU5aKSkO72GkJK7r77MN32NmmeYqIhBslgkNDv95mdm+LM+QtMNyssNCu0ygGn7nuIoFFlfWubqelpyNOJMJHLQ48+TKVUYnZxAcuS7G7usLu+xaC/SzwaM4gSauUqO3GGiSIkhr/yE3+Wp7/0PL/4H76AkB7ibabjKE75ystnuLy8AbZHydYcWpzj0fvvouIXRuN/7kf/M0C8BRxsYk1hQIg73x2/m5Hw3wD/D/Aztx17EvjrxphcCPH/o/A6/u8mj101xjzwFn/nJvn9OYok/BTvAuIvBPxnn/4o3/FtT7Bn/35+5/d7rGyF2I5LnsFwFHJg3zS2Izmyfw+OLZiZriAtQ7nigcgxKKT0mW1VJjCnHHCQtubU3Y+xujxiOO6ysXmdsl8iGfUJSjX6w5DpFuRJzMbSFYQxtBqNgrcsCo86aXtUqxXKns1qd4i0HUzaIwoj4igmS4cEjoUtwalWUBnYlkPZcwijhLGt8RyPMAyJswzLcxGW4OyFsxw9fII987MYY1Gu1Hj40cdxHYuZvbPUGk26u20unjnPpfMXiPUGpJooTBGOy5Tns76xUXSBsqwAF1g21hs2JgbY2mnz3OlX6IxjXL9E4Nk8fPdxjuzbw+0Dm/UuDDytd/OkN8Q7jp3GmGeAzhuO/Z4xJp/cfY7XM+neFBNGXs0Y8+XJ6HeT/P6OIYTkz/7wn+J7Pv5R7jlwgEbdRamMJBozHIcIC/r9EY5ViPVIoUjTBClM4eEmmBSDMwwxRiQYcjCglaG9uYGd5Sy2Zin5AUmWYUkLIQRpEqHSlPFwSJIkuNU6dhCQpCnDQZ/ubgdQKK3Zt2cOYQqDwTTVZBqckk+9VsFxJFmuyLMcL/BwPBfXdbmxsk6SJISpojOMCJOcbrdHFKWcuvs+FuYXiaKEwLeRlqC9ucn25jadrS0EFlOz8yzsn6UxNYUX1MB2MNLCc30GwzFXri5xdvk6v/D7T01UWG+Dg8kCEHzhyhKf+/KLjBKF67jMN+t88omHOX5wH4799nCyrwczu9P4g1gT/jjwC7fdPySE+BowAP4HY8wXKIju75r8fnsIAc2KQ68fstsZ4gpDlqT4nke3M2BmqkZnMGTvvgaDwYBWzSdNE4LAIktTbAkajbQdxE12GRKDJo5SVq5cIe60sbIaWVoQfyynoEO6jsWgvcnC8YfI4stEQnPgyAP0R68yHg4puT7tXhcVJUw3Khyab2EbTZabwlo2y0jSGN+zi2/aEuR5QQMACIfjW3XGYRiy2x+wtLrGAcdGWhZZnjGO4wKerw1Xr16lNTOD40FQuk6pUUVrhSUEUljYlo1A4LsuqUr5yqvnufh3/hf6K10OP/AhhLAoVFkMSZLx1dMvcWN9E2m7BJbk0L4F7jlxnMAvptQ7Tycm3/GdxTfqd/w3KOa2n50c2gD2G2PakzXgrwsh7uEOye+3KzAIITh9doVzN86zuj5gnEgEVXq9AVku6HV6+L5NEkVI3yFJYqTlopXGdS2EdRNGXPBThHSBHKMN25sbXFtdYxiOwLELboWUdKIhDpJ6OSDJM+rNJpbr0b52hZfHfXTYpxL4WJYhjTV+4CMdh3sfuJdaqwWJx+6mQ2NmlnAzIY0TnEqV3f4Q13Oo+QFIC5PnSCRJlqCVRhvBoD8gHo5QGMLhmDCKGYQRidKcv3iRuy2bSrnE2vIK1pYgCiOGoxFxlqImPs1CCIQRBCrnoOtwrVRg/IS0QEra7R7PfOnL7PR6eL5Pq+xz/733sGd+9nWF8/eWE3+ESSiE+DGKDcsnbm4wJho0yeT2i0KIq8Bx7pD8frsCg5TS/Mt/+ywqzeh2ukRpysLRh9HaxvdLbG62abRq7Oz22bunxWA0xrYl49EYtI1QBtu1EL5dcJDzFJCkcc4Xnv4yg90OAodRGKO0xqbg4Bpj0RYZVa9GHCccvft+dre3SPq7uK6HFIIoTlC5ZpgaBmGE8EtYto3SHt3BkHJzjsWFvVx/8Rni0YhaqYx0ClCpa1uYNEYrg8o1tmOh85TReECWpdRbDWrVGt1en2UtIMuJwzFJEtPt9RlGPVzXJUoi+qMxSZYRphlxHqOMwqicmmNTsuxbtFgQrKyu89Tvf544TXFcl2MH9vPAqXuolMrvbeh7U178EUG5hBCfotiIfKsxJrzt+AzQmZDdD1OQ368ZYzrvlfxuDKyu7TIethlEY9JsTO7WKTf3kLY75LlmqlWm7BsW55vEcUYUZ/i+DcIuOLaJJk4S0kyQpYpOd8zLL1/jX/zUz9JN+7iyREs56DzH90vsmaoTxynCgsFwwMtfeYZmq4XKc0qlCjaQaQqmHwYjDDrPSEcDLK/MgSMnOHv6K5z76rMcOXyAUawQQjMe7CIklPyA4Tgkz1NMHKINuG5BSg/DiCiJSXY6DMKcNA7RRpFlOWmakMQR/dEAO1YEQUAUxYxHEUkUkcUROs/BGEQSU/ElSRwThwkASmue+8pXGY1GzM7N8cRjj3Jg7553Pfq9cb33B0WSe6/k978OeMCTkzd2sxTzEeB/FkLkFMWjnzDG3NzUvDfyO4ZktIsKx6h8TKbGbG9cppG5DHp9avVplpduIGROyReMIsPdxxdZmKtTrpQYDiOiKGJ1s0+nrRglORfOX+P6pVd45ZUXyE2O1jHDzCM3hiwO8ZwpXFuSK0Ps5OR5F91PODhdZjRB29RrZaIkwxaG4XiI61mYJCMKR/iey8mT95B219lZOgdCYAuHmVYZV8IgTLBkgQcMe7uU5/ajohGW4xCnKVEcoUXKlc0Onl9GSkmWFNN6liZkSUqa5MiJCHoex0RhTJImeLZkc30HX+dY2KRxilJFMdm2LL71w99Cp9Pl4MGDlAL/3V2Ct8+Nb+j1N+O9kt9/6m2e+yvAr7zNY++Z/K7FmFxHKJWCMUTxDmr3NEJUSFXE6bNXWdtZ4MIVj/1HTnDx8llct4rOJeNIEw67qGyX9tBB6R5Cj1m+9ira5NhOQfxRXoSNwPM9LNvC8SukcUKQxAjKpHkGUhDnikpQxnFsMgWVwMV1bbYGXaq+z8svPsvmynWSXpvZqovjB9gix3ccolyRY1Gr1Qg8D2U0/WEfJ2jjlxt4XqlYAw5G1OpVwt4WQaOJdCzisSJOEqJxiFeuAJrRYMRoFDIcjMnTGEdIouEANWrjWRJj2aR5Tn6bkPn83Bzzc3O37v9BJdI3Eu+Ljkkox8i6hRNZOCJA5RqlRjhuQq2c0BsrkqhPe8tivXud7taYeiDxWiXioSHqJ1TdjFALGq7NTtjHr1pYXhnXl2SZholtbZKkIGyEKbT9ao0GWZyQDLJCbhjNOBqSaJt6UMV2HCSa+WoVW1pUtCEdbYOlMHbhkiQxRNmIUqmMQGChixKS1mRpTmd7E68SFVLCWtPu9mm2Gtxz9BC+67O2uUmmFSKD8XhELW2itWYUh4yHI+IwJotCeltb5OM+Pq/Rj8Nckd+2Y/1mSLo3xjd9EgoBXsUlHKbUpgJilZGMUixt43iSYZiispxRZKNjgzEhjYYHWhEPdxFSkmUJoW0TxRmW9JF+sXsUjgUW+IFL1M/JM41lSbI8xQClahkry1FoZlp1UmVQyQjP9RCOWyCtVcYwHNOsVvBdl0qeocoB2+OYXpiz0KzgmRRjwPJLSMtFpSm5NlhC4giwtWbc3kFlmooURMMhr545j207eK5byK8pRQr0Oj1cx8N1vYn6qiLq9xntbCDjGF+ALQWWZSEtQW+UEr/WVfsDW8f9QcY3fRIaA+NBRJYo0jDFsiSOY5GqHKMlw94I4RR1vzRRSFtgWwqjBKN+jO3apHGGVi5KK4ZqhHRtkixBSoj6GmkJhCxkRM5eWWEYFfK6luNisgyd51iWJEoVjiuxzWRjMlH6T1SO7zpYEwNrjcT1XAbDMTfcDUqeXdQgrTXcoMxwNOby9XXCVLMxLEhCNwnr2oA2BpGmJCJhpAAkRlA4VA0SWps9yuUyloRhr4tJI6IkI80NUhgcKXBdQTqOGKWGUWZYW1vjn/7Tf/qeOhp3Eu32nWvRfNMnoRCCT338ewiC4LZjt67Ze/yjvKlKaYzhySefxJ8+iD21+JZfTPW22zcf9yfH30qdoNUqjmuK1pQQBRO4VIHy2oBr6zt04q9nPPNWjyUst8df//NhKNr6r8VoNOL06dN3PB3nec4gLGRMfPemrFzBcVnbWSfLxzi2h+9UubF6nSiJ0H/czHQsy+If/IN/wMLCwh/qefI851Of+hR/7a/9NT75yU/e8eu/nkSGwRSqc7c99jf+xt/g1Vdffe9v+A7jnnvu4V/+y3/5jiPhzc8RJQWmcbO9w/WNdTAZU/UGlaBGmvWZa83ylbO/TZSsMQx9fKvOy2fPsLa2y7Vz1+7ovX3TJ+HN+EYW1O9GQ+X2x97tuW6fdhKVIwDPdl73+jdqu/yn3hi8qdZHIR5ljKE36nNtc5U9U4ucvvAyB+f3Mjc9i2W5fO4rv8fKWsTi7GEM52n3pkizG+TZEIGHsXeZm1doXXpLHZuvF++bJLyTeF1yJAntdpv5+fn33GB/u799e2xsr1MKqsw1W2/5mrc6r2PbOPZr0KpCZFbeWi4U6LKbOli3ac2Ym4zhN64rCp7xG85Orr7O9GgKYNu1jaucXbpGp9unNz2g4pWZbc6RpTkl2+fw/oOsbT1FnA/J0i5hskWWjclShWOHBB7MTBvyLH77c71N/LFJwjcm3pUrV3jqqad44YUX2LNnD3/zb/5NyuXyH9DJKGi9xrDVa9Os1lnbWKZSn2eu2XrLpHur1J/yPRYqlQKdbLlUW9M0pubwPZ9cGfrDAZ1hnyRLcWyrIHVlCek4ROfJawqrFOezPA/HdXCtgm2YK0WsDJuDN68hza3khq3OFs+++gWUqZHnGctbF/nAqU+wcm0Fn4z9e+c4PHuQbq/EONwAk0KmyfIc2wbXt8h0hu0JHFe96VzvFO/rJHxj4l29epWnnnqKz3zmM5w9e5YoinAch5/+6Z/G97+x7sAbzgwIkjTmzOWLPHz3/cRxzmbvBvcdOYp8QwLKQmAG8YZU1FlGHk26nlZGz3bIpUuj1sB3XIQ2qCwnTVN0bmEZAypjnCXoLMXVIFUhKl8ocSkkHsYudvqFOY9BZW9tcFOo02rOXT/DKI4L9HAes9neYqO5yt0zTVqteaTMCbKcQM4zUCsYneMHxS7eskFYmlGYkmQ52R+Gmc43Y9xMvjiOWV5e5umnn+a3fuu3eOWVVxiPxwjAcRzqpRJ+ucLa2trrqJh3dK7bbt9MIT0xst7c3uD50y9y/OAJSr7Pl1/+IuEHP0glKL1JY+ONCXj7ZxFArjOG4yF9rdACpmvNW6OVoYDeZ7kiV4qRylFGEQgLH1Ek5+R9KaNR+jU9GwFYtyOhb3tfEsHWoEecj4miAcPBDmkSMuym3PDP8nDrLnQiWL56HbdU5oBo0TOCUaaIhMYNLPqDhHSY0+mESEsQ9qM7/o7fl0motebnf/7n+YVf+AUuXLhAkiS3RIWOHj6MB4zShF63y/rmOj/7sz/LxYsXeeSRR/jYxz6GZVksLy/z3HPPceTIET7+8Y+/5XnemLQ374VxBMZw9uIFLl+9RCccYfke5y+eod3tUA5Kb5L1eMvPcUvYXYAsxDD15PMpY9CT0VOKYnrFQK4N4yQmzWK05SIROFpQeARpcq2IMbiiEPAEgTWZmm/6jdz8IEorXrr8PMtbV4mibaJRQjR2qdYMK9sXOH8uIRkaqpUWe4/XKLkt7NE03cFlVJbjlDVprgmjhGiUIh2bQTe5Y+G591US3kyKCxcu8JM/+ZOFTp8QTE9P06o1GA0HJHHCWrvNTnsXYwyLi4vMzMzwyU9+kn379vH000/z27/92zz77LO3NixPPfUU09PTb3kubQxKgF0sAjFoltdv8Pzpr/Dk579IIl2e3Rjx8FSJUlBhMBq868+jDeRKFCR76RCUSlheQElakCaQpfhSY1kCiUFaxfTpSUGaaTKVk8pC7kMqUUy/WYHqcYXEE9ZE77CQLI7iGKdSbITGUQRCEccbeCJD6oA4aaOMZtDTNBZmWIkyTjYXmNu/wHj9BjLP8Lbm6A92iOJtGIzp98dkqaZaKVP3K/S7nTsu4r5vktCYotcaRRH/8B/+Q8Iw5ODBgyRJwszMDGfPnKXdaYOBUrnE4cOHefDBBzl16hT1ep0vfOELfP7zn+f8+fOkaYqUklarVRhsX7nC1NTUW55XGLA0IA2FwjVstjf4laf+IzvrbR584pM8e2ObE5VZGs2p11zPxTuXhpQ2ZLp4smPA0gZHKbJwQBoNyPKcXBVtQ200UglEpnA1lLGwkIBVlKWNQaeaVGekRuFISd118SwXg7mlEmGMIYpjBsM+19deorvTZjTqM+p2SIeG/qAPWtKsQNbSpIOM5565jutYlEmxQptr5zym9zxOfdanNN+l27lEs5kSjV1Wb/Tv+Nq+L5IwiiK2twvTqKWlJa5fv47rumxsbNDtdjl//jyu6zI3N8epU6e4++67WVhYIIoiTp8+zenTp9nZ2SHPX696MDs7y2g04pVXXuHxxx9/y3MrNEpowhw2xynbo5RnVkK2Io/7fuCv4lSrrK4P2NlXpd0f37LVetNUPrl7ezpmWhPpvNANzFJ0OCZOiz6zUjmZVmRGkxuD0JrAsrClja0MnmUhbJvcQD7xI0EbkDaudIC8cGcSGqULfcHBcEytUmUUDtjYWWF15ToidbESRWAEqiwZh4I4HOL7JdrRkK91LjCf7qVRnWV3EPHqlTXWVnbIc0MSz2HZAV7pJEl4FYlAZC5vXQt4+3hfJOH169cRQuBMbLe+93u/l0ajwdLSEq1Wi6mpKY4dO8aBAwcIgoDl5WV+6Zd+iStXrjAajTBGUyrVmJ5qsrm1guM4TE1NobXGtm1eeuml1yXNzdu5MWxHGa9uDjm/PeDayNDPLTKzj8oHf5it0jQi02gv4JdeXsKfv5+5hcXbLkGxJnvd377tcykBqTA4UuEYbmldG0CkGalShCZHYXCMwHd9bMtCOBPpYMu65cliG4FtOfhegCMl2hRaikmuSHNFbzjk1ctX2DM/h7Q8uv0uWxsbDEfbGJWickOWRwhVRSc5rm0hHUm/LJA6Iet2WFnZ4uLaNkmSkmvFqN8jTVOUUdTqLsfvDpiea94xQvt9kYT1ep00TSeqVzknTpzg2LFjt5SxtNZsbGzw7LPP8rWvfY12u02e5xgD1WqLqdY80vIJx32EkMzMzFAul8nzHNd1uXjxImE4KZWYYtrtxSlfvDHi+a2YTgbtnS6Z0yTKUkhyVGmGUaKJ4wTplBlYHrlJGSQRzVIw0YspeC1plqKVZpTEpHHCVKuY+i1L4rgOxrJQoljbqZsjtV2o+NvGwhJg38YRMUKgMNilMs3WNJsby+g0QwgLaQyOMWRGkOhCXyfTmgBBrVRCac1g0OX6lVfY3lljPGrjSAdh2/Q6I6Sos3d/i8pUCaFdhjF86XQXufUSTxzcx5XdLtKpMOj1kQjGoyHCsshTg+t6NJt3Xot9XyTh1NQUvV6vcHRSqqibaY3jOARBQL/f56d+6qdYX18nSVOUAlu6HDx4F9VKlc3tDba3VkizIa4LQRDw6U9/mo997GOMRiN2dnbIJrU0A6A1z67HfOZSj6E2JEqhTYCycqRRGNvDTUAZw3SrwmjjIuHSGQaDLeKPHSGvlWl321y8dI7d7i7bnU2kJalVmgy6He45fLwYHaWFkg4aQY4spHpVUb8TRmCEhZrUGA2GUGkyk5BLG1yfH/5z/w0f+fhH+fyTn+Ff/ZP/E6U0MlMIk5ILSULhDpprgSUEeRqjVM727hJrKxcY7LbByslVClZANA5xA4/HH/5TBA2fbvc8m6tDep02NafMQFbopYqyL8jSlDiKGQ1HBOUSSZIRRkPufWTxTgfC96zA8D8Cfx7YmTztJ40xn5k89teB/5wC3v9fG2N+d3L8PSsweJ6H53lsb28zMzOD4zivk0sbDodsbm4yHo+pPPgpdOoRnX2GTneLq9deReUaY3KkBcZI1tbWWF1d5dlnn+XDH/4wi4uLtzYPaZ7x3NkLfHHdoTOOUEZgxQN2di9TnbuXUjTEEyE9d45SzWfpP/4Ug2tfo1a2MOGYz3/utzhdKzM9NU250uShBz6EW/KwXBtLWfQvnGG1vUqWpSggRYMRWHKybry5mUGALPA3AoMWE5NFozGWxvM8RolieW2Hkw98EL/yzxn0O8VmRYIWoITESIk2GmUSLq58memZMmka0et3SFPJ3MIBWvUpwliRZVvcfeIEe6Zn6IUJ416DzZUV0jRjeTji2vqLWJaNbXmEo8HEpEhglEZQiDql4p0QPm+O96rAAPAPjDH/++0HhBB3Az8M3EPh8vmUEOL4xGTxPSkwTP4uc3NzXL9+HaXULWKOlBLbttm7dy/79u3j7JmzjM6eQSVlHCtiOIzIsoiZmWna7TZy4n5+4sQJLly4wNbWFidPnmRmZobr168DsLa5wW999TmGR7+LE1M+D0x7lK0q/9Pf/03UfYr5iuHYrMfzqkb/+hniGy8jwy6jyCEIfPxynU984vsIPA9hBCpO0HGCcT1yk5AbheeUivKSJZCORFiCUqlEEsUw6R1LISctuQmFU0pcxyZJ4kKWWMd86Yu/wW57jSAooUSGW7IxQpAZMUFWG5QuPPscN0ZYFzlzuUupOsOjH/4ER/c8RDmo0Ot06PeHnDwyYDBsc+7MS+RZRC+2SKIU13FJJ14ppXKt0MiJI8rV+mvvEcnWeooVqD/4OqEx5pmJxsy7iU8DPz+hfl4XQlwBHhNCLDFRYJh8qTcVGN4l2QlqtRqNRoM4jimVSq91BERxAR9++GHOnz9PHm1iTB0jczwv4P77H7+17pudnaXRaDAajQjDkHvuuYennnqKJ598siCYK0W1UuUv/MgP8/tbPt951zQnpquMhj2++4OP4t33KC+cW2Gla0OrTLJ9hZLv0e2oyShb4viJU5TLDaKtLba+8HmyLEGWAhY/+XGQ4KgcozSO4yJdG7fiY9sS6Qg8O0AYgbRvAi2KVpyY/NO5nouIrYlutcUg3OD0Vz8DjsCtWHiigm0XBoo3dbS1EYyHYxpNn4ceXaCsn0Bl86gZl/XlS6TlKmHYJc8iUH18NyPXKUoLamWf2ZkS168PqJTKxMLG9QLicExQriClJJ2gh4wlGfaz9yS7+o2sCf8rIcSPAi8A/40xpkuhqvDcbc+5qbSQcQcKDLeT32+Oeo7jsHfvXra2trhpAngzLMviscce49d+7dcYDofs3xdQbyyQZRlRFKGUYmFhATNZR+Z5ztbWFj/3cz+HZVnMzMxw//33Y4yhVa1z95HjvDy6QcsrjG0q5Tp/6cf+Er96ZYiYMcSRxgoj+ssXGHa3wXewLYdHH7+fVqsQDpeei9sIqLhTePsOYiyfXEV0kjFWvY6UEr/sU59vAGZiliMBg+VYGFVIARt0cV+bAtiQZih04c5kBINr21QPTuHVa0hRiHMabW6pyNqWjeVIBBrXyvFGZzHxBkNVJU9TIjfAGIHRYzKVEiV9sjQiDbtICx5/ZJH775/j2qUt1jdCgrKLTYXrK9vkeVYYhU/UZvNMk4zUHRer3yvd/p8AR4AHKFQX/o+b+fMWzzVf5/hbhjHmnxtjHjHGPHI7J7ZerzMajV5XeL0Zhw4d4uDBg0X9b26Ozc1NpqamCIKA9fV1yuUy1XKFl156iatXr5LnObOzs3iex8MPP8xP/uRPFmr8lsS2LHwykpuyIFJSqZbYzSWHWz6WIxluXKW/sUwSh6gsJUkTgqCQDwGNXwtY+NZvw33oHsaB4ZUzT/PsF59CTk1z8t6HEUIgHQun5OAELsKVCFfilB0szyGoV3HLPrbvYHsO0rFQQuOUHPzAQaDRKFq1wkXeK3nYgY22DFbgYJd9nLKPW/GRrkRicG0XURviq2dYO/skr3z1SW5cfY4k3Si8mFVIp9Oms7tKr7vMoLuKI8c88vAsP/SjT/D9P/AEH3j0BAcPL+K5DnkSIzS4TqGnaHKLwP9D8Dt+myTZunlbCPEvgN+e3F0F9t321JtKC3ekwPB2UalUWFhYYHV1lSAIsCzr1gcOgoBHH32Us2fP0uv12LdvH/1+nyzLmJ+fZ3V1lU6ng1IF1Mi2bQ4cOMBf/It/ke/6ru+6VYO82YMuOQ5XOwPmGzUsKejnktVeQpkMnSUMb5wjjzK0AktrkDlPf+4ZPvmRTxCO+vT629hCMeyHzMzt5eShUzQemMaZXDAAo3KyNMFxPIwy2C4opbFsOflHywGD69jEKkNrhREWRkMWZ8VjNXsiyWaR5wqwUGryDzppMxbSHBlaZ2RemR11jKvnbnDv8QV6+hJJchivdDeImDAcsrW1S5pGBI6NLZcpVy3sYB63shdb1RmthowGY6TOsVyXWtWj5KRcuTHGKwVvum7vFO9VgWHBGLMxufsDwJnJ7d8E/r0Q4v+k2JgcA746UWR4TwoMb4y5uTl2d3fZ3NykXq/fWh8KIXjsscf45V/+ZVZWVnj88ccZDoe0223W1tYmdUODlJKFhQX+/J//8/zoj/7orZ7xzeSEYj8636rxi6+scKZj2F91GGrDUmeNedsQjxXjjWsYo3EsGzGxoq2Wq8w2p5lqVNi7MEujUsO2glsJ/qawDNIWGBTCglxrPC9AG1WoM5ibywddGNrYFkIKLMfCtwpgg23bOEKAkEjLAyHI8wytdQHllwVCSxkIkxCRhHzp+S3CwRB32KRSbxKNN9nZ3KHfH5HGOVW3xXyjhu0FNFzJ2pkldH1Ia88ecu0zX/P4rm+9l1a1yWy9jJN02B6POXP+Eun4ziFz71WB4aNCiAcoptQl4C8AGGPOCiF+EThHIZT0X052xvCeFRhe917wPI/Dhw9jWRbb29ukaUqlUrm1Zjxy5AhnzpxhZWWF3d1d8jynVCrRbDaJ45gf/MEf5C//5b/M0aNHbyXvW8WhqQqteoWKNeZs26YX5qRrXV7JNcLzUb1dLFHA9rUUCGFRqpQ5dOAIzWqFwsjmNWX+tzqPLS18zyvg8MbGCI1SKXKyjssygxE5SidYtgQKNI0WgkylCGNw3Cqp0ti2RJNiWx4WAlfakzalRFoSpXLyNMSkAcMwwDuqWc7W0asRspLR3k4II5tqrUazbjOfWkSZw9mdHpFJSHc2EVaX6cUpPnzXAsfu+lakY5MOOuzcuMZzr1whV4Z2O3zT53yn+ANVYJg8/+8Cf/ctjr9nBYabIYTAdV0ajQa2bVOr1Wi326RpSpZl9Pv9W1Py+vo6ruty8OBBxuMxDzzwAH/1r/5VHn/8ceyJtdbbJaABmq7Fxw9Os7t9lf2Lc6h8hxPlPfzrlzqMV66jkz62XfgRN0oVapUqH3r0g9TL1WIEMvId21e27dKot1AqR2uDbQvSPCPJEmzbwXVd8jwhimI818GWNo6wUUIjPR+lFUZoPNdB2haoAMu2kcIFpbAEGKHwHZs8M3SHIYKEBz5YIopT5qdbuK7AqIhoAM9+vsrZsytsbO0yM7NIUFLIRgu37LGx3ab94ovs39zCb4Z4dl6IP6UhqQtJ1QEEKv9jDuUSoiB1u65LrVbDdV2q1SphGKKUolQqcd99992aoufm5pifn+fHf/zH+Z7v+Z5bx9/xPIAUNg/NVujX72JnMCIOa5iG4IdOWcjjHvquv0CtWmf/3r0szi3SqteplsvYtoW5RWy6CfN/63MOd4ZcP30NYyZdEgou8+vd1Q1KacRNsU9xszIgJmtBJjhEg0ROngNSWuR5QftMwoT5BYtce0hRo1Iq4/sWghKJHuN5LrLkcn0LurGkO7YZpj1KJY29U6BwopHF/HQXNeryjz+3wqEvvcD++Rp75qZZbE4T5QbXl9Sa5p3+994U77skhKIkc9Mt3XXdW/3jxcVFZmdn+eEf/mFOnz7N93//9/NjP/Zjt9Z9d7JrE0Li2C7TtstUuQzMk6P52AQUKsRHuIWXNiCFwXo9lJp3GgoH3QGD7rvHH34jsX/fSfZMfTf1yr2MBwNW2r+BSdpUfR8H2B05XL28TGe3aGFm/ZSBvYPjl7FtG6M1qxshPoJ26LN+vs9zZ1c4eXCWPVNNzm+PSbMYx5v64zsS3l6cvnlfTNZcjuPcIlyXy2X+3t/7eyilKJfL75lhV+SQuNXHBbAQxXglCu7bzS9b3M4fEW8H5P9PG1K0cMUpxkNFkgr2Tn8vghWS7BrZaMB0/V6kvEGSpuRZTp4lpGmITEIc20FKixD46m7RtxdAmLu8eGWHG72QdnvA9EKZwJ5+p7fypvimT0JjDJ///OdptVq37t/+2FvdhteS9N0moJpYtj7//PPk6s2MMWPM6wY2DZPpUEzIl5Pp9F2m4LVrd0YQ/0bj8qVL/J2/9bdxfY+ZmSkq1QqBL4niMzQqVfL8GXTWIRr3UXl+qx2n0jGJkciiJQQCtM6xLKuAwjkuQTnAGyVkScKN63eOrBbfjAI5t4cQwrRqQXGBb458tkUp8Au9Z63J8mwyPTv4fkBzarbotbo+tuu+ZTIardG64HhgIIljXj3zKsZogsDDcx1cpyhx2LaNxBDGKdoYgsDDsQRaQeC7CAy2ZTGOEhxMAUIVAmEJslzhOy5hnBTinY5NOXBZ2ewSpXqyTuW2tePkehS6v5Pv4LaK/+SOkAIpBGla2FE4jjPZcE3Wi7dxSbIsI04ShFWAG4QUONJFG4VlQ6nsTb47mzjJqNR8LOFgSYtOb4DAUK9V6IdD4ihGWgrHdfHcOr7TvNXpMcaQpinLly5hzFtZd791fNOPhELAfUdahVm171MrB0gtmZ6q06gEhFnE9a0dXNelXqpQrU/x0KMfwfUD7nvoA+w7crJoLVH4CqOLUW886KE15FlhWPOVZ57ib/39/xXPtzh2cC/1kke9GeCXfBr1MmEUs7S+TbXmcfz4fuZaLcaDMbOtGr6t6e8OGaUJg94QIT0CF6ZnG0RJIZa0trNLGqXMVSrEeco/+/ln2Bw6PHj/fTiuM+n55q8VqY1BSAvLsm+VeSxLTAYZgeMW3sfheMRLL52mVCrqkXKyXLg5mhtj6HS6LK+uI8o2wgUsKJfqjPs9vKbDwuEmaWQoV+vsXZji5EMV+l2bpA/b4w2Mgg8/+K186dzvM95N8ed2MX6TQ9MfZ9/cozi2j9YZWmm2t7b5v//b//aOrvE3fRICuLaNbRUdAM+z8WynkHuLwPVt9rSmGccprmWRjvtsrF6jUm0QhSM838OgyJKE8Shkd2uVzuYSF159FSyXLM0ZR0O+8sXPMRj2ONScJclCVjpjdlMfx3WY65UYxSnKEjRbdeZa+zh84lGun/siW+sb3H3kALoFg7Wi+yGkw3A0Zt8el+EoIbMkVbeCFgnlWoCKDInO6Q1iBlFWEOBNwbArRnsLrTIwCiEthDRY0kLpievUxGFUCEmpXOH48bsYjwaEwz4my8ktSZKm+L5fAH/jBDDcdPwSwhCOB1iWi5P4rC71sC2Lfi/h2z90L5aKGUTbrC4lONUMaXyurS4z6ricOLaXLdFlFI7YWtnh4IKNymNe/NIX0HmEmnRq7iTeF0lYLXmkKkelGikhCGxc3yXPNHGWUK8ENIIS47TQmd5avkzj3gfZXr/EFz5zlY2Vq7S3OyxvrJMmCWmaAoI9+4+TpwKtMkrlGaRYJUkUFg7j8ZBU2LhZymgQsjg3RcX3SSPFtaXrCMtjHI2oepLOaITjCGwsMmmxtb3LVL3Czk6HOMnwvRbDQY8wGWN50GrVadWqXFvrsLKxw1S9gmNbryWgLryXDRomXR6lckAUHRNL3prCheUwv+cQYW+XtUEfjCFCgOeRpilpmuIHPkhRtE0MOMLBs3xs22U07KFzjVWymJN1lq5HzE7NMt2oMmzu0uvtYPsQDVP2zc/R15dRSUyUtMi2O6hJO/HlLzzP9QtnkVK8aX3+TvG+SEIBBJ6P61n4ro0UgsB1qDRLaGUYhjGeLag6LrmA8XjIq698kZdffYpGeZo8szAiYBRq7jpxlCjaJtNlTj30ENk4ZeX6WfplC0zG7HSdatlD65RY5mjjYTsSaWvqZZuy74LKGG1dIyj5uOUm5XKJXndIkiW0u0NOHFmkM47phxGWkQy7XTqDPmOVsNeZB2kTBD7aKEajETfWdzl6YBbLkpNptGDHddptpGUzNzd3az1sW0XrznV9vFKNarWBLQRnV69h65yaV2M3i4h0WkDTqlV6vT5CgnQtzEiTqhRdUVhpTJbmCAyu6zLOQ57+4vN85/d+H/Plk3z00SZrqyucvfYy/W6EqI0peYZx16babKEdjySJEEiydGKDoe58j/G+SEIJeJYNRmMZB6MEYRjjSJckS0CmRHmKBCKV4ToBtptiWTZGpUShIdcJaZZz4fwQKTQ5PsJ8GWlsLl+4wHjUI89zolThBQGBMLgCbMdjd7cNpkp3MKZcdbCNZH1ll/n9M3hBQK8fsbU7plEuEeeGYZhQLnnUa1O88uo17jkyy1q7R55ZbO+0kdIgJmR1tGFje5t64DBd81Eqo9vv0G536PX6DAYD9u3bx5EjR24lol+us+/o3QRBGRPHjAZdMBphOziOhR4nCMeiXC76uLfKWpZE+KBihdGaVGuEazAO6FwRJyFe2eP43GH27D/BysWXaW1uUDY1Bsk647jHbCMkih2aXpXIcYp/GqXIsrhYNjiQ36Em0jd/EhrIc0WlKhCxIMsiBA65BqGLXeGJY8cJRwOW1pcQeFjCxuSCMMkIbIPnCUglHh5zLb/YNdoetbKDYxfrLzkpsNQqVZAWmbJQOmU46iGlYDCKWZhp4BnwHZuBUtRcmzgMsZyASjlgo9PnxtI6UZrw6H3HuLy1yvxsEwNopRiHCa2DC6QmK4x9EAido5OE60vXSOslOqM+UZoUOjGmwAReuXKFre0t9uzZx0c+/j08+OgThRiSNni+x+ULZ+iMxigkg2hAozWF1uktuJuUEqMMOla3nKVUbDA2CCkRdrFjrgZl8iBnZfwcTSlIGDFKh7SaJeKhRaYFZbtGtZ6T5xnb3U2iaIjODFEYgpAI66ZwybuPb/4kBMZhRKXqMxynBGVJuVpi35557jp+nP2Hj6FVzNqNdZbXVoridKZIBWBcNIIsTtkZjAh8j1FPoYwAK6HfHtDr9OlsdzGWIEkztnY79HtdxpnFOMkwOkdIwebmmH4vZtwN0ElCq1nlxVcuEmWKmVYDgWGr08POCp3qXrvNcJxSr5U4f22NXm+IkxlWtzY5dGQ/vf4IMaF7RmGHeJgSjTyCoITjeFRrTRb37GNnZwujDYt79vHwYx/i3oceKwowRuPaDnmWEYdjHMeDwNAf9VmYmcXe2SAzt5V7jCg4pqZIRJMZrNxCoxFa4sjCPbUS+IxVl6vbG4y1xjswy7Wz57FtzeFj+1lqX8TRDUTo0N1e5sLlF1mcOopWOcKyEVLx1gqzbx/f9ElogN1BxMG9s0wd3E+1ZPP4Y6ewHYfp+UWE5bB06SwHphpUyg06wxiDIclyLEuAL3GUpFQxNOsCT+QMexq/VMZoOcEkQr1Zw3cdNnZ6+KWAaqXCzEyLQX9InERkWcbVpU3OXEiwBDRqZcqeoFmv0mwuotMRWDU2ttcZJYK5eoJXdrl6bYn1rTaZgiyKyXVMmGT0+yNcW5LGQ5Ikwvc9qpUqR47dw70PPIbjSnqdDmmWYIxB6YyXTj/L2Ve/Rqlc5e77HuDEibvJ85ygXObbvvvTvPDcF8mSWRam5vHbY1ZVj0hnt2qhSFEgtq2i1mikwUTF+jPKIozWzFYq3Hf/cQbhFMeOHSFlwGoYsTHsII1H1BFMTe0n6ackg5SXv/Zl7FOlor9t2TiuICV/p8v6uvimT0IA2xJ4lqHi2QRG01nbZHb/Qa5fPcfzL3yVtY0hf+4HPsWxwyfp9EPGYYgfRkR5TpSl3NjNsXCZbjaLonE+puGXGQ5HJEmCXfLojMbkSpGFMUYIfM+l027T7w/BGBzXnaCuIU0Vu90hWyqn2lf8+E98G6Nhh6XVLk8+e4Fm3fAdP/DjvPjMbxDFMVOVErv9kIEGhGC3PUAjCKMRVloU35vNFt/60e8kisZ89nd+lfXNNcJxdEs14ibyx3U9Go0mw36PI4ePUG/U+cBHPsbVqxcpl2r4UwGqPaClXYSocJlusSYUBmE0ju+RigxbSVSiEbYACVmqqNZtTs4d4GR1D9edMmudy6zeOEv3+ibrJMiBYGct4f5Dc2y2Vwp1Wm0xCkdY5RIOKRZ3LpL5jbnp/RFEsTN2JiYzHdJc4bkOSzeu8ORnP8vS1S0OLOzlp3/ts1iOy8x0kz2L8+w/eJDrxmWpp9hoD4gSqJSmKVemqVan6HZCRsOcMDfYlo0UFlobVK5QWc5wOKLX7ROFIeNxxKA/LPzyEDiOhVKFo1KtXmGqYrh+6Qz//J//U+JoiG3D+SurnHzgW9CqAJy6rk3gO0SRQhpJ4LvkWYbRheL/Yx/4JP1emy898yQ3Vq4TRSFKq1suoFmW4dhWUR8NhwWaRgqyPAMhaDamOXTkOEFQIh2PSS2o4mIjC061AbTA1y6kCoWCwEBQsPGkVXROnvjYfqb2G4Tu0hlsk+QxpiKwtKJRn2JmqsWBmX0IY8jSjGiouLp6CbHg4QUWxqvf8TV+f4yEUpJkGYGKKDcOkAqHG8urrK+FfP/HnmDfkaO8dO4aRisyBX6pzFfXtliLUqpYbGxsM3XiCI8+/tgEo6dZu3GD1eUlLCFp98egEizLIsmLqUQpRZLGpGlWeJBMBMdtp2CzaaWwLIdmo8ZUzePl559F5SnSt9BG8XtP/i4/9OlvxwiJdB2Ic6olSa0SkOtiY3wzjDa89OIXGQ16BWBCCMSEb3xzFPQ8l4VWk+44wrJtRsMhWmtcxy2STAjq0zNsXrpCIGzycoCKYoJEMhoOQRROfGEUFks2l6KJlBbwsKmZOgv7G6zrl/lK5xyx9UF2oxjLNHnk+DHiiy/RHQyZn20Sp0O2djcxpWKZsLO0hFUN8OYCfFFieIfEjfdKfv8F4MTkKQ2gZ4x5YEINPQ9cnDx20/PuPZPfi72WYZxoTh7bz/59Czzz7FdoVCt89PH7UZaP7zp83yceY5ClfO30BS6trvHk6QtE7SFxEPCJj38Y4iHZuM/09BFK9RYHjh1ne22N0XBMFEesrqxxfmWX0U4bx3E4cvQgS9dvgBkRRcVOszCvyZBCopXCsQOOHT5I4DqUXYHrWGR5zqA/oFGrcfzkA3gy5fKFV3BdB9c1pLHC9rxb6B5jDFmWsby8RKVcxnVdHMfBGCaFa02e50w3G9Q9n8RAmufYtk0QlJC2zajXZX1thfMvvIDTHxNIG60MqbRI0oR6vUG7N8QoyNJiVBQ2TLWaxFEhr3LqwQPcc+9eVs+v8pUvbXH40A5WtcXOao+yKmFLm931bR776OOEwz65SlFxjqxZWLUAZeeEwTahemcw7xvjPZHfjTE/dPO2EOL/AG7XA7tqjHngLf7OeyK/C2AUZ+RKY7sBrh8w02rSEClVT+JUajzzwnl+5Ls/zCunT9Nu76K8Jl6ckilFq9WgUi2RmgShYq6dexm3VKNWKSNsl5mFOXy/zNF77ufffeazrO3sFqWRLENaAsd1iKICr0gOaZJg2wV03nUc/tyP/hBBxUdZDqVymTAKydKUT37i4zz2gSc4eWSeK5cv4DoxjidRmUYpjWO/ZuVgjEFOQBZaT2iafkFgugkKKDjEeSGaKS0WFvcQBCWiOGLp2mWWr10h29rFFZLBaMgwDbna2WQociy7MNoWCOyqi/HAFsWacDxIEJbhpZeuc+HyBpa06MZjXLvPsScOMi518MoB0lgMBiMGvRG93Q6dfgcdpTASmJKDVXGQ+CjzZgTSO8U3RH4XRRX0/wO8tdTpa89b4D2S3w0QxQph4DOf+wq7nTbxoEt9tk4aRvgzgktXlzh74zg/8+tf5IP3HqTRcHn8kSc4/cKLCG1YXdui6UqGo5ThsIcz6GNqNcZxQnlrjTCXdHojuu1OAeBEF6PD8WOsbhTyIlk6aaUZq1g3KoXSCsexiZKcS2tDhIRTJ46yd36GP/kDn6bk27xw6QpZpsAShInCCIGjDbawbrW3pCWwbGtSGyw0ri3bLjCLkzofUhIrXbg9Cdh/6DBow6jfZ3drnc7SEl40xgC9sM1O2cPUSlSFod8fTCDYYBygIbGkw6ifoI1C5NBtj2mVJXsXm7Rv9AvZZc9CoqnjMNec46J1nhdeucSpe/fjViSmB0JoVJJi8hzGGmL7TsuE3/Ca8MPAljHm8m3HDgkhvgYMgP/BGPMFCqL7eyK/A1iiMKkejYcsNMs4Cy3On7vKw/ed5KtfeY5Of8iJe+7m2MG9ZErw0OFFXjzzJYxWNKenuPeeU5w9c4Z/+5mnuffIQTwJzlqbesWjNwixvRK9fpcsjRECgsAnzXMOzrc4MD/NTnuXnd0ezWYDjKHdKcSZBALHkozHY4ajkMFwzIkPP8y+2Sq/8yv/Gv3RD7G6dBWjU6QEaQo5D0sIcqVudUAsy8K2bWyruBxmAt26iRy3LAvXcciMJFMplWqDufk9dHsdlq5dZry2yR4/YBBtMFKapFrF92zK5YBur1uAgWWh7FCtlBnmYzJXo4XBKhcm4MKFURJz7spG0U6MRuBIRFDi9HCFbtgl8yM23S69tRXMfEZ9yjCODXYuMLlBZjY6A1buLIm+0ST8EeDnbru/Aew3xrQna8BfF0Lcw3sgv3PL+V2YVqU02cEZ/vVvf5mDC9P8+A98kgw4t/QlZhs1nn7y9/n+T36AODdsjuHP/Mkf5Bd+4zOsbqxzEcHBQ0d5aRjyy099EUcYTh7eywdPHacsbbZ22iRpRKY00paUKh6zc3XOrSyTJRnCtilVSjSmmtQqFbr94QTuV+DopIRGvU4c53z5pbN0jyzyp773e/iPT3+RC1dXqLoTdLYRqFThuja2dZOFN/EzmaDDrUlv+HYkeZZlhRSwD3GSMD1TSLxdvXCWjTOvMuU4tFeWacsce3GRcNinVvLQxuB5hRVYq1mhtLfEqJ8htESNJt2TJgi3MJpUrsFIg7YEY2uMkIJe0uHGyjLjKGPs5LRc6MQR9VKFZGQQmYelbbQ0YEm0SoHRHSXRe05CIYQN/CDw8G3JkwDJ5PaLQoirwHG+EfL7BNy5f2GOvbNT/N6rV9noh/zOV86y2x3i12bZd3gvfqXM5ihDGJhe3IsRFt/y2EN0+8toAxvrq4w7O5RKZYbDLoFnOLeyxqG5lGZjhrWNCIGh2WphOy7jMMKyBN3BEN+zcawS/cGA3mBItVElHEWM44jPPvNFXEeQ6QzPt6mVHGYaNVZXl9ncWMWzTMGkswSu7YAAz3XJ8ttkhTETeoIoamamMLix5Wtg3DhNEZPRV+UZy9cuES/dYNZxibp9hq7BndnHVrsAoRpdgBKCUoCUksBzWZyboV+LWQ+3GesMYwmwDQiFsAXSleRGYQyMiQt9HcByJONuRCYsejpGWTk7SQ/lavxyhJCSWuDTHsSo8Z0bOH4jI+EngQvGmFvTrBBiBuhMyO6HKcjv14wxnfdKfjfAIBEs7llke3sD13XYPzNNOB4z22xx7PhR6q0mndEGU9NzjEZjVBaDFDhOisgzKkHAw6dOcurYYV782tc4fS5jPBxQdmFtc4AWFsIuKItBUMZ2ayRaIFWC5QSoJCcvpPTBgGU72HZhTfvU576EbRvSLKPZKDHdLLPd6bK226URuIRxRq1k47pFZ2ac5oSj6BbotNhoSARyUqfUE8ygIc+KXXCSJLcsMJIkATTtc+dZkB4qT7je3yZpVlhdXcfonEq5VOj1aIPnBgRBwNXt6yR5SuZpxuS3KsSWrbFtiyP7Cv3utd0BYayIkjFpHKMssAKJsTRoQRBokqSQm7OkRAqD0ZLxOCmkRlzB8A4T6T2R340xP0UhAfdzb3j6R4D/WQiRU+gT/oQxpjN57D2T3zNl+OwL5wgCn2/70GOE45iNtU20ztjY2GJ+7z6EXMByKizsnaVeaxBFY1Q+hR4MiJSms32N6em9HD2wh6MH9tMbh9xYWSawxyRaMEpCtDHYpRa4DXQyJk2GxHFUCJhrfcu/xBhwfBvf9zl29CCBY1hdWyfJMi6ttVmYaXFgfhZbaLqjlCTNcByFK23QGkuK1yD9N/lRUtxGnSrMgZJk0rJTilqtRp7n5HlORVpMIxnFYy71NlnqtYlvZJRKAUrnDAc9ppotao1GAfnyfJRUdK1xAZrw7KKHLDSu4zA35TPb8jhzsUeagGNJtE5JkhhhQ0aKFllhtxsapDR4Hhw/MEuaxFxaGpJN6qvyTbZm7xzvlfyOMebPvsWxXwF+5W2e/57J74/edzen7jrCcBzh2xa7a5tMTTVRIkHKDJ3GHDhwhHanQxJn3Ng9R7VahTijNr1AuLqMMh712b2UGrNsr22QpCkHp1uM0gqgCEolHM8nD3toO8UROVrHSJMR+AEWhkQbcmXQWUpuGVzXptaoMdso06qXWd7qoOOc7nDMt3/sJHNTDV555RybGzfItSFJQQh7QnbnFsoly7IJjbW4HEqp1yXh60dBqJTK3Ej6RFJw+toVBsNhIQfiOIXMyeI8RkritCgt2VYhJ1evBViWQCvBVLVMs1JlcbaG7ee8dHaVcayYqvgEgWCjMyKJIqQjwRJ4rk0exljaYboV8Nj9R3j03kNcXb5Ku3OJ3c4IJQsQyJ3GN33HRACNWhWd52zudFjf2sUxKQf3etTLDRJlsGyL3vplZGWWrbXrbK9dZ3ZuD5Vyk1K1QqnRoL+5RbuzicrBLZdpmCk285A8zogHY4wVkCUplZKH7wUYNEZ4+LUaxhjiLEHHHSx8jAGtEoSKuHT5KuLwvqIMYwpz7H5/zK995rP86J/8Hg4f3Mugs4bROdrklD0Pzw4IPLcogOfFLjkKY4IgKFhtcEva7aZ1xnDSIanWqswePooZjNm+cAXG+a1dX5ZlGGNYvrGM6zqUyyXm5+ZQKufI3hn+yk98qtiVY+M4GmGlbHe2idOM/Qsn+eyzl7i63KU/1hzZs8CeuofK6sy7D7Gsz5MMUz786AFm9hksV3PPgVnmGpJwnPK7X77MKM0wxoY77B9/8yehFOQIrqx12G4PkFpjuxZrwx0816FUslleOkNZWFjOFgjJ3r2HmNvbQlpVhoMRuUpI84jr16+ycGAvKlE09x4gqFfYXL1OueIyCsGxLeIkRlgKjSDNcpQe4toStMaXObnOcF0HYyRRWmZtVzPMhvTFftzyFvFoC8eyKJcD6vUqK0s7GGMYjzVS2qTxGFuEjOPiQimlAYUQ+v/f3nkHy3Xd9/1zzrlt69t9HcBDBwiCIMUqmqIsmurNiWXHspNMHDthenGSmUzi2MlMJrYnTkbxTDTp4zjVjq24SYolqzmUTJoUG0ACIDrw0F4vu2/bLafkj3vfw4MtyQAjBSCD38y+3b3v7u659/7u75xf+X5/eJ5GqXz6DcNwgw4ZcgUTQlAKQmaPnSBe7XJueYaVpIuxBs/zNsI5WhvSNCPLMnSm8X2Pjhjw5WdfZLXdYahWZmF1lbu2bUEouDS3iDYZOkmoV3z27Wjw0O4p7h9R7ClPsGV4mJm9ghMXzrBqpzn2cosDd42zb88oWnU5OzNDbDKkUryBwurbXwmdg2MnzlApV1jrdKmHkuFajfGJrcwsz1NJPHaNjNHr9AnrAX5JEqctZi4tsnXiIEFQYmxyO/NLMywsLLN9V41KvYbIcm69chDjq5RBkuWAKBFRKY8QKUVkEoxOMUbjKYUTAucEAxNgRB2iiKVYMNADPLrESQfp8nZely7P8eWnf5+su0yowNi8O1SkFDhDWiiXtXYjhbfODJZlOYS1VI4Qg7yodz2WODLUwF/TWOHhRSEi7SGE2MCT+L5PFEUIIUiSDKFSbK/Psu7wO0+fQSoIfI+oLFlZu8rwUI1+nLJ75xhbt/tMjtbZNlJjuFJhbCRmp6doZ2cw/Rm8Zsq2eokdu2tMbR3m8uwMq6uWNPEQNsD3JNJPv9Xl/IZy2yshztGPBwgHu7ZPYYuAsicTmpWQ0XKT+YUW+3ZsY21gWFnu4CtLKQhY9tqM7d1CKCx33/Moh+6THH75ORqTVxirDhGWSzTG97O8PI/nJ3llMBIpI4wIsKqW4zKcxEmFNhrhNKHuk8bLmKQHOub+h+/j5PF5Br0OUgoC5TE8PEKj6bPc16SZIMij1RiTUQoCgk10cUrJnA9G5VmUUilC63wqjqKIwWCQd6AaGWbbzp34bUNvYZmyH7Ft2xakknS6PVqreV+RdfayKIp49B1PYIzlK89/mpGRGlOTo9SHFH6osdoSRYKJ8S1sbTSxToBTDDVqREGA9g2JyNCyhwgGrGUtFq5qDu3ZyYWLS7x2apFWW9DpCUaaFbRN6Gc3zz9x+yshUPJ9Qgmy30EEkpmFRfrdNgd2TGKzlHp9mIVeRuA0YdpnoZMQW9iqIib2a+ZX2iwvzlMKJdXQJxskpEEfJ3y6/YTRyX34S4skccpYqIh8hTUx2mS4zGCyPlnaz6ushcVaS+QrIl+QCkeWpTSaQ6iKh05TSr7HlokmSbdPknm0+ymVAiesyCnjUp1bPSlz6rb16ddYgxWSarWK1hmZzhBxHrjePrWTUlSis9YiHK5SsjGrSYsde3YyZizdsS7T09MkSYqQgocefZx3fs/7OHvyJLV6wBOP7WXX1DhO9Fhp95hdbDNUDSmriFdPXGW+NWDvjkkaI1V85Yh7kpQBv//qCa7OtUiVZMv4MAjF1MR29ozvJ8kGnLx4mem5eRZXJBdbwE0Gad4UStju9PFrAUsdi8ZHqCpGesz0YgQZwvVJnaRSrnL69QuUalWa9TpHDp+gr6HSDDh/eo61zgqeN6BZb7KyNI30y/R6qzSbbSQ+Skl6q1coyw5KSZR19GKNLdivSqGXl59g8aUkzvIA86mTJwGN8C31ss9goDlz7iJXwhBnDQ7LihOUwwBjIPIdSXoNnJ6lGX36SC+vmumnA/r9AUEQ5FBPIRAITpx4nROvH2e40WDryDhByUf2JVcuX6U5PAICxscn6PV6TGzZztjYFuauXGF1ZQkTWzrzXY5caQOWS3MtFlt9jCEn6DSGWqlK1lrBtAxRIDA2w1hBu6cRfsj+HVO41LA6k+JaXfrdFa4uLxGWfWSnxMqlHt2F+KZzx28KGpChbbs2wg+s50GFuK659fqra/V462mva2RK1+3sCmIjt84r41i+cpFQOnzP2/z7eeOeMMJkGVHg53ngTZRvQnAdmbuxOZ1b4XKQpkmeZw7Dgg0Cup0Og34f3/dQyiMIA5rDYyjlFfQf7jpeGyE2UYSQ/76gaFdrMoSQBWPsJmKmgqip2+0wOztDpV7f+IqNmOf6eXPrv3c9UElKUcQ1BbVaBWsdnU4P3/cIAp9ut4ctKFXWz0HcH9wUDchtr4RSee5j/+5/MTw2TsnziHxF6HuEniSQsmC9FxusqVKCEhIlKBSV65TVOofFYWyuLIlx9LWmF2f88t/9McayZXZs20LoeXhS4YchsbHs2Xs3a4sL7N++hZqyhH6efoNcZ5I0ZXl5Kc96SJ9BnNIrNZieXyBOUoYntlJrDuOwdNttnn/mWS6dO8HYcI1ms8G27Tt4+PH38egTH2Z0fEtR2CDzChsh82l7nfPQGaTJPWprDGsLF3AiICwP4bwAkOhCIYRxfO2rv8vP/JN/wgNP/iiZtjlXdqZJk5TQg3YnLeKSMdZkOKOxJg8phR6M1Mrce3CKH/r4R3nx5df5T//t09xzYAeTE8P8zhefpd9dA+eo16tMbRvlhRe+grX2rcNFg4ByOaJWrVILPaqBT+RJfCXx1i2iFHiyeC8FnhDX/ifctabVrLd3daTWkhpLoh2RMXh+nhEwsSFzeSVNFJQYGt9Gr7fK5PgYI5USpXJEtVwmXpkjSzI8T+H7Pr04Qeg8tKOlpDw2iQtrbPVDokqNXr9Pr90iiELGt0zRHB3j4tmTCCDp95i7PM3Lz36BhYV5fuxv/kPCUgnPkwRKoQpFFNKhAGkd2AwpBDqLEY1hknhAGEn80EegMEisy4mfojC3vpmxDFKL1RadWayGKJAMkoyhckC3N8CkBqNTtImxJmXgHEZrZudX+Vt/7xMsLiyRxjGDXhc/CFnrJQRehSgKePzRQ+zdM84LL3zlpi7x7a+E5MD3auBRCzxqgcqtoJJ4Ki+LUlKg5LXXsmA1VTIvA1u3lDnETKCtIzWO2Bq60uBSR+rl+0SlCgJHv9vHq3lk/R4yS9kxPIQdGeH80SNUR+rsHB+hFoQoz6dnDFlqSTJBpVKmOTRENNRkeuAw/T5JmtJoNBnfthPlKdI0wRmDkALjHPe94z089Mh3MT65lYmp7fRai7TmMw4cPIDn5zeUV0z/0gmEKhrlGIOnJFGlhskGSJ2gfA8nLZ70sVaQunUcgSPNUrLMkqZZDlHIDGtrKZnWrGQJUeDRS2Oc04Seo96oct/de3nlyOs899JRMJpHH76H++/dx2c/979ZXu1SrZSoliPK5YjJySb33nfXTV/fN4USljxBxVdUA0nFV0S+JCisxOYpV4q8R9zGayHwiveqILx0zqEt+Ap8LXEOMstGxUq5MUxjZAJPKkhjZH+N0YrHSEky6CbsHx3h8ccehIUV1NR24lSwrbfCgZ27ef3MKa4uLDMxMowsVVghJtyxg76TGAdr/R79TootxiGEwFOK93zwozzx5EcIAkXoK37hX/9bzl84zz/7+U/kgXJyC49z5O8czgqwOdjJ8zy8IMw9eZM7UsYIjJMY7TBFvlunBqNz7z7NNFmqMVmGNZp+liBshhIZjz24gx/82Ps4cPce7jpwgM/+1mf5qZ/5N2zfMsy//Bf/iJGRJj/88Y+wvNrFk4IoECSpptsb8PUXX7rp63vbK6EAAi+3fpEnKQWSiu/lllDmU5QUAkWhjJuclg0ldCCzDOd7OKXQ1qGsRQIaQWocfZUHjMvlKo2RCUqlCgrYWvYJWaNe8jj99cPo+gN87VIVHe7GXA3pdlJ8NYq/2MP2d5J25whKNQJfEg1anJ1rsdTqsHfPXqSz9HsxM1eXmL2yBAgMCgzkbowHCCrNUYLFNtYYcD5O5BYcBJl1yEIJraN4SKQMyPQaOh6AHxWdQ23eeNtCyUt4++RxFtohg0xyemkcrXPAltW58jodI6RhodXnS199mfMXZ3jp5WM88/xhglKJPbumaK8u4nmWcjmg09HMzS+xsLDKV597ndPTc1Rvvo3J7a+EkFd1BEoSKkXZU0SewldsWD0l5HWK5wpHJBAC0gFLn/tNzp18jTV/mO/6Ex+nuXsXiLwoIHCO0JP4MvcNw7BEpVIlikpEYYmRoTImFijlc3n6Eg+//53s2j1MJCWliSpB5GNWltALKf3aLl757ZfQWcZwc4S6EiycPslaKjnegotLXeYW+rTWUoYaTZYWcn6Ypavnefqzn+LdH/o+ekjWUoWqjvPMi8d44rGHUUGOEcE6jMs7fWIc1ubHoBFYITEIdJbma0KpSPFIrWFgHALDltp5xkqay62tzHcr9Poe1mqc04w2Q+7dt4v7D25n995dvHb0FL/+ud9jbqFNZnM//8DB/Zy/cIkXXjoMUvLlZ1/nyImrGGt48tG7+RtP/TEqJY+nnvvcTV3fN4USKpmv/4LCIfGlwFe5wilxzfLJIjRjcFgHWqec/5X/zJlf/y/c0yxxjx+w8LOvov/8jzP6jodxUuIJh5ICr6BbU8rD83x8P8SXHr7nI8KAxtQOhibGmb/0Et/zIx+iXKrjuh3A4aIm4p7dLFw4zslz53noPU/glyo8e7TF+eUSy72E2fkZfuSpd3P2zDxf/PxRatX8uBrNYQ6/9AKnjxwhqjdJ/SaXLs/RHfT4pd/8baa2T7JzxxR5sMWBzbtoOgfWCrQRaCvQ+GgVYHWCMw7tMjIcqZVkhTW8MmMZn/AYLc3wrl3LtLZt4YWz4yy1Pdp9zbmrS5yfWaT2/FEeOLibxlCdrVuGGR0Z5oF799NavMTV2Yyj55ZY7mYsthMO3DXFOx4+wI/94AfxfMnrJ07f9PV9UyhhzsCQp76UlHgyX8N5UiIpwjOwOVhIai3R736WxV//BX7h7GWUhL2NBvPxGT7yyTXe0/1bDL/33Qgp8ASEMkf6rrev9byiCU3RpyFoNPj4j/9V/v1P/3P+6V/4y7zrY9/P3vsOEUZleu0Wx/7nr/L0b36Ghx57lMmt4zz97AV+7Qsz7D00zPue2EaShYxPDpEWa7SZqy2cMxzYf4DZoyewKy1Wr17mUrLMzNIicRIzd+Uszzx7gPGtP0xv9jztC6+hu0vU9jxEZee9OOsw1oIROBXgwjJO+vl60zmUy/CcQpKj9IyLWFjog4jYOi4JBvM8vj/hyNWd3HfP/Zw+d4633b2LWq3C57/6Cr7Q/MXvfzfvf9/7KFWqrK0uY3TKU/URnINBPCBNYvr9NbqDPmdPzPK1r79289f326ks3ynxRR5+UUWsTBahGCUFyl3Pnr/eD4T2KrXP/Wc+2lQ88PBevrqwym+vxsS1Ok+3Zzj8iX/MX5ucpHHwIEJalAIhC5YqJVGeh+f7JAZsohFSsXX3Lv7OJ36GL//ab/DfP/lJFmZmmRhu0B7EJDrlqb/4Z3jiie9m0G6xttxiKJAszS4yf9Eyun0fv/f0SXbtG6Na9WktJkRKUD5znh+92mOho6hcWeZitsTM0jw6Teh3Vpm+fJG4tcDsS1/EtOdZWlrCm77Mvd8/jqyN5LO0yLvEI32sp3A6RdgMaUG4IsAvBMOjNTrdCs1ohiwBIXy2DElG6osMjS7y0L7tNCbvZrxZ50NPPsynfuuzXJ5dItMaP03BOZJkQPvKOaw1dAcxr5y6yuFzC5y43GVmaYCfLL81W0jk8T+ZEz0WjoiHzJfxRZn6RmTU5c5IduwwaXuVoShiW5bxAzu38v69JVpP/SSDRpOTrx9H1cp4UuBLmcfhKBp5Kx+lfLwwJHOW/iADl2ddhhpD/MCf+SFqlZCf/+lPkMRrlITDSsORw6/QqFSY2L6Dt93V4E9/3yH+6xd+n+VVy7Mv/h4Cw+njlqFSjzjsI4xkdKVLc5AxazTLq8ucW1qipgd8z4P7UXGFdz1ykO11j63v/2Mk3TYzZ07w+vHjnPzKr3Hoe/8cSA8lBdatK6IEaUCnCGdRzqGwOCHo9wwBHXo9QakqSDOBEn2UmOXiqQ4Vf420ehe2dB/3bx/ioakQPZhlsDKLP7aNTCestlaZW+1zejHmd1+9xMnLa6RGIpykLns0zBmmb/b6/lE7CCG2kwPfJ8kzXP/BOfcvhRDDwK8Cu8j72/1Q0fMYIcQ/AJ4iL/H/cefcF4rtb4iFQaynoMS1cIsqKuPXyXQEDrtuEZ3lpRee5XMnL3LPUI13bJ3gQLmG2/8IWx78LoSn2Lf/INo5BkZsZF0KxAdSKqRUKN9HCkE/s5gkg0yDsLQWl5g+e4GDT343WatFe3GRhkmZPn+RX7o8y/s/+hEef+ztPHKozsziOKcvXeGusQQvCvHKZUr1SV57tcv02RatQZdWOiCRglpjiB++dzfm3MtsrZd5+fVX+MVPnqbRHGLrjp2E1WGGtu1iv/J56bln0J1FgsYowjmMsCBAWo0mfy2cRlmHwmC1pbXcplwJiIKIhUXLagtGJ0aoeC3KYhanPbx4Ft+VWFsYo1LK++4tz82x3O5wes3y3Mk5XpteZqVn0AR4tRFKJiG6+vvUBxcJSL4jnNWavKn2K0KIGvCyEOJLwI8BX3HO/ZwQ4ieAnwD+vhDiHnL8ySHyTp9fFkLcVTRafEMsDBS4hWuxwGtKKbiGSJM5OT+63WLL1ZP4UcBXO2s8c9Wwp5/w43/ho9SK2OJ6W5J1RZYb68ocG4zyQCikp9AOlheWOf715zl/5gyXT5/hxVeO84M//ZN0u32mp69y6fw0U7unuHp5ht965gXG77qX0cYwP/wD72V2LWZ2kKFVgPMUVgjml5aYPneSzrDPiX7KYHiEdLCAPvo69z7yTvbcfYhP/c/foLXW4bd/9Zd4/L0f4a57DvH68VOcefF3aUzt4+qpV7nr7e/CWYdyBuc0BpsHsnEILNIapDNI5ShVLGm8SuhJyp5lKbMkyQTG2009TAhVG3/8HfQWFpmdX2bbzj2USyH93gDrN/jFrx5n3HYol5sMojA/570lOi9+hqCkWFxYoFQq34BKXS83gjGZJccT45zrCCFOkAPXv48cAAXwX4Cngb9fbP+VAv55QQhxFnhUCDHNG2Rh2MgJF+tAmase6zihdeWRAMIhF+Z5UKa87bEHmfcjTqcp551Pc9+BDatnnSt60DnkOugINr7QANYJjJAkWF4+ewnZWmGkXuKFMxeQOiVNUqw1jI01efnrL3HogYOk8QgvnZtmJdVIEeYpw0aVoXJGbCzauQ2knZSSFxL4vJTcPzrE1NWzXLl4hcrwBCIKmF1Zo5MkHH7pFQ4fP8MHP/Bhtu/dwbGjJ/jgwYcpVepgDNJmYEye83USUVgi4UC4XCnTxDFzJaXZUAwyj9F6iZEkQ9RGaDS2oLIV4qSJTavEySLlkofnCcrlMn4UYtC8r7nKvrpHrGKeDyZ57fhp7OJxhifHSKdfYfvUCFfm+9/ZNWFBB/IgOWxzYr3nsXNuVggxXuy2jdzSrcs620LGDbIwbGZgEFJuxAKVEHgFNjd/FEULhVWE3DJqCa2gwljF50C1xEEB81sPUiqXC3b5guWgOFtS5LyR61U1pvA6jdGgNUncZ36tzdb6MHtHtyMDHysE2lqCUoXZ2UWC0Gd5cYnzZy/S6w1YaXcIK1VmZ2ZZba+ytLRMq9Wm3W3T6w04c/o0WWZy9v2tVbJAMTuzwMJqjxOnzlKb3MJyL8dCn5q+Slc7Ll26wl/5y3+OpbUB7dVltu2/G2fz/LAzGpdleesJUdxFxuC0xhkNAnw/QmtF2h/QEjETW4Zp3vMhVmYuEw8GdJM+/sosQRTy/g9/mAsXztNPUnCCUHcopS1ww5SF4dDWGvN2F6unv0ayukg8SLhyOQ/Ub6oXuSG5YSUUQlTJkXR/2zm39i3adX0ztoUbZmHYzMCgPM9J8typKhSOTZZLFF+9PjUrAeHdB7n4J/4Sn/30LzPUXWF3vcn+ux8sOq6Lax70dceXP1tEHhC2DosB40iTAUkyII08lroxtYP3sPX+EjMzy2A1r75wGJ3GHDt8jO5KG9vrcfbCBRZnpvnU//jv6CQliMA5i3Y+Xq2JEjHdbp9Kp8uePaPUQ8Xq/IDlzoAgiNi5ez/VapXl1iqBr9DasrC6wokjR3BCoJSHtZYk6YPVCJPhsgyTdMmsRYgQZyzOpOh4kNctWkgHGWHmKNc8JrbezdsfOMjT8+dwShINlRmfGKFWq5P0unTbbXSacCxOmJu5TKXeJE4tU6N1Gl7M1eESJ2sVVrstBrGmXvUol8ObXRLemBIKIXxyBfwl59xvFJvn1zvAF4RHC8X2K8D2TR9fZ1t44ywMAhBuo9ptA6sr2Cj4FGzOISsefNeTHHrscTpra/SThOro+PV1hZvWhNd+ZL0uEJACDSiXd33S2rKWpMxaTWVigoqS6PYi3bU+4+WIcMskeBEnv/B5EuGzOj9LODZCKdQ5ss1XpKklCDRUHPO9nKJjYrzBoN0CLAudAVYp3vWBD3Hg7nv52A/8cY4eOcyp10+RZBmRr0gHfSa2TOCUIon7JP0O0lk8LM4MyLJBjkkRuiBU0iiXA+q90FEpQVgKkEozN3uML/76z+FbRa9X4pF3PMlg0OOBRx7Dk4LWyjJXLl9ifn6efQfvp93usm//DtLWLMFSnwMDj88fPYyyMY2hEtWyy1kivt2WsGDe+o/ACefcz2/612eAHwV+rnj+9KbtvyyE+Hlyx2Q/8ELByvCGWBhEURUjCm9kXREF1xyK3MEQ106Ag8APKNeH0J0Ovu/lBZ+CPG62vpvbOE4EoI0m1QalDcoCSqKtw6LoJZosyej3YsqVElFQprpthGalRqPRJNyyg+TlFzi60iXqtzFiDGMV1dBiRF5gG/mWsOwxpxN836MSeTCISXsDMmOoV6tIp3nmi1/kbffdz0QjRDrN3FKHQwf2ceDeA4zt3Emv06HTXqE5ugWpBNYMSJMBRmdkcUIqYpQq4cjblAkEvucQ1jDejOiupczNrBJGCZ5qMr8SM7Vlkl6vg3KGLDXMzsySZpbAU2wZn6ASldFEPP/aNI8//l28ffsk3/s9D3L48NfoxR6BzJhfbn1HLOE7gR8BjgohjhTbfpJc+T4lhHgKuAR8PL+o7rgQ4lPA6+Se9V8vPGN4gywMclON8YY3i9uYQ685FZtuQeGwxtLv9Qg9udHQaF1coYzrDFjri/lMG5IsQ2mD1BYhFMY4kB7aGpLMEGtNUGsQDQ0TlEoM7buHkZEmK4vLRKUA3wuYv3yRYMd2jBX0ktzs6szQT3yCrI/VKVpb+v2YwBpanZh+oglDwezVGX7vy1/j/R94H34oePiht1EfHuXQ296O0QlZlnJ5+gKV+lAeqirYEnKGBpOzRViDMRZHDtCy1sEgw1MZnXlLmmQYMUwQjGBlk/qQJSpFdLpr+GGAD+zePsWZM6exVhJEIcniIiaLec8H3o+PISiVmJzcxlBJ0CxlHD/bx8ibNIPcmHf8DN94PQfw3m/ymZ8FfvYbbH8DLAzrmZDrC8+/4SKzSLGt75NmKe1Wi6tnzjI0McmBQ/dsFDdcW02u/823a2PIsjRnRcgyhIAsycujMuewBubOXWD20lWGRkcoRxWUEmRnTiAGHWR/jW0KvMQRlnxkUGGtleD7Gm0h7RlkGBNnNqeRdg4tBFYJ4jTDYmm12zQDxeK5swzv34Z1UCrlDPnaWQZxgsCRJjFJr0cQWHSaYp3NmzRqjU5zAnjPq+Csw/Ng11afwcCijSaxkqHxHSDKOG0JvLxA1pcOnSWEQcgrzz/H/MoKdx86xOUL5zl54gTZgbt44t3vpbN0BZwjU02eO9qlHgoCJQgi75sqyzeTN0HG5Nribb0e0Lo/tAewjpvI133nzpzhS7/zGfqtDhGOt73ryfz/m/a/Ft5hIxaZZSlxmuAlCdLLe/ymWT5FC6exmUbHA+q79zNy4CCVahVPeVy5cAKzugjSUc8MK/2EpcUlRrdt5fziAlJYjJAYY2l1s7zqucB4eKWILbub1MYzto6P0uv16C2tEQ93EQqCMETKHNRugahUojk6Qr/bpddpYcsq51aUCmsMRmuyNAWlcCLBOo11jjOXUxo1SymQROWAQZwD7nPOa0mpVKLZbBBGZdIk4UvPvEDXSfbt38/S/AzVaomZ2VmMTvProFOGR0fp9jWe8LEBiMS+NdN2OJdjQ9YfrNfRuevaD9jC8XDOsdbp0FrtsnzhOD2t+e7v/3huJYsLn68r112dazZWO0dmHJk2qNSAy4oLm2FdXgBqizTfoNsnS1KGxycR5RqZ1jjh0MaSxRlrq12mdu5i+uhhlASjDVoqPKORBR1cY6jGH//ouzHOpzk8wtjwGKutRXZU63j1gDiJ6ccpjrzkKipFWB1Tq9W4cOECrfYyxvgIJJ7nFxU2rgAeWZB5lwFnIBQF66uDuSVNUO6S6R44KJUrSOnjrGHu8lm6qyu8512PMNAOTzmcNXQ7XVLjSNMYJQXOWuq1CrVqhcAXDA97tAdvSUsIxrnikSuJdjbH7zqBxF2LG27yfg898AAH7r2XX/2P/x4vqjIxuWXDEq4rsXN5qs+5PDANOVOCNvm6yliLNJZMGzKdQzeNtVghWZ65ghoaIiiVSAd9BlqTZhlOClIrcFaQ9ftUdkyBXyK1fVKTY16sVWgriUKfarlMtVQhqg4xMTpOEETUqyW2T05x/NgRusurNIaaedhISMqlEr4KCAPJ7OwMxhh0mtt050AVjbeFVAWCLo8johT+8F627ZqiXq2w3RraHY1SEVLmZXKzl8+SxQN6vTa9XsKBgwfw/RBnLdMXL9Hvdel0B3z5C5+DbEAQhHQSy8G9u7gyP0+lWiWseXDu5qha3xRKqJ1D2/yRWYdnXU5BVhSiKnKjpqwrjJvDIkB5fO+f+lFK1TJCiI0+Q9em7zweqClgn4C1Dm0t2tg8syEgM5o0szg0WqdkUrL68tdZOvwcXhRSlhKV9vAKzr7MgcawcvkKY3t2UWmMsrwwA04jbOEJWcPw6Ahj45O0+46o7pNqTWb6BJ5POaqiDfhhxN79+0mzHLDVW+tQrnhkWcbQ0BBGZ6RpztQgZd6zJNUaJwXC5RVHAvD9gPseeJT3PvlOep1Vnn/+FUaHFc6YotOn5sypk3S7fbq9PmmWh3XSJMbzFIM4Y3W1RZJozn36C6RJRpJp8BSLSyu0ez2083nwwYPA8Zu6vm8KJbQuL2XPLCgLquB7djikzItYVYEfFqLAzwqHc4JSpZK3dYMc57T+pQ4MuYXNvz8HBFnyjEmqLSozOATaCVKjcTYj0xojFZm2dLM+Lo0Z0Y6SJ7AeCKNybIcV2EHGwtwCo1smWZ6/irUCa0GQ5Qz+QY4NmZtbYK3TJQp9giBgatsUQztHQXpQEByBRAhJlsUMBjnvjFQ+wgsJSyFSitwDJg9ki/W6SKUQUpJlmmef+TpPf/FLVCMPbSwWQRznKMMoDBjEOY9MztylMNbRj2ME+c2ZpRme7xVunMDqFJvBeKPKWKPGarfPkSOvfkcKGG65OEdhnRyZIK+mtvkCWJGn86zIwzaiSOsVBjF3VAw44a5bMNtCCS3XgEC49bRd/nup1nnQ2jiSLC2IIwdoa8kcCCMQviKxGdYIAiERTmD9ACsykkGfxYUltu7YlZdaGYtzkLq80nmk0WR0uLGxNg38gCgsYYzFYNHkBOu9Xo9ypU65XCaLIY7bKCXzFhKDmLGRBqCxxuFLjzDKU52WoutSHKMETNR90qBCb5AghcppR4whCn3WugOEE8RJglCSWsXPZxzW+6q4jbYZ1XKEpwStTh8pJa21LkmSsmt8BFUKOXnh5laFbwolbC/NE3mOvucRegpfSSKvyCcXYPf1/PFG/uQbnId1hJsjX18aZ8ksDIyjF6ekaUISJ/S6XbI0JQ5yRv219hrMzYCwZMmA1toaPWORDjyh6LkMT1t8cqZSYWKMyxtod9prBGGIF5XpJy2woHXu/DjrSJK0cBwMbWNYXVoh6feplCqsLK8y6HXIkoztO/aAt8qg18aZGOsMWhta7QFKQt4WRaK8AKnIvfo0xWQ6n0bTjGPnZrBaF4UbEAY+w41qHq9MNGudPkopoijA9hLiJCVNc0YyP1A53Zy2OdTC9/B9D2ssvThmkKTMr3WJKpXr2S5uQG57BgYhhCvXGwV9WrGtSJd8o/vtZu7BzTFH5xz9zhqiYDtAXAuQG50hpNr4hNU6N5l/gFpkM23HejEEUuL5eUtYa811S4Kctd/biBNtRDCFQKm8O9S6c6E8DyFk7vFu+l3rXJ4T38hpsnGjrb/XWjOIk43WaH/oHAlxU1Pot9pTwPq4b/hSvBmUsMO1NmVvdhkFlm71IL4N8kcdx07n3NiNftmbYTo+5Zx75FYP4tshQoiX3grH8u0+jtu+1ewdeevLHSW8I7dc3gxK+B9u9QC+jfJWOZZv63Hc9o7JHXnry5vBEt6Rt7jcUcI7csvltlVCIcSHhBCnhBBnC1zzbS9CiGkhxFEhxBEhxEvFtmEhxJeEEGeK5+am/f9BcXynhBAfvHUjByHELwohFoQQxzZtu+mxCyEeLs7BWSHEJ8W3QMRtyHr93e30IC+MOQfsAQLgVeCeWz2uGxj3NDD6B7b9c+Anitc/Afyz4vU9xXGFwO7ieNUtHPsTwEPAsf+bsQMvAO8gT558HvjwH/Xbt6slfBQ465w775xLgV8hB9W/GeX7yMkBKJ4/tmn7rzjnEufcBeAs+XHfEnHOfQ1Y+QObb2rsBeqy7px7zuUa+V83feabyu2qhNu4von9NwXK32bigC8KIV4uAPzwB0gCgM0kAbf7Md7s2LdxgwQHm+V2TdvdMFD+NpN3OudmCjaKLwkhTn6Lfd+sxwjfBoKDzXK7WsJvBqC/rcU5N1M8LwC/ST69zhfTFDdIEnA7yc2O/Q0RHNyuSvgisF8IsVsIEZCzfH3mFo/pW4oQolKwliGEqAAfAI5xjSQA/jBJwJ8UQoRCiN0UJAH/b0f9R8pNjb2YsjtCiMcKr/jPbvrMN5db7VF+C2/tI8Bpcs/rp271eG5gvHvIPcZXyUEWP1VsHwG+Apwpnoc3feaniuM7xQ14kd/h8f8Pcva1deKqp97I2IFHyG++c8C/osjKfavHnbTdHbnlcrtOx3fk/yO5o4R35JbLHSW8I7dc7ijhHbnlckcJ78gtlztKeEduudxRwjtyy+X/ABVuWVouAz9FAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"metadata": {
"trusted": true
},
"id": "783354d3",
"cell_type": "code",
"source": "# load model weights\nresnet34_a1_weights = torch.load('./resnet34_a1_0-46f8f793.pth')\nresnet34_a2_weights = torch.load('./resnet34_a2_0-82d47d71.pth')\nresnet34_a3_weights = torch.load('./resnet34_a3_0-a20cabb6.pth')",
"execution_count": 4,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"id": "aaad550f",
"cell_type": "code",
"source": "# load a1 proc\nresnet34_a1 = timm.create_model('resnet34')\nresnet34_a1.load_state_dict(resnet34_a1_weights)",
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 5,
"data": {
"text/plain": "<All keys matched successfully>"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"id": "b700d2ee",
"cell_type": "code",
"source": "# load a2 proc\nresnet34_a2 = timm.create_model('resnet34')\nresnet34_a2.load_state_dict(resnet34_a2_weights)",
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 6,
"data": {
"text/plain": "<All keys matched successfully>"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"id": "651e930b",
"cell_type": "code",
"source": "# load a3 proc\nresnet34_a3 = timm.create_model('resnet34')\nresnet34_a3.load_state_dict(resnet34_a3_weights)",
"execution_count": 7,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 7,
"data": {
"text/plain": "<All keys matched successfully>"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"id": "07087471",
"cell_type": "code",
"source": "def add_table_rows(img_paths, input_tensors, overlay_a1, overlay_a2, overlay_a3, table):\n for img_path, orig_img, a1, a2, a3 in zip(img_paths, orig_imgs, overlay_a1, overlay_a2, overlay_a3):\n img_id = Path(img_path).stem\n table.add_data(img_id, wandb.Image(orig_img), wandb.Image(a1), wandb.Image(a2), wandb.Image(a3))",
"execution_count": 8,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"id": "996af447",
"cell_type": "code",
"source": "def get_cam_overlay(model, input_tensors, target_layers):\n cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True)\n grayscale_cam = torch.tensor(cam(input_tensor=input_tensors, target_category=None))\n results = []\n orig_imgs = []\n for input_tensor, cam in zip(input_tensors, grayscale_cam):\n orig_img = TF.to_pil_image(input_tensor) \n cam_img = TF.to_pil_image(cam)\n cam_img_3d = Image.fromarray(\n cv2.applyColorMap(np.array(cam_img.convert('RGB')), cv2.COLORMAP_VIRIDIS))\n res = Image.blend(orig_img, cam_img_3d, alpha=0.5)\n results.append(res)\n orig_imgs.append(orig_img)\n return results, orig_imgs",
"execution_count": 10,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"id": "5f22c4df",
"cell_type": "code",
"source": "table = wandb.Table(columns=['img_id', 'original_image', 'Overlayed_a1', 'Overlayed_a2', 'Overlayed_a3'])",
"execution_count": 11,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"id": "a1643b5b",
"cell_type": "code",
"source": "for validation_batch in tqdm(val_dataloader, total=len(val_dataloader)):\n img_paths, input_tensors, targets = validation_batch\n cam_overlays = []\n for model in [resnet34_a1, resnet34_a2, resnet34_a3]:\n cam_overlay, orig_imgs = get_cam_overlay(model, input_tensors, target_layers=[model.layer4[-1]])\n cam_overlays.append(cam_overlay)\n overlay_a1, overlay_a2, overlay_a3 = cam_overlays\n add_table_rows(img_paths, input_tensors, overlay_a1, overlay_a2, overlay_a3, table)",
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"text": " 0%| | 0/123 [00:00<?, ?it/s]/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n100%|██████████| 123/123 [07:21<00:00, 3.59s/it]\n",
"name": "stderr"
}
]
},
{
"metadata": {
"trusted": false
},
"id": "4f7a9e0e",
"cell_type": "code",
"source": "run = wandb.init(project='resnet_strikes_back')\nrun.log({\"Model CAMs\": table})",
"execution_count": 17,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mamanarora\u001b[0m (use `wandb login --relogin` to force relogin)\n\u001b[34m\u001b[1mwandb\u001b[0m: wandb version 0.12.5 is available! To upgrade, please run:\n\u001b[34m\u001b[1mwandb\u001b[0m: $ pip install wandb --upgrade\n"
},
{
"data": {
"text/html": "\n Tracking run with wandb version 0.11.0<br/>\n Syncing run <strong style=\"color:#cdcd00\">true-sky-2</strong> to <a href=\"https://wandb.ai\" target=\"_blank\">Weights & Biases</a> <a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">(Documentation)</a>.<br/>\n Project page: <a href=\"https://wandb.ai/amanarora/resnet_strikes_back\" target=\"_blank\">https://wandb.ai/amanarora/resnet_strikes_back</a><br/>\n Run page: <a href=\"https://wandb.ai/amanarora/resnet_strikes_back/runs/37rtdmuw\" target=\"_blank\">https://wandb.ai/amanarora/resnet_strikes_back/runs/37rtdmuw</a><br/>\n Run data is saved locally in <code>/home/arora/reports/wandb/run-20211025_073042-37rtdmuw</code><br/><br/>\n ",
"text/plain": "<IPython.core.display.HTML object>"
},
"metadata": {},
"output_type": "display_data"
}
]
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.7.10",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"toc": {
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"base_numbering": 1,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"gist": {
"id": "1b07a2acfb6d4a6735663a577f6b97d6",
"data": {
"description": "reports/GRAD CAM .ipynb",
"public": true
}
},
"_draft": {
"nbviewer_url": "https://gist.github.com/1b07a2acfb6d4a6735663a577f6b97d6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment