Created
March 16, 2020 13:43
-
-
Save analyticsindiamagazine/21cceac649a450c8b29888ee80c2a5af to your computer and use it in GitHub Desktop.
OpenAI Gym - Classic Control BM.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.4" | |
}, | |
"colab": { | |
"name": "OpenAI Gym - Classic Control BM.ipynb", | |
"provenance": [], | |
"include_colab_link": true | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/analyticsindiamagazine/21cceac649a450c8b29888ee80c2a5af/openai-gym-classic-control-bm.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "PlJhNeqXlZxw", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import gym\n", | |
"\n", | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline\n", | |
"plt.style.use('fivethirtyeight')\n", | |
"\n", | |
"import pandas as pd\n", | |
"import imageio\n", | |
"import time\n", | |
"import numpy as np\n", | |
"import gym\n", | |
"from stable_baselines.common.vec_env import DummyVecEnv, VecVideoRecorder, SubprocVecEnv\n", | |
"from stable_baselines.ddpg.policies import CnnPolicy, MlpPolicy\n", | |
"from stable_baselines.common.policies import MlpLstmPolicy, CnnLstmPolicy, MlpPolicy\n", | |
"from stable_baselines import A2C, PPO2, SAC, TD3, TRPO, DDPG, ACER, ACKTR, SAC\n", | |
"from stable_baselines.common.evaluation import evaluate_policy\n", | |
"from stable_baselines.common import set_global_seeds\n", | |
"\n", | |
"from stable_baselines.bench import Monitor\n", | |
"from stable_baselines.results_plotter import load_results, ts2xy" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Vl4-NA1alZx2", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "5572d76d-a09a-4b0f-eb56-65bf49d994f9" | |
}, | |
"source": [ | |
"plt.style.available" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"['seaborn-dark',\n", | |
" 'seaborn-darkgrid',\n", | |
" 'seaborn-ticks',\n", | |
" 'fivethirtyeight',\n", | |
" 'seaborn-whitegrid',\n", | |
" 'classic',\n", | |
" '_classic_test',\n", | |
" 'fast',\n", | |
" 'seaborn-talk',\n", | |
" 'seaborn-dark-palette',\n", | |
" 'seaborn-bright',\n", | |
" 'seaborn-pastel',\n", | |
" 'grayscale',\n", | |
" 'seaborn-notebook',\n", | |
" 'ggplot',\n", | |
" 'seaborn-colorblind',\n", | |
" 'seaborn-muted',\n", | |
" 'seaborn',\n", | |
" 'Solarize_Light2',\n", | |
" 'seaborn-paper',\n", | |
" 'bmh',\n", | |
" 'tableau-colorblind10',\n", | |
" 'seaborn-white',\n", | |
" 'dark_background',\n", | |
" 'seaborn-poster',\n", | |
" 'seaborn-deep']" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 61 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "1IFI9-VWlZx5", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "11ab22f5-9ee7-4ba4-b850-64bd7fd58ccc" | |
}, | |
"source": [ | |
"gym.__version__" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"'0.15.3'" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 2 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "HnakU1vdlZx9", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def make_env(env_id, rank, seed=0):\n", | |
" \"\"\"\n", | |
" Utility function for multiprocessed env.\n", | |
" \n", | |
" :param env_id: (str) the environment ID\n", | |
" :param num_env: (int) the number of environment you wish to have in subprocesses\n", | |
" :param seed: (int) the inital seed for RNG\n", | |
" :param rank: (int) index of the subprocess\n", | |
" \"\"\"\n", | |
" def _init():\n", | |
" env = gym.make(env_id)\n", | |
" env.seed(seed + rank)\n", | |
" return env\n", | |
" set_global_seeds(seed)\n", | |
" return _init\n", | |
"\n", | |
"\n", | |
"\n", | |
"def evaluate(model, num_steps=1000):\n", | |
" \"\"\"\n", | |
" Evaluate a RL agent\n", | |
" :param model: (BaseRLModel object) the RL Agent\n", | |
" :param num_steps: (int) number of timesteps to evaluate it\n", | |
" :return: (float) Mean reward\n", | |
" \"\"\"\n", | |
" \n", | |
" episode_rewards = [[0.0] for _ in range(env.num_envs)]\n", | |
" obs = env.reset()\n", | |
" for i in range(num_steps):\n", | |
" # _states are only useful when using LSTM policies\n", | |
" actions, _states = model.predict(obs)\n", | |
" # here, action, rewards and dones are arrays\n", | |
" # because we are using vectorized env\n", | |
" obs, rewards, dones, info = env.step(actions)\n", | |
"\n", | |
" # Stats\n", | |
" for i in range(env.num_envs):\n", | |
" episode_rewards[i][-1] += rewards[i]\n", | |
" if dones[i]:\n", | |
" episode_rewards[i].append(0.0)\n", | |
"\n", | |
" mean_rewards = [0.0 for _ in range(env.num_envs)]\n", | |
" n_episodes = 0\n", | |
" for i in range(env.num_envs):\n", | |
" mean_rewards[i] = np.mean(episode_rewards[i]) \n", | |
" n_episodes += len(episode_rewards[i]) \n", | |
"\n", | |
" # Compute mean reward\n", | |
" mean_reward = round(np.mean(mean_rewards), 1)\n", | |
" print(\"Mean reward:\", mean_reward, \"Num episodes:\", n_episodes)\n", | |
"\n", | |
" return mean_reward" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "PDW8hNq_lZyA", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"# Create a CNN based policy and optimize it using PPO2.\n", | |
"# ppo_params = {\"gamma\" : 0.99,\n", | |
"# \"n_steps\" : 128,\n", | |
"# \"ent_coef\" : 0.01,\n", | |
"# \"learning_rate\" : 0.00025,\n", | |
"# \"vf_coef\" : 0.5,\n", | |
"# \"max_grad_norm\" : 0.5,\n", | |
"# \"lam\" : 0.95,\n", | |
"# \"nminibatches\" : 4,\n", | |
"# \"noptepochs\" : 4,\n", | |
"# \"cliprange\" :0.2,\n", | |
"# \"cliprange_vf\" : None,\n", | |
"# \"verbose\" : 1,\n", | |
"# \"tensorboard_log\" : None,\n", | |
"# \"_init_setup_model\" : True,\n", | |
"# \"policy_kwargs\" : None,\n", | |
"# \"full_tensorboard_log\" : False,\n", | |
"# \"seed\" : None,\n", | |
"# \"n_cpu_tf_sess\" : None\n", | |
"# }\n", | |
"\n", | |
"# params=ppo_params, " | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "reBxig4blZyD", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def train_save_agent(model, env, gif_name, time_steps=int(1e4), \n", | |
" save_gif=False):\n", | |
" #use the policy, environment and define params to compile the PPO2 model..\n", | |
"# model = model #PPO2(\"MlpPolicy\", env)#, **params)\n", | |
"\n", | |
" s_time = time.time()\n", | |
" #Train the model\n", | |
" model.learn(total_timesteps=time_steps)\n", | |
" e_time = time.time()\n", | |
" tot_time = e_time - s_time\n", | |
" print(f\"Total Run-Time : , {tot_time : 0.3f} seconds\")\n", | |
"\n", | |
" if save_gif:\n", | |
" ########### Record-GIF ###########\n", | |
" images = []\n", | |
" obs = model.env.reset()\n", | |
" img = model.env.render(mode='rgb_array')\n", | |
" gif_length = 500\n", | |
"\n", | |
" for i in range(gif_length):\n", | |
" images.append(img)\n", | |
" action, _ = model.predict(obs)\n", | |
" obs, _, _ ,_ = model.env.step(action)\n", | |
" img = model.env.render(mode='rgb_array')\n", | |
"\n", | |
" imageio.mimsave(f'{gif_name}-{timesteps}.gif', [np.array(img) for i, img in enumerate(images) if i%2 == 0],\n", | |
" fps=29)\n", | |
" \n", | |
" return model, tot_time" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"scrolled": true, | |
"id": "z87sphMklZyG", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "f5fbb6d8-eb0f-4caf-89f6-b8c14ade38ba" | |
}, | |
"source": [ | |
"all_algs = [\"A2C\", \"PPO2\", \"ACER\", \"ACKTR\"]\n", | |
"\n", | |
"# Create log dir\n", | |
"import os\n", | |
"\n", | |
"log_dir = \"/tmp/gym/\"\n", | |
"os.makedirs(log_dir, exist_ok=True)\n", | |
"env_list = [\"Pendulum-v0\", \"MountainCar-v0\", \"Acrobot-v1\", \"CartPole-v1\"]\n", | |
"timesteps = int(1e6)\n", | |
"num_cpu = 4 # Number of processes to use\n", | |
"\n", | |
"\n", | |
"game_df = pd.DataFrame()\n", | |
"\n", | |
"for env_id in env_list:\n", | |
" print(f\"{env_id}......\")\n", | |
"# env = gym.make(env_id) #\n", | |
" # Logs will be saved in log_dir/monitor.csv\n", | |
"# env = Monitor(env, log_dir, allow_early_resets=True)\n", | |
"# env = DummyVecEnv([lambda: gym.make(env_id)])\n", | |
" env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])\n", | |
" \n", | |
" alg_detail_df = pd.DataFrame()\n", | |
" for alg in all_algs:\n", | |
" if env_id == \"Pendulum-v0\" and alg == 'ACER':\n", | |
" print(f\"{env_id, alg}\")\n", | |
" pass\n", | |
" \n", | |
" else:\n", | |
" print(f'{alg}.....') \n", | |
" model = eval(alg + \"('MlpPolicy', env)\")\n", | |
" tr_model, run_time = train_save_agent(model, env, alg, time_steps=timesteps, save_gif=False)\n", | |
" # mean_reward, std_reward = evaluate_policy(tr_model, tr_model.get_env(), n_eval_episodes=20)\n", | |
" mean_reward = evaluate(tr_model, num_steps=1000)\n", | |
"\n", | |
" alg_detail_df = alg_detail_df.append([[env_id, alg, run_time, mean_reward]]) #, std_reward]])\n", | |
"\n", | |
" print(f\"Mean Reward : {mean_reward} \") #\"| Std_Reward : {std_reward}\")\n", | |
" \n", | |
" game_df = game_df.append(alg_detail_df) #], axis=1)\n", | |
" \n", | |
"game_df.columns = ['Envir', 'Algorithm', 'Run_Time', 'Mean_Rewards'] #, 'Std_Rewards'] " | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Pendulum-v0......\n", | |
"A2C.....\n", | |
"Total Run-Time : , 257.970 seconds\n", | |
"Mean reward: -551.4 Num episodes: 24\n", | |
"Mean Reward : -551.4 \n", | |
"PPO2.....\n", | |
"Total Run-Time : , 338.824 seconds\n", | |
"Mean reward: -939.9 Num episodes: 24\n", | |
"Mean Reward : -939.9 \n", | |
"('Pendulum-v0', 'ACER')\n", | |
"ACKTR.....\n", | |
"Total Run-Time : , 242.154 seconds\n", | |
"Mean reward: -876.8 Num episodes: 24\n", | |
"Mean Reward : -876.8 \n", | |
"MountainCar-v0......\n", | |
"A2C.....\n", | |
"Total Run-Time : , 237.251 seconds\n", | |
"Mean reward: -166.7 Num episodes: 24\n", | |
"Mean Reward : -166.7 \n", | |
"PPO2.....\n", | |
"Total Run-Time : , 690.426 seconds\n", | |
"Mean reward: -166.7 Num episodes: 24\n", | |
"Mean Reward : -166.7 \n", | |
"ACER.....\n", | |
"Total Run-Time : , 346.463 seconds\n", | |
"Mean reward: -166.7 Num episodes: 24\n", | |
"Mean Reward : -166.7 \n", | |
"ACKTR.....\n", | |
"Total Run-Time : , 234.560 seconds\n", | |
"Mean reward: -166.7 Num episodes: 24\n", | |
"Mean Reward : -166.7 \n", | |
"Acrobot-v1......\n", | |
"A2C.....\n", | |
"Total Run-Time : , 290.163 seconds\n", | |
"Mean reward: -89.6 Num episodes: 46\n", | |
"Mean Reward : -89.6 \n", | |
"PPO2.....\n", | |
"Total Run-Time : , 273.282 seconds\n", | |
"Mean reward: -74.9 Num episodes: 53\n", | |
"Mean Reward : -74.9 \n", | |
"ACER.....\n", | |
"Total Run-Time : , 392.469 seconds\n", | |
"Mean reward: -77.8 Num episodes: 51\n", | |
"Mean Reward : -77.8 \n", | |
"ACKTR.....\n", | |
"Total Run-Time : , 253.496 seconds\n", | |
"Mean reward: -72.3 Num episodes: 55\n", | |
"Mean Reward : -72.3 \n", | |
"CartPole-v1......\n", | |
"A2C.....\n", | |
"Total Run-Time : , 215.154 seconds\n", | |
"Mean reward: 333.3 Num episodes: 12\n", | |
"Mean Reward : 333.3 \n", | |
"PPO2.....\n", | |
"Total Run-Time : , 189.328 seconds\n", | |
"Mean reward: 333.3 Num episodes: 12\n", | |
"Mean Reward : 333.3 \n", | |
"ACER.....\n", | |
"Total Run-Time : , 300.396 seconds\n", | |
"Mean reward: 333.3 Num episodes: 12\n", | |
"Mean Reward : 333.3 \n", | |
"ACKTR.....\n", | |
"Total Run-Time : , 189.950 seconds\n", | |
"Mean reward: 333.3 Num episodes: 12\n", | |
"Mean Reward : 333.3 \n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "cBh97yTBlZyJ", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"# game_df.to_csv('Runtime_details.csv', index=False) " | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Imn7Zmf6lZyM", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "c4e2070e-d007-4be7-f667-e3a9a29c6e5d" | |
}, | |
"source": [ | |
"alg_mean_rt = game_df.groupby(by='Algorithm', as_index=False)['Run_Time'].mean()\n", | |
"fig = plt.figure(dpi=130);\n", | |
"alg_mean_rt.set_index('Algorithm').sort_values(by='Run_Time', ascending=True).plot(kind='barh', \\\n", | |
" figsize=(14,6), color='red');\n", | |
"plt.title('Average Runtime of Various Algorithms across Enviroments (secs)', fontsize=13);\n", | |
"plt.xlabel('Time in secs');\n", | |
"plt.legend(loc='lower right', edgecolor='k');" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 780x520 with 0 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9IAAAGsCAYAAAAxJJ9GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeViU9f7/8dewKWowUq5sCgKhqHnUshK11V1Mc0nU3Mrj0uI3zRaP5smltPR0bLNEDTTcFyh300JNyzqapSJJIOKaSm6TCszvjy7n58TS3AoOY8/Hdc11yXzu+3O/7/kMXrzm87nvMeXk5FgFAAAAAAAc4ubsAgAAAAAAcCUEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNACgUG+//bZ69Ojh7DLsnDlzRl26dFFQUJBatmx5U4/dpEkTrVy58qYe01Hp6ekym806fvx4qR7nscce07vvvlvsNnXr1tXSpUtLtQ4Y58jY3aouXryoRo0aKT093Wk1zJw5U0OHDnXa8QGUPII0AJc2depUmc1mJSYmOruUUpGSkiKz2Sx/f3/5+/srIiJCgwcP1unTp0v0OO3bt9fUqVPtnnvhhRe0cOHCEj3OjZo9e7YuXLig9PR0ffnll3Ztly9fVp06dZSQkFBgv/PnzyswMPCGgvDOnTsVExNz3fuXhPbt28vPz0+HDx92yvGXL1+u4cOHS5Jyc3NlNpv17bffOqWWW03dunVVrVo12+/61ceFCxdKpP9rx86VTJgwQV27dr2hPt5//33dd999CgkJKaGqjOvfv782b96sH374wWk1AChZBGkALis/P18JCQmqXLmy5s6dW6rHysvLU35+fqkeoyju7u7Kzs5Wdna21q9fr927d+vVV191Si3OlpGRofDwcHl4eBRo8/LyUq9evRQfH1+gbenSpfL29la7du0MH/PKlSvXVWtJS0tL09atW+Xr61voOZamsvIa3ExWq1W5ubk39Zjvv/++7Xf96qNixYqlfty8vDxZrdZSP44z5ObmatasWXryySedWoeXl5e6deummTNnOrUOACWHIA3AZW3cuFFHjhzRhx9+qB07dmjv3r22tjFjxig2NtZu+6+++koBAQG2GZ69e/eqS5cuCgkJUVRUlMaPH28LDJmZmTKbzYqPj9c999yjGjVq6OTJk1q6dKnuv/9+BQYGKiIiQs8//7zdjNHx48fVo0cPBQUFqXHjxoqPj5fZbFZmZqZtm08++UT33nuvgoKCFB0drS+++MLhcw4KCtIjjzyiXbt22Z6bP3++GjVqZLfdkCFD9Mwzz9idy4IFC3TPPfcoICBAjz32mI4dOyZJGjVqlL7++mtNnTpV/v7+atKkiSRp8uTJdjOw9evX19SpU9WhQwf5+/vrvvvu048//qglS5aoUaNGCgoK0jPPPGMXPrKystS3b19FREQoIiJCzz33nM6dO1fk+Z0+fVqDBw9WRESEwsPD9c9//lNnzpyRJPXo0UOJiYlKTEyUv7+/Jk2aVGD/fv36aefOnfrpp5/snp87d6569+4tT09PnT9/XrGxsQoPD1dgYKBatWplN7sdHx+vpk2bavr06apbt65tCfmflyx/9dVXevDBBxUUFKSmTZvqk08+sbVt3rxZ1apVs6vh2pk1q9Wq1157TXfeeacCAgLUoEEDxcXFFfm6XD2HqKgoPffcc5o3b57y8vKK3NZqtWrKlCmKjIxU7dq1NWbMGLVr185u1YEj9c+fP18NGjRQnTp1JElt2rTR9OnTJUnNmzeXJHXq1En+/v4aMWKEbf9Dhw7ZvU+unbV++umnNWTIEA0ZMkRBQUGKjIzU8uXLtWvXLrVq1UoBAQHq1KmT3TL19957T/Xr11dAQIDq1q2rCRMmFHnu48aNU4MGDeTv769GjRoVCC4ZGRnq06ePwsPDFRQUpDZt2ignJ8c2wz5z5ky1aNFCNWrU0J49e5Sbm6tJkyapQYMGqlWrlmJiYrR//35bf1988YWaN2+uwMBAhYSE2M2eGqn7r9StW1fTp08v9HXds2ePqlatavtdkf74oDEqKkqLFy+WZD92Vy8FmDdvnpo2baoaNWro9OnTunDhgkaNGqW6desqNDRUsbGxys7OtvXZpk0bjRkzRk888YTt9U1JSdEXX3yhZs2aKTAwUH379tX58+dt+5w6dUpDhw5V3bp1VadOHQ0YMEC//vqrQ+e1aNEivfPOO9q8ebNthj4rK0sZGRl67LHHFBQUpODgYLVs2bLIZds7d+7UhQsXbP+vSSp2f6vVqtmzZ6tZs2YKCgpSixYttHnzZrs+V65cqZYtWyooKEgRERG2/4v+qq4HHnhAq1evvmU/tAD+bgjSAFzWnDlz9PDDD6t169aKioqym5Xu3bu31q1bZ/cH26effqrOnTurYsWKOnnypNq3b6+OHTtq//79WrdunTZt2qRp06bZHWPJkiVKSkrS4cOHdccdd8jHx0ezZs1SZmamVq9era+//lpvvfWWbfunnnpKXl5e+vHHH7VmzZoCS6Pnzp2r//znP/roo4+UkZGhf/3rX+rTp4/D1+5lZGRo7dq1tmBjxPLly7Vq1Srt3btXFy9etP3xN3XqVN17770aNWqUsrOztXPnziL7SExM1Ntvv62MjAxFRUWpd+/eSklJ0ZYtW7R161atXr1ay5cvlyT9/vvv6tSpkyIiIrRr1y7t2LFDR44c0UsvvVRk/0899ZRycnK0Y8cOffPNN7ZgLUkLFy5Ut27d9MQTTyg7O1uvvPJKgf1DQkIUHR1tFwp/+OEH7dq1S3379pX0R8CIiYnRd999p/T0dMXExKhPnz52ISQ9PV2nTp3Sd999pw0bNhQ4zi+//KJu3brp6aefVnp6umbMmKGxY8cqOTm5uCGwWb9+vZYsWaKNGzfq8OHD2rBhg90f+n926dIlJSYmqnfv3nriiSd04sQJrV27tsjt582bp7i4OC1atEipqany8/PTN998Y6j+y5cv68svv9SWLVu0b9++AsfYsmWLJCkpKUnZ2dm2kHb1+G+//bYyMzN1//33a9iwYXb7rlixQl27dlVGRoZGjBihZ599Vm+88YY+/fRTpaamKjc3V1OmTJEkpaamatKkSVqyZIkOHz6sbdu2qU2bNkWee2RkpNatW6fDhw9r+vTpGjt2rO2DkvPnz6tjx46qWbOmvv32W6Wnp2v8+PF2KxzmzZun+Ph4ZWdnq27dupo2bZqWLl2qZcuWKTU1VU2bNlWXLl1sYXHw4MEaPny4Dh06pL179+r555+/rrodUdTrWr9+fd1555220CxJX375pc6ePasOHToU2d/SpUu1atUqZWVlyWw2a/To0dq9e7e++OIL/fDDD/L19dUTTzxhtxpn4cKFGjlypA4dOqSOHTvq6aefVkJCgtasWaNdu3Zp3759tg+FrFarevbsKS8vL23fvl27d+9WuXLl9NRTTzl0Xt27d9dzzz2nVq1a2WboAwMD9dprr6l27dpKS0tTenq63n33Xfn4+BR6jrt371ZYWJjc3P7/n7zF7R8XF6f33ntPcXFxysjI0Msvv6zY2FhlZGRIklavXq3hw4fr1VdfVXp6ur755hs9+OCDf9mv9MeHBqdPn9ahQ4eKH2gALoEgDcAlHT16VOvWrVPv3r0l/RGcFy5cKIvFIkm688471aBBA1uQPXfunJKTk23bL1iwQFFRUerfv7+8vLxUs2ZNjRgxQgsWLLA7zujRo1WtWjV5eXnJ3d1djzzyiCIjI+Xm5qaQkBANHDjQ9kd6dna2vvrqK73++uvy8fFRlSpV9OKLL9r1N3PmTL344ouqX7++3Nzc9Oijj6p58+bF3pwpLy9PQUFBqlmzpu666y7dfvvtduHdUaNHj9btt98uHx8fPf744/rf//5nuI9+/fopIiJCnp6eevzxx20fBlSsWFGBgYFq3ry5vv/+e0nS2rVrZbVa9eqrr8rb21tms1mvvvqqFi9eXOhs6tGjR7Vx40ZNmjRJZrNZZrNZEydO1Lp162yz547o37+/Fi1apN9//13SHx9ePPDAA6pVq5YkycfHR927d9dtt90mT09P20zqta9H+fLlNW7cOHl7e6tChQoFjrFo0SI1btxYPXv2lIeHh5o1a6a+ffsWen12Yby8vPT7778rNTVVly5dUtWqVdWwYcMit09KStL58+fVvXt3VatWTQ8//HCxlzMsWLBAAwYMUP369eXl5aURI0aoSpUqhuq3Wq0aP368fHx8Cn0NijNgwABFRETIw8NDffv21YEDB+xWbrRq1UoPP/yw3Nzc1LNnT507d06xsbGqWbOmKlasqE6dOtneRx4eHsrPz9f+/ft1/vx5mc3mYj906Nmzp6pXry6TyaRWrVrpoYcesv2Orl69Wnl5eZo0aZJ8fX3l4eGhe+65R5UqVbLt/+yzz6pWrVpyd3dXuXLlNH/+fI0YMUJ16tRRuXLl9PLLLysvL8/2AYunp6fS09N14sQJlS9fXtHR0ddVtyQ988wzCgoKsj1atGjh8OsaGxur+fPn27adP3++Hn/8cXl7exd5vJdeeklVqlRRuXLlZLVatXDhQo0ZM0bVq1dXxYoV9cYbb+inn36yWwHTpUsXNW7cWO7u7urevbuOHj2q559/XmazWbfffrseeeQR29jt3LlTe/fu1ZQpU+Tj46OKFStq/Pjx2rRpk92Kg796v/yZl5eXjh07pszMTLm7u6t+/fq64447Ct02JydHt912m8P7z5w5Uy+99JLq1asnNzc3tW3bVvfee6/tA8KPPvpIgwYN0qOPPioPDw/5+vqqWbNmDtV1tY5rP7QD4LoI0gBc0tVro6/O8PTo0UO///67li1bZtvm2j8sly9frho1atj+4MnMzNSOHTvs/mh95plndOLECbvjBAUF2f28adMmtW3bVqGhobaZkauz3kePHpUkBQQE2LYPDAy02z8zM1OjRo2yO+6WLVts+xbG3d1dhw4dUnZ2tpYuXaq0tDRDwfKqa5caV6hQwW755fX04e3tLXd3d7s/FL29vW39ZmZm6vDhw3bn2qlTJ5lMpkLvLn11CWlwcLDtudq1a9u1OaJDhw7y9PTUihUrdOHCBS1ZskT9+vWztV+8eFEjR45Uw4YNFRgYqKCgIJ07d85u9UL16tXl6elZ5DGys7NtwfzaWh29CVirVq30yiuv6M0331SdOnXUtWtXu7DyZ3PmzFG7du3k5+cnSerTp482bNigrKysQrc/evSo3XvPZDLJ39/fUP2enp6qUaOGQ+fzZ9WrV7f9++o1vte+365tvxrS//zc1e1DQ0P1wQcfaPbs2YqMjFTbtm0LLLW91tUbS119z61fv942tocOHbKF5KL8+Xf+yJEjdq+Vu7u7AgMDba9VYmKiDhw4oPvuu0/NmjWzLSU3WrckzZgxQ4cOHbI9vvrqK7v24l7Xbt26ad++ffrpp5/022+/6bPPPrN9cOjIuZ44cUJXrlyxO1cfHx/dfvvtdu8LI2OXmZkpi8WiOnXq2MajSZMmKleuXJF9FvZ++bOJEyfK399f3bt315133qnRo0cXGbzNZnOBy0mK2z8zM1MjRoyw+39r27ZtOnLkiKQ/3kOhoaHXVdfVOipXrlzkuQFwHQRpAC4nPz9f8fHx+u2331S3bl2Fh4frnnvuUV5ent2S3i5duig9PV27du1SYmKi3TXTV6+NvfaP1qth9VrXLge8fPmyYmNj1aVLF/3444/KysrSa6+9Zrve7WrouPYPxD8HncDAQL377rsFjvnnJeWFMZlMeuihhzRgwAA9++yztuNWqlRJFy9etNvWaNC+9jxLSmBgoOrUqVPgNT5+/Lhq1qxZYPurQe/aZY9Xl1NeGwL/iqenp3r16qVPPvmk0JuM/fe//9X27duVlJRkq8nHx8fuusW/ej38/f3trnu/WuvVD1EqVqyoK1eu2N2k688flgwYMEBr167V/v37FRERUeTNkA4cOKBt27Zp48aNCg8PV3h4uJ577jnb70FhatSoYffes1qtdu/tv6pf+uvXwGQyFdtekjp37qyVK1fq4MGDat++vXr16mVbcXCtLVu2aMKECXrnnXf0yy+/6NChQ3rkkUdsYxsUFKTMzMxibxz45/OuWbOm3WuVn5+vrKws22vVsGFDzZ07Vz///LPeeustjR07Vlu3bjVUd0nw8/NT27ZtNX/+fC1btky1a9fWP/7xj2L3ufZcq1atKk9PT7tzPXfunE6dOmX3vjAiMDBQt912mzIzMwv8H9C4cWOH+ijsfValShVNnTpVu3bt0urVq/Xll18W+dVeDRo00M8//2w35sXtHxgYqA8++MCu3iNHjtjuLxAUFFTkpTh/Vde+fftUuXLlAh+wAnBNBGkALmfDhg06cuSI1q1bp5SUFNtj0aJF+uabb2w3mjKbzerQoYMmTpyob7/9Vj179rT10bNnT/3vf/9TQkKCfv/9d+Xn5ysjI6PQ62Gvunz5sn7//XeZzWZ5e3tr//79+vjjj23t/v7+at68uV577TWdO3dOJ0+eLLAEe+jQoXrjjTf0ww8/yGq1ymKx6Ouvv9aBAwccPv/hw4crMzPTNvveoEEDnTx5UmvWrFF+fr6Sk5O1bds2h/uT/phpLunvWG3durWuXLmit99+W+fOnZPVatWRI0eKvI64Ro0aevDBB/Xqq68qJydHOTk5evXVV/XII4/YzVg5ol+/ftqxY4fefvtt9e7d2+4a2HPnzql8+fLy8/PTpUuXNHHiRMOz8926ddPOnTu1aNEi5ebm6ptvvlF8fLxtBjA8PFze3t6aN2+e8vPztWXLFrvz3rlzp7Zv365Lly6pfPnyqlSpUqF3Ipf+WJoeGhqqnTt32t7rW7du1ciRIzVv3rxC7yzdo0cPzZkzRz/++KOuXLmid955RydPnnS4fkdcXY1w8OBBh/e5Hqmpqfriiy908eJFeXp6ysfHRyaTqdCgf+7cOVtdJpNJq1ev1qZNm2ztbdu2lclk0pgxY3T27FnbuRc3/r169dJ//vMfHTx4UJcuXdIbb7whk8mkhx9+WBaLRYmJiTp9+rRMJpPMZrNMJpM8PDwM1V1SYmNjtWjRIsXHxxe42eJf8fDwUPfu3TVx4kQdP35cFy5c0Msvv6zIyMhiLzsoTpMmTRQREaGXX37Ztpz55MmTdiuH/kq1atWUlZVl96HU0qVLlZmZKavVKh8fH3l4eBT5+9O0aVN5e3vru+++c2j/oUOHavLkydqzZ4/t/+itW7fq559/liQNGjRIs2bN0saNG5WXl6ezZ89q+/btDtV1dUVTab4HANw8/CYDcDlz5sxR+/btddddd6latWq2x4MPPqi7777b7trR2NhYrV+/Xg899JDdMtVq1aopOTlZn3/+ue1uvNfeUKYwlSpV0rRp0zRu3Dj5+/tr5MiRevzxx+22mTVrliwWi+rVq6c2bdqoc+fOkqRy5cpJkp588kk9++yzGjZsmIKDgxUVFaWpU6ca+nohHx8fDRs2TBMnTlRubq5q166tN954Q88//7xq1aqljRs3qlOnTg73J/3xx+OuXbsUFBRkW/5+oypUqKCVK1cqNTVVd999t4KCghQTE6M9e/YUuc9HH32k2267TXfffbeaNm0qX19fffjhh4aPXbt2bbVo0UKHDh1Snz597NqeeeYZVahQQXfeeacaN24ss9lc6Ax5cUJCQrRw4UJ98MEHCgkJ0dChQzV27Fjb6+7r66sZM2Zo2rRpCgoKUlxcnN0HOefOndOoUaMUGhqqkJAQpaSkaNasWQWOc+nSJS1YsEBDhw61e69Xq1ZNQ4cOVU5OjtasWVNgv969e6tfv356/PHHFR4erl9//VX/+Mc/bO/Dv6rfUWPHjtW///1vBQUF6YUXXjC0r6MuXbqkyZMnKyIiQsHBwZo9e7YSEhLk5eVVYNtHH31UXbt2VcuWLRUaGqrPP//cbjVCpUqVlJSUpF9++UWNGjVSSEiIxo0bV+zXXP3f//2fYmJi1LlzZ4WHh2v79u1atmyZ7brqpUuXqkmTJvL391fv3r31r3/9S/fcc4+huq8aOnRoge+RTk1Ndfi1euihh+Tp6akff/zR7v3mqDfffFP16tVTq1atVL9+fZ0+fVqJiYnFLoUvjru7uxYsWKDLly+rRYsWCgwM1COPPGLog74uXbqoatWqCgsLU1BQkLKysrRr1y61a9dO/v7+uvfee9WkSRMNHTq00P09PDw0aNAgu9Ubxe0/cOBA213lg4ODVb9+fU2bNs32f3T79u01ffp0jRs3TrVq1VLTpk1tH9YU1++VK1e0ePFi280TAbg+U05ODvfgB4BSsnHjRvXq1UvHjh27qUthgWvl5eUpMjJSb775ph577DFnlwPcVBcvXtT999+vpUuXKiQkxCk1fPzxx/r+++/1wQcfOOX4AEoeQRoAStCePXtkMplUr149ZWZmqn///oqIiLiuWVXgeuXn5yspKUlt27ZVbm6u3n77bc2ZM0e7du2Sr6+vs8sDAMDlsbQbAErQmTNn1KdPH/n7+6tNmzaqV6+e3njjDWeXhb+hDz74QGFhYYqMjNS2bdu0ePFiQjQAACWEGWkAAAAAAAxgRhoAAAAAAAMI0gAAAAAAGECQxt9WWlqas0uAQYyZa2LcXBPj5noYM9fEuLkexgwSQRoAAAAAAEMI0gAAAAAAGECQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAaYcnJyrM4u4lbhnpLi7BJggMVikbe3t7PLgAGMmWti3FwT4+Z6GDPXxLi5nltpzPIDAmStXdvZZbgkgnQJ8jWbnV0CAAAAADjkfHKy8qKjnV2GS2JpNwAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAYQpAEAAAAAMIAgDQAAAACAAQRpAAAAAAAMIEgDAAAAAGAAQRoAAAAAAAMI0gAAAAAAGOAyQXrIkCEym80ym82644471LBhQ40ZM0YXLlxQZmamrc1sNis4OFht27bVli1b7Po4cuSInnvuOdWtW1dVqlRRZGSknn32WWVnZ9ttN23aND3wwAMKDAxUaGioevToob17997M0wUAAAAAlFEuE6QlqVWrVkpNTdWuXbs0ZswYxcXF6V//+petfenSpUpNTdXnn38uHx8fde/eXRkZGZKkjIwMPfDAA9q3b58++OADff/995o5c6b279+vBx98UJmZmbZ+tmzZooEDB2rt2rVKSkqSh4eHOnfurDNnztzsUwYAAAAAlDEuFaTLlSunatWqKSAgQN26dVO3bt30+eef29r9/PxUrVo1RUVFafr06bp48aI2bdokSRo1apTc3Ny0YsUKtWzZUoGBgWrRooVWrFghNzc3jRo1ytbPsmXL1Lt3b9WtW1f16tXTzJkz9euvv2r79u03/ZwBAAAAAGWLSwXpPytfvryuXLlSaFuFChUkSVeuXNGZM2e0YcMGDRo0yPb8tdsNHDhQ69evV05OTqF9nT9/Xvn5+TKbzSV7AgAAAAAAl+OyQfq7777TkiVL1LJlywJtFy5c0Pjx4+Xu7q77779fBw8elNVqVXh4eKF9RUREyGq16uDBg4W2v/TSS6pfv77uvvvuEj0HAAAAAIDr8XB2AUZs2LBB/v7+ys3N1ZUrV9SuXTtNmTJFFy9elCS1a9dObm5uunjxoqpXr673339f9erV086dOyVJJpOp0H6tVmuR7a+88oq2b9+uNWvWyN3dvZTODAAAAABuLovFosy0NGeXUerCwsJKvE+XCtL33Xef3nnnHXl4eKhGjRry9PSUJNuNwj7++GPVq1dPvr6+8vPzs+0XGhoqk8mk/fv3q0OHDgX6PXDggEwmk2rXrm33/Msvv6xly5YpOTlZtWrVKr0TAwAAAICbzNvbu1RC5t+BSy3trlChgkJCQhQUFGQL0dfy9/dX7dq17UK0JFWuXFkPPfSQ4uLibLPXV128eFGzZs3SI488osqVK9ueHz16tJYsWaKkpKQil4QDAAAAAP5+XCpI34ipU6cqNzdXnTt31pdffqnDhw8rJSVFjz32mKxWq6ZMmWLbduTIkfr00081a9Ysmc1mHT9+XMePH9f58+edeAYAAAAAgLLgbxOka9eurU2bNunOO+/UP//5T91111166qmnFB4eri+++MJu6fasWbN07tw5xcTEKCIiwvaYMWOG804AAAAAAFAmmHJycqzOLuJW4cvXYwEAAABwEeeTk5UXHe3sMlzS32ZGGgAAAACAkkCQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAzycXcCt5HxysrNLgAEWi0Xe3t7OLgMGMGauiXFzTYyb62HMXBPj5npupTHLDwhwdgkuy5STk2N1dhGAM6SlpSksLMzZZcAAxsw1MW6uiXFzPYyZa2LcXA9jBoml3QAAAAAAGEKQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAYQpAEAAAAAMIAgDQAAAACAAQRpAAAAAAAMIEgDAAAAAGAAQRoAAAAAAAMI0gAAAAAAGECQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIJKAJ0EAACAASURBVA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAaYcnJyrM4u4lbhnpLi7BJggMVikbe3t7PLgAGMmWti3FwT4+Z6GDPXxLiVTfkBAbLWrl1oW1pamsLCwm5yRShrPJxdwK2kUseOzi4BBlRydgEwjDFzTYyba2LcXA9j5poYt7LpfHKy8ooI0oDE0m4AAAAAAAwhSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAYQpAEAAAAAMIAgDQAAAACAAQRpAAAAAAAMIEgDAAAAAGAAQRoAAAAAAAMI0gAAAAAAGECQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEuE6R3794tPz8/tW7dutD2lJQU9ejRQyEhIapevbqaNm2qUaNGKTMz09ZuNpsLfRw4cECSNHnyZNtzlStX1p133qmnnnpKhw8fvmnnCQAAAAAo21wmSMfHx2vgwIHat2+fUlNT7drmzJmjmJgYVa5cWXPnztWOHTs0Y8YMWa1WvfXWW3bbbt++XampqXaP0NBQW3tYWJhSU1O1d+9ezZ49Wz/99JP69+9/U84RAAAAAFD2eTi7AEdYLBYtXrxYq1atksViUUJCgiZMmCBJys7O1ujRozVo0CBNmTLFtk9wcLCaNWumnJwcu76qVKmi22+/vchjeXh4qFq1apKkGjVq6Mknn9To0aN19uxZ+fj4lMLZAQAAAABciUvMSK9cuVKBgYGKiopSjx49tGDBAl25ckWStGLFCl2+fFkjRowodF+z2Xzdxz1+/LiSk5Pl7u4ud3f36+4HAAAAAHDrcIkZ6fj4ePXs2VOS1Lx5c3l7e2vVqlWKiYlRenq6fHx8VKNGDYf6atCggd3Pvr6+2rt3r+3n1NRU+fv7Kz8/XxaLRZI0ePBgVaxYsYTOBgAAAADgysp8kE5PT9eOHTsUFxcnSTKZTOrevbsSEhIUExMjq9VqqL/k5GS7WWo3N/tJ+dq1a2vx4sW6dOmSVq1apaSkJI0dO/bGTwQAAACAS7BYLMpMSyuyPa2YNpQ9YWFhJd5nmQ/S8fHxysvLU1RUlO25q+H58OHDCg0N1dmzZ3X06FGHZqWDg4OLvUbay8tLISEhkqTIyEgdPHhQI0eO1AcffHCDZwIAAADAFXh7excZvtLS0kolmMG1lOlrpHNzc5WYmKhx48YpJSXF9tiyZYvq1aun+fPnKyYmRl5eXpo+fXqhffz5ZmNGvfjii1q8eLF27dp1Q/0AAAAAAG4NZXpGeu3atTp16pSefPJJ+fn52bV17dpVcXFxGjVqlCZNmqRRo0bp7Nmzio2NVXBwsI4dO2Zbov3f//7Xtt/JkyeVm5tr11flypXl5eVVaA21atVS27ZtNXHiRC1evLjkTxIAAAAA4FLK9Ix0QkKCoqOjC4RoSercubOysrK0efNmDRo0SCtWrNCpU6fUt29fNW3aVEOHDpUkjRw50m6/Zs2aKSIiwu6xbdu2YusYPny41q9frx07dpTcyQEAAAAAXJIpJyfH2N26UCTfG/iqLQAAAABlw/nkZOVFRxfaxjXSkMr4jDQAAAAAAGXNdV8jfeXKlUK/eqqoa40BAAAAALgVOByk8/Pz9dFHHykhIUEZGRmyWCwFtjGZTDp16lSJFggAAAAAQFnicJAePXq04uLiFB4ers6dO8vHx6c06wIAAAAAoExyOEgvXLhQMTExmjNnTmnWAwAAAABAmebwzcY8PT3VokWL0qwFAAAAAIAyz+Eg3bFjR3355ZelWQsAAAAAAGWew0F60qRJunjxooYMGaKtW7cqIyNDWVlZBR4AAAAAANzKHL5G2sPDQ7Vq1dKsWbO0cOHCIrc7ffp0iRQGAAAAAEBZ5HCQ/r//+z99+umnat68uZo0acJduwEAAAAAf0sOB+mkpCTFxsZqxowZpVkPAAAAAABlmsPXSJcrV0533XVXadYCAAAAAECZ53CQ7tatm1atWlWatQAAAAAAUOY5vLS7ffv22rJli7p27arY2FgFBATI3d29wHaNGzcu0QIBAAAAAChLHA7SHTp0sP1706ZNBdqtVqtMJhN37QYAAAAA3NIcDtLvvfdeadYBAAAAAIBLcDhI9+rVqzTruCWcT052dgkwwGKxyNvb29llwADGzDUxbq6JcXM9jJlrYtzKpvyAAGeXgDLO4SCNv5YXHe3sEmBAZlqawsLCnF0GDGDMXBPj5poYN9fDmLkmxg1wTYaCdFpamubNm6eMjAydOXNGVqvVrt1kMikpKalECwQAAAAAoCxxOEgvXbpUgwcPlru7u8LCwmQ2mwts8+dgDQAAAADArcbhID1p0iTVrVtXS5cuVZUqVUqzJgAAAAAAyiw3RzfMzs5W3759CdEAAAAAgL81h4N0eHi4Tp06VZq1AAAAAABQ5jkcpMeOHas5c+bo559/Ls16AAAAAAAo04q8RvqFF14o8FyVKlV03333qUWLFgoICJC7u7tdu8lk0ltvvVXyVQIAAAAAUEYUGaRnz55d5E4bN24s9HmCNAAAAADgVldkkD5z5szNrAMAAAAAAJfg8DXSWVlZslgsRbZbLBZlZWWVSFEAAAAAAJRVDgfphg0b6rPPPiuyffXq1WrYsGGJFAUAAAAAQFnlcJC2Wq3Ftufm5spkMt1wQQAAAAAAlGUOB2lJRQbl3377TRs2bFCVKlVKpCgAAAAAAMqqIm82JklvvPGGpkyZIumPEP3000/r6aefLnL7wYMHl2x1AAAAAACUMcUG6UaNGqlfv36yWq2aO3euWrRoodDQULttTCaTKlSooEaNGqlz586lWiwAAAAAAM5WbJBu3bq1WrduLUm6dOmSBgwYoCZNmtyUwgAAAAAAKIuKDdLXev/990uzDgAAAAAAXEKRQXrr1q2SpPvvv9/u579ydXsAAAAAAG5FRQbpDh06yGQy6dixY/Ly8rL9XBSr1SqTyaTTp0+XSqEAAAAAAJQFRQbp5ORkSZKXl5ckKSkpie+JBgAAAAD87RUZpJs3b273c3R0dKkXAwAAAABAWefmyEYWi0V+fn566623SrseAAAAAADKNIeCtLe3t6pUqSIfH5/SrgcAAAAAgDLNoSAtSY899piWL1+u/Pz80qwHAAAAAIAyzeHvkW7fvr2++uortWnTRn379lWtWrXk7e1dYLvGjRuXaIEAAAAAAJQlDgfpTp062f797bffFriDN19/BQAAAAD4O3A4SL/33nulWQcAAAAAAC7B4SDdq1ev0qwDAAAAAACX4HCQvtZvv/2mw4cPS5ICAgLk6+tbokUBAAAAAFBWOXzXbkn6/vvv1bZtW4WEhCg6OlrR0dEKCQlRu3bt9P3335dWjQAAAAAAlBkOz0h/9913at++vTw9PdW3b19FRETIarXqwIEDWrJkidq3b6/PP/9c//jHP0qzXgAAAAAAnMrhID1hwgRVqVJF69atU40aNezaXnzxRT366KOaMGGCli1bVuJFAgAAAABQVji8tHvnzp0aMGBAgRAtSTVq1NCAAQP07bfflmhxAAAAAACUNQ4HaavVKnd396I7cnOT1WotkaIAAAAAACirHA7SjRo10ty5c3XmzJkCbWfOnNEnn3zC9dEAAAAAgFuew9dIv/LKK+rcubOaNGmiXr16KSwsTJJ04MABLViwQOfOndP7779faoUCAAAAAFAWOByk7733Xi1btkyvvvqq3n33Xbu2u+66SxMnTlSzZs1KvEAAAAAAAMoSh4O0JN1///3avHmzTpw4oUOHDkmSgoKCVLVq1VIpDgAAAACAssZQkL6qatWqhGcAAAAAwN+Sw0E6MTGx2HaTyaTy5curZs2auuuuu+Tl5XXDxQEAAAAAUNY4HKSHDh0qk8kkSQW+5ura500mk2677TaNHDlSzzzzTAmWCgAAAACA8zkcpLds2aIhQ4bI19dXgwYNUp06dWS1WnXw4EF9/PHHOn/+vKZMmaLjx4/rww8/1Lhx4+Tr66u+ffuWZv0AAAAAANxUDn+P9EcffSQ/Pz8lJSUpJiZG9erVU1RUlGJiYpSUlCRfX199+umn6tixo5KTk9WoUSN99NFHpVk7AAAAAAA3ncMz0snJyXrllVdsy7iv5ebmpg4dOmjy5Mn6z3/+Izc3N3Xu3FmTJk0q0WLLOveUFGeXAAOCLRa5Hzvm7DJgAGPmmhg318S4uZ7qPj7OLgEA/jYcDtKXL19WVlZWke2HDh3S5cuXbT+XL19enp6eN1adi6nUsaOzS4ABlZxdAAxjzFwT4+aaGDfXY1m0yNklAMDfhsNLu1u1aqWZM2dq5cqVBdpWrFihjz/+WK1atbI997///U9BQUElUiQAAAAAAGWFwzPSb775pjp27Kj+/furatWqql27tiTpl19+0YkTJxQcHKw333xTkvT777/rxIkT6tOnT+lUDQAAAACAkzgcpP39/bV161bNnj1bGzdutC3zrlu3rp599ln169dPFSpUkPTHsu4lS5aUTsUAAAAAADiRw0Fakry9vTVs2DANGzastOoBAAAAAKBMc/gaaQAAAAAAUMyM9PXMOptMJr377rs3VBAAAAAAAGVZkUH6q6++KvQ7o4tjdHsAAAAAAFxNkUF6z549hjvbu3fvDRUDAAAAAEBZd8PXSB87dkwzZsxQdHS0oqOjS6ImAAAAAADKLEN37b7q/PnzSkpK0qJFi7Rlyxbl5eUpMjJSzz33XEnXBwAAAABAmeJwkM7Ly9OGDRu0aNEirV69WhaLRSaTSYMGDdKwYcMUHBxcmnUCAAAAAFAm/GWQ3rlzpxYuXKjly5fr1KlTioyM1AsvvKAmTZqoc+fOatWqFSEaAAAAAPC3UWyQbty4sX755RcFBASoT58+evzxx1WvXj1J0qFDh25KgQAAAAAAlCXFBun09HQFBwdrzJgxateunSpUqHCz6gIAAAAAoEwq9q7d7733nmrXrq3BgwcrPDxcAwcO1KpVq3TlypWbVR8AAAAAAGVKsUG6V69eWr58ufbu3avRo0frwIEDio2NVZ06dfTyyy/LZDLJZDLdrFodsnv3bvn5+al169Z2z2dmZmr48OFq2LChqlevroYNG2r8+PGyWCwF+khKSlLHjh0VFBSkmjVr6r777tPrr7+ukydP3qzTAAAAAACUUQ59j3S1atX0zDPPKCUlRdu2bVP//v21e/duWa1WDR8+XEOGDFFSUpIuXLhQ2vX+pfj4eA0cOFD79u1Tamqq7fm0tDTl5eVp2rRp2r59u6ZMmaIFCxbopZdestv/9ddfV79+/VS/fn0tXLhQ27dv1+TJk3Xo0CHFxcXd7NMBAAAAAJQxppycHOv17pySkqKFCxcqKSlJ586dU/ny5XX06NGSrM8Qi8WiiIgIrVq1Sh9++KHMZrMmTJhQ5PazZs3SxIkT9csvv0iSvvvuOz300EOaMGGChg8fXmD7nJwcmc3mIvvzLaYNAACgNJ1ctEhejz7q7DJgUFpamsLCwpxdBgxgzCA5OCNdlOjoaL377rtKS0vT7Nmz1apVqxIq6/qsXLlSgYGBioqKUo8ePbRgwYJir+c+d+6cXTBetGiRKlasqMGDBxe6fXEhGgAAAADw93BDQfqqcuXK6bHHHlNiYmJJdHfd4uPj1bNnT0lS8+bN5e3trVWrVhW6bVZWlmbMmKGBAwfanktPT1etWrXk6el5U+oFAAAAALieYr/+ypWkp6drx44dtuuYTSaTunfvroSEBMXExNhte+LECXXt2lUPPPCAhg0bZnvear3uVe4AAABOl5aW5uwScB0YN9fDmLmW0liKf8sE6fj4eOXl5SkqKsr23NVgfPjwYQUEBEiSjh8/rk6dOikyMlIzZ860u+t4aGiovv76a12+fFleXl439wQAAABuENdtuh6ut3U9jBmkElra7Wy5ublKTEzUuHHjlJKSYnts2bJF9erV0/z58yVJx44dU4cOHRQeHq64uDh5eNh/jtCtWzdduHBBH330UaHHycnJKfVzAQAAAACUbbfEjPTatWt16tQpPfnkk/Lz87Nr69q1q+Li4tS3b1916NBB1atX1+TJk3Xq1CnbNnfccYfc3d3VpEkTPffccxo7dqyOHDmiTp06qWbNmsrMzFRCQoJCQkIKfF0WAAAAAODv5ZYI0gkJCYqOji4QoiWpc+fOeu2117R27VodPHhQBw8etFv+LUm7d+9WcHCwJGn8+PFq1KiRPv74Y82bN0+5ubkKDg5Wu3btNGjQoJtyPgAAAACAsuuGvkca9vgeaQAA4Cx8j7Rr4npb18OYQbpFrpEGAAAAAOBmIUgDAAAAAGAAQRoAAAAAAAMI0gAAAAAAGECQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAzwcHYBt5LzycnOLgEGWCwWeXt7O7sMGMCYuSbGzTUxbq7nko+PvJxdBAD8TRCkS1BedLSzS4ABmWlpCgsLc3YZMIAxc02Mm2ti3FzPsbQ03ebsIgDgb4Kl3QAAAAAAGECQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAYQpAEAAAAAMIAgDQAAAACAAQRpAAAAAAAMIEgDAAAAAGAAQRoAAAAAAAMI0gAAAAAAGECQBgAAAADAAII0AAAAAAAGEKQBAAAAADCAIA0AAAAAgAEEaQAAAAAADCBIAwAAAABgAEEaAAAAAAADCNIAAAAAABhAkAYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAZ4OLuAW4l7SoqzS4ABwRaL3I8dc3YZMIAxc02Mm2ti3KT8gABZa9d2dhkAgDKIIF2CKnXs6OwSYEAlZxcAwxgz18S4uSbGTTqfnKw8gjQAoBAs7QYAAAAAwACCNAAAAAAABhCkAQAAAAAwgCANAAAAAIABBGkAAAAAAAwgSAMAAAAAYABBGgAAAAAAAwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAYQpAEAAAAAMIAgDQAAAACAAQRpAAAAAAAMIEgDAAAAAGAAQRoAAAAAAAPKRJDevXu3/Pz81Lp160LbU1JS1KNHD4WEhKh69epq2rSpRo0apczMTFu72WzWqVOnbPv8+uuvatmypVq0aKEXXnhBZrO52Ed2drYmTJhg+9nPz0+RkZF6+umndeTIkZvyOgAAAAAAyr4yEaTj4+M1cOBA7du3T6mpqXZtc+bMUUxMjCpXrqy5c+dqx44dmjFjhqxWq956661C+zt06JDatGmjSpUq6bPPPtP48eOVmppqe4SEhOj555+3e65GjRqSpMjISKWmpuqnn37SrFmztGfPHg0cOLDUXwMAAAAAgGvwcHYBFotFixcv1qpVq2SxWJSQkKAJEyZIkrKzszV69GgNGjRIU6ZMse0THBysZs2aKScnp0B/+/fvV5cuXdSoUSPFxcWpfPnykqRKlSrZtnF3d1fFihVVrVq1Avu7u7vbnq9Ro4Z69+6tMWPG6MKFC6pYsWKJnjsAAAAAwPU4fUZ65cqVCgwMVFRUlHr06KEFCxboypUrkqQVK1bo8uXLGjFiRKH7ms1mu5937typtm3b6oEHHlB8fLwtRF+vY8eO6bPPPpO7u7vc3d1vqC8AAAAAwK3B6TPS8fHx6tmzpySpefPm8vb21qpVqxQTE6P09HT5+PjYll3/lT59+qhdu3Z67733rruevXv3yt/fX/n5+bJYLJKkYcOG3XAoBwAAAADcGpwapNPT07Vjxw7FxcVJkkwmk7p3766EhATFxMTIarUa6q99+/Zas2aNNm/erFatWl1XTWFhYUpMTNSlS5eUnJysNWvWaMyYMdfVFwAAcF0Wi0WZaWnOLsOQNBerF39g3FwPY+ZawsLCSrxPpwbp+Ph45eXlKSoqyvbc1fB8+PBhhYaG6uzZszp69KhDs9JTp07VHXfcoZ49e+rTTz/Vgw8+aLgmT09PhYSESPrjxmM///yzXnzxRc2YMcNwXwAAwHV5e3uXyh9fpSUtLc2l6sUfGDfXw5hBcuI10rm5uUpMTNS4ceOUkpJie2zZskX16tXT/PnzFRMTIy8vL02fPr3QPv58szGTyaSpU6eqf//+euKJJ7R+/fobrnP06NH69NNPtWfPnhvuCwAAAADg+pw2I7127VqdOnVKTz75pPz8/Ozaunbtqri4OI0aNUqTJk3SqFGjdPbsWcXGxio4OFjHjh3T4sWLdenSJf33v/8t0PfkyZPl4eGh2NhYxcfHq02bNtddZ2hoqB599FFNnDhRCxYsuO5+AAAAAAC3BqfNSCckJCg6OrpAiJakzp07KysrS5s3b9agQYO0YsUKnTp1Sn379lXTpk01dOhQSdLIkSOL7P/111/X8OHD1bdvX3322Wc3VOvw4cO1Zs0afffddzfUDwAAAADA9ZlycnKM3dELRfL909dxAQAA13U+OVl50dHOLsNhXLfpmhg3e1lZWfrkk0/k5uYmk8nk7HIKZbFY5O3t7ewy/vau3luratWq6tu3r7y8vG7q8Z3+9VcAAAAAkJWVpXfffVf//ve/Va5cOWeXAxfx888/a8yYMRo2bJiCg4Nv2nGdtrQbAAAAAK765JNPCNEwrE6dOho3bpwSExNv6nEJ0gAAAACczs3NjRCN61KxYkXl5+ff1GMSpAEAAAA4XVm9Jhqu4Wa/fwjSAAAAAAAYQJAGAAAAAMAAgjQAAAAAAAYQpAEAAAAADhkyZIjq16/v7DKcju+RBgAAAFCmmX75RW6H/1979x5c853/cfwZibhzKpIQSYQkFYnYIIKoSwk2qwkm47axJSE6cRu2DBGK1jRF3alBdoulwwrbRevSVlRUFF1K17qsS122jU2ahGQS5PL7w8/ZHonLQc454fWYOTO+3+/n+z3vr7e35H2+n+/5XrNqDCXu7pQ2bfpU+27cuJExY8YYl+3t7XFxcaFbt27MmDEDNze35xWm2eLj45/o0VGdOnXis88+s0BElYMaaRERERERsWlVrl2jdkSEVWPI27GD4qdspO+bOnUqTZs25fbt2xw9epRPPvmE9PR00tPTqVGjxnOK1DwxMTF069bNuHzu3DkWLFhAXFwcwcHBxvUuLi4ALF261OKPmrJFaqRFREREREQsoEePHrRr1w6AN998k/r167NkyRJ2795N//79rRJTSEgIISEhxuW0tDQWLFhAhw4diIqKKjO+atWqlgzPZukeaRERERERESsIDQ0F4NKlS8Z1BoOBpKSkMmP79OlDnz59jMtpaWkYDAZSUlJYvnw5gYGBuLq60rNnT77//vsKi7m8e6QNBgMTJ05k586dhIaG0rBhQ7p3786JEycA2LRpE+3atTPGd+7cuTLHvXDhArGxsXh7e+Pi4kJoaCgbNmyosPN4VroiLSIiIiIiYgVXrlwB4JVXXnnqYyxfvpy7d+8yatQoioqKWLp0KdHR0Rw/ftyiV4+PHDnC3r17GTFiBA4ODixatIiBAwcyY8YMFi9ezPDhwyksLGTRokXExsZy8OBB475nz56ld+/eODk5MWbMGOrVq8fevXsZO3YsN2/eZPTo0RY7jyelRlpERERERMQCbt68SVZWFoWFhRw7doy5c+dSo0YNfvvb3z7TMQ8dOkT16tUB8PX1ZejQoezbt4/evXs/r9Af69y5cxw5coSm/38fubOzM/Hx8cyYMYN//OMf1K9fHwBHR0dmzpzJiRMnCAoKAu7dO+7q6kpqaio1a9YEYMSIEcTExJCUlMSwYcOoVauWxc7lSWhqt4iIiIiIiAVERUXh7e1NQEAAw4YNo06dOmzatIlGjRo99TGjo6ONTTTAa6+9BsDly5efNVyzdO7c2dhEA8YvKgsPDzc20QBt27YF/jedPScnh/3799OvXz8KCgrIysoyvsLCwrh16xbHjx+34Jk8GV2RFhERERERsYC5c+fSvHlzcnNz2bBhA+np6djb2z/TMT08PEyWDQYDANnZ2c90XHO5u7ubLNetWxeAxo0bl7s+JycHuHdvdGlpKXPnzmXu3LnlHjszM/N5h/vM1Eg/R3k7dlg7BDFDQUGB1R4zIE9HOauclLfKSXm798xYEZHnqU2bNsZv7X7jjTf43e9+R1xcHEePHqV27dqP3LekpIQqVcpOKH5YI15aWvrsAZvhYXE8Lr77j9IaPXo0vXr1Knesv7//c4jw+VIj/RwVd+5s7RDEDD+eP4+vr6+1wxAzKGeVk/JWOSlvIiIVy97enlmzZhEeHs6qVat4++23gXtXlHNzc8uMv3LlCl5eXhaOsuLdPycHBweT51nbOt0jLSIiIiIiYgUdO3YkJCSElStXUlBQAECzZs1MvtEa4LPPPuP69evWCLHCOTs706VLF9auXcu1a9fKbLfFad2gK9IiIiIiImLjStzdrX4bZUXd7jF27FjefPNN1q9fz1tvvcXw4cMZP348v//9743PXE5JSTH5Iq8XzcKFC+nduzedOnVi2LBheHt7k5WVxfffB0h1JQAAEqlJREFUf8++ffu4evWqtUMsQ420iIiIiIjYtNKmTSl+QRvJN954g2bNmrFs2TJiY2MZOnQoV65cYf369ezbt4/WrVuzZcsWEhMTrR1qhfHx8WH//v3MmzePLVu2kJmZiZOTE82bN+e9996zdnjlssvJybHsXegiNuK87v+rdJSzykl5q5yUt8pHOauclLf/SUpKIiEhwdphSCVl6X8/ukdaRERERERExAya2i0iIiIiIvICunPnzmOfJ12rVq3HPnpLylIjLSIiIiIi8gL69ttviYiIeOSYKVOmaEr9U1AjLSIiIiIi8gIKDAzk008/feSYF/HZ1JagRlpEREREROQFZDAY6Natm7XDeCHpy8ZERERERMTqSkv1MCF5epb+96NGWkRERERErK6kpITbt29bOwyphPLz86lSxbKtrRppERERERGxumHDhvHOO++omRaznD9/ntmzZzNkyBCLvq/ukRYREREREavz8PBg7NixzJ8/nypVqmBnZ2ftkMpVUFBAjRo1rB3GS+/+VG4XFxfmzJmDo6OjRd9fjbSIiIiIiNgEDw8Ppk+fbu0wHun8+fP4+vpaOwyxMk3tFhERERERETGDGmkRERERERERM6iRFhERERERETGDGmkRERERERERM6iRFhERERERETGDGmkRERERERERM9jl5OSUWjsIERERERERkcpCV6RFREREREREzKBGWkRERERERMQMaqRFREREREREzKBGWkRERERERMQMaqRFREREREREzKBGWkRERERERMQMaqSfUXJyMq1atcLV1ZWuXbty6NAha4ck/y8pKQmDwWDyevXVV43bS0tLSUpKws/Pj4YNG9KnTx/+9a9/WTHil9M333zD4MGDadGiBQaDgY0bN5psf5I85eTkMGrUKDw9PfH09GTUqFHk5ORY8jReKo/LWXx8fJnaCwsLMxlz+/ZtJk+eTLNmzXBzc2Pw4MFcv37dkqfxUlm4cCGvv/46Hh4eeHt7M2jQIE6fPm0yRrVme54kb6o327NmzRpCQ0Px8PDAw8ODnj17smfPHuN21ZrteVzOVGe2b8GCBRgMBiZPnmxcV9G1pkb6GWzbto2pU6fy9ttvc+DAAUJCQhgwYABXr161dmjy/3x9fTl79qzx9esPOpYsWcKKFSuYO3cu+/btw9nZmf79+3Pr1i0rRvzyyc/Px9/fnw8++IAaNWqU2f4keRo5ciQnT55ky5YtpKSkcPLkSd566y1LnsZL5XE5A+jWrZtJ7W3ZssVke0JCAjt27OBPf/oTn3/+Obdu3WLQoEEUFxdb4hReOgcPHmTEiBHs2bOH7du34+DgQL9+/cjOzjaOUa3ZnifJG6jebI2bmxuzZ8/m66+/JjU1lS5duhAdHc0PP/wAqNZs0eNyBqozW3b06FHWrVtHQECAyfqKrjW7nJyc0ud6Ji+RHj16EBAQwNKlS43r2rRpQ9++fZk5c6YVIxO4d0V6+/btpKenl9lWWlqKn58fcXFxTJo0CYCCggJ8fX157733iImJsXS4AjRu3Jh58+YRHR0NPFmezp49S/v27dm9ezcdOnQAID09nfDwcI4ePYqvr6/Vzudl8GDO4N4n97/88gubN28ud5/c3Fx8fHxYsWIFAwcOBODatWsEBgaSkpJCjx49LBL7yywvLw9PT082btxIeHi4aq2SeDBvoHqrLLy8vJg5cybDhw9XrVUS93MWExOjOrNhubm5dO3alSVLljBv3jz8/f2ZP3++RX6u6Yr0U7pz5w4nTpyge/fuJuu7d+/Ot99+a6Wo5EGXL1+mRYsWtGrVitjYWC5fvgzAjz/+SEZGhkn+atSoQWhoqPJnQ54kT0eOHKF27dq0b9/eOKZDhw7UqlVLubSi9PR0fHx8aNu2LePHj+e///2vcduJEye4e/euSV7d3d1p3ry5cmYheXl5lJSUYDAYANVaZfFg3u5Tvdmu4uJitm7dSn5+PiEhIaq1SuDBnN2nOrNNEyZMoG/fvnTt2tVkvSVqzeE5ncNLJysri+LiYpydnU3WOzs7c+PGDStFJb8WHBzMRx99hK+vL5mZmcyfP59evXpx+PBhMjIyAMrN308//WSNcKUcT5KnGzdu4OTkhJ2dnXG7nZ0dDRo0UC1aSVhYGBERETRp0oQrV64wZ84cIiMj2b9/P9WqVePGjRvY29vj5ORksp/+/7ScqVOnEhgYaPwlUbVWOTyYN1C92ap//vOf9OrVi8LCQmrVqsWGDRsICAgw/nKuWrM9D8sZqM5s1bp167h48SKrVq0qs80SP9fUSD+jX//Fw72pqA+uE+vo2bOnyXJwcDBBQUF88skntGvXDlD+KovH5am8nCmX1hMVFWX8c0BAAEFBQQQGBrJnzx4iIyMfup9yZhnTpk3j8OHD7N69G3t7e5NtqjXb9bC8qd5sk6+vL2lpaeTm5rJ9+3bi4+PZuXOncbtqzfY8LGf+/v6qMxt0/vx53n33XXbt2oWjo+NDx1VkrWlq91NycnLC3t6+zKcVmZmZZT75ENtQu3Zt/Pz8uHjxIq6urgDKn417kjy5uLiQmZlJaen/vu6htLSUrKws5dJGNGrUCDc3Ny5evAjcy1lxcTFZWVkm41R/FS8hIYGtW7eyfft2vLy8jOtVa7btYXkrj+rNNjg6OtKsWTNat27NzJkzCQwM5KOPPlKt2bCH5aw8qjPrO3LkCFlZWXTs2BEnJyecnJz45ptvSE5OxsnJifr16wMVW2tqpJ+So6MjQUFBpKammqxPTU01mWcvtqOwsJDz58/j6upKkyZNcHV1NclfYWEh6enpyp8NeZI8hYSEkJeXx5EjR4xjjhw5Qn5+vnJpI7Kysvjpp5+Mv0AGBQVRtWpVk7xev37d+KUfUjGmTJlCSkoK27dvN3kUIKjWbNmj8lYe1ZttKikp4c6dO6q1SuR+zsqjOrO+Pn36cOjQIdLS0oyv1q1bExUVRVpaGj4+PhVea/ZTp06d9dzP7CVRp04dkpKSaNiwIdWrV2f+/PkcOnSI5cuXU69ePWuH99KbPn06jo6OlJSU8O9//5vJkydz8eJFFi1ahMFgoLi4mEWLFuHj40NxcTGJiYlkZGSwePFiqlWrZu3wXxp5eXmcOXOGjIwM/vKXv+Dv70/dunW5c+cO9erVe2yeGjRowLFjx0hJSaFVq1Zcv36diRMn0qZNGz0qpII8Kmf29va8++671K5dm6KiIk6dOsW4ceMoLi5m/vz5VKtWjerVq/Pzzz+zZs0aWrZsSW5uLhMnTqRu3brMnj2bKlX0Ge/zNmnSJDZt2sTatWtxd3cnPz+f/Px84N4Hw3Z2dqo1G/S4vOXl5anebNCsWbOMv39cv36dlStX8te//pVZs2bh7e2tWrNBj8qZq6ur6swGVa9eHWdnZ5PXli1b8PT0JDo62iI/1/T4q2eUnJzMkiVLyMjIoEWLFrz//vt06tTJ2mEJEBsby6FDh8jKyqJBgwYEBweTmJiIn58fcG/qxgcffMDatWvJycmhbdu2fPjhh/j7+1s58pdLWloaERERZdYPGTKElStXPlGesrOzmTJlCrt27QIgPDycefPmlflmW3k+HpWzhQsXEh0dzcmTJ8nNzcXV1ZXOnTuTmJiIu7u7cWxhYSEzZswgJSWFwsJCunTpwoIFC0zGyPPzsFqYMmUKCQkJwJP9n6has6zH5a2goED1ZoPi4+NJS0vjxo0b1K1bl4CAAMaPH298BJJqzfY8Kmeqs8qjT58+xsdfQcXXmhppERERERERETNonoGIiIiIiIiIGdRIi4iIiIiIiJhBjbSIiIiIiIiIGdRIi4iIiIiIiJhBjbSIiIiIiIiIGdRIi4iIiIiIiJhBjbSIiIiIiIiIGdRIi4iIWJjBYCApKcnaYRj9+OOPGAwGNm7caO1QREREKgUHawcgIiJS2RkMhicat2LFCqKjoys4GhEREalodjk5OaXWDkJERKQy27x5s8ny2rVrOXbsGMuXLzdZ3759e7y8vCgsLMTBwQEHB9v4PLu0tJTbt29TtWpV7O3trR2OiIiIzVMjLSIi8pzFx8ezbds2MjIyrB2KiIiIVADdIy0iImJhD94jvXHjRgwGAwcPHmTatGn4+Pjg6enJmDFjKCwsJD8/nwkTJtCsWTM8PT2ZNGkSRUVFZY67detWevToQaNGjfD09GTQoEGcOXPmsfGUd490UlISBoOBCxcuMHHiRJo2bUrjxo0ZNmwYv/zyy2OPmZeXx/Tp02nVqhWurq74+voSERFBWlqaybjjx48zaNAgPD09adiwId27d2f37t1ljpebm8uMGTP4zW9+g4uLCy1atGDkyJH85z//MY5JTk4mNDQUNzc3vLy86Nq1K3/+858fG6uIiIi5bGNOmYiIiJCQkECDBg2YMmUKJ06cYOPGjdSsWZPLly9To0YNEhMTOXDgAMnJyTRr1ozRo0cb9128eDGzZs0iIiKCwYMHk5+fT3JyMr179+brr7/Gy8vrqWIaMWIErq6uJCYmcuHCBVavXk3VqlVJTk5+5H5//OMf+fTTTxk5ciR+fn7k5uZy7NgxTp06RefOnQE4ePAgUVFR+Pv7M3nyZBwdHfnb3/7GkCFDWLduHZGRkQDk5+fTp08fTp8+zZAhQ2jTpg3Z2dl88cUXXLx4ETc3N9avX8+kSZOIjIwkLi6Ou3fvcubMGQ4fPkxsbOxTnbuIiMjDqJEWERGxEU5OTmzbtg07OzsArly5QnJyMgMGDGD16tXAvca2ffv2bNiwwdhIX716lTlz5jBlyhQSEhKMxxs8eDAhISF8+OGHZe7XflKvvvqq8b3h3v3Ua9asYcGCBdSrV++h++3Zs4dhw4bx/vvvl7u9tLSUiRMnEhISwt///neqVLk3SS4uLo7evXvzzjvvGBvppUuX8sMPP7B69WoGDhxoPMakSZMoLS01vl+LFi1Yv379U52niIiIOTS1W0RExEYMHTrU2EQDBAcHU1payh/+8AeTcW3btuXSpUvG5R07dlBUVERUVBRZWVnGV9WqVQkODubAgQNPHdOIESNMljt16kRxcTHXrl175H516tThu+++M5l6/WunTp3i/PnzDBw4kOzsbGPM2dnZhIWFcfnyZa5cuQLA9u3b8fPzM2mi77v/91WnTh2uX7/Od9999zSnKSIiYhZdkRYREbER7u7uJst169Z96PqCggJu375NtWrVuHDhAgAhISHlHrdmzZpPHZOHh4fJ8v1HfWVnZz9yv9mzZzNmzBhatmxJq1atCAsLY8CAATRv3hzAGPO4ceMYN25cucfIzMzE09OTS5cuER4e/sj3mzBhAgcOHKBHjx54eXnx+uuv069fP7p27fpE5ykiImIONdIiIiI24mGPnro/7flB96c1l5SUAJCSklLuI7Uetv+zxHT/vR8mKiqKTp06sWvXLvbt28eqVatYvHgxK1asYNCgQcaYZ82aRVBQULnH8PHxMf7511fqy+Pn58fRo0f58ssv+eqrr9izZw8ff/wxMTExLFq06JH7ioiImEuNtIiISCXXtGlT4N6Vaz8/PytH8z8NGzYkJiaGmJgYcnJy6NmzJ3PnzmXQoEHGmGvXrk23bt0eeZymTZty+vTpx75frVq16Nu3L3379qWoqIj4+Hg+/vhjJk+ejJub2/M4JREREUD3SIuIiFR6kZGRODg4kJSUZLzS+2uZmZkWjae4uJjc3FyTdQaDgSZNmpCTkwNAUFAQ3t7eLFu2rMxYMI05MjKSM2fOsHXr1jLj7l8Zf/CRXA4ODgQEBAAY31NEROR50RVpERGRSs7Ly4vZs2eTmJhIWFgYERERvPLKK1y9epW9e/cSHBxs0enNt27dwt/fn4iICFq2bEndunU5fPgwX375JXFxccC96ebLly8nKiqKDh06EB0djaenJz///DNHjx7l6tWrHD58GIDx48ezY8cO4uLiSE1NpU2bNuTm5vLFF18wbdo0XnvtNfr374+zszMdOnTAxcWFS5cusXr1avz9/W3qKr2IiLwY1EiLiIi8AMaMGYOPjw/Lli1j4cKFFBUV0ahRIzp06FDmW78rWs2aNRk5ciSpqans2rWLoqIimjRpwnvvvUd8fLxxXMeOHfnqq6+YN28ea9eu5ebNmzg7O9OyZUuTx3jVqlWLzz//nKSkJHbu3MnmzZtxdnamU6dOeHt7AxATE8OWLVtYuXIlt27domHDhkRHRzN58uRnukdcRESkPHY5OTmP/rYQERERERERETHSR7QiIiIiIiIiZlAjLSIiIiIiImIGNdIiIiIiIiIiZlAjLSIiIiIiImIGNdIiIiIiIiIiZlAjLSIiIiIiImIGNdIiIiIiIiIiZlAjLSIiIiIiImIGNdIiIiIiIiIiZvg/fyH14UkeeJAAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1008x432 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "tPPbKr1olZyO", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "1aac4c18-ea2a-4398-c79a-37fbbcb8014b" | |
}, | |
"source": [ | |
"envir_df = game_df.groupby(by='Envir', as_index=False).mean()\n", | |
"envir_df.set_index('Envir', inplace=True)\n", | |
"fig = plt.figure(dpi=130);\n", | |
"envir_df['Run_Time'].sort_values().plot(kind='barh', figsize=(14,6), color='green');\n", | |
"plt.title('Average Runtime of Various Environments across Algorithms (secs)', fontsize=13);\n", | |
"plt.ylabel('Environment');\n", | |
"plt.xlabel('Time in secs');\n", | |
"plt.legend(loc='lower right', edgecolor='k');" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB1cAAAMBCAYAAACzzD2YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAT/gAAE/4BB5Q5hAAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3RUVdfH8V8aTQgDISHEQAKEAKFIQKSINOmISIkaQORFilhQfOxKE6UoojRFpAhSEpo0YwCVEhJAOqEmARIgdCEghJL2/sGa+2SYmTABYtDn+1kra8HcMufeuefMrLvv3scpJSUlSwAAAAAAAAAAAACAHDnndwMAAAAAAAAAAAAA4J+A4CoAAAAAAAAAAAAAOIDgKgAAAAAAAAAAAAA4gOAqAAAAAAAAAAAAADiA4CoAAAAAAAAAAAAAOIDgKgAAAAAAAAAAAAA4gOAqAAAAAAAAAAAAADiA4CoAAAAAAAAAAAAAOIDgKgAAAAAAAAAAAAA4gOAqAAAAAAAAAAAAADiA4CoAAAAAAAAAAAAAOIDgKgAAAAAAAAAAAAA4gOAqAAAAgH+EGTNmyGQyqUuXLvndlHx34MABvfDCCwoICFDJkiVlMpk0bNiw/G7WPbty5YpMJpNMJpP+/PPP/G7O/zQ+CyD/TZ06VSaTSc8991x+NyVXKlSoIJPJpJ07d+Z628jISJlMJjVo0CAPWvbguXbtmqpXr67KlSsrNTU1v5uTZ06dOiVvb281b95cWVlZ+d0cAADuGcFVAAAA3LUvv/zSuPn+bwjs/Bv069fP+EzMfyVKlJCvr68aNmyod955RwkJCfndTCvLli3TqFGjtGnTpvxuygPv7NmzateunVasWKGsrCzVrl1b9evXV7ly5exuk5KSojJlyshkMmn27NkOvc/hw4eNa2j9+vX3q/n/0z7++GOr/mnvb926dfndXDwAfvrpJ40aNUpbtmzJ76bgPkhISDD6eO3atfO7OX+77du3a9SoUVq4cGF+N+WBMXHiRJ04cUJvv/22ihQpkt/NyTNlypRRnz59tGPHDi1YsCC/mwMAwD1zze8GAAAA4J9r3rx5xr/DwsI0ePBgubi45GOLYObu7q6goCBJUmZmppKTk3XgwAHt379fs2fP1g8//KC2bdvmcyv/a9myZVqyZIkKFSpkN1vFZDKpUqVKevjhh//m1j1YwsPDdfHiRdWtW1crV65UwYIF77iNyWTSU089pYULF2revHnq2bPnHbcx928/Pz81btz4ntvtCGdnZ1WqVEmS/tVjSZEiRVSzZs0c1ylevPjf1Brb/lc+iwfdTz/9pOXLl6to0aKqV69efjcH92jOnDnGv48cOaKNGzeqUaNG+diivFGxYkV5eHioUKFCFq9v375dY8aMUevWrRUSEpJPrXtwnDlzRuPHj5ePj49efPHF/G5Onhs0aJCmT5+uTz75RM8884xDv18AAHhQEVwFAADAXYmOjtbhw4fl5uamAgUK6PTp01q9evUDFbD7XxYcHKxly5ZZvLZz50716tVLSUlJevXVV7V7924VK1Ysn1qYe507d1bnzp3zuxn57uDBg5Kkpk2b5urGZI8ePbRw4UJt3rxZCQkJCggIsLtuZmamwsLCJEndunWTk5PTvTXaQUWKFNHWrVv/lvfKT35+foqMjMzvZuTof+WzAP4uGRkZxrhqMpmUkpKiOXPm/CuDq2vWrMnvJvwjzJgxQ1evXtXLL7+sAgUK5Hdz8pyHh4fat2+vRYsWaenSpf+4ctcAAGRHWWAAAADclR9//FGS1KpVKz399NOSLDMy8OAJDg7W6NGjJUkXLlyg7Og/1PXr1yUp1+UDGzduLD8/P0mWWee2rF27VsnJyXJ2dla3bt3urqEAAMPq1at1+vRpFSlSRF988YUkafny5frrr7/yuWXID+np6UaZ/ueffz6fW/P3CQ0NlXQrsAwAwD8ZwVUAAADk2l9//aXly5dLunWTxHyjZPXq1Tp37pzV+omJiSpRooRKliypEydO2N3vxo0bZTKZVLZsWV27ds1imfkmVIcOHVShQgV5enoqKChI/fr10969e23uzzz/6BdffKGUlBR9/PHHqlOnjkqXLq3g4GBjvfj4eH311Vfq0KGDatSoodKlS6tcuXJ68sknNX78eKWmptptc2ZmpmbOnKkmTZrIx8dH/v7+euaZZ/T7778rPT3dmFstOTnZ5va7du1S//79Vb16deN927Ztq7lz5yozM9Pu+96txx57zPh3YmKi1fJhw4bJZDJp0KBBdvcRGBgok8lkldWWfdv09HRNmDBBDRo0kLe3t/z9/RUaGqo9e/ZYbBMXFyeTyaQlS5ZIkoYPH24x72TdunWNdWfMmCGTyaQuXbrk2KaDBw/q//7v/1SpUiX5+PiocePGFvO7paSkaMiQIapVq5ZKly6t6tWra/jw4UbQ0pbU1FRNnDhRLVu2lJ+fn7y8vPTII4/orbfeUlJSkt3t7uTAgQMaMGCAqlevLi8vL/n7+6tdu3aaPXu2MjIyLNbt3bu3TCaTFi9ebHWuSpcufcf3cnJyMgKlYWFhVvvPbu7cuZKkJk2aqGzZssbrGRkZWrVqlf7zn/+oUaNGqlixojw9PVWlShV17949x7lZK1SoIJPJpJ07d2rv3r3q06ePqlSpIg8PD73zzjuSpCtXrhjH9Oeff9rcT2RkpJ599lkFBATI09NTlStXVo8ePRQVFWVz/alTp8pkMuWYIdO0aVOZTCarbG9JWrdunbp166YqVarI09NTfn5+qlOnjl588cU7Bqnvp+zn7+jRo+rfv78qV64sLy8v1apVS8OHD7caq9asWSOTyaQKFSro5s2bdvc9c+ZMmUwmi5LcOX0W5rlj33nnHaWmpmrkyJGqX7++fHx8rMp237x5U999951atWqlcuXKqXTp0qpVq5YGDRqko0eP2mxP9v2npaXp66+/Vv369eXt7a3y5curW7dudsf9nj17ymQyaeLEibp48aLee+89Y1yvVauWxowZo7S0NEm3xu/vvvtOjRo1ko+PjypUqKB+/frp5MmTds9VVlaWlixZoq5duxrXYGBgoHr27Gl3XtS7OZ79+/fLZDIZ37WDBw+2GBtvL5++dOlSde7cWQEBASpVqpTKly+vevXqqV+/foqIiLB7PLYkJSVp8uTJ6ty5sx555BF5e3vL19dXTzzxhEaNGqWUlJQctz9x4oQ+/vhjNWzYUL6+vvLx8VGdOnXUr18//frrr3bPTV5cS3dzbnbu3Kk+ffqoevXq8vT0VNmyZRUcHKznnntOkydPzsWZtGR+AO2pp55Sp06d5OXlpdTUVOP7726cOnVKb775poKCguTl5aXq1avr7bff1vnz5+849p0/f15Dhw41zrevr68aNWqk0aNH6/Llyza3yT5WHjt2TAMHDjTOU/b3yT5eZX/t3XfflSStWrXKap5pe2P+0qVL1aZNG5UtW1YPP/ywWrVqpZUrV9pcN/sxZ2RkaNKkSWrYsKHKlCmjKlWq6LXXXtOZM2eM9VevXq0OHTrI399fDz/8sDp06GA3Yz8jI0OzZs1S27Zt5e/vr1KlSikgIEANGzbUwIEDFR0dbXM7ezZs2KBTp06pcuXKRgn2212/fl0TJ05U8+bNVa5cOeM7r0mTJnr33XetflOZHTp0SG+88YaCg4Pl7e2tsmXLqkWLFpo6daox/tly5coVTZw4Ua1bt5a/v79xTXXt2lWzZ89Wenq6xfp301eaNm2qokWLasuWLTZ/hwIA8E9BWWAAAADk2pIlS5SamioPDw+1bt1arq6uKlu2rI4fP66wsDC9/vrrFuv7+/urfv362rRpkxYsWKC33nrL5n7N5fI6duyowoULG69fvHhRoaGh2rx5sySpTJky8vX11dGjR7VgwQL99NNPmjJlis2gmySdO3dOjRs31vHjxxUYGKgqVapY3FwaOnSoIiIi9NBDD8nLy0vVqlXTn3/+qR07dmj79u1avHixfv75Z6sSullZWerbt68R7PLx8ZG3t7d2796tLl26GJkp9owbN04jRoxQVlaWihUrpkqVKunixYvatGmTNm3apF9++UWzZs26r/MdZg++FC1a9L7tN7ubN2/qmWee0caNG1WxYkVVrFhR8fHx+uWXX7RhwwZFRkaqRo0akqTChQurfv36io+P159//mncPDXLHthzxB9//KHPPvtMLi4uqlixok6cOKE9e/aob9++SklJUceOHdWuXTslJiaqSpUq8vb2VlJSkr766islJCQYGdnZJSYmqmvXrkpISJCzs7Mefvhh+fr66siRI5oxY4YWLVqksLAwNWzYMFdtXbRokQYMGKC0tDQVLVrUuO5iYmIUExOjn376SfPmzTP6QqVKleyeK0fLCXbv3l1jxozRyZMntXbtWrVo0cJqnZSUFP3888+SbpUSzu78+fN67rnn5OTkJA8PD5UuXVo+Pj46ceKEfv75Z/38888aMWKE1RiQ3bp16zRq1Ci5uLgYQXFHyw6/9dZbRrZL6dKlVaNGDSUmJmrlypVauXKl3n//fb3//vsO7csRU6dONYIBJUuWVJUqVZSRkaHk5GQtW7ZMO3bs+Nsze7dt26ZPPvlE6enpCgwMlJubmxITE/XVV19p27ZtWrZsmZydbz1H3bx5c3l7e+v06dNatWqVOnToYHOf5rHX/KCMo65cuaKWLVtq3759qlixogIDA3Xq1CljeUpKikJCQoxgRYUKFVSsWDEdOnRIM2fOVHh4uH744Qe1atXK5v5v3Lihp59+Wps2bVJAQIAqVKighIQERUREaMOGDVq9erUxt/Ttzp8/r2bNmik5OVlVqlSRk5OTEhMTNWrUKMXHx2vq1Knq3r27fvnlFwUEBMjPz0/x8fFasGCBtm7dqqioKKsxMjU1Vb169dLq1aslSZ6enqpataqSkpK0fPlyrVy5UqNHj1a/fv3u+XiKFCmi+vXrKy4uThcuXFC5cuXk4+Nj7MuchS7dClBOmjRJkowHRq5du6ZTp07p0KFDSk5OVrt27XL8LLP7+uuvNXPmTBUuXFheXl4KCgrSxYsXdeDAAcXGxmrhwoWKjIyUl5eX1bYrVqzQyy+/rKtXr8rFxUWVKlVSgQIFdOzYMS1YsECxsbE2x528upZye25WrlypXr16KT09Xe7u7goMDJSzs7NOnjypVatWadWqVXr11VcdPpdm586dM66bbt26ydXVVSEhIZo8ebLmzJlzV/NtxsXF6amnntLZs2fl4uKiypUry8nJSTNnzlRERESO/Tk2NlZdunTR2bNn5erqaoxt+/bt0969exUWFqalS5fK39/f5vb79+/X66+/rmvXrqly5coqXrz4HX+r1K1bV4cOHVJiYqJMJpOqVKlisdzV1foW5ZAhQzRhwgSVKVNGFSpU0JEjR/THH3+oR48emjRpktV3lFlWVpZeeOEFRUREKCAgQP7+/oqPj9ecOXO0efNmrV27Vj/88IMGDx4sb29vo/9HRUWpQ4cOioyMVK1atSz22bt3b+MBHF9fX5UvX16XL19WYmKi9u/fr7S0ND3++OM5noPsNmzYYJwXW9LS0vT000/rjz/+kHTrt3TJkiV14cIFHTx4ULt371aJEiWs5u+ePXu23nrrLaWnp6tIkSKqUKGCrly5ou3btxvfEQsXLrSqfhEXF6dnn33WCHiWK1dO5cuX16lTp/Tbb7/p119/Vfv27eXh4SHp7vuKi4uLgoODFRUVpQ0bNti9xgAAeNCRuQoAAIBcMwegunbtKjc3Nzk5ORklzcwZb7cz3+Qz38S/3bVr1yyyYbPr3bu3Nm/erLp162rjxo06cOCANmzYoMTERCPI8Oqrr+rw4cM29z19+nSVKFFCO3bs0JYtW7R+/Xr99ttvFm377bffdOLECe3cuVO///67du/erV27dqlly5bas2ePPvvsM5v7Xbx4sQoWLKjp06dr//79+v333xUfH68PPvhAH374od1zuHDhQn3yyScqWrSoJk2apKSkJG3cuFH79u3TmjVr5Ofnp5UrV2rcuHF293E3ss/z+Mgjj9zXfZstWLBAJ0+eVFRUlLZv367o6GjFxsaqVq1aunr1qoYOHWqsW7ZsWUVGRqpJkyaSbn3WkZGRxt/333+fq/ceNmyYevbsqfj4eK1bt07x8fF64403JEkjRoxQv3795O3trdjYWG3cuFG7d+/WvHnz5OzsrBUrVhgBfLNr167p+eefV0JCgtq0aaNdu3YpNjZW0dHROnLkiPr376/Lly+rV69eunTpksPtPHDggF599VWlpaXp//7v/xQXF6e1a9dqz549WrJkidzd3bV27VoNGTLE2OaDDz6we67MfedOfH191bRpU0n2++qiRYt048YNmUwmPfXUUxbLihQpogkTJujgwYNKSEhQTEyMoqKidPjwYc2fP1/FixfX0KFDjXlhbfn000/13HPPKS4uTuvXr9fmzZs1fPjwO7Z9xowZmjFjhlxdXTVx4kQdPHjQ6G/Dhg2TJI0ePdpuRlNuXb9+XZ988okk6ZtvvlFCQoKioqIUExOjpKQkbdmyRa+99tp9ea/c+PDDD9WlSxfFx8dr/fr12rt3r+bPny83NzdFRUVZXAsuLi4KCQmRZH/sPXr0qLZs2WKxrqMWLFiga9euaePGjdq+fbvWrVunXbt2Gcvfeustbd26Vd7e3lqzZo127Nih9evX69ChQ3rmmWeUmpqqPn366Pjx4zb3P3/+fJ07d07R0dHatm2bYmJitGfPHtWsWVNXrlwxPndbvvnmG5UrV0579+5VVFSU9uzZozlz5sjJyUmLFi1Sr169FBsbq3Xr1mnbtm3atGmToqOjVbp0aR09elTTpk2z2uegQYO0evVqVa1aVatWrVJ8fLw2bNigpKQkjR8/Xq6urnr//fe1bdu2ez4ef39/RUZGGvNx9u3b12Js/O677yTdyhKdPHmyChUqpIULF+rQoUNat26dtmzZomPHjmnt2rW5Dpq3b99eEREROnHihHbv3q3ff//dyDgPCQnRkSNHbD7EsGvXLvXp00dXr17Vc889p4MHD2rz5s3G93VUVJTdhxHy4lq6m3MzZMgQpaen6+OPP1ZCQoKio6ONMW7Pnj0W31+5ERYWprS0NPn6+qpx48aS/vtbZ+vWrTp06FCu9peZmamXXnpJZ8+eVe3atbVz507FxMQoOjpau3btkre3tyZOnGhz29TUVPXo0UNnz55VgwYNtGfPHm3cuFGbNm3S1q1bFRQUpMTERL344ot2K2iMHTtWDRo00IEDB7Rx40ZFR0dr+vTpObY5PDxcr7zyiiSpXr16FtdzZGSkihcvbrF+QkKCZsyYodmzZ+vAgQNav369Dh8+bPzeHDx4sG7cuGHzvczfp9n7d0xMjMqUKaOEhAQNGDBAI0eO1HfffaeDBw9q/fr1OnDggBo2bKjr16/r008/tdjf5s2btWzZMnl4eOi3337T3r17tXbtWm3fvl3JyclasWKFWrdunePx3y4mJkaSVKdOHZvLf/rpJ/3xxx8qX768tm/frl27dun333/Xrl27lJycrPDwcItqJObjfvPNN+Xs7KzRo0crKSnJGGeio6MVFBSk6Ohoq+v48uXLRmA1ODhY0dHR2rNnj9auXauDBw9q//79+vjjjy0e5LqXvvLoo49KulWxBgCAfyqCqwAAAMiVQ4cOGTeOs98kNf/74MGDNm8sP/PMMypcuLDi4uK0Y8cOq+U///yzLl++LD8/P4sMwF9//VVr165VmTJlFB4erurVqxvLXFxcNHDgQPXq1UvXr1/XlClTbLbZ1dVVc+fOVfny5Y3XsmfGdujQQXXq1LHKnvPz8zOCOfPnz7e4yZiZmanx48dLkt577z2LrFlXV1e9++67djOF0tLSjJvoX331lXr06GFkmkm3shjMN/YnT56cYwk3R2RmZur48eOaMmWKEcRq1aqVateufU/7tSc9PV3ff/+9kZ0q3coYGjVqlCRp/fr1VmWf75fq1atr1KhRKlSokKRbpXA//PBDlSpVSpcvX9bWrVs1bdo0lSlTxtimXbt2atmypaRbpQqz+/HHH3Xw4EHVrFlTs2fPVrly5YxlhQsX1pgxY9S0aVOdPXvWbrDSlq+++ko3btxQjRo1NG7cOIsMkubNmxs3dn/44QedPn069yciB+ZMn4iICF28eNFqufk4QkJCVLBgQYtlxYoVU8+ePa3KEDs7O6tt27Z69913lZmZqfnz59t9/5o1a2r8+PEWmeDZ+6MtGRkZGjt2rCTp5Zdf1gsvvGD0VxcXF7355ptGHxwzZkyO+3LUyZMndeXKFT388MPq1q2bRR+VpMqVK6t///53te8DBw5YlcTM/mcvG1OSqlatqnHjxllkVbZt21Zdu3aVJP3yyy8W65sDOGvWrNGFCxes9mf+rJo1a2bRLxyRmZmpWbNmWYzL5s8yLi5OP/30k6RbmZDZs7OKFy+u77//Xr6+vrp8+bK++eYbm/vPyMjQtGnTVK1aNeM1b29v42GXtWvX2g2uFCpUSNOnT7e4Vp966ikja3L58uX66quvLLLTKleurAEDBkiyHgt2796t8PBwubu7Kzw8XPXq1bNY/uKLL2rQoEHKzMzUhAkT7vvx2JOQkKCsrCwFBwcb41h2wcHBdrP77GnRooUaNmxolYno7e2tKVOmGGVhb58rdMSIEbpx44ZatWql7777Tp6enhbLa9SoYTerPS+updyem/T0dB05ckTOzs564403rCoClCtXLseS+Tkxj6vPPfecMZZUr17dyDrM7Zz1a9asUWxsrAoXLqw5c+ZYfDeVLVtWc+bMsZtJGh4erqSkJBUpUkSzZs2yyIgOCAjQzJkz5ezsrN27d1uNJ2be3t6aOXOmSpUqZbx2p3E8t9LS0vThhx/q6aefNl4rUKCAPv/8c7m7u+vixYtWD0Rl3/b2/h0YGKiXX35Z0q2sy379+lmUMi5evLjxQM26dess+mJcXJwk6cknn7QKhjo5OemJJ57QM888k6vjM08pYG/cNb9nly5dVLFiRYtlrq6uat26tZ588kmL1wcPHqzMzEwNHTpUL7/8stzc3IxlQUFBmj17tgoUKKBZs2ZZfP9Pnz5diYmJKlOmjH766SeLMcrcxrffftv43r7XvuLt7W1xDgAA+CciuAoAAIBcMWetBgUFWWQ+li9f3pgDztZNQnd3d7Vv316SbAZezFlV5pKjZua5yDp27KiSJUvabFPHjh0l/bfE2u2aNWsmX1/fHI/LPD9Z//791alTJ7Vt21Zt2rRRSEiInJ2ddenSJYu5oQ4ePGhkyPTs2dPmPu2V+duyZYuSk5NlMpnUuXNnm+vUrVtXPj4+SklJsTunVk7Wr19vBGpKliypGjVq6P3331d6erp69+6tH374Idf7dFTt2rVtZmLUrVtXzs7OysjIyLMbaj179rQKkhcsWNAoP9imTRvjpl525jl4b5+3z3xDv0ePHnZL75pv/Nq7/m6XlZWlNWvWSJJee+01myVxQ0ND5enpqbS0NK1du9ah/Tqqffv2KlGihG7cuKFFixZZLNu/f78xR15OARlzadpu3brpqaeeUps2bdSmTRvNnj1bkiwyzm7XvXt3q0DlncTGxhrzYNrLFjUHbWJjYy3Kid6tMmXKyMXFRadPn77vn4G55Ku9v5wefHjppZdsnr/69etLsr6Gg4KCVLNmTd28edPq85ZuZQxKMrLBciM4ONjiIYrsVq1apaysLFWqVElt2rSxWu7m5mYEOszlUm9Xt25dq9Kc0q2sNycnJ6WlpdnNem3btq1VcE/6b8b+ww8/bDfgJlmfx6VLl0q6FXjMHsjK7k7fRfdyPPaYv9v27dt3V98V9ly6dEmzZ8/Wq6++qs6dOxvfie3bt1daWpoyMjIs5om9dOmS1q1bJ0n6z3/+k+v3y4trKbfnxtXVVd7e3srMzFR4eHiuj8Ee81zgknVlDvP/w8PDreazzIl57tqWLVtaBEfNfHx8bJZflv5bweK5556zWdq5cuXKRnlle32zS5cuVmVl7zdnZ2f17t3b6nV3d3dVrVpVknU/NbPXv7P3v169elktf+SRR+Tk5KT09HSLvmi+lsyVC+5VVlaWMcesvd+25vdcs2aN3flos4uPj9fevXvl6upq93dpQECAgoKCdPPmTW3atMl43VzuuE+fPjKZTHd8r3vtK+ZjPnfuXK63BQDgQcGcqwAAAHBYWlqacRPFVmm/0NBQbdq0SUuWLNHIkSOtbryFhoZq0aJFWrx4sUaOHGk8UX/mzBkjeHH7jUfzzdtVq1bZDdiYsyDNwZfbmW/C2bN8+XK99tprunz5co7rXbhwQRUqVJB06yaWdCsAkz1zIzt7N4rNx5SRkZHjPHjm9iQnJ9stG2ePu7u7kf12/fp1JSYmKiUlRYUKFVL9+vXz9Kbo7RkWZq6uripZsqTOnz+vq1ev5sl7mz+f25mDLNmzl20tv71d5s/qhx9+MAL9tzNnf9i7/m53/vx5Yxt7GYpubm6qVKmSzp07Z1xr90vBggUVEhKiqVOnau7cuerbt6+xzJxdVaNGDZtlo2/evKlXX31VCxcuzPE9bGVImt0+z54jzOfAw8PDZnBcunUunZ2dlZmZqbi4uFxnYd6ucOHC6tu3r6ZMmaJOnTopKChITZs2VZ06dfT444/bbYcj/Pz8LEp054a9/mW+hq9cuWK1LDQ0VHv27FFYWJjFfKAxMTFKTEy0ePglN3L6LBMSEiTZv8YlGdlRR44cUUZGhlWmnb1jLVCggIoXL66UlBSbxyvd/VhgHs/tjQV//PGHzQCfJCM4lpKSotTUVKtx9l6Ox56AgAC1a9dOERERatKkierUqaMnnnhCtWvXVqNGjVSiRIlc7U+6FRzu3bu3zp8/n+N62fv5oUOHjM8wt99XUt5cS3dzbgYOHKgPP/xQr732mr788ks1b95cderUUcOGDe96bkjzQ2mPPfaYAgICLJY9++yzGjJkiM6ePavIyEirUuz2mMfE7Jm+t6tRo4ZWrFhh9bqj5zMyMtLInrzd3YzjueXr62tUobhdTuOddOf+7erqavMhCTc3N5lMJh8yXNQAACAASURBVF28eNFi340bN1atWrW0a9cu1a5dWw0aNNDjjz9uXBu5ncM+PT3dGC9urxBh1rlzZ40dO1a7d+9WUFCQGjdurPr16+vRRx9V/fr1rbYzj1F3KvFuDg5n/81y4MABSbIqM5yTe+kr5rZfv37d4fcDAOBBQ3AVAAAADouMjNS5c+fk6uqqZ5991mr5M888o/fff1+XL1/WsmXLrAKlTZs2VZkyZXTq1CmtWrXKuIm4YMECZWRkqEGDBlY3xFJSUiTdyk6wl6FglpqaavP1nAKJiYmJ6tu3r27cuKFOnTqpb9++qly5stzd3Y3gb5UqVXT69GmL8rzmm27ZS5vezt7NNvMx/fXXX3ZL2mV3NyV0g4ODjUwE6VZgfPr06frggw/Uv39/lShRwmZWx/3w0EMP2V1mzrizN4/bvbL3WZuzQ+21zbw8e7syMjKMspf79++/43s7+jllL6V5e3nd7MzBu9tLb94PL7zwgqZOnapdu3Zp3759qlatmtLT040sRntZq2PHjtXChQv10EMPaciQIWrWrJkefvhhFSlSRE5OToqIiFC3bt1yzMDK6fqwx3wOcjpfBQoUkMlk0oULF3IdoLJn5MiRqlChgmbOnKn9+/cb14GTk5OaNm2qTz/91Kp8Yl6zd/7MfSsrK8tqWUhIiIYMGaIdO3YoLi5OgYGBkv5bMcBctv1+tUX672dmKzPOzPx5ZmVl6cqVK1ZzLjoyltg63py2vZuxQPrvuH3ixAmdOHHCbrvMrl27ZjUe3cvx5GTGjBmaOHGi5s6dq23bthml+V1dXdW+fXuNGDHCbrbt7S5evKiePXsqJSVFLVq00Ouvv66goCCZTCbjO7Fx48bas2ePRT83f94PPfSQXF1zf6spr66l3J6bV155RZ6enpoyZYp27Nih6dOnG3OJ1q1bV8OGDdPjjz/u8HGlpqYaFRBszX3r4eGhli1bKiIiQnPmzHE4uHovv0Fycz7tjaV3M47nVl72/4IFC9otm2xeJ/u+XV1dtXTpUn355ZdauHChNm7caMwXWrhwYXXt2lXDhw+3m4V6Ozc3N7m7u+vy5cvG2HI7d3d3rV69Wp9//rmWLVumNWvWGFUv3N3d1atXL33wwQfG2G3ez40bN3L12/LGjRtGCeTbx+Cc3EtfMbfV0fMFAMCDiLLAAAAAcJi53G96eroCAwOt5gksV66cEeC0VRrYxcXFCMqab+pn/7etG4/mm4PffPONUlJScvxzpGza7RYvXqwbN27oscce04wZM9SwYUN5eHgYN5EzMzNt3vgytyunwNedbko2atTojseUkpJiMSfY3TKXTRwwYICysrI0cOBAm9mjtm4q3s5eEPvfxsXFxbhpGRkZecfPaevWrQ7tN/vN8DNnzthdzzzXak43z+9W9sxUc7bqqlWrdO7cORUsWNDmwxOSNG/ePEnS559/rv79+yswMFAPPfSQcd3klLF6L8znIKfzdfPmTaOvZg8q3Ms17ezsrH79+mnTpk2Ki4vTrFmz1LdvX3l4eGjt2rXq0KHDfSlBnNdKlSpllAg1j7fXr183St3aGnvvlfkzO3v2rN11zJ+nk5NTrjO//m7mcXvYsGEOjdseHh5/W9sKFSqkd955R7t27VJsbKy+//579ejRQ0WKFNGyZcvUqVMnh6sFrFy5UikpKQoICNC8efPUpEkTeXp6WszdaKufmz/vq1ev5qq8rSPu5Vq6m3MTEhKi3377TUePHlV4eLgGDhwoX19fbd26VZ07d7Yoh3wnS5cuNX4nDBo0yOYcyxEREZJulfrNaYzL7l5+g+TmfD7o/fLvZDKZNGLECB08eFDbtm3TpEmT1LlzZ2VmZurHH39U9+7dc/XgmDn7NqfvTR8fH3399dc6fPiwoqOj9eWXX6pNmza6evWqJkyYYDGHsXmMCgwMdGiMMm9bsGBBI5P00qVLuTond9tXzNU7cgrwAwDwoCO4CgAAAIecPn3amOOrZMmS8vLysvlnLrkWExNjM9PUfBN/9erVunDhgvbu3at9+/apUKFCxnx12ZnL1m3ZsiVPjsvcxgYNGtic+3L37t02y5ZVqlRJknTq1Cm7pRNjY2Ntvm7OdNu9e7eRLfB3ef/991WyZEmdOnVK33zzjdVyc6aVvZuup0+fvm9ZgdnZOvcPAnNJ6ft5/ZUqVcooR2kuxXe79PR0o3SjOcvwfjNnpy5YsEBpaWlGkLVdu3Y2y2WmpaUZGXv2slHyqp+a+9uff/5pN/hw4MAB48Z29nN2p2s6IyPDYj5le7y8vNSxY0d98cUX2rZtm3x9fXXhwgUjK+1BZ55TdcGCBcrMzFRERIQuX74sf39/Y77s+8n8mdm7xqX/ZoRXrFjRbhbZg8L8XeRIRtj9lNuxsWzZsgoJCdGkSZO0ceNGFS1aVIcPH3Z43mBzX3j00UdtzjOdnJxsM3O3SpUqcnFxUUZGhrZv356rNt/J/bqWcntuTCaTWrdurU8++UQ7duxQcHCwbty4YfPhMXvMJYGLFi1q93eTl5eX3NzclJ6ebvHgWU7M5ySnQK+93yC5OZ+VK1d2qD2OelC/63MrICBAPXr00IwZM7Rq1SpJ0qZNm3IVeDc/4ORIZQxnZ2dVq1ZNL730ksLCwjRz5kxJ0qJFi4yHisxj1OHDh+9Y0vt25m3/+OOPXG1nltu+sm/fPkn/neMaAIB/IoKrAAAAcMj8+fOVkZEhk8mkAwcOKC4uzuZffHy8ypYtq6ysLCNYk12VKlVUq1Yt3bx5U4sXLzZuJLZv395mObJnnnlGkrRw4UKHAiC5Zc5MtJd99vXXX9t8vUqVKvL19ZUkzZ492+Y6s2bNsvl6w4YN5eXlpb/++kvffvttbpt8T9zd3fXqq69KkiZNmmSVpWCeE3DXrl0WZZDNpk2bliftMn8Od1MCOS916tRJkjR16lS7pftyy8nJySjJbCvALd3KLjx79qzc3NzUrFmz+/K+twsJCVGhQoV0/vx5zZ071yg3aK8ksKurqxFssdVfjh07Znde2ntVo0YN+fj4SLJ/ziZNmiRJqlmzpsV8q+ZrOj4+3uZnOHv2bN28eTNX7TGZTMZDEuYM4wdd27ZtVaJECZ04cUJRUVHG/NnmoOv91qpVKzk5OSkuLs64trJLS0vTd999Z6z7oDOPBWvWrLE7/3deuJexsVy5cipbtqwkx6/Tu/1OdHd3N8aqcePG5bapOcqLaym356ZAgQJ69NFHHV5fujX/66ZNmyRJM2fOtPu7KS4uzpj72tbvJlvMmehr1qyxOd/3yZMnjQfibte6dWtJUnh4uM2KH/Hx8UbA8H73zQf1u/5ePPLII0Y2cG6+Dxo1aiRJRqnq3Mj+gJP5PatVq6bAwEBlZGToyy+/zNX+zA83Tp8+PdfZq7dzpK+Yj/mJJ564p/cCACA/EVwFAACAQ8w3/EJCQozyYbY4OTkZ2anz58+3WSLNvHzevHlatGiRxWu3a9++vRo3bqzU1FQ9/fTTNjNMEhMTNX78+Fxlk5iZb24tWbLEKM0n3SoT+v7772vFihU2s3ecnZ315ptvSpLGjBljEVRKT0/XF198YbG/7AoVKqThw4dLkkaMGKGxY8daZYNeuXJFy5Yt0xtvvJHrY7qTfv36qWTJkrp06ZJVoKpZs2YqVKiQTp48qREjRhifX1ZWlsLCwjR58uS7mk/vTipUqCDpVubH/S4peS9eeuklBQYGKjk5WR07drQZVDlw4IBGjBih3377zeH9Dho0SAULFtSuXbv0zjvvWNxoXr9+vT7++GNJUq9evXKcZ/RemEwmY36/Dz74QGlpafL19bUbzHVyclLDhg0lSYMHD7a4abp//349++yzysjIyJO2uri46O2335Z0K7g6f/58o8xvRkaGJk6caIwl7777rsW2derUkZeXl65evar33nvPIlt89erVGjZsmEXJU7OdO3dq0KBB2rp1q9U49uuvvyoqKkqSVLt27ft3oHmoQIEC6tKli6RbgejffvtNTk5OeRZcDQwMNAKSb7zxhkU246VLl/Tyyy/r2LFjcnd314ABA/KkDfdT3bp11bVrV2VkZOjZZ5/VihUrrK6LkydP6rvvvrP7AMDdMI+NMTExNsfGX375RYMHD7bKmMvMzNT8+fN16NAhSY5fp+bvxPXr1xtZl9KtAOYXX3yh77//XoUKFbK57eDBg1WwYEGtWrVKr7zyilX23N69e42HIHLjbq+l3J6b06dPq0+fPlq/fr3Vud6xY4cxj7mj59L8m8THx0fNmzfPcV3zQy1xcXEOVQBo2bKlatSooWvXrumFF17Q8ePHjWXHjx9Xjx497I7Hzz33nPz8/HT16lX17NnTIpB++PBh9erVS5mZmXrkkUfUpk2bO7YlN8zXc2xsrFEa9p9g9uzZGjNmjA4fPmzxelpamr7++mv99ddfcnV1Vc2aNR3e55NPPilnZ2dt377dZhWTL7/8UpMnT1ZycrLF66mpqRo9erQkqUSJEipfvrykW9/RI0eOlLOzs7799lsNHjzY6oGi69eva9WqVUYw3+yll16Sv7+/Tp48qc6dO1tl054+fVrjxo0zylDfS185deqUjhw5Ind3d9WrV++O5wkAgAfV/b8rAgAAgH+dmJgYo0Rp9+7d77h+9+7d9cUXXyg5OVm///67kWFh1rVrV3388cfauXOnJMnb2zvHgM7s2bPVs2dPbdiwQZ06dZKHh4f8/PyUmZmp5ORknTt3TpL00Ucf5frYnnrqKT3++OOKjo5Wt27dVLZsWZUqVUrx8fG6cuWKhg0bpqlTp9rMDHnppZcUExOjJUuWqHfv3ho8eLC8vb115MgRpaSk6PPPP9c777wjSVZlCkNDQ3X+/HkNGzZMn376qT7//HMFBASoSJEiunDhghITE5WZmWncNLufihUrptdee02ffPKJvv32Ww0YMEAmk0nSrRt1H374oYYMGaIJEyboxx9/lL+/v5KTk3X27FkNHz5ckydPznGutrvRqVMnjRkzRlFRUQoKClL58uXl6uoqX19fIyMpPxQpUkQLFy5UaGiodu/eraZNm8rHx0c+Pj66ceOGjh07ZmR5mMvqOaJq1aqaPHmyBgwYoO+//15hYWEKCAjQhQsXlJSUJOlWoPuTTz7Jk+My69GjhxYtWmQEd59//nk5O9t/Bnfo0KHavHmztm3bpkceeUQBAQFKS0tTXFycSpUqpSFDhujDDz/Mk7b27t1be/fu1YwZMzRgwAANHz5cPj4+SkpKMrKv3nvvPSNgbObm5qbPPvtM/fr1U3h4uCIiIlSxYkWdO3dOycnJ6t+/v7Zs2WIVOL9+/bpmzpypmTNn6qGHHlL58uVVoEABnTp1yghGPP300zbLmd9JUlLSHYMWffv2NYKh90toaKimTZtmZP81bNhQ/v7+9/U9shs3bpyOHTumbdu26cknn1RAQICKFi2qQ4cO6dq1aypSpIimTZtmZBA+6CZOnKgbN25oxYoVeuGFF1S8eHEjWHT69Gnjurg9cHEvOnfurLFjx2rdunWqVq2a/P395erqKj8/P33zzTe6fPmyJk6cqIkTJ6p48eLy8/OTs7Ozjh8/bvSLV155xeGAYP369dWxY0ctW7ZMr7/+ukaOHGl8r126dEmvvPKKYmJibD5o8sgjj2jatGnq37+/5s2bp/DwcFWuXFmurq46fvy4Ll68qKpVq+q1117L9Xm4m2spt+cmIyNDixYt0qJFi1SoUCFVqFBBhQsX1tmzZ43gZb169dSvX787tjcjI0Pz58+XdGtcvVPZ66CgIAUHB2vnzp2aM2fOHYNOzs7Omj59utq3b6/t27erVq1aRhn7AwcOqHTp0nrttdc0btw4qzG9SJEimjNnjrp06aLo6GjVqFFDVatWVUZGhg4ePKjMzEz5+/tr1qxZOX4f3I169eqpQoUKOnLkiGrWrKnAwEAjWD9v3jybFUweBGfOnNGoUaM0atQolSpVSr6+vsrMzFRiYqIuX74s6dbDct7e3g7v08/PTy1atNDq1asVGRlp9V2SmJioH3/8UR999JF8fHzk7e2tGzduKDExUVevXpWbm5u+/vpriwceW7RooUmTJumtt97SxIkT9e2336pSpUoqWrSoUlJSdPToUaWnpxvzs5oVK1ZMCxYsUEhIiLZv3258N5inkTh9+rSysrL04osvSrq3vrJw4UJJt/qFOZMZAIB/IjJXAQAAcEfm7Ivq1aurVq1ad1zfz8/PKPVlK5vUw8PDotRcSEhIjjceTSaTli5dqpkzZ6pt27ZydXVVbGysjh07Jk9PT4WEhGjGjBl6+eWXc3tocnFx0aJFi/Sf//xH/v7+On36tJKSkvToo48qLCzMyE61xcnJSdOmTdNXX32lmjVr6sKFC0pISFCNGjWMm1Rm5pJx2b3++uuKiYlRnz595O/vr8TERO3fv19ZWVlq3LixRowYocWLF+f6mBzRr18/eXh46PLly1aZRAMHDtSUKVMUHBys69evKyEhQZUqVVJYWFieZNJKUvny5bV48WI9+eSTSk9P19atWxUdHa0dO3bkyfvlhp+fn9auXavx48eradOmunnzpnbv3q3Tp0/Lz89PL774osLDw62CenfStWtXrV+/XqGhoSpevLj27t2rixcvqkGDBpowYYIWLVqU5zcemzRponLlykm6dT3bKwlsFhwcrNWrV6tt27YqXLiw4uPjdf36dfXu3VtRUVFGoCmvjBs3TvPmzVPLli2Vlpam2NhYubi4qH379lq+fLk++OADm9uFhIQoLCxMDRo0UGZmpuLj4+Xt7a0pU6ZozJgxNrepVq2axo8fr86dO8vHx0fHjx/Xnj17lJaWpubNm2vq1KmaNWvWXc0hmJqaqs2bN+f4Z+uBjntVp04di/lo8ypr1cxkMikiIkKjR4/Wo48+qjNnzmj//v3y9PRUr169tHHjxn9ESWCzwoUL68cff9SCBQvUsWNHFS1aVPv27dORI0dUvHhxdezYUd9+++19fcAgICBACxcuVLNmzXTz5k1jbDQ/nNSsWTONGTNG7dq1U8mSJXX06FHt3btXbm5uateuncLDwzVy5Mhcvef06dM1ZMgQVapUSefPn9eRI0cUFBSk77///o776tChgzZt2qT+/furYsWKOnr0qI4cOaKSJUvq+eefz3VbzO7mWsrtufH09NSUKVPUrVs3+fv769SpU9q1a5euXLmihg0bauzYsVq5cqXdzN3sfv31VyPY7shDadJ/s1eXLl2qq1ev3nH9wMBAbdiwQS+++KK8vLwUFxenlJQU9ezZU+vWrTN+d9j6/VGjRg1FR0dr4MCBqlChghISEpSYmKiqVavqvffe0/r16/PkwQsXFxctWbJEISEhKlasmHbv3q3o6GhFR0c/UFUrbhcSEqLhw4erRYsWKlKkiOLi4nTw4EG5u7urS5cuWrVq1V1l4JsfxJg3b57VsgEDBuiDDz5Qo0aN5OzsrP379yshIUGlS5fWCy+8oA0bNth8uKdbt27avHmzXn31VQUGBur48eOKjY3VzZs3Va9ePX300Uc2S0YHBgZq48aNGjp0qOrUqaMLFy5o3759cnV1VcuWLY2HFKR76yvmhw5eeumlXJ8vAAAeJE4pKSlZ+d0IAAAA4N/ojz/+UKtWreTp6an4+Pj8bg4AAPgf8fLLLyssLEzvvvtunlUUwL1r3bq1tm7dqpiYGFWpUiW/m5On1qxZo5CQEHXt2lXTpk3L7+YAAHBPyFwFAAAA8sgPP/wgSXr88cfztyEAAOB/xvnz54153/kN8mAbPXq0srKy9Omnn+Z3U/KU+RgLFy6soUOH5ndzAAC4ZwRXAQAAgHswbtw47d692+K1q1ev6rPPPtO8efPk5OTk0PxsAAAAjoqLi9O3336rCxcuWLx+8OBBPfvss7p8+bKCgoLUuHHjfGohHBEcHKwJEyaoevXqSk1Nze/m5JkzZ86oTZs2mjJlyj9mnm0AAHJCWWAAAADgHjRq1Eh79+5VsWLF5OfnJycnJ2MeSkn64IMP9N577+VzKwEAwL/J1q1b1bJlSzk5OalMmTIqU6aM/vzzTyUmJkqSvLy89NNPP6latWr521AAAIB/IZf3339/WH43AgAAAPinKl68uLKysnTp0iWdOnVKZ86ckYeHh5o3b64vvvhC3bt3z+8mAgCAf5nChQvLzc1NaWlpSklJUVJSkq5fv65KlSqpe/fu+vbbb1W+fPn8biYAAMC/EpmrAAAAAAAAAAAAAOAA5lwFAAAAAAAAAAAAAAcQXAUAAAAAAAAAAAAABxBcBQAAAAAAAAAAAAAHEFwFAAAAAAAAAAAAAAcQXAUAAAAAAAAAAAAABxBcBQDAhuTkZCUnJ+d3M4AHCv0CsEa/AKzRLwBr9AvAGv0CsEa/AP4ZXPO7AQAAPIhu3LiR300AHjj0C8Aa/QKwRr8ArNEvAGv0C8Aa/QL4ZyBzFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHEBwFQAAAAAAAAAAAAAcQHAVAAAAAAAAAAAAABxAcBUAAAAAAAAAAAAAHOCUkpKSld+NAPBgSU1LVWZWZn43A8hXWVm3vh6dnJzyuSXAg4N+AVijXwDW6BeANfoFYI1+AVijX/zzFC1QNL+bgHzgmt8NAPDgab+ovXae2ZnfzQAAAAAAAAAA4IF04pUT+d0E5BPKAgMAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIrgIAAAAAAAAAAACAAwiuAgAAAAAAAAAAAIADCK4CAAAAAAAAAAAAgAMIruK+SUpKkslkkslkUlJSUn43BwAAAAAAAAAAALiv/rXB1VGjRhmBPpPJpNmzZ99xm88++8xim7lz5/4NLf17REVFadSoUf+aYzp58qTGjh2rDh06KCgoSN7e3vLx8VGNGjUUGhqqadOm6cKFC/ndzDx35coVjRkzRo8//rh8fX1VtmxZPfHEExo7dqxSU1Pzu3kAAAAAAAAAAAD/Kv/a4OrtfvzxxxyXZ2Zmav78+X9Ta/5+Gzdu1JgxYzRv3rw8ew83NzdVqlRJlSpVkpubW568R0ZGhoYNG6ZatWrp008/VVRUlE6ePClXV1c5Ozvr+PHj+uWXX/T222+rZs2amjJlSp6040Fw7NgxPf744xo1apT27dunjIwMpaWlKTY2Vp9++qkaN26sU6dO5XczAQAAAAAAAAAA/jX+9cHVEiVKqFixYtq6dasOHDhgd73ff/9dJ06cULly5f7G1v27+Pj4aOvWrdq6dat8fHzu+/7T0tL07LPP6uuvv9bNmzfVuHFjhYWF6fjx4zpx4oROnDihY8eOae7cuWrfvr2uXr2qFStW3Pd2PAjS09P1/PPPKykpSaVLl9bixYt18uRJnTp1SmFhYSpVqpQSEhLUrVs3ZWZm5ndzAQAAAAAAAAAA/hX+9cHVwoULq3PnzpKkOXPm2F3PXDa4R48ef0u7kHsfffSRfvvtN0nS8OHDtXz5crVp00bFihUz1nF3d1f79u01d+5crV69Wv7+/vnU2rw1d+5c7d+/X9KtrOwnn3xSTk5OcnJyUps2bTRjxgxJ0s6dO7Vw4cL8bCoAAAAAAAAAAMC/xr8+uCpJL7zwgiQpPDxcaWlpVsv//PNPRUZGysXFRaGhoXfc3y+//KLQ0FBVrlxZnp6eqlixojp27Kh58+bZzRIcMGCATCaTBgwYYHe/UVFRxnyvtzPPIdu+fXtJt8r8Pv/88woICJCXl5eCg4M1ZMgQXbp0yWK7pKQkmUwmjRkzRpIUHR1tMa+syWTSqFGjjPWvXbumiIgIDRw4UI0aNVJAQIA8PT0VGBiokJAQLV261G77ze9lMpmUlJSU47ElJibqjTfeUPXq1eXl5aXKlSurb9++Onz4sM19x8XFadq0aZKk0NBQvfHGG3bbYVa3bl1NnDjR4rV7Ob7bj2HPnj3q16+fqlWrnDRkqgAAIABJREFUJk9PTzVq1OiObZKkM2fOyMPDQyaTScuXL89x3ZkzZ8pkMunhhx/W1atXjdfN5Z2bNGmixx57zGq7xo0bG6//m8tdAwAAAAAAAAAA/J3+J4Krjz76qKpWrarz588rIiLCavn8+fN18+ZNtWjRQmXKlLG7n7S0NPXr10+hoaH65ZdfdPbsWT300ENKSUnR+vXr9corr6hTp07666+/8vJwNHHiRHXo0EGRkZFKS0tTWlqajh49qgkTJqht27YWQTgXFxd5eXnpof9n786jtC7r/oG/72EYEIZFUFDCDTWVR0yzBy0N00ADc01lyR4TI3OrfufUQctsgTKfp1IrezpaPeWKuAQuGUYl5JIraEbiwuaEKC4DjKwD9+8PDiPjDHAzcjOor9c592Hm+72Wz3eY75k/3ue6ro4dk6w9F7VHjx6NPtXV1Q3tb7/99owYMSLXXnttnn766dTV1aWqqiqvvPJK/vSnP+Xzn/98vvCFL6RYLLa4/vvvvz8DBgzI7373u9TW1iZZGzjecsstOfLII/PPf/6zSZ9rrrkma9asSUVFRS688MKS56qoaPwrvqWe784778zAgQMzfvz4LF68OJWVlSXX1LNnzxx11FFJNh18jhs3Lkly3HHHNfwf1tXV5ZFHHkmSDBo0aIN9jz766CRrf94rV64suT4AAAAAAACa974IV5O3tvttbmvgddfWrXDdkLFjx2b8+PFJkvPPPz/PP/985syZk7lz52bMmDFp06ZNpkyZkgsuuGALV/+Wp59+Ot/+9rdz3nnnZebMmZk7d25qamrywx/+MG3bts2MGTNy5ZVXNrTv3bt3nn322Zx//vlJkv79++fZZ59t9Fm/3i5duuSMM87IxIkT88ILL2TBggX597//nRdeeCHf//7306lTp9x666255pprWvwMp59+evr3758HH3wwNTU1mT9/fm699db06NEjixcvzte//vUmfe67774kyYc+9KHstttuLZ57Sz3fOeeck49//OP5+9//nhdffDEvvfRSfvvb35Zcx7oV0pMnT85rr73WbJvZs2fn4YcfbtQ+SWbOnNkQ/vbt23eDc+y3335J1p7P+txzz5VcGwAAAAAAAM1734Srw4YNS1VVVf785z/n3//+d8P1Rx55JM8880x69OiRT33qUxvs/9JLL+UXv/hFkuTss8/O2LFj07179yRJdXV1LrjggowZMyZJMmHChDz++ONleY5Fixblq1/9asaOHZuePXsmSTp27JgvfelLGTVqVJLk1ltvbfH4n/70p3PllVfmiCOOaHi+JOnevXvOO++8hm12f/nLX7Z4jv322y8333xzQzBYWVmZgQMH5oorrkiSPPjgg5k/f35D+/r6+jz//PNJkgMOOKDF8yZb7vn22muv3Hzzzdl3330bXSvVkCFD0qVLl6xatWqD/1/rVrX27t07AwYMaLi+/s+mV69eG5zjAx/4QMPXCxYsKLk2AAAAAAAAmve+CVe7d++ewYMHZ82aNQ3nVSbJddddl2Rt+LqxrV0nTpyYVatWpaqqKqNHj262zRe/+MWGwPOWW27ZgtW/pV27dvnqV7/a7L0hQ4YkSWbNmpWlS5eWZf5jjjmmYY6WBnZf//rX06ZNmybXBw0alKqqqiRptDXwG2+80bBSc/vtt2/RnKUq9fm++tWvbtZWwG/Xvn37nHTSSUma3xq4WCw2rJIeNmxYCoVCw726urqGr7fbbrsNzrH+vXJvVQ0AAAAAAPB+0PJ06F3oc5/7XCZOnJjrr78+X/va17J06dL8/ve/T/LWtsEbMm3atCRrV05269at2TaVlZUZMGBAbrnllob2W9o+++yTzp07N3tv/VWMtbW16dChQ4vmePXVV/PrX/86f/nLX/Lcc89l8eLFqa+vb9LupZdeyk477bTZ43/kIx9p9nrbtm2zww47ZP78+XnjjTcarq9//un6IWNLbYnnO/TQQ99xHcOHD89vf/vbTJ8+Pc8880yjVbAPPfRQ5syZk2RtuPpObYmfGwAAAAAAsFaxWMysWbNau4z3rHbt2jXaoXNb8r4KV4866qj07t07c+fOzdSpUzNv3rzU1dXl0EMPzQc/+MGN9n311VeTZJP/kevuL1y4cMsU/TadOnXa4L31V4OuWrWqReM/+uijOfXUU1NbW9twrWPHjunatWsqKtYudH7llVeSJG+++WaL5thQOJy89Qzr19+tW7cUCoUUi8W8/vrrLZpznS31fDvuuOMG7w0YMKDZVa8f+9jHGp3Lesghh6RPnz6ZNWtWxo0bl+985zsN98aNG5dk7Rm5b99uuLq6uuHrZcuWbbCO9e+t3wcAAAAAAICWeV+FqxUVFRk+fHj+53/+J9dff33mzp2bZNOrVtdX6grAd+NKwfr6+px11lmpra1N3759c8kll+SjH/1ounTp0tBm9erVDWeVrr+itJwqKyuz11575bnnnstTTz3V4nG25PM1t63xOq+++mpDQLu+9VfjrjNs2LD84Ac/yPjx43PJJZekoqIiy5cvz4QJExruv936K5RfeumlRite17f+2cItWWEMAAAAAAA0r1AopE+fPq1dBq3gfXPm6jqnn356CoVCJkyYkEceeSSdOnVqOPtyY3bYYYckjQOr5qy7v679OuvO51yxYsUG+y5evHiTdZTTI488knnz5qWioiLjx4/Ppz71qUbBY5IWn7P6Tn3iE59Ikjz55JMNofjm2lrPN2PGjNTW1jb5TJw4sUnbdeepzp8/P1OmTEmS/OEPf8jixYvTrl27nHzyyU367LPPPg3h/fpn077dv/71ryRrf/f23nvvd/xcAAAAAAAA73fvu3B1t912y4ABAxq2nT3ppJPSsWPHTfb78Ic/nGRtuNfcCsRk7arHv/3tb0mSgw46qNG9rl27Jtl4OPvYY49t+gFaaN2Wtxtbjbl+MNy7d+9m2/z1r3/d8sWVYNSoUamoqMiaNWty2WWXldxvzZo1DV9vi8+366675rDDDkuS3HTTTUne2hJ48ODBDb8366uurk7//v2TJH/60582OPa6e4cffniqqqq2aN0AAAAAAADvR++7cDVJLrzwwpx//vk5//zzc84555TU5/jjj0/btm2zcuXK/OhHP2q2za9+9auGlY+nnnpqo3v9+vVLkjzxxBOpqalp0vfll1/O7373u815jM2y7pzT9c8afbt1qzgXLlyYl19+ucn9RYsWbfDZy+2DH/xgRo4cmSS58cYb89Of/nSTfR5//PF8+ctfbvh+W32+4cOHJ0nuvvvuzJ49O3/5y18aXW/OiBEjkiRTp05tNpS///778/DDD29yHAAAAAAAAEr3vgxXP/rRj2bs2LEZO3Zs9ttvv5L67Lzzzjn33HOTJFdddVW+/e1v5/XXX0+S1NXV5ec//3m++c1vJlm7Gvbggw9u1P+YY45Jp06dsmrVqpx55pmZOXNmkrWrXe+77758+tOfLusZpn379k2SzJw5Mw8++GCzbQ455JBUV1enWCzm85//fEONxWIxDzzwQI499thW3br4Bz/4QcP2wJdccklOPPHE/PGPf0xdXV1DmyVLlmTSpEk544wzMnDgwMyePbvh3rb6fCeccEI6duyYN998MyNHjkx9fX169OiRT37ykxvs89nPfjZ9+/ZNsVjM6aef3hDIFovF3HvvvTnzzDOTrF1B/fagHwAAAAAAgJZ5X4arLXXxxRc3BFVXXnll9tprr+yxxx7ZbbfdcvHFF6e+vj4DBgxodlVlly5dctlll6VQKOTRRx/NIYcckt69e6dXr1458cQTUywWy7pq8vDDD88+++yT1atXZ8iQIdl1113Tr1+/9OvXL7/4xS8aavz+97+fJHnooYca1Xjsscdmzpw5+e1vf1u2Gjelqqoqt956a84///xUVVXlvvvuy7Bhw9K7d+/suuuu2WWXXbLLLrtk6NChmThxYjp16tTozNJt9fmqq6vz6U9/Okkybdq0JGtXPq87p7c5lZWVGTduXHbbbbcsWLAgJ598cnbeeef06tUrp512WhYuXJi99torN954Y8OW0AAAAAAAALwzUpfN0LZt21xzzTW58cYbc8wxx6R79+5ZsmRJOnfunAEDBuSqq67KhAkT0qlTp2b7jxgxIrfffnuOPPLIdO7cOfX19dlll13yta99Lffdd1969OhRttrbtGmTiRMnZuTIkdljjz2yYsWKvPjii3nxxRezaNGihnZnnHFGbrvtthxxxBHp3LlzVq1alR133DFnnHFGpk6dmgEDBpStxlJUVlZm7NixeeKJJ/KNb3wjhx9+eHbaaaesWLGi4ec5ZMiQXH755fnHP/6Rs846q1H/bfX51m3zu86wYcM22WfXXXfNAw88kAsvvDB9+/ZNRUVF2rRpk/333z8XX3xxpk6dmp133rlcJQMAAAAAALzvFGpra8u3Fy3wrnTkTUdm2svTWrsMAAAAAADYJtWcW5PqqurWLoNWYOUqAAAAAAAAQAmEqwAAAAAAAAAlEK4CAAAAAAAAlEC4CgAAAAAAAFAC4SoAAAAAAABACYSrAAAAAAAAACUQrgIAAAAAAACUQLgKAAAAAAAAUALhKgAAAAAAAEAJhKsAAAAAAAAAJRCuAgAAAAAAAJRAuAoAAAAAAABQAuEqAAAAAAAAQAmEqwAAAAAAAAAlEK4CAAAAAAAAlEC4CgAAAAAAAFAC4SoAAAAAAABACYSrAAAAAAAAACUQrgIAAAAAAACUQLgKAAAAAAAAUALhKgAAAAAAAEAJhKsAAAAAAAAAJRCuAgAAAAAAAJRAuAoAAAAAAABQAuEqAAAAAAAAQAmEqwAAAAAAAAAlEK4CAAAAAAAAlEC4CgAAAAAAAFAC4SoAAAAAAABACYSrAAAAAAAAACUQrgIAAAAAAACUQLgKAAAAAAAAUIJCbW1tsbWLALYtS1ctzZrimtYuA1pVsbj2z2OhUGjlSmDb4b2AprwX0JT3ApryXkBT3gtoynvx7lNdVd3aJdAKKlu7AGDb06Fth9YuAVrdrFmzkiR9+vRp5Upg2+G9gKa8F9CU9wKa8l5AU94LaMp7Ae8OtgUGAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASFGpra4utXQSwbVm6amnWFNe0dhnQqorFtX8eC4VCK1cC2w7vBTTlvYCmvBfQlPcCmtqc96K6qrrc5cA2YdasWUmSPn36tHIlwMZUtnYBwLbn2FuPzbSXp7V2GQAAAAC8z9WcW9PaJQBAI7YFBgAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBIIVwEAAAAAAABKIFwFAAAAAAAAKIFwFQAAAAAAAKAEwlUAAAAAAACAEghXAQAAAAAAAEogXAUAAAAAAAAogXAVAAAAAAAAoATCVQAAAAAAAIASCFcBAAAAAAAASiBcBQAAAAAAACiBcBUAAAAAAACgBMJVAAAAAAAAgBKUJVzdfvvt07179/zhD3/YrH5//vOf061bt3Tv3r0cZfEe0K9fv3Tt2jU33HBDa5cCAAAAAADA+0xluQYuFotbtR/NW758efbdd9/U1tYmSe64444MGDCglat6d/rb3/6W+++/P7vuums++9nPtmotDz30UJ566qk8+eSTeeqppzJz5sysWrUqu+yyS/7xj3+0am0AAAAAAADvVWULV9k23HHHHQ3BapJcd911wtUWuv/++3PZZZflsMMOa/VwdfDgwa06PwAAAAAAwPvRNnXm6tKlS5Mk7du3b+VK3juuvfbaJMkXvvCFJMmdd97ZKGzl3al9+/b58Ic/nM9//vP5yU9+ktNOO621SwIAAAAAAHjP26ZWrj722GNJkh122KGVK3lvmD17dh544IG0bds2F110UZ588sk8+uijufnmm3P22We3dnm8AzU1NamsfOv1nT9/fitWAwAAAAAA8P7wjsPVp59+eoNnPE6dOjWLFi3aaP9isZilS5fmySefzPjx41MoFPLhD3/4nZZF1q5aLRaLOfroo9O9e/eMGDEijz76aK677rpNhqvLli3Ltddem7vvvjszZszIokWL0r179+yyyy4ZNGhQTjvttOy+++4N7c8555zcdNNNGT58eH7xi1/k+uuvz4033piZM2fm9ddfzw9+8IOce+65De2XLFmSq6++OnfddVdeeOGFrFixIj179sxhhx2W8847L/vvv/8mn+/NN9/M5ZdfnjvuuCMvvvhi2rVrl4985CM5//zz84lPfGKjfe+5555ce+21eeKJJ/L666+nc+fO2X///TN06NAMGzYsFRVvLeqeO3duPvShDzV8/8ADD6Rr166Nxhs9enQuuuiiTdacJIcddlj++c9/5qyzzsqPf/zjDbabPXt2DjrooCTJhAkTGj3T+sEqAAAAAAAAW8c7Tmjuuuuu/Pd//3eT68ViMVdfffVmjVUsFlMoFHLmmWe+07Le9+rr63PTTTclSYYPH54kOfnkk3PRRRfl6aefzrRp0xqCu7f75z//mREjRmTu3LlJkoqKinTu3DmvvPJKFixYkEcffTSvv/56fvjDHzbpWywWM3LkyPz+979v6NemTZtGbWbOnJnPfOYzqampSZJUVVWlffv2mTdvXubNm5ebb745l1566UYD4EWLFuWTn/xknnnmmbRt2zbbbbddamtrM3ny5EyePDkXX3xxvva1rzXpt2rVqpx33nkZP358kqRQKKRLly6pra3NlClTMmXKlNx88825/vrr06lTpyRJmzZt0qNHj7z55pt5880307Zt22y//faNxq2urt5grW83fPjwXHzxxbntttty6aWXpqqqqtl26/7/PvCBDzgnFwAAAAAAYBuwRc5cLRaLjT4bur6pT48ePXLllVfmiCOO2BJlva9NmjQpCxYsSPfu3XPMMcckSbp06ZJjjz02yVtnsb7d/Pnzc9JJJ2Xu3LnZaaed8stf/jLz5s3LnDlz8vLLL+fRRx/NmDFj0rt372b733XXXbnzzjvz3e9+N7NmzcqcOXNSU1OTE044IUlSV1eXYcOGpaamJjvuuGOuvfbazJ8/P/Pmzcvjjz+egQMHZs2aNRk9enTuvffeDT7fZZddlvnz5+dXv/pVQ//p06fnU5/6VJJk7NixmTRpUpN+Y8eObQhWzz///Dz//POZM2dO5s6dmzFjxqRNmzaZMmVKLrjggoY+vXv3zrPPPpvzzz8/SdK/f/88++yzjT7rt9+U0047LZWVlamtrc0999zTbJtisdhQ59ChQxutpAUAAAAAAKB1vOOVq8cee2x23XXXRtfOO++8FAqFjBo1qtF2qs2pqKhIx44ds9tuu+U//uM/mqxypGXWhaennHJK2rZt23B9+PDhue2223Lbbbfl+9//fjp06NCo3/e+97288sor6dq1a/74xz822vq3bdu22XvvvbP33ntvcN66uromWwBvt912+cAHPpAk+c1vfpPZs2enTZs2ufnmmxttAb3nnnvmpptuytFHH51p06blkksuyaBBg1IoFJrMs2jRotx222355Cc/2XBt9913z/XXX5/Bgwfn0UcfzXe/+92GYDlJXnrppfziF79Ikpx99tkZO3Zsw73q6upccMEFadOmTb7xjW9kwoQJefzxx3PwwQdv8FlbqkePHvnkJz+ZSZMmZdy4cQ3B8/oeeuihzJkzJ0kybNiwLV4DAAAAAAAAm+8dh6v9+vVLv379Gl0777zzkiRHHHFEhgwZ8k6nYDO99NJLmTx5cpK3tgRe56ijjkqvXr0yf/78TJgwISNGjGi4t3Tp0tx+++1Jki9/+cuNgtVSdenSJV/4whc2eP/WW29NkgwZMqTZs3Xbtm2bCy+8MEOHDs0zzzyTf/zjHznggAOatOvfv3+jYHWdysrKfP3rX89pp52WGTNmZMaMGenbt2+SZOLEiVm1alWqqqoyevToZuv74he/mCuvvDIvv/xybrnllrKEq8na/5dJkyZl8uTJefXVV7PDDjs0uj9u3LgkyUc+8pF88IMfLEsNAAAAAAAAbJ53HK4256qrrkqSTa5apTxuuOGGrF69On379s2BBx7Y6F5FRUVOO+20XHHFFbnuuusahatPPPFEVq5cmSQN2+turoMPPniDZ4iuXLky//znP5MkRx555AbHGDBgQNq0aZPVq1dn2rRpzYarG9s6+vDDD09FRUXWrFmTadOmNYSr06ZNS5IccMAB6datW7N9KysrM2DAgNxyyy0N7cth8ODB6dq1a2pra3PrrbfmS1/6UsO95cuXZ8KECUmahuMAAAAA8H5SLBYza9as1i4DtorVq1cnid95SNKuXbuGXVG3NWU5yHHEiBEZMWLENvvQ72XFYjE33HBDkg0Hc+sC1YceeijPPfdcw/VXXnml4eu3b/VcqrevwFzfG2+80fDHYWO/G9ttt126d++eJFm4cGGzbXr16rXB/h06dEjXrl2b9H/11Vc3Off69zc098aMHj06H/zgB5v9rK9du3Y56aSTkry1SnWdP/zhD1m8eHHatWuXk08+ebNrAAAAAAAAoDzKsnKV1jN16tTMnj07SfKtb30r3/rWtzba/tprr82YMWOaXG/unNNSlHpmbqnjb6jdO+n/TufemMWLFzcKqTdm+PDh+b//+79Mnz49//rXv7LffvsleStsPeaYY7L99ttvdg0AAAAA8F5RKBTSp0+f1i4Dtop1K1b9zsO2rSwrV5uzcuXKLFy4MC+++GJJH1rm2muv3az248aNy6pVq5IkPXv2bLg+d+7cLVpXkmy//fYN4eu///3vDbZbtmxZXn/99SQbXgm7sf5Lly5NbW1tk/7rvt5Y3/Xvb2wV7ob87//+b2pra5v9vF3//v2z1157JXkrUF24cGH+8pe/JLElMAAAAAAAwLamrOHq7NmzM3r06Bx88MHZeeeds88+++RDH/rQJj9vPyeU0rzxxhu56667kiQ///nPM2fOnA1+nn766VRVVWXhwoW55557kiQHHXRQw3mp665tSVVVVdl///2TJPfdd98G291///2pr69vqKk5f/vb3zbY/4EHHsiaNWua9P/whz+cJHnyySfzxhtvNNt39erVDWO/fe6KirWvS7FY3ODcm2vYsGFJkltuuSVr1qzJ+PHjU19fnx133DGDBg3aYvMAAAAAAADwzpUtXL3lllty2GGH5Zprrsns2bOzZs2aFIvFkj9svnHjxmXFihXZbrvtcuKJJ6Zr164b/PTu3TtHHnlkkuS6665Lsvas0s985jNJkp/97GeZM2fOFq/xlFNOSZLcfffdmT59epP79fX1ueyyy5Ik++67bw444IBmx/n73//ebEC7evXq/PjHP06S7Lfffunbt2/DveOPPz5t27bNypUr86Mf/ajZcX/1q19lwYIFSZJTTz210b3OnTsnSbOrUFtq6NChKRQKmT9/fqZMmdKwgvWUU05JZaVduwEAAAAAALYlZUlvnnrqqZxzzjkNgWr79u1z0EEHpVevXg0rI9ny1oWkgwYNSnV19Sbbn3TSSZk0aVL+/Oc/p6amJr179863vvWtTJ48OQsXLsynPvWpfPe7382xxx6b6urqrFq1KrNnz85tt92W6urqXHDBBZtd45lnnpnf/OY3mT17doYOHZof//jHGTx4cNq0aZNZs2blwgsvzGOPPZYk+d73vrfBcbp06ZIzzjgjl19+eY477ri0bds2c+bMyTe+8Y38/e9/T5JccskljfrsvPPOOffcc3PllVfmqquuSmXmHLSCAAAgAElEQVRlZb7yla+kW7duqaury29/+9t85zvfafjZHHzwwY36rwtqZ86cmQcffDAf+9jHNvv5326XXXbJxz/+8UydOjVjxozJP/7xjySb3hK4rq4uK1asaPh+2bJlSdauqn3ttdcate3evfs7rhMAAAAAAIAyhas/+9nPsnr16hQKhYwcOTLf/va3G1b9UR6PPfZYZsyYkSQ5+eSTS+ozZMiQtGvXLitWrMgNN9yQ0aNHp1evXrntttsyYsSI1NTU5Oyzz05FRUU6d+6cxYsXN2y3+6UvfalFdVZXV2fcuHH5zGc+k5qampx++ulp165d2rdvn0WLFiVZu/3upZdemqOPPnqD44wePTrXXnttRo4cmaqqqmy33XYN/ZPkoosuyuDBg5v0u/jiizN//vzccsstufLKK/Ozn/0sXbp0yeLFi7N69eokyYABA/LTn/60Sd/DDz88++yzT2bOnJkhQ4akc+fO6dKlS5LknHPOybnnntuin8nw4cMzderUPPHEE0mS//iP/9jgit11vv71r+emm25qcr2mpiZ77rlno2tbcqUtAAAAAADA+1lZtgV+6KGHUigU8olPfCI//vGPBatbwbpVqx07dtxoKLm+zp07Z+DAgUmSG264oWE75gMOOCAPP/xwxowZk0MPPTSdO3fOm2++mZ49e+aQQw7JxRdf3OIgMUn22WefPPjgg7n44otz4IEHpqqqKsuWLUvv3r0zfPjwTJkyJWefffZGx+jSpUsmT56cr33ta9l9992zYsWKdOnSJUcddVRuv/32jB49utl+bdu2zTXXXJMbb7wxxxxzTLp3754lS5akc+fOGTBgQK666qpMmDAhnTp1atK3TZs2mThxYkaOHJk99tgjK1asyIsvvpgXX3yxUbC7uY4//vhGK43XncMKAAAAAADAtqVQW1u7xQ847dmzZ1atWpUrrrgi//Vf/7WlhwfK7Mibjsy0l6e1dhkAAAAAvM/VnFuT6qpNH4EG7wWzZs1KkvTp06eVKwE2piwrV7fffvskadgyFQAAAAAAAODdrizh6v77758kmTt3bjmGBwAAAAAAANjqyhKufu5zn0uxWMztt99ejuEBAAAAAAAAtrqyhKsnnHBCjj322Dz55JP53ve+V44pAAAAAAAAALaqsoSrSfLrX/86p5xySq644oqceOKJ+eMf/5jXXnutXNMBAAAAAAAAlFVlOQbt1q1bw9fFYjFTp07N1KlTS+5fKBQEsQAAAAAAAMA2pSzharFY3Oj3AAAAAAAAAO82ZQlXP/axj6VQKJRjaAAAAAAAAIBWUZZw9e677y7HsAAAAAAAAACtpqK1CwAAAAAAAAB4NxCuAgAAAAAAAJRAuAoAAAAAAABQgrKcubq+1atXZ8KECfnLX/6S5557Lq+//nrq6+szffr0Ru1mzJiRJUuWpHPnztlvv/3KXRYAAAAAAADAZilruPrAAw/knHPOSU1NTcO1YrGYQqHQpO1dd92VH/7wh6murs6zzz6b9u3bl7M0AAAAAAAAgM1Stm2B77333px44ompqalJsVhMmzZt0rlz5w22P/PMM1NRUZG6urrce++95SoLAAAAAAAAoEXKEq6+8cYbGTVqVOrr69OpU6f87Gc/y9y5c3PVVVdtsM+OO+6YQw45JEkyZcqUcpQFAAAAAAAA0GJlCVevvvrqLF68OG3bts2ECRNy+umnp0OHDpvs179//xSLxTz11FPlKAsAAAAAAACgxcoSrk6ePDmFQiEnnnhiDjrooJL79enTJ0kye/bscpQFAAAAAAAA0GJlCVdnzZqVJPn4xz++Wf3Wncm6ZMmSLV4TAAAAAAAAwDtRlnC1rq4uyVthaamWL1+eJKmqqtriNQEAAAAAAAC8E2UJV7fffvskyWuvvbZZ/Z577rkkSbdu3bZ4TQAAAAAAAADvRFnC1b322itJ8sADD2xWv7vvvjuFQiEHHnhgOcoCAAAAAAAAaLGyhKuDBg1KsVjM3Xffneeff76kPr/5zW/yzDPPJEkGDhxYjrIAAAAAAAAAWqws4eoZZ5yRLl26ZOXKlRk6dGjDdr/NWbNmTf73f/83F154YQqFQnr27JmhQ4eWoywAAAAAAACAFqssx6Bdu3bN//zP/+SLX/xiZs+encMPPzwDBw5Mhw4dGtr87ne/y4wZM3LPPfekpqYmxWIxFRUV+elPf5qqqqpylAUAAAAAAADQYmUJV5Pk1FNPzZIlS3LRRRdl5cqVueeee5IkhUIhSfL//t//a2hbLBbTtm3b/OQnP8mgQYPKVRIAAAAAAABAi5VlW+B1Ro4cmcmTJ2fIkCEpFAopFotNPsnaM1b/9Kc/5fTTTy9nOQAAAAAAAAAtVraVq+v069cvN9xwQxYtWpSHH3448+bNy6JFi9KxY8f06tUrH/vYx7LDDjuUuwwAAAAAAACAd6Ts4eo6Xbp0ydFHH721pgMAAAAAAADYosq6LTAAAAAAAADAe4VwFQAAAAAAAKAEW2Vb4DVr1mT27Nmpra3N8uXLS+pz2GGHlbkqAAAAAAAAgNKVNVz929/+lp///OeZOnVqVqxYUXK/QqGQ1157rYyVARtz9yl3Z01xTWuXAa2qWCwmWfs3CVjLewFNeS+gKe8FNOW9gKa8FwC8W5UtXB0zZkwuv/zyJG/9oQTeHTq07dDaJUCrmzVrVpKkT58+rVwJbDu8F9CU9wKa8l5AU94LaMp7AcC7VVnC1TvvvDM/+clPGr7v06dPDj300PTs2TNVVVXlmBIAAAAAAACgrMoSrl599dVrB6+szBVXXJHPfvaz5ZgGAAAAAAAAYKupKMegTz31VAqFQk4//XTBKgAAAAAAAPCeUJZwdfXq1UmSww8/vBzDAwAAAAAAAGx1ZQlXd9lllyRvhawAAAAAAAAA73ZlCVePOuqoJMnjjz9ejuEBAAAAAAAAtrqyhKtf/OIX06FDh9x4442ZN29eOaYAAAAAAAAA2KrKEq7utttuueaaa7J8+fIcf/zxeeyxx8oxDQAAAAAAAMBWU1mugQcPHpxJkyZl1KhROfroo3PggQfm4IMPTrdu3VJRselMd/To0eUqDQAAAAAAAGCzlS1cra+vz+TJk/Pqq6+mWCxm+vTpmT59esn9hasAAAAAAADAtqQs4Wp9fX1OP/303HvvvQ3XisViyf0LhUI5ygIAAAAAAABosbKEqzfccEMmTZqUJNluu+1y6qmn5tBDD03Pnj1TVVVVjikBAAAAAAAAyqos4ervfve7JEm3bt3yxz/+MXvvvXc5pgEAAAAAAADYairKMegLL7yQQqGQUaNGCVYBAAAAAACA94SyhKvrzkzdd999yzE8AAAAAAAAwFZXlnB19913T5IsXry4HMMDAAAAAAAAbHVlCVePP/74FIvF/PWvfy3H8AAAAAAAAABbXVnC1VGjRmX33XfPHXfcIWAFAAAAAAAA3hPKEq526tQp48ePz+67754RI0bkiiuusEUwAAAAAAAA8K5WWY5BjzvuuCRJx44ds3z58nzve9/L97///ey9997ZfvvtU1Gx8Uy3UCjkjjvuKEdpAAAAAAAAAC1SlnD1/vvvT6FQSJKGf+vr6/PMM89ssm+xWGzoAwAAAAAAALCtKEu4mqwNSUu5BgAAAAAAAPBuUJZw9Y033ijHsAAAAAAAAACtZuOHnwIAAAAAAACQRLgKAAAAAAAAUBLhKgAAAAAAAEAJhKsAAAAAAAAAJags9wQLFy7Mfffdl2eeeSa1tbVZvnz5JvsUCoX8/Oc/L3dpAAAAAAAAACUrW7i6ZMmSfPOb38y4ceNSX1+/2f2FqwAAAAAAAMC2pCzh6sqVK3PiiSdm2rRpKRaLm92/UCiUoSoAAAAAAACAlitLuHr11VfniSeeSKFQSKdOnTJq1KgcccQR6dWrV6qqqsoxJQAAAAAAAEBZlSVc/f3vf58k6dq1a/70pz9lzz33LMc0AAAAAAAAAFtNRTkGfe6551IoFDJy5EjBKgAAAAAAAPCeUJZwdfXq1UmS/fffvxzDAwAAAAAAAGx1ZQlXd9lllyTJsmXLyjE8AAAAAAAAwFZXlnD1mGOOSbFYzCOPPFKO4QEAAAAAAAC2urKEq2effXa6dOmSm2++ObNmzSrHFAAAAAAAAABbVVnC1V69euXXv/51CoVCTjjhhDz00EPlmAYAAAAAAABgq6ksx6CXXXZZkuQTn/hE/vCHP+TYY4/NAQcckP/8z/9Mt27dUlGx6Ux39OjR5SgNAAAAAAAAoEXKEq7+8Ic/TKFQSJIUCoUUi8U89dRTeeqpp0oeQ7gKAAAAAAAAbEvKEq4mSbFY3Oj3G7MumAUAAAAAAADYVpQlXL3zzjvLMSwAAAAAAABAqylLuHr44YeXY1gAAAAAAACAVlPR2gUAAAAAAAAAvBsIVwEAAAAAAABKUJZtgZtTX1+fp59+OgsWLEhdXV2qq6uz0047pV+/fmnTps3WKgMAAAAAAACgRcoerk6fPj1XXnllJk2alOXLlze53759+wwePDgXXHBBDjzwwHKXAwAAAAAAANAiZd0W+L//+78zcODATJw4McuWLUuxWGzyWbZsWX7/+99n0KBB+dGPflTOcgAAAAAAAABarGwrVy+//PJceumlKRQKKRaL6dSpUw499NDsueee6dixY95888288MIL+fvf/54lS5akvr4+P/jBD1JZWZmvfvWr5SoLAAAAAAAAoEXKEq7Onj27IVitqqrKRRddlFGjRqVDhw5N2i5btizXXHNNLr300ixfvjyXXnppTjjhhOyxxx7lKA0AAAAAAACgRcqyLfCvf/3rrFq1KoVCIdddd12+8pWvNBusJsl2222XL3/5y7nuuutSKBSyatWq/OY3vylHWQAAAAAAAAAtVpZw9b777kuhUMhxxx2XQYMGldRn4MCBOeGEE1IsFvPXv/61HGUBAAAAAAAAtFhZwtWampokyVFHHbVZ/Y488shG/QEAAAAAAAC2FWUJV5cvX54k6dSp02b1W9d+XX8AAAAAAACAbUVZwtXu3bsnSZ577rnN6vf888836g8AAAAAAACwrShLuHrAAQekWCzmhhtuKHkV6vLly3P99denUCikX79+5SgLAAAAAAAAoMXKEq5++tOfTpK8+OKL+fznP5+6urqNtl+6dGnOOuuszJs3L0lywgknlKMsAAAAAAAAgBYrS7g6fPjw7LvvvkmSe++9N/3798/ll1+e6dOnp66uLsViMXV1dXnyySdzxRVXpH///rnnnntSKBSy7777ZujQoeUoCwAAAAAAAKDFKssxaEVFRW688cYcc8wxWbhwYRYsWJAxY8ZkzJgxG+xTLBbTo0eP3HjjjamoKEvmCwAAAAAAANBiZUsx99hjj0ydOjWDBg1KsVjc5Ofoo4/OlClTsvvuu5erJAAAAAAAAIAWK8vK1XV22mmnjB8/PjNmzMidd96Zxx9/PAsWLEhdXV2qq6uz00475eCDD87xxx+f/fbbr5ylAAAAAAAAALwjZQ1X1+nbt2/69u27NaYCAAAAAAAAKIuyhKu//OUvkyQf+MAHctxxx5VjCgAAAAAAAICtqixnrl500UX5xje+kZkzZ5ZjeAAAAAAAAICtrizhaqdOnZIke+65ZzmGBwAAAAAAANjqyhKu9urVK0mydOnScgwPAAAAAAAAsNWVJVw98sgjUywW8/DDD5djeAAAAAAAAICtrizh6llnnZX27dtn/PjxefbZZ8sxBQAAAADw/9m70yCrqntvwL+mgUYFbEQQ1IgDIOJsjDhGxVwVQQWUiHFKoibOQzSRisY4RSRq9CbGukSvxiECBlBAJA5xiLO5inC9KJDXMCqoKIOIgNDvB4sTSDd4gG4O6PNUdbnPXmuv9d/nuMsPP9faAACsU3USrrZt2za33nprlixZkmOPPTaPP/54XUwDAAAAAAAAsM7Ur4tB+/XrlyQ56KCD8vTTT6d3797ZZptt0qlTp2y55ZZp1KjRl45x2WWX1UVpAAAAAAAAAGukTsLVG264IWVlZUmSsrKyVFVVZcqUKZkyZUrRYwhXAQAAAAAAgPVJnYSrSVJVVbXKz6uyLJgFAAAAAAAAWF/USbg6YsSIuhgWAAAAAAAAoGTqJFw98MAD62JYAAAAAAAAgJKpV+oCAAAAAAAAADYEwlUAAAAAAACAIghXAQAAAAAAAIqwVu9cnTp1auH4G9/4Ro3n19Ty4wEAAAAAAACU2lqFq7vvvnuSpKysLLNmzSqc32233VJWVrbG4/77eAAAAAAAAACltlbhalVV1Rq1Aeu3Txd/mqVVS0tdBpRUi61aJEk+WfRJiSuB9YfnAqrzXEB1nguoznPx1dW4YeNSlwAArGNrFa6eeOKJq3Ue2DB0Hdw1o2eOLnUZAAAAAOutaedMK3UJAEAJrFW4evvtt6/WeQAAAAAAAIANVb1SFwAAAAAAAACwIRCuAgAAAAAAABShTsLVP//5z1mwYEFdDA0AAAAAAABQEnUSrv7oRz/KjjvumHPPPTfPPvtsXUwBAAAAAAAAsE7V2bbAn3zySQYMGJAePXpkl112ybXXXpvx48fX1XQAAAAAAAAAdapOwtWLLrooW265ZaqqqlJVVZV33303t9xyS/bbb78ceuih+cMf/pBZs2bVxdQAAAAAAAAAdaJOwtVf/vKXefPNNzN8+PCcdNJJady4cSFoHTNmTPr06ZOddtopvXv3zrBhw7Jo0aK6KAMAAAAAAACg1tTZtsBJctBBB+W2227LhAkT8t///d85/PDDU15enqqqqixevDiPP/54fvCDH6R9+/a5+OKL8/LLL9dlOQAAAAAAAABrrE7D1WUaNWqUnj17ZtCgQXnrrbdy/fXXZ4899iisZp0zZ07uueeeHHXUUdlzzz1zww03rIuyAAAAAAAAAIq2TsLV5W2++eY5++yz8/TTT+eVV17JRRddlK222qoQtE6aNCm//vWv13VZAAAAAAAAAKu0zsPV5bVv377wftbrrrsuDRs2LGU5AAAAAAAAACtVv5STv/feexk8eHAGDhyYt956q5SlAAAAAAAAAKzSOg9X58+fn+HDh2fQoEF5/vnns3Tp0iRJVVVVkqRly5Y57rjj1nVZAAAAAAAAAKu0TsLVpUuX5qmnnsqDDz6YkSNHZsGCBUn+FahutNFG6dKlS3r37p3OnTunvLx8XZQFAAAAAAAAULQ6DVfHjBmTQYMGZciQIfnggw+S/CtQLSsry/7775/evXune/fuadKkSV2WAgAAAAAAALBW6iRcvfXWWzNo0KCMHz8+yb8C1SRp27ZtTjjhhHz3u9/NNttsUxfTAwAAAAAAANS6OglXr7766pSVlRVC1c022yw9e/bMCSeckL333rsupgQAAAAAAACoU3W2LXCDBg1y+OGH54QTTsgRRxyRBg0a1NVUAAAAAAAAAHWuTsLVm266Kccdd1wqKyvrYngAAAAAAACAda5OwtXTTz+9LoYFAAAAAAAAKJl6pS4AAAAAAAAAYEMgXAUAAAAAAAAoQp1sC7zMkiVL8uijj+bJJ5/M22+/ndmzZ+ezzz770uvKysryxhtv1GVpAAAAAAAAAKulzsLVcePG5Yc//GEmTJiwwvmqqqovvbasrKyuygIAAAAAAABYI3USrr7//vs55phj8tFHHxXC1Pr166d58+Zp2LBhXUwJAAAAAAAAUKfqJFy99dZbM2vWrJSVlWX33XfPL3/5yxxwwAGCVQAAAAAAAGCDVa8uBn3iiSeSJO3atcuoUaNy6KGHCla/grp27ZrKysr07du31sfeddddU1lZmT/96U+1PjYAAAAAAACsiToJV6dPn56ysrKceuqp2Wijjepiig1G3759U1lZWe2vZcuW6dChQ44//vj86U9/ypIlS0pdKhugF198Maeddlo6dOhQ+HfqtNNOy4svvljq0gAAAAAAAL5y6iRcraioSJJsvfXWdTH8Bqtly5aFv/r162fGjBl58sknc+6556ZLly6ZM2dOqUtkA3LTTTela9euGTZsWGbOnJlGjRplxowZGTZsWLp27Zqbb7651CUCAAAAAAB8pdRJuLrDDjskSWbNmlUXw2+wJkyYUPibPn16Ro8enR49eiRJXn311VxyySUlrpANxbBhw3LdddelqqoqJ598ciZMmJApU6Zk4sSJOemkk1JVVZVrr702w4cPL3WpAAAAAAAAXxl1Eq727NkzVVVVhXevUl1ZWVm222673HXXXdl3332TJEOGDMkHH3xQ4spY3y1dujRXXnllkuSQQw7JbbfdlhYtWiRJWrRokdtuuy0HH3xwkuTKK6/M0qVLS1YrAAAAAADAV0mdhKs//OEPs9NOO+Wxxx7LqFGj6mKKr4yysrL07t07SVJVVZXXX399hfZPP/00t912W4488shst912adGiRXbcccecdNJJeeqpp1Y67rJ3uz733HOZP39++vbtm06dOqV169Zp06ZNunfvnqeffnqVtS1cuDC33HJL9t9//7Rq1Srbbbddjj766C9dDTl58uTC/JMnT15pv65du6aysjJ9+/Zd5Xi1Pfby383s2bNz5ZVXZq+99kqrVq3SsWPHnHvuuZk6dWqh/0cffZRrrrkme++9d1q1apUddtghZ5xxxirnX5XLLrsslZWV6dSp0yr7VVVVZZdddkllZWWuu+66wvnnn3++MHdNq53Lysryk5/8JEkyadIk718FAAAAAACoJXUSrjZq1CgPPPBA2rVrl+9///u58cYbvU90FbbccsvC8dy5cwvHb731Vvbdd99cccUVefnllzN79uxstNFGmTlzZkaOHJmePXvmpz/96SrHfv/993PIIYekX79+mTRpUurVq5c5c+bkmWeeSc+ePfPAAw/UeN3s2bPTpUuXXH311Rk3blwWL16cpUuX5vnnn8+pp56aa6+9tnZuvoTefffdHHjggfntb3+b9957r3DuT3/6U4488shMmzYtkyZNSufOnfOb3/wm06dPT/LFdteDBw/O4YcfXji3Ok488cQkyfjx46uF6ct77rnnMm3atCQpBPBJ8swzzyRJGjdunP3337/Gaw844IA0btw4Sb40RAcAAAAAAKA49eti0KOPPjrJFyHrokWL0rdv3/Tr1y/t2rXLZpttlnr1Vp3plpWVfa3eFbn8CshmzZol+SIU7dGjR2bMmJHOnTvnZz/7Wfbaa680bNgws2fPzv33358bbrghd9xxR9q2bZsf//jHNY59ySWXpHnz5hk6dGgOPvjg1KtXL+PHj8+5556b1157LZdddlm6deuWpk2brnDdhRdemNdffz0NGjTItddem1NOOSWbbLJJZs6cmV/96le5+eabq12zofnZz36WrbbaKqNGjcq+++6bpUuX5umnn86PfvSjTJ8+PVdddVX+3//7f9l4441r7DNz5sxcc8016d+//2rNu8cee6Rjx44ZN25cBgwYkL322qvGfgMHDkyS7LPPPmnbtm3h/Lhx45Ik7du3T3l5eY3X1q9fP+3atcvo0aML/QEAAAAAAFg7dRKuPv/88ykrK0uSwj+XLFmS8ePHf+m1VVVVhWu+Dj7//PP88Y9/TJKUl5cXgrbrr78+M2bMyOGHH54BAwasEKJVVlbmvPPOS5s2bXLKKafkxhtvzOmnn5769av/nPXq1cvIkSPTqlWrwrkOHTpk4MCB2WWXXTJv3rz85S9/yXe/+91C++jRozNs2LAkSd++fXPGGWcU2rbYYov89re/zdy5c/Pwww/X6nexrjVs2DAjRoxI8+bNk3zx/X/nO9/JVVddlQsuuCCDBw9OixYt8vLLL6+0z/Dhw/P73/++xu9+VU488cT84he/yNChQ3P99denQYMGK7R/+umnGTFiRKHv8patsl1+xXNNttxyy4wePTozZsxYrdoAAAAAAACoWZ1sC5x8EZIu/1fTuZr+vi7mzp2bl19+OT179sz//d//JUm+973vZbPNNsvChQszaNCgJF+sIF3Z6sRlK04//PDDvPHGGzX2+f73v79CsLpMixYt8q1vfStJCvMvM3jw4CRJq1at8oMf/KDGcX/+858XcZfrt9NOO60Qmi7vO9/5zpf2Oeyww5IkCxYsyD/+8Y/VnrtXr14pLy/PrFmz8thjj1Vrf+SRRzJv3rxUVFSkR48eK7R98sknSZKNN954lXMsa583b95q1wcAAAAAAEB1dbJy9eOPP66LYTd4lZWVK2077LDD0q9fvyRfrBxdsGBBki/C0VWt5F0WtE2dOjV77713tfaazi2zbOXjv/9ey94DeuCBB6402G3fvn223HLLvPvuuysdf333zW9+s8bzLVu2/NI+W2yxReF49uzZqz13q1at0rlz5zzxxBMZOHBgunXrtkL7si2BjzrqqFX+e1OMr9NKcAAAAIB1paqqKu+8806py9hgLVmyJEl8h7AczwX8S0VFRbbaaqtSl1GjOglXqdnyoV3Dhg3TrFmz7LzzzunevXuOOOKIQgi2/DauH3zwQVFjf/rppzWeb9KkyUqvWRacLl68eIXzH374YZKkdevWq5xzQw9XGzduXOP55bf4LabP8t/f0KFD06dPnxqvue+++9KpU6fC5969e+eJJ57I448/no8++iibbbZZki9+/2effTZJ9S2Bl69pZb/5MsvaV3YPAAAAAAAArB7h6jo0YcKEovot+79TkmT69OnZZJNN6qqkVbLicfUtWLAg77//fo1tixYtWuFz165d07Rp08ydOzdDhgzJmWeemSR58MEHs2TJkrRs2TKdO3euNk7r1q0zZsyYwrtXV2ZZ8F3TttAAAAAArJ2ysrJsv/32pS5jg7VsZZ7vEP7FcwEbhjp75yprbvkVruPGjVvn82+++eZJ8qWrUlfWvvyqzoULF670+rlz5652bXU5dm046aSTMnv27Br/DjrooBX6NmrUqPA+1WXbAC9/3AtMmCsAACAASURBVKtXrxXud5mOHTsm+SKsXz6IX97nn3+eiRMnrtAfAAAAAACAtbNehasff/xxXnjhhbzwwgulLqWk9tprrzRs2DBJMmTIkJLMnyQvvPBCli5dWmOfiRMnrjRcXf4dodOnT6+xz7x58zJ+/PjVrq0uxy6FZdv+vvbaa5k4cWLGjBlTCNRr2hI4SQ455JAkX9zniy++WGOfF198sfA+3kMPPbSWqwYAAAAAAPh6WutwtVmzZmnevHkeffTRlfbp169f+vXrl3/84x+rHOvFF19Mt27dcswxx6xtWRu0TTbZJL169UqS/PGPf8zo0aNX2f/jjz+u1fl79uyZJHnvvfdyzz331NjnhhtuWOn1m2yySWHbguHDh9fY59Zbb622TW4x6nLsUth3330L9zNw4MDCqtVdd901u+yyS43XHHDAAWnTpk2S5JZbbqmxz7Lz2267bfbff//aLhsAAAAAAOBrqVZWrlZVVa2y/YYbbki/fv2Kfufol433dXDllVdmyy23zGeffZZjjjkm//Vf/5VZs2YV2mfPnp0nnngiZ511Vrp06VKrc3/zm99Mt27dkiSXXXZZ/vCHP+TTTz9Nkrz//vu56KKLMmTIkDRt2nSlYxx//PFJkvvvvz/9+/df4forr7wyt9xySzbddNM1qq8uxy6F3r17J0kGDRpUWKm8slWrSVJeXp5rrrkmSfLUU0/lggsuyIcffpgk+fDDD3P++efn6aefTpJcc801qVdvvVqgDgAAAAAAsMGSuqyntthiiwwbNiwdOnTIvHnz0qdPn7Rt2zZt2rTJNttsk2233Ta9evXKwIED62SV5m233Zbdd989ixYtys9+9rPCnDvuuGP++Mc/5ic/+Ul23XXXlV5/4YUXpmPHjlm8eHEuu+yybL311oXrf/e73+Xqq69e6crML1OXY5dC7969U1ZWlmnTpuX9999P/fr1CyuXV+bYY4/NFVdckbKystx7771p165d2rRpk3bt2uW+++5LWVlZfvGLX3ztV4EDAAAAAADUJuHqeqxdu3b529/+lt/97nf5j//4j7Rs2TKffvppFi9enDZt2qRbt2657bbb8sQTT9T63JWVlXnsscfyi1/8IjvttFPq16+f5Istae+9995ceeWVq7x+k002yahRo3LhhRdmu+22S/369VOvXr185zvfycMPP5zzzz9/jWury7FLYZtttskBBxxQ+HzYYYelRYsWX3rdpZdempEjR+aYY47JFltskU8//TRbbLFFjjnmmIwcOTKXXHJJXZYNAAAAAADwtVM2e/bstdqDt1mzZikrK8v999+fo446ao37JMnIkSNz8sknp6ysLB999NHalAWshUMHHJrRM1f9rl8AAACAr7Np50xL44aNS13GBuudd95Jkmy//fYlrgTWH54L2DBYuQoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFCEWgtXy8rKaqUPAAAAAAAAwPqofm0NdNJJJ62yvaqq6kv7AAAAAAAAAKyvai1cTb4IUGuy/IrVlfX5934AAAAAAAAA65NaCVdXFZgW0766/QAAAAAAAADWtbUOVz/++OPaqAMAAAAAAABgvVav1AUAAAAAAAAAbAiEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEAR6pe6AGD9M/L4kVlatbTUZUBJVVVVJUnKyspKXAmsPzwXUJ3nAqrzXEB1ngsAgK8O4SpQzcYNNi51CVBy77zzTpJk++23L3ElsP7wXEB1nguoznMB1XkuAAC+OmwLDAAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARahf6gKA9c+niz/N0qqlpS4DSqrFVi2SJJ8s+qTElcD6w3MB1XkuoDrPRWk1bti41CUAAMBXmnAVqKbr4K4ZPXN0qcsAAABgNUw7Z1qpSwAAgK882wIDAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAABQBOEqAAAAAAAAQBGEqwAAAAAAAABFEK4CAAAAAAAAFEG4CgAAAAAAAFAE4SoAAAAAAABAEYSrAAAAAAAAAEUQrvK11bVr11RWVqZv376lLgUAAAAAAIANQP1SF8Caq6qqyqOPPppRo0bl73//e2bOnJlPPvkkTZo0ybbbbptvfetb6dGjR/bbb791XtvYsWMzcuTIbLrppjnnnHNW2u+5557L0UcfXe18eXl5mjZtmvbt2+fwww/P6aefnsrKyroseYMyYcKEvPrqqxk7dmzGjh2bN998M5988kmSZMyYMWnTpk2JKwQAAAAAAPjqEa5uoMaMGZOzzjorb731VuFc/fr106RJk8ydOzejR4/O6NGj84c//CH77LNP7r777my11VbrrL7//d//Tb9+/fKNb3xjleHq8iorK9OwYcMkycKFC/Pxxx/nlVdeySuvvJI77rgjf/7zn7PrrrvWZdkbjIsvvjgvvPBCqcsAAAAAAAD4WhGuboD++te/5uSTT86CBQuy6aab5txzz80xxxyTHXfcMWVlZVm6dGkmTJiQUaNGpX///nn11VfzzjvvrNNwdU3cd999OeiggwqfZ82alTvuuCM33XRTZsyYkZNOOil///vfU1FRUcIq1w/l5eVp3759dtttt+y2225ZvHhxrr322lKXBQAAAAAA8JUmXN3ATJo0KT/84Q+zYMGCtG/fPoMHD84222yzQp969eqlQ4cO6dChQ84+++xcddVVKSsrK1HFa6558+bp06dPFi9enJtvvjlTpkzJqFGj0r1791KXVnJDhw5N/fr/enyfeeaZ0hUDAAAAAADwNVGv1AWweq677rrMmTMnjRo1yv33318tWP13jRo1yg033JD999+/cG7ixIn53e9+l+7du2ePPfZI69ats/XWW2f//ffP5ZdfnunTp690vK5du6aysjJ9+/bN4sWL8/vf/z6dO3dOmzZtUllZmUceeSSVlZU599xzkyRTp05NZWXlCn9nn332at3ziSeeWDh+7bXXqrXPmzcvN998cw499NBss8022WKLLbLbbrvl7LPPzptvvrlac/27iRMn5pJLLsnee++drbbaKq1bt84+++yTn//856v8nlblsssuS2VlZTp16rTKflVVVdlll11SWVmZ6667boW25YNVAAAAAAAA1g0JzQbkgw8+yEMPPZQkOf7449O+ffuir61X7185es+ePTN16tTC50033TTz5s3LuHHjMm7cuPzpT3/Kgw8+mH322Wel4y1atCjHHHNMXnrppZSXl6dJkyaF1bEtW7bMZ599lrlz56ZevXrZfPPNV7i2adOmRdedJFtuuWXheO7cuSu0jR8/Pscdd1ymTZuWJGnYsGEaNWqUKVOmZMqUKRk0aFD69u2bH//4x6s1Z5L813/9Vy6//PIsWbIkSVJRUZGysrJMmDAhEyZMyP3335/77rsvBx988GqNe+KJJ6Z///4ZP358Xn/99ey111419nvuuecK99W7d+/Vrh8AAAAAAIDaZeXqBuRvf/tbIeg7+uij13icvffeOzfccENef/31zJw5M5MnT87MmTPz+OOPp3Pnzpk9e3a+//3v57PPPlvpGHfccUfGjh2b3/72t5k6dWomTZqUf/7zn+nUqVMmTJiQvn37Jkm22mqrQhi57K9fv36rVe/kyZMLx82aNSscf/LJJ+ndu3emTZuWFi1a5N577827776bKVOm5LXXXst3vvOdLF26NJdddlkef/zx1Zpz0KBB6dOnT+rXr59LL700b775ZmbMmJH33nsvr776ao499tjMnTs3p5xyymqvYN1jjz3SsWPHJMmAAQNW2m/gwIFJkn322Sdt27ZdrTkAAAAAAACofcLVDchbb71VON5tt93WeJy77747Z511VrbffvtUVFQkSRo0aJB99tknf/7zn9OxY8e8++67GT58+ErH+OSTT9K/f/+ceuqp2XjjjZMklZWVadGixRrXtTJ33HFH4fhb3/pW4fiuu+7KP//5z5SXl2fQoEE55phjCtvl7rDDDhkwYED23HPPJMmVV16ZqqqqouabP39++vTpkyS5/fbbc8UVV2TrrbdOWVlZysrK0r59+9xzzz3p0qVL5s6dm9///verfU/LtjoeOnRoFi9eXK39008/zYgRI1boCwAAAAAAQGkJVzcgH3/8ceF4+RWctam8vDz/8R//kSR56aWXVtqvQ4cO6datW53UkCQLFy7MW2+9lUsuuSR33313kqRdu3Y54ogjCn0GDx6cJDnqqKNq3Fq3QYMGhZD07bffzv/+7/8WNffw4cPz8ccfp02bNjnuuONW2m/ZVr1PPvlkcTe1nF69eqW8vDyzZs3KY489Vq39kUceybx581JRUZEePXqs9vgAAAAAAADUPu9c3YAUu/KyGE888UQGDhyY119/Pe+//37mz59frc+777670uv33XffWqtlmVVtdbzddttlwIABhZWpixYtyv/93/8lSQ499NCVXvftb3875eXlWbJkSUaPHl3Uit9lofKMGTNW+V7bRYsWJckK768tVqtWrdK5c+fC7/DvQfWyLYGPOuqoVFZWrvb4AAAAfP1UVVXlnXfeKXUZ1GDZa578PvAvnguoznMB/1JRUZGtttqq1GXUSLi6Adlss80Kxx9//HFat2692mMsXbo0Z511Vh588MHCufLy8lRWVqZhw4ZJvtgWd9nfymy++earPfeXWb6G8vLyNG3aNG3bts3hhx+eXr16FbYfTr64/2X/oVnVw7XRRhulefPmef/99/PBBx8UVceMGTOSfLF69v333//S/gsWLCgcDx06tLBa9t/dd9996dSpU+Fz796988QTT+Txxx/PRx99VPh9Z8yYkWeffTaJLYEBAAAAAADWJ8LVDchOO+1UOB47duwahav3339/HnzwwdSrVy8XXXRRTjzxxGy//fYpLy8v9Lnuuuty0003rXKl7PL9a8t9992Xgw46aLWvKysrq9V+y0LbY489Nvfcc89q1bJgwYKVBrLLVrou07Vr1zRt2jRz587NkCFDcuaZZyZJHnzwwSxZsiQtW7ZM586dV2t+AAAAvr7Kysqy/fbbl7oMarBsBZLfB/7FcwHVeS5gw+CdqxuQb3/726lX74ufbMSIEWs0xrL3lJ5yyim58sor065du2pB6cyZM9eu0HWgWbNmhbqnT5++0n4LFizIRx99lKT41bYtW7ZMkowbN2616zrppJMye/bsGv/+PThu1KhR4X2qy7YBXv64V69ehW2QAQAAAAAAKD3h6gakRYsWhTBu8ODBmTBhQtHXLl26NMm/gsjdd999pf3+9re/rWWlKYTAtfme2OU1bNgwu+yyS5LkmWeeWWm/559/Pp9//nmSZM899yxq7P322y9JMnHixIwdO3btCv0Sy7b9fe211zJx4sSMGTOmEOraEhgAAAAAAGD9IlzdwFxxxRVp2rRpPvvss5x88smZOnXqKvsvXLgwl19+eV566aUkyaabbpokefPNN2vsf+edd2by5MlrXWfTpk2TJHPnzl3rsVbm+OOPT5KMHDkyb7zxRrX2zz//PP369UuSdOjQIbvttltR4x577LGprKxMkvzsZz/LwoULV9n/448/Xp2yV7DvvvsWtngYOHBgYdXqrrvuWgiPAQAAAAAAWD8IVzcw2223Xe688840atQoEyZMyEEHHZQbb7xxhVWsVVVVmThxYn73u99lr732yu9///vCytXDDjssSXLPPffkv//7vwvB4UcffZS+ffumT58+2Wyzzda6zp133jnJF+Hqn//857UeryY/+MEPst122+Xzzz/PCSeckEceeaTwvtR33nkn3/ve9/I///M/SZJrrrmm6HE33XTTQij78ssvp0uXLnnmmWeyePHiQp9Jkybl7rvvTufOnXPnnXeu1X307t07STJo0KAMGTIkyZevWl24cGFmzZpV+Fs+xJ49e/YKbcvXDQAAAAAAwJrzQscN0OGHH55Ro0blrLPOyvjx4/OrX/0qv/rVr1K/fv00adIk8+bNK2yFmyQHHnhg2rZtmyQ577zzMmLEiLz99tu55JJL8tOf/jRNmzbNnDlzUlVVlS5dumTnnXfOTTfdtFY1brvttuncuXOeeuqpnHnmmbn44ovTrFmzJF+sDL3uuuvWavwkady4cQYOHJjjjjsu06ZNy8knn5yKioo0atQoc+bMSfLF9sR9+/bN4Ycfvlpjn3DCCVm4cGF++tOf5vXXX0/37t3ToEGDNGnSJPPnz19hNetRRx21VvfRu3fv9O3bN9OmTUuS1K9fP7169VrlNYMHD865555bY9vBBx+8wucRI0ZUe98rAAAAAAAAq8/K1Q3UnnvumZdeein33Xdfvve976Vdu3bZZJNNMm/evDRp0iR77rlnzjrrrDz55JN55JFH0rp16yRfrMp87LHHct5552XbbbdNeXl5ysrKsu++++a3v/1tHnjggZSXl9dKjX/84x9zwQUXZMcdd8ySJUsyderUTJ06NbNmzaqV8ZNkxx13zIsvvpgrrrgie+yxRxo2bJgFCxZk6623zoknnphnn302P/7xj9do7FNPPTWvvfZaLr744uy+++7ZaKONMmfOnFRUVGTXXXfNmWeemWHDhuWiiy5aq3vYZpttcsABBxQ+H3bYYWnRosVajQkAAAAAAEDtK5s9e3ZVqYsA1i+HDjg0o2eOLnUZAAAArIZp50xL44aNS10GNXjnnXeSJNtvv32JK4H1h+cCqvNcwIbBylUAAAAAAACAIghXAQAAAAAAAIpQv9QFAAAAAAAAX13z5s3LqFGj8vDDD2fMmDFZvHhxqUtaLy1dujRJUq+edXFsuBo0aJDdd9893bt3T5cuXdKkSZNSl1TrhKsAAAAAAECdePfdd9OjR4/su++++dGPfpT99tsvFRUVpS4LqCMLFy7MSy+9lIceeig333xzHnrooWy55ZalLqtWCVcBAAAAAIBaN2/evPTo0SOXXXZZevbsWepygHWgoqIihxxySA455JAMHTo0PXr0yF//+tc0bty41KXVGmvLAQAAAACAWjdq1Kjsu+++glX4murZs2c6deqUUaNGlbqUWiVcBQAAAAAAat3DDz+cHj16lLoMoIR69OiRhx56qNRl1CrhKgAAAAAAUOvGjh2b/fbbr9RlACW0//77Z8yYMaUuo1YJVwEAAAAAgFq3aNGiVFRUlLoMoIQqKiqyePHiUpdRq4SrAAAAAAAAAEUQrgIAAAAAAAAUQbgKAAAAAAAAUAThKgAAAAAAAEARhKsAAAAAAAAARRCuAgAAAAAAABRBuAoAAAAAAAC17Mgjj0xlZWWaN29e6lKoRfVLXQAAAAAAAMAniz4pdQkl0bhh43UyT2Vl5UrbNtlkkzRr1iwdO3ZM586d07t371X2/6p55pln0r1791oZ6/LLL89Pf/rTWhmL9ZNwFQAAAAAAWC9sffvWpS5hnZp2zrRSl5AkmT9/fubPn59p06bl8ccfz4033pjbb789RxxxRKlLg/WOcBUAAAAAAOBr5P7771/h8/z58zNu3Lg8+OCDee+99zJr1qyceuqp+ctf/pI999yzRFWuO7vssku172R5zz77bO64444kySGHHJIzzjhjpX07dOhQOP7LX/5Se0Wy3hCuAgAAAAAAfI1069atxvOXXnppvvvd7+all17KwoULc8011+Shhx5ax9Wte5tvvvlKv5Mk+eijjwrH3/jGN1bZl6++eqUuAAAAAAAAgNJr0qRJbrrppsLn5557LvPmzSthRbD+Ea4CAAAAAACQJNl5551TWVmZJPn8888zefLkGvs988wzqaysTGVlZW688cZVjvnOO+8U+p5//vk19unYsWMqKysL2xAvWbIk9957b7p06ZIddtghW2yxRXbfffdceOGFmTRp0prf4Dp05JFHprKyMs2bN6+x/d577y18L4MGDUqSvPHGGznnnHOy++67p1WrVtl5551zyimnZPTo0dWuf+yxx3LCCSdkl112ScuWLdOxY8ecd955K/3NavLaa6/l0ksvzX777Zc2bdpkiy22yM4775yTTz45Dz/8cKqqqtbs5r/CbAsMAAAAAABAQUVFReH4s88+W+fzf/jhhzn55JPz8ssvr3B+8uTJueeeezJ48OAMGDAg3/72t9d5bXWpf//+ufzyy/P5558Xzk2fPj3Tp0/Po48+mv79++f444/PokWLctFFF+WBBx5Y4fp33303999/f4YPH57hw4dnjz32WOlcCxYsyIUXXpgHH3ywWtuyOR955JHst99+ue+++7L55pvX3o1u4ISrAAAAAAAAJElmzZqVDz74oPB56623XqfzL168uBCsHnDAAenWrVtat26dmTNnZsCAAXnjjTcyf/78nHHGGXn11VcLq2w3dI8++miGDx+e5s2b55RTTknHjh2zePHiPPbYYxk2bFiWLFmSs88+O9/61rfyn//5n3nggQey00475bvf/W623XbbzJo1Kw888EBef/31zJ07N2eeeWZefPHFNGjQoNpcixYtSvfu3fPKK68kSbbaaqv07NkzHTt2TKNGjTJlypQMGTIkY8eOzUsvvZTu3bvnySefTKNGjdb117JeEq4CAAAAAACQJLn55puzdOnSJClsE7suTZs2LdOmTcstt9ySH/zgByu0nX766endu3eefPLJvP/++xkwYEDOPvvsdVpfXRk2bFj22muvDBkyJM2aNSuc/973vpdf/epXufHGG7N48eKcdtppeeONN3LaaaflN7/5TcrLywt9v//97+fYY4/NCy+8kIkTJ+Yvf/lLjj766GpzXXXVVYVg9bTTTsuvf/3rFVYrJ8kFF1yQq666Kv/5n/+ZN998MzfddFOuuOKKOrr7DYt3rgIAAAAAAHyNzZ8/P3//+9/z4x//OLfffnvh/E9+8pOUlZWt83pOPfXUasFqktSvXz/XXXdd4fOTTz65LsuqUxUVFbnnnntWCFaXufjii7PJJpsk+eKdrDvvvHNuvvnmFYLV5Ivvp0+fPoXPf/3rX6uNNWPGjNx5551JkgMOOCC33nprtWA1ScrKynL11VenU6dOSZI77rgjixYtWvMb/AqxchUAAAAAAOBrpJitdM8///ycdtpp66Ca6s4555yVtnXo0CGtWrXKjBkz8vbbb6/DqurWUUcdlW984xs1tm288cbZbbfd8tJLLyX5YgVv/fo1R3ydOnVKeXl5lixZkvHjx1drHzx4cCEkPe+88740PO/Vq1deeeWVzJkzJ6+99lr222+/1bmtryThKgAAAAAAAEmStm3bpn///vnmN79ZkvmbNm2aDh06rLJP69atM2PGjMyePXsdVVX39t5771W2t2zZsnC8qt+mYcOGqayszKxZs2r8fpYFtEny4Ycf5pFHHlnlvDNmEZDqSgAAIABJREFUzCgcT5w4Ubga4SoAAAAAAMDXyv333184XrhwYaZOnZqhQ4dm7Nix+cc//pFbb701d955Z43bxda1mrbF/XfL6vrss8/qupx1ZrPNNltl+/K/RbF9a/p+pkyZUjg+//zzV6fEfPTRR6vV/6tKuAoAAAAAAPA10q1bt2rnLrroolx//fX59a9/nREjRuSCCy5I//7913lt9erVW+dzrg9W577X5juaM2fOGl+7ePHiNb72q0S4CgAAAAAAQH7+85/nf/7nf/LUU09l0KBBOeqoo3Lssceu9bhLliypheqoDY0bN07yRUA7Y8aMNGzYsMQVbXiEq0A1I48fmaVVS0tdBpRUVVVVknzpC93h68RzAdV5LqA6zwUAwIatb9++2W+//bJ06dL88pe/TJcuXWoM4JY/t2jRolWOOWvWrFqvkzWz5ZZbZty4cVm6dGnGjx+fXXfdtdQlbXCEq0A1GzfYuNQlQMm98847SZLtt9++xJXA+sNzAdV5LqA6zwUAwIZtxx13TM+ePTN48OBMmjQp9957b84444xq/SorKwvH77333irH/Pvf/17rdbJm9t9//zz55JNJkhEjRghX18DXc+NqAAAAAAAAavSTn/yksBPJb37zmyxcuLBanx122CENGjRIkjz33HOFHUz+3WeffZa77rqr7opltRx33HGF361///6ZOnVqiSva8AhXAQAAAAAAKOjYsWOOPPLIJMm7776bu+++u1qfioqKfPvb306STJ48OX/4wx+q9Vm0aFHOOeec/POf/6zbgilamzZtcvrppydJ5syZk+OOOy5vv/32Kq955ZVX8stf/nJdlLdBsC0wAAAAAAAAK7j00kszatSoJMmtt96a0047LRtttNEKfS644IL89a9/TZL06dMnr776ag477LBUVFRk4sSJGTBgQCZPnpzjjz8+gwcPXuf3QM2uvfbavPnmm3n++eczYcKEHHDAATniiCNy4IEHpnXr1lmyZEk+/PDDjBs3Ls8880ymTJmSdu3a5eqrry516esF4SoAAAAAAAAr+OY3v5mDDz44zz77bGbMmJG77ror55577gp9Dj744Pz85z/P9ddfn6qqqgwZMiRDhgxZoc+ZZ56Zs846S7i6HmnQoEGGDh2ayy+/PHfddVeWLFny/9u796iqyvyP4x8uAiIogqBxMzHBG0qZd82stCWpRY55GbtpVlA52k3NmcnSpJGsaZo0b6NipVM/08pMs0xFxUt5GUuNTARRzGbyiCAgAr8/XOwFwsEtBzwceL/WYq3Nfp69z3cf9tfn+HzP3lvr1q3TunXrrG4TGBh4HSOs3SiuAgAAAAAAAACAWiEjLsPeIaCU5557Tlu2bJEkvf3223r00Ufl6elZps+LL76o7t27a/78+dqzZ48sFouaNWumW265RY899pj69++vY8eO2SN8VMLNzU0JCQmKi4vT+++/r6SkJKWmpspiscjV1VV+fn4KDw9Xt27dNHDgQN1yyy32DrnWcLJYLBU/YRgAgHqs5ANfWFiYnSMBag/yAiiPvADKIy+A8sgLoDzyon4IDw9XSkqKvcMAYGd17d8CZ3sHAAAAAAAAAAAAAACOgOIqAAAAAAAAAAAAAJhAcRUAAAAAAAAAAAAATHC1dwAAAAAAAAAAAACALfbv36+MjIwqb3/XXXfJw8OjGiNCXUVxFQAAAAAAAAAAAA5t7ty5+uijj6q8/Y8//qigoKBqjAh1FbcFBgAAAAAAAAAAAAATuHIVAAAAAAAAAAAADm3BggVasGCBvcNAPcCVqwAAAAAAAAAAAABgAsVVAAAAAAAAAAAAADCB4ioAAAAAAAAAAAAAmEBxFQAAAAAAAAAAAABMoLgKAAAAAAAAAAAAACZQXAUAAAAAAAAAAAAAEyiuAgAAAAAAAACAaufm5qb8/Hx7hwHAjvLz89WgQQN7h1GtKK4CAAAAAAAAAIBq16lTJyUnJ9s7DAB2tGPHDnXu3NneYVQriqsAAAAAAAAAAKDa3XfffVq9erW9wwBgR6tXr1ZMTIy9w6hWFFcBAAAAAAAAAEC1GzRokHbu3KlPPvnE3qEAsINPPvlEu3bt0qBBg+wdSrVytXcAAAAAAAAAAACg7vH29jauWtu8ebNiYmLUq1cvubu72zs0ADUkPz9fO3bs0OrVq7Vr1y6tXr1aXl5e9g6rWlFcBQAAAAAAAAAANSIwMFDffPONvvzySy1cuFBPP/20CgoK7B1WrVRUVCRJcnbmpqNwXA0aNFDnzp0VExOjWbNm1bnCqkRxFQAAAAAAAAAA1CAvLy8NHz5cw4cPt3cotdqxY8ckSWFhYXaOBEBl+PoDAAAAAAAAAAAAAJhAcRUAAAAAAAAAAAAATKC4CgAAAAAAAAAAAAAmUFwFAAAAAAAAAAAAABMorgIAAAAAAAAAAACACRRXAQAAAAAAAAAAAMAEiqsAAAAAAAAAAAAAYALFVQAAAAAAAAAAAAAwgeIqAAAAAAAAAAAAAJhAcRUAAAAAAAAAAAAATHC1dwAAANRG7u7u9g4BqHXIC6A88gIoj7wAyiMvgPLIC6A88gJwDE4Wi6XY3kEAAAAAAAAAAAAAQG3HbYEBAAAAAAAAAAAAwASKqwAAAAAAAAAAAABgAsVVAAAAAAAAAAAAADCB4ioAAAAAAAAAAAAAmEBxFQAAAAAAAAAAAABMoLgKAAAAAAAAAAAAACZQXAUAAAAAAAAAAAAAEyiuAgAAAAAAAAAAAIAJFFcBAAAAAAAAAAAAwASKqwAAAAAAAAAAAABgAsVVoB7LyclRQkKC+vTpo5CQEAUHB6tPnz5KSEhQTk6OvcMDqk1SUpJ8fHyu+jNz5sxK91NQUKD33ntPd911l1q2bKnAwEB169ZNL7/8sv73v/9dp6MBzLtw4YK+/vprzZkzRw8//LBuvvlmNW3aVD4+PoqNjTW1D1vPe/IGtY0teZGWlmZqPHn88ccr3U9xcbFWrFihwYMHKywsTC1atFBUVJSef/55paenV+fhAqb8/vvv+uCDD/T444+rR48eCgoKkr+/v9q2bavhw4dr5cqVKiwsrHQfjBeoa2zJC8YL1FWHDx/WG2+8oTFjxqh79+5q3bq1mjVrptDQUPXv318zZsxQZmZmpfuwdS6KuSzUNrbkBfNVqE9mz55d5ryujCOMFU4Wi6W4WvYEwKFkZGRoyJAhSk1NlSR5eHhIkvLy8iRJYWFh+vzzzxUUFGS3GIHqkpSUpCFDhkiSAgICrPaLi4vTxIkTK2w7d+6cYmJitHfvXkmSm5ubGjRoYAzI/v7+Wr16tTp27FjN0QNVV/rcv9KoUaM0b968Sre39bwnb1Ab2ZIXaWlp6ty5syTJz89PLi4uFfa79957lZCQUGFbQUGBxowZow0bNkiSXF1d1bBhQ50/f16S5OXlpeXLl6t///6mjwmwVbNmzXTp0iXjd3d3d7m5uRnnpSTdeuut+ve//y0/P79y2zNeoC6yJS8YL1BXzZw5U2+88Ybxu5ubmzw8PJSVlWWs8/Ly0sKFCzVo0KBy29s6F8VcFmojW/KC+SrUF4cPH1a/fv108eJFY53FYqmwr6OMFVy5CtRDhYWFGjVqlFJTUxUQEKCPP/5YmZmZyszM1EcffSR/f38dO3ZMI0eOvOo31AFHk5KSYvXH2gdVSXriiSe0d+9eeXl5af78+Tp16pROnjypr776Sq1bt9Zvv/2mBx54oMxkC1Ab+Pj4qG/fvnrqqac0f/58tW/f3vS2tp735A1qK1vyosSmTZusjifWJsoladq0adqwYYNcXV01a9YsZWRk6MSJE0pOTlaXLl2UnZ2tBx98UCdOnLDlEIFrcunSJd18881KSEjQ3r179euvv+rEiRM6cuSInnnmGTk7O+u7777TQw89VOH2jBeoi2zNixKMF6hLOnbsqJdfflnr1q3T8ePHdebMGaWnpyszM1OJiYlq1aqVsrOzNW7cOKWlpZXZ1ta5KOayUFvZkhelMV+FuqqwsFBPPfWULl68qG7dul21r6OMFRRXgXpoxYoVOnjwoCRp6dKlGjBggJycnOTk5KSBAwdq2bJlkqSDBw9q5cqV9gwVqBW2bt2q9evXS5LmzJmjESNGyNXVVZLUrVs3ffTRR3J3d9epU6f0z3/+056hAmX06tVLx48f1+eff67XXntNI0aMUOPGjU1ta+t5T96gtrIlL2z1yy+/aPHixZKkyZMnKy4uzvgWbbt27fTxxx/L399f2dnZmjVr1nWJCZCkTz/9VN9++63Gjx+vsLAwY32LFi00Y8YMTZs2TZK0fft27dy5s8y2jBeoq2zJC1sxXqC2uu+++zRp0iT16tWrzC0dGzZsqKFDh+rjjz+WdPkxDCXLJWydi2IuC7WVLXlhKz5HwRH885//1N69e/XAAw9c9Y4bjjRWUFwF6qEPP/xQktS7d2/16tWrXHuvXr3Us2dPSZf/QQLqu5KcCQ0N1fDhw8u1t27dWvfdd58kcga1i7Vb0Jlh63lP3qC2siUvbPXvf/9bhYWFatSokZ588sly7b6+vnrkkUckXZ7Uv3DhwnWOEPVVv379Km1/+OGHjeWSW86VYLxAXWVLXtiK8QKO6qabbjKKS6dOnSrTZutcFHNZcFSV5YWt+ByF2u7nn39WfHy8/Pz8FB8ff9X+jjRWUFwF6pnc3FzjW7UDBw602u/uu++WJCUnJys3N/e6xAbUVps3b5YkDRgwQM7OFQ+dJTmTnp6uX3755XqFBtQYW8978gYoryQvevXqJW9v7wr7lOTFhQsXtGvXrusVGlApd3d3Y/nK22cxXqC+qiwvbMV4AUd1+PBh4xl6rVq1MtbbOhfFXBYcmbW8qA58jkJtVlRUpKefflp5eXlGgbUyjjZWUFwF6pmffvpJRUVFki7fTsiakrbCwkKlpKRcl9iA6+Huu+9WaGioAgIC1K5dO40cOVKrVq2yOiFy9uxZnT59WpK5nJGkQ4cOVW/QwHVm63lP3qA+GDt2rFq1aiV/f3+1adNG999/v5YuXaq8vDyr2xw5ckQSeQHHs2XLFmO5Y8eOxjLjBeoza3lxJcYL1HUFBQU6efKkPvzwQ+PKuaZNm2r06NFGH1vnopjLgqMxkxdXYr4Kdc17772nXbt2acCAAXrggQeu2t/RxgqKq0A9k5mZaSwHBgZa7Ve6rWSgBuqCkm91u7i4KDMzU+vXr9e4ceN0zz336LfffivXv/QtW8gZ1Be2nvfkDeqD77//XgUFBXJ3d9dvv/2mTZs2aeLEibr99tsr/Eb4+fPnlZWVJanyvGjUqJGaNGkiibxA7XDx4kXNnDlT0uXb2vXt29doY7xAfVVZXlyJ8QJ1Vfv27eXj4yN/f3916NBBcXFxysjIUPv27bV27doyVyjZOhfFXBYcxbXkxZWYr0JdkpqaqpkzZ8rLy0tvvvmmqW0cbayguArUM9nZ2cayp6en1X6l286fP1+jMQE1rUmTJnr66ae1ceNGnTx5Uunp6crMzNTu3bv16KOPSpJ27typBx54oNw3AskZ1Ee2nvfkDeoqDw8PjR07Vp9++qnS0tKUkZGhjIwM/ec//9Gzzz4rV1dXHTlyRDExMcbEeAmzeVG6nbxAbfD888/ryJEjcnZ21pw5c+Tq6mq0MV6gvqosLyTGC9QPzZo1U0BAgBo3bmysi4qK0uzZs9WhQ4cyfRkvUF9cS15IzFehbiouLtYzzzyjCxcu6M9//rNCQkJMbedoYwXFVQBX5eTkZO8QAJt06tRJM2fOVNeuXdWoUSNjfXh4uN566y29+uqrkqR9+/Zp5cqVVXqN0nlCzqC+sPW8J2/gaJo3b64333xT/fr1M64WkqTQ0FD99a9/1aJFiyRdfp7Ru+++a/PrkRewt4SEBCUmJkqSpk2bpn79+lVpP4wXqEvM5AXjBeqDrVu3KiUlRenp6Tp27Jj+8Y9/6MyZMxo8eLAmTpxo87OIbT2vyQvYw7XmBfNVqIsWL16sbdu2qWvXrnr88cdr9LXsOVZQXAXqGS8vL2P5woULVvuVbiu9DVAXPf300woODpYkrV27tkyb2ZzJycmpcBvAEdl63pM3qK/uu+8+9ejRQ1LVx5PS7eQF7Omtt97Sa6+9Jkn605/+pOeee65cH8YL1Ddm8sIMxgvUNb6+vnrooYe0fv16eXl5aenSpVqyZInRbutcFHNZcERXywszmK+Co0lPT9f06dPVoEEDvf3223J2Nl+CdLSxguIqUM/ccMMNxnLp+5BfqfR9+1u0aFGjMQH25uzsrC5dukiSjh8/Xqat9H34yRnUF7ae9+QN6rOuXbtKKj+eeHt7G7cHqywvcnJydO7cOUnkBewnISFBr7zyiiTpmWeeMZavxHiB+sRsXpjFeIG6KDQ0VIMHD5akMkUkW+eimMuCI7OWF2YwXwVHM3XqVGVnZ+vJJ59UaGiosrOzy/wUFBQYfUvW5efnS3K8sYLiKlDPREREGN8YOXTokNV+hw8flnT5Ierh4eHXJTagNmratKkx0JrJGUlq3759jccF1CRbz3vyBqhY27ZtJZEXqN3i4+ONK/MmTJigGTNmWO3LeIH64lryojowXsCRlRR8UlNTjXW2zkUxlwVHV1Fe2IrPUaiN0tLSJEnvvPOOgoODy/28+eabRt+SdRMnTpTkeGMFxVWgnmnYsKFx+6GvvvrKar+Stp49e6phw4bXJTbAXoqKivT9999LuvyNwivdfvvtkqSvv/5axcXFFe6jJGdCQ0PVunXrmgkUuI5sPe/JG9RXe/bskSS1bNmyXFtJXiQnJys7O7vC7UvywtPTU927d6+ZIAErZsyYob/97W+SpEmTJhnP+aoM4wXquqrkhRmMF6irSq6uK/38SFvnopjLgqOrKC/MYL4K9YmjjRUUV4F6aPTo0ZKk7du3a+fOneXad+7cqR07dkiSRo0adV1jA2qCtQ+YJebOnauMjAxJ0j333FOuvSRn0tLS9H//93/l2lNTU7VmzRpJ5AzqDlvPe/IGddHVxpPPPvvM+GwVHR1drn3EiBFycXFRdna25s+fX6797NmzWrp0qSTp3nvvlaenp+1BAya98sormjNnjiTp+eef18svv2xqO8YL1GVVzQvGC9RFxcXFKioqqrTPkSNHtG7dOklSnz59yrTZOhfFXBZqI1vzgvkq1DXbtm2TxWKx+jN58mSjb8m6efPmGescaaxwmTJlynSb9gDA4XTo0EFffvmlzpw5o40bN6pdu3Zq1aqVJOmbb77R+PHjlZOTo8jISL3xxhvX9OBpoDbq1q2b8vPz1aRJEzVt2tQ4p48ePar4+HhjwiQyMlJz5swpd863bNlS+/fv19GjR7V582aFhISobdu2cnZ21p49e/Twww/rzJkzCgwM1MKFC+Xu7n7djxGwxmKxKCcnR7m5ucrNzdVHH32kU6dOKSIiQn369DHWFxQUyMPDw9jO1vOevEFtVtW8iI6O1smTJ+Xl5SVfX1+5uLhIkjIyMvTOO+/opZdeUlFRkYKCgjR//vwy20qSr6+v/ve//+n7779XcnKyGjdurMjISLm6uurIkSMaO3asfv75Z3l5eWnZsmVq0qTJdX1fUH9Nnz5df//73yVJU6ZM0UsvvWR6W8YL1FW25AXjBeqic+fOqV+/fiosLFTTpk3l4+MjJycnSdKZM2e0YsUKxcbG6vz583J3d9fChQvl7+9vbG/rXBRzWaiNbM0L5qtQ32zbtk3bt2+XdPnz1ZUcaaxwslgslX89AkCdlJGRoSFDhhj3+i+5BD43N1eS1KpVK61du1ZBQUF2ixGoLj4+Psayq6urGjdurPz8fOXk5Bjru3fvrsTERDVv3rzCfZw7d04xMTHau3evJMnNzU1ubm7Gbbr8/f31ySefKDIysgaPBLh2kZGROnHixFX79e7dW1988UWZdbae9+QNaquq5kXp7VxcXNS4cWMVFhYqKyvL6BMREaHly5dbfXbLxYsX9eCDD2rDhg2SLo9Lnp6exj68vLy0fPly9e/fv8rHB1yLEydOGP8OOzk5lZnwq0hMTIxxi9QSjBeoa2zNC8YL1EUWi0U33nij8XuDBg3k7e2tgoICnT9/3lgfEBCgBQsWGLcrLc3WuSjmslDb2JoXzFehvomPjzc+M1kslgr7OMpYwZWrQD3VuHFjPfjgg/Lw8NDZs2eVlZUlZ2dnhYeH67HHHtN7770nPz8/e4cJVIvAwED5+fmpqKhIxcXFysrKkpOTk4KCgtS/f39NnTpVr776qry9va3uw8PDQ6NHj5avr68sFouysrJ06dIlhYWF6Y9//KMWLVpU5gM1UFvMmzevzESeNaGhofrjH/9YZp2t5z15g9qqqnkRFBRkfD4qLi7W+fPndenSJbVo0UK9e/fWpEmTlJCQYHXiQ7o8yf6HP/xBLVu2NPIiLy9PISEhGjZsmBYsWKCoqCjbDxIwyWKx6L333jN+z8nJqfQnPDxcgwcPLrMPxgvUNbbmBeMF6iI3NzdFRkYqICBA0uVz+9y5cyoqKlJAQIC6d++uJ554Qu+8844iIiIq3Ietc1HMZaG2sTUvmK9CfXO1K1clxxkruHIVAAAAAAAAAAAAAEzg5vMAAAAAAAAAAAAAYALFVQAAAAAAAAAAAAAwgeIqAAAAAAAAAAAAAJhAcRUAAAAAAAAAAAAATKC4CgAAAAAAAAAAAAAmUFwFAAAAAAAAAAAAABMorgIAAAAAAAAAAACACRRXAQAAAAAAAAAAAMAEiqsAAAAAAAAAAAAAYALFVQAAAAAAAAAAAAAwgeIqAAAAAAAAAAAAAJhAcRUAAAAAAAAAAAAATKC4CgAAAAAAAAAAAAAmUFwFAAAAAMCk2NhY+fj4yMfHR2lpafYOx26SkpKM9yE+Pt7e4QAAAADAdeNq7wAAAAAAAKgJaWlp6ty5c7Xsa9SoUZo3b1617AsAAAAA4Li4chUAAAAAAAAAAAAATHCyWCzF9g4CAAAAAIDqduHCBW3atMlq++HDh/Xaa69Jktq1a6dp06ZZ7RscHKyoqKhqjxEAAAAA4Fi4LTAAAAAAoE7y9PTU4MGDrbY3adLEWPb19a20LwAAAAAAErcFBgAAAAAAAAAAAABTKK4CAAAAAGBSbGysfHx85OPjo7S0tHLtSUlJRnt8fLwk6dixY5o8ebJuvfVWBQYGKjw8XDExMRXesnjXrl167LHHFBUVpebNm6tNmzZ6+OGHdfDgQdMxHj16VH/5y1902223KSwsTAEBAYqIiNCwYcO0bNkyFRQUVP0NqOQ4rxQZGSkfHx9FRkZKkgoLC7V8+XJFR0frpptuUvPmzdWpUydNmDBBx44dszmmEjt27NBTTz2lbt26KTg4WP7+/mrTpo26d++uESNGaP78+UpNTa10H5cuXdKKFSs0ZswYdezYUS1atFBISIh69OihF154QT/99JPpeH799VfNnj1b0dHRioiIkL+/vwIDA9W1a1eNHz9eH3/8sfLy8irc9uDBg3rhhRfUu3dvhYaGqlmzZgoLC1PXrl0VExOjt99+Wz/++OM1vT8AAAAAbMMzVwEAAAAA9VJSUpKGDBkiSerdu7e++OKLq24TGxurFStWSJIOHDigli1bWt3n5MmT1bFjR8XGxio7O7vC/f3lL3/Rc889p+LiYsXHx2v27NkV9mvQoIESExM1aNAgq7EVFRVp+vTpevfdd1VYWGi1X3h4uFauXKmwsLBKj7UyVx7n1KlTy/WJjIzUiRMnFBISos2bN2vMmDFKTk6ucH+enp5asWKF+vXrV+WYioqK9Nxzz2nJkiVX7XvnnXdq1apVFbYdPHhQjzzyiH755Rer27u4uOjFF1/U5MmTK32dd955R7NmzVJubm6l/aZMmaIpU6aUWTd79my9/vrrKioqqnTbNm3aaM+ePZX2AQAAAFB9eOYqAAAAAAA14MCBA3r77bfl4uKi8ePHq0uXLnJxcdG2bdv0wQcf6NKlS5oxY4a6d++uffv2afbs2QoODtbo0aMVERGhnJwcrVmzRps2bVJBQYHi4uL03Xffyc/Pr8LXGz9+vFEwbNq0qYYNG6bOnTvL29tbp0+f1hdffKGkpCSlpKQoOjpaSUlJ8vf3r/H3obCwUA8++KCSk5PVs2dPDRkyRDfccIN+++03rVy5Unv37tWFCxc0btw47dmzR02bNq3S6yxYsMAorHp7e2vo0KGKiopSs2bNdPHiRZ06dUr79u3T5s2bre5j3759GjJkiFEM79Wrl+6++26FhISooKBABw4c0IcffiiLxaL4+Hg5OTnpxRdfrHBfU6dO1bx584zf+/btq4EDByooKEiXLl3S8ePHtX37dm3btk3FxWW/9/7ll19q1qxZkiQPDw8NGjRIPXr0ULNmzVRUVKTTp0/r4MGD+vbbb6v0XgEAAACoOoqrAAAAAADUgPXr1ys0NFSfffaZbrzxRmP98OHD1aNHD8XGxkqSXnzxRf3yyy+66667lJiYKE9PT6PvQw89pCeffFIrV67U2bNn9cEHH2jChAnlXmvRokVGYXXgwIFasGCBfHx8yvR58skntWTJEk2aNEmnT5/WlClTtHjx4ho48rJOnTqlU6dOKSEhQePHjy/TNm7cOI0ePVobNmzQf//7X73//vt65plnqvQ6y5YtkyT5+Pho69atCg0NrbBffn6+/vOf/5Rbn5OTo0ceeUTZ2dlq2LChFi1apHvuuadMnxEjRmjixIkaNmyYDh48qNdff11Dhw5V27Zty/T79NNPjcKqt7e3/vWvf2nAgAEVxlPy/pS2dOlSSZKrq6vWr1+vqKioCrctLCzU7t27K2wDAAAAUDN45ioAAAAAADVkwYIFZQqrJUaNGqXWrVtLkg4dOiRvb28tWrSoTGG1xJ///Gc5OTlJkr7++uty7fn5+UpISJAktWrVSomJieUKqyUeffRRjRgxQpK0Zs1Vhqo+AAAJHElEQVQaZWRkVOm4rtXo0aPLFValy7fXnTlzpvF7RcdnVslzW2+//XarhVVJcnd3V9euXcutT0xMNJ6j+/rrr5crrJYICAjQkiVL5OLioqKiojJXp0pScXGxcdWpJM2dO9dqYVWSAgMDdeutt1Z4LJ06dbJaWJUuv389e/a02g4AAACg+lFcBQAAAACgBnTu3Fk9evSw2t69e3djeeTIkVYLosHBwQoJCZEk/fTTT+Xav/nmG/3666+SpMcee0weHh6VxlVSXC0sLNSWLVsqP4hqEhcXZ7WtTZs2Cg4OliQdOXKkyq9RUpg+dOiQLl68eM3blzxL19fXV6NHj66070033aQuXbpIkjZt2lSmbd++fcbfqUuXLsazaa9FybGkpqbKYrFc8/YAAAAAag63BQYAAAAAoAZUdHVkac2bNzeWr7xysaK+6enpFRbakpOTjeXc3FytXbu20n1lZmYayz///HOlfauDp6enOnToUGmfG264QRkZGTYVEu+44w6tWrVKKSkpuvfeexUXF6c777yzwquBr5SVlaUffvhBktSiRQtt2LDhqtu4uLhIkk6cOKG8vDyjqF367xEdHV2VQ9Edd9yhAwcO6OzZs4qOjtaf/vQn3X333VYL8AAAAACuH4qrAAAAAADUgKZNm1ba7ubmds198/Pzy7Wlp6cby6VvsWvG77//fk39q8LX19e4rbE1lR2fWdOnT9fOnTt18uRJJScnKzk5WQ0aNFDnzp3VrVs39enTR3fccUeFV/aePHlSRUVFki5f+TpmzJhreu3ff/9dgYGBklTm+akRERFVOpaJEydqw4YNOnTokA4dOqQnnnhCzs7O6tChg7p166bevXvrrrvuUuPGjau0fwAAAABVx22BAQAAAACoAc7O5v/LfS19r3Tu3Lkqb1tQUFDlbc26WmG1uoSEhGjr1q2KjY01itUFBQX67rvvNHfuXI0ePVrh4eF67bXXyhVxbXkPS16nxPnz541lLy+vKu2vSZMm2rhxoyZPnqwbbrhBklRUVKSDBw9q8eLFGjt2rMLDw/XCCy/YHDsAAACAa8OVqwAAAAAAOLBGjRoZy3v27FGbNm3sGI19+fn5KT4+XjNmzNCBAwe0e/du7dq1S1u2bNHZs2eVlZWlhIQE7dq1S2vWrDGK2qXfw2HDhmnx4sVVjsHb29tYzs7OrvJ+GjVqpKlTp2rKlCn68ccftXv3bu3cuVNJSUnKzMxUXl6eFi5cqO3bt2vjxo1ljgEAAABAzeHKVQAAAAAAHFjJ7Wily7e0heTq6qouXbooNjZWS5cu1dGjR7Vs2TI1adJEkrR161Z9/vnnRv/S7+Hhw4dteu3S+/rpp59s2pd0+crfjh07auzYsVqwYIEOHTqkNWvWKDg4WNLlv/m//vUvm18HAAAAgDkUVwEAAAAAcGC9e/c2lteuXWvHSGovFxcX3XvvvZo2bZqxLjk52Vj28/NT27ZtJV0uVh49erTKr9WrVy9j+YsvvqjyfqxxcnLS7bffrjfeeMNYV/pYAAAAANQsiqsAAAAAADiwAQMGyM/PT5L0ySefaO/evXaOqPZq2bKlsVxYWFimbeTIkcbyX//6VxUXF1fpNaKiooxC7d69e8tcIVudKjsWAAAAADWH4ioAAAAAAA6sUaNGmjx5sqTLRbaRI0dqx44dlW5z6NAhTZo06XqEd12cPn1a06ZNU2pqqtU+ly5d0pIlS4zfIyMjy7SPHz9eISEhkqR169ZpwoQJys3Ntbq/3Nxcvf/++1q1alWZ9U5OTnrppZeM3+Pi4rRx40ar+8nMzNT3339fZt2ECRP0ww8/WN1GUpnnwl55LAAAAABqjqu9AwAAAAAAALZ5/PHHtW/fPq1YsUJnzpxRdHS0brvtNt15550KCgqSs7Ozzp49qyNHjmjbtm06fPiwXFxc9NZbb9k79GqRn5+vd999V++++66ioqLUs2dPRUREyMfHR9nZ2Tp+/LhWrVplFF9vvPFG3X///WX20ahRI3344Ye65557lJWVpeXLl+vLL79UTEyMIiMj1aRJE124cEEZGRnat2+ftmzZopycnDK3Gi4xdOhQxcbGat68eTp//ryGDx+uvn37auDAgQoKClJhYaHS09O1Y8cObd26Vc8++6y6dOlibJ+YmKjExESFh4frtttuU7t27eTr66u8vDxlZGRozZo1+vHHHyVJPj4+Gjt2bA2+uwAAAABKo7gKAAAAAEAdMHfuXLVp00azZ89WXl6etm7dqq1bt1rtHxgYeB2jq1lOTk7G8v79+7V//36rfdu3b68PPvhAXl5e5doiIyP17bffaty4cdq/f7/++9//auHChVb35eLioubNm1fYFh8fr+bNmys+Pl75+flKSkpSUlJShX2dncveWMzJyUnFxcVKSUlRSkqK1dcPDg7W8uXL69TfEgAAAKjtKK4CAAAAAFAHODk56dlnn9WYMWO0fPlybdmyRSkpKfr999/l5OQkX19ftW7dWrfeeqvuuOMO9enTx94hV5vQ0FD98MMPRgHzwIEDysjIUHZ2ttzc3BQQEKBOnTpp6NChuv/+++Xi4mJ1X61bt9bmzZv11Vdf6bPPPtPu3bt1+vRp5eTkqFGjRgoKClL79u3Vt29fDRo0yGpxVZImTpyo4cOHa+nSpfr222+Vmpoqi8UiDw8PBQcHKyoqSoMGDVJ0dHSZ7VJSUrRt2zYlJSVp3759SktLU1ZWllxcXNSsWTN17NhRgwYN0ogRI9SwYcNqex8BAAAAXJ2TxWIptncQAAAAAAAAAAAAAFDbOV+9CwAAAAAAAAAAAACA4ioAAAAAAAAAAAAAmEBxFQAAAAAAAAAAAABMoLgKAAAAAAAAAAAAACZQXAUAAAAAAAAAAAAAEyiuAgAAAAAAAAAAAIAJFFcBAAAAAAAAAAAAwASKqwAAAAAAAAAAAABgAsVVAAAAAAAAAAAAADCB4ioAAAAAAAAAAAAAmEBxFQAAAAAAAAAAAABMoLgKAAAAAAAAAAAAACZQXAUAAAAAAAAAAAAAEyiuAgAAAAAAAAAAAIAJFFcBAAAAAAAAAAAAwASKqwAAAAAAAAAAAABgAsVVAAAAAAAAAAAAADDh/wGqR+4Z0xO1+gAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1820x780 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "uwyNPwHNlZyT", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "132182a2-e725-4a98-9570-4b39f1affd46" | |
}, | |
"source": [ | |
"envir_df = game_df.groupby(by='Envir', as_index=False).mean()\n", | |
"envir_df.set_index('Envir', inplace=True)\n", | |
"fig = plt.figure(dpi=130);\n", | |
"envir_df['Mean_Rewards'].sort_values().plot(kind='barh', figsize=(14,6), color='orange');\n", | |
"plt.title('Average Rewards of Various Algorithms across Environments (secs)', fontsize=13);\n", | |
"plt.ylabel('Environment');\n", | |
"plt.xlabel('Average Rewards');\n", | |
"plt.legend(loc='lower right', edgecolor='k');" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB1cAAAMBCAYAAACzzD2YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAT/gAAE/4BB5Q5hAAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd1yVdf/H8TdD3HhEEVFAnOAq907N0hxpjkzNcuUqs3lbZmZqZsNCTTNH6q25cFvmXjjAieIWEHHgSEVAxMX4/eHjXHHkHDygRf3u1/Px4HHbudb3mufc1+f7+Xwd4uLi0gQAAAAAAAAAAAAAyJRjTjcAAAAAAAAAAAAAAP4NCK4CAAAAAAAAAAAAgB0IrgIAAAAAAAAAAACAHQiuAgAAAAAAAAAAAIAdCK4CAAAAAAAAAAAAgB0IrgIAAAAAAAAAAACAHQiuAgAAAAAAAAAAAIAdCK4CAAAAAAAAAAAAgB0IrgIAAAAAAAAAAACAHQiuAgAAAAAAAAAAAIAdCK4CAAAAAAAAAAAAgB0IrgIAAAAAAAAAAACAHQiuAgAAAEA64eHhMplM8vDwyOmmZCouLk5DhgxR1apV5e7uLpPJpOeffz6nm/VENG3aVCaTSatWrcrppvzjrFu3TiaTSfXr18/ppmTJ45zT48ePy2QyqWTJkn9By4CcV6ZMGZlMJh08eDCnm4Ic0qtXLxUuXFiHDh3K6ab8ZdLS0tSoUSN5eXnpypUrOd0cAAAeC8FVAAAAZMv3338vk8kkk8mkkSNH5nRzIKl///7GOTH/FS5cWF5eXmrQoIGGDBmiyMjInG4mnpAuXbpoxowZun79uipVqqR69eqpSpUqmS7TvHlzmUwm9e/f365tpKamqkqVKjKZTPryyy+fRLPxkPj4eHl6espkMsnHx0dJSUk53aS/VWRkpL766iv9/PPPOd0U/D8yffr0DN+Htv7mzp2b083FP8CWLVv01VdfacOGDX/7toODg7Vy5Uq1a9dO1apV+9u3/3dxcHDQ8OHDlZiYqDFjxuR0cwAAeCzOOd0AAAAA/DstWLDA+PeiRYv02WefycnJKQdbBDNXV1dVqlRJ0oPgWExMjE6cOKHjx49r7ty5+u9//6tWrVrlcCvxOA4dOqQ9e/aoYMGC2rNnj0qUKGHXcq+99pr27dun3377TQkJCXJ1dc10/qCgIF24cEEODg7q3r37k2i6XXx8fHTr1i0VLFjwb9tmTlm2bJlu374tSUpISNDKlSv16quv5nCrnjxb5zQyMlLffPONKlasqL59++ZQ6/D/laOjo+rUqZPpPMWKFfubWmNb2bJlVaRIEeXJkyenm/I/a8uWLZo8ebL69eunFi1a/K3bHjZsmCRp6NChf+t2c0LLli1Vo0YNzZ8/XwMHDlTlypVzukkAAGQLwVUAAABk2a5du3T69GnlypVLLi4uunz5sjZs2EDA7h+ievXqGUpvHjx4UL169dLZs2c1aNAghYWF/U8Erv6/OnHihCSpSpUqdgdWJaljx44aNmyYbt26pRUrVqhnz56Zzj9//nxJUqNGjeTr65vt9mbV/1Im2bx58yRJJpNJcXFxmjdv3v/L4Or/0jnFP0fevHm1bt26nG7GI23cuDGnm4AcsmPHDh06dEh169ZVxYoVc7o5f4sePXooNDRUU6dO1aRJk3K6OQAAZAtlgQEAAJBlv/zyiySpRYsWateunaQ/AwT4Z6pevbq+/vprSVJsbKy2bduWsw3CY7lz544kKV++fFlarmDBgsY9aw6c2hIXF6fVq1dLepDxiifv+PHjCg0NlSRNnjxZ0oPykFFRUTnZLADA32TmzJmSpG7duuVwS/4+HTp0UJ48ebRs2TLFxcXldHMAAMgWgqsAAADIkps3b+rXX3+V9OBFkPll0IYNG3T16tUM80dHR6tw4cJyc3PThQsXbK53586dMplM8vb2NkpkmiUnJ2vu3Llq27atypQpI3d3d1WqVEn9+/fX0aNHra7PPP7ouHHjFBcXp+HDh6tmzZry8PBQ9erVjfkiIiI0fvx4tW3bVlWrVpWHh4d8fHz03HPPaeLEiZmOf5iamqrZs2erSZMmKlGihHx9fdW+fXtt2bJFycnJxnhuMTExVpc/dOiQBgwYoCpVqhjbbdWqlebPn6/U1FSb282u9KURo6Ojbc4XExOjTz/9VHXr1lXJkiVVokQJNWzYUN9++60SExMt5o2Pj1eRIkXk5uamGzduWExLS0tT2bJlZTKZ1KhRowzbOXr0qEwmk8qUKaO0tDTj8/Pnz2vKlCnq1KmTqlWrJk9PT3l5ealRo0b68ssvbb6ImzVrlkwmkzp16qSUlBRNmTJFTZo0kbe3t0wmk65cuWLMe//+ff3www+qX7++PDw8VLZsWXXr1k0HDhzI9BjevXtXkydP1nPPPScfHx+5u7urQoUKaty4sYYMGaJDhw5lurw1169f16hRo1SvXj2VKFFCJUuWVMOGDTV27FjFx8db3cf3339fkrR582aLsQP37dv3yO2ZA6V79+5VeHi4zfmWL1+uO3fuyNXV1QjImoWGhmrMmDFq0aKFKlWqpGLFisnX11dt2rTR3LlzbV6/PXr0kMlk0qRJk3T9+nV98sknql69ujw8PFS/fn1jvqZNm8pkMmXIwDY7duyYBg4cqCpVqlhse968eUpJSckw//Hjx2UymVSyZEmb+zt8+HCZTCYNGTIkw7TIyEgNHjxY1apVk4eHh0qUKKGnnnpK7du3V0BAQLbHSTV3VKlXr55efPFFPf3005IeHfjOTHx8vEaMGKFq1aqpWLFi8vf318CBAxUdHa1169bJZDJZHOv0bt68qXHjxqlx48by8vKSp6en6tSpo+HDh+uPP/6wuszjnNOmTZuqa9eukh5kYz88FubBgwetbjMoKEgdO3aUr6+vPD091bhxY82ZM8fqvA/v87x589SsWTN5eXmpbNmy6tGjh06fPm3Mv3fvXnXt2lXlypWTp6ennnvuuUzHYFy5cqU6duyocuXKqWjRoipdurTq1q2r/v37a82aNTaXs+bs2bP68ccf1bFjRz399NMqXry4vLy89Mwzz+irr756ZBDiwoULGj58uBo0aCAvLy+VKFFCNWvWVP/+/bVp0yaLedNf70lJSRo7dqzFMyi9e/fuadq0aWrRooV8fHzk4eGhatWq6f3339eZM2ee2LE5ePCg+vbtqypVqsjd3V3e3t6qXr26unTpoh9//DELR/LxpL9Wr169qv/85z/Gs6Zy5cr68MMPdf36dYtlTp06JZPJpKJFi9q8V6Q/n9mlS5fWvXv3jM/LlClj9Zo3jx3bpUsXJScna/LkyWrcuLHxvZa+HampqVq0aJHatm2r0qVLG+3t37+/Dh8+bLU96deflpZm8ZvGx8dH7du3165du6wum/4aun37tsaMGaOaNWuqePHiqlKlioYNG6abN28a8wcGBqp58+by9vaWj4+Punbtmul3kPl4de/eXX5+fnJ3d1eZMmXUuXNnm/dkdvYnMTFRJpPJ6OAyY8YMi+fQw/fDtm3b9Oqrr8rf31/u7u4qVaqUatasqZ49e1oMmWGPxMRE/f7775Kk1q1b25wvO8+Z2NhYjRkzRo0aNZK3t7eKFy+uOnXq6PPPP89w/aaXmpqqFStWqEuXLqpQoYLxO6dFixYKCAjQtWvXLOa/dOmSPvnkE9WpU0eenp7G+W/VqpXGjh1r9f8bFCpUSI0aNVJSUpJ+++03ew4VAAD/OJQFBgAAQJYsX75cSUlJKlKkiF544QU5OzvL29tb58+f16JFizR48GCL+X19fVWvXj2FhIRo8eLF+uCDD6yud9GiRZKkl156SXnz5jU+v3Hjhrp166bdu3dLkhFoO3PmjBYvXqwVK1Zo6tSp6tSpk9X1Xr16VY0bN9b58+dVoUIF+fv76/79+8b0zz//XGvWrFH+/PmNF5HXr19XaGioDhw4oGXLlun333/PUEI3LS1N/fr107JlyyRJJUqUUPHixRUWFqZOnTpp3LhxmR7HgIAAffHFF0pLS1PBggVVvnx53bhxQyEhIQoJCdHatWs1Z86cJzqObfoAUIECBazOs2nTJvXu3Vs3b96Ui4uLfH19lZqaqpMnT+rYsWNavny5Vq1aJQ8PD0kPXpBVq1ZNBw4c0Pbt2/XSSy8Z6zpy5IjxAu/YsWO6du2aihYtakzfvn27pAclZx0cHIzPf/jhB82YMUN58uSRh4eHKlasqBs3bujkyZM6evSolixZonXr1ql48eJW9yE1NVVdu3bVxo0b5e3trfLly1sEAO7cuaNXXnnF2L6Pj4/c3NwUFBSkTZs26fPPP7e63uTkZLVv314hISGSpFKlSqlcuXKKjY1VeHi4Dh8+bBwPex07dkydOnXS5cuX5eTkJH9/f6Wlpen48eM6duyYFi1apJUrV6pMmTKSJA8PD9WrV09XrlzRmTNnVKhQIYsygvaUem7YsKHKli2r06dPa8GCBRo5cqTV+cwBvk6dOlnck5I0YMAARUREyNXVVR4eHvLw8NAff/yhXbt2adeuXVq7dq3mz58vR0fr/XkvXbqkxo0b69KlS6pQoYL8/PxszvuwwMBADRo0SMnJySpQoIAqV66sa9euGdteuXKl5s2b98TGLty/f79eeukl3bp1S/ny5VOZMmXk4uKiS5cuKSgoSNu2bVOnTp1UqlSpLK333r17Wrx4sSQZZYBfffVVhYWFaeHChRo2bFiW7/8rV66oTZs2ioyMlCRVqFBBefLk0fLly7VmzRojKG/N+fPn1aFDB0VGRsrBwUF+fn7KlSuXTpw4ocmTJ2vhwoVaunSpReeU9LJzTqtWrao7d+7o5MmTypcvn5566imL6daeUzNmzNBHH30kNzc3lS5dWtHR0Tp8+LDeffddXbx4UZ988onN7X300UeaPn26fHx85Ovrq4iICP3666/avXu3Nm/erD179mjgwIFydXWVj4+PoqKidODAAXXt2lULFy7UCy+8YLG+4cOHGwEZDw8PValSRbdv39alS5d06tQpxcTEZBowediECRM0e/Zs5c2bV8WKFVOlSpV048YNnThxQkeOHDGefdbGCP3tt980cOBA3bp1S05OTipfvrxcXFx07tw5LV68WEeOHNHzzz+fYbnExEQ1b95cx44dU9myZVWhQgVdunTJmB4XF6fOnTsbHTfKlCmjggUL6tSpU5o9e7YCAwP13//+N8MYlVk9NqtXr1avXr2UnJwsV1dXVahQQY6Ojrp48aLWr1+v9evXa9CgQXYfyychOjpaH330kWJjY437ITo6WjNnztTOnTu1detWo3qAn5+fatSoodDQUC1ZssRmW82/dTp16iQXFxe725KSkqJXXnlFW7ZsMb7X0me437t3Tz179tTatWslSV5eXvL19VVkZKQWL16sZcuWafz48erRo4fV9aelpemNN97Q8uXL5ePjo7JlyyoyMlLbtm3Tzp07tWTJEj377LNWl71z545efPFFHTx4UH5+fvLy8lJUVJSmTJmigwcPavXq1Ro6dKhmzJghHx8flSpVShEREVq3bp327t2rHTt2ZAhgpqSk6L333jM6oBQuXFgVK1bUxYsXtXHjRm3cuFHvvPOORo8e/dj74+TkpHr16uncuXO6ePGiihcvblEGP/333/Tp0/XRRx9Jktzc3OTv76+UlBTFxMRo1apVCg0NzVJZ9927d+v+/fvy9fW1OfZvdp4z5ufW1atX5ezsLB8fH+XOnVuRkZGaOHGili5dqpUrV6p8+fIWy928eVO9evXS5s2bJUlFixZVlSpVFBsbq9DQUO3du1dly5Y1futFR0erefPmunr1qlxcXFS6dGnly5dPV65c0d69exUSEqJnnnlG7u7uGfardu3a2rRpk3bs2KHXX3/d7mMGAMA/BZmrAAAAyBLzi66XX35ZuXLlkoODg5F5ZCvbypzdan6p+LDbt29bZMOm16dPH+3evVu1a9fWzp07deLECW3fvl3R0dEaPXq0kpOTNWjQIIvMo/RmzpypwoULKzQ0VHv27FFQUJDx0si8vc2bN+vChQs6ePCgtmzZorCwMB06dEjNmzfX4cOH9eWXX1pd77Jly5Q7d27NnDlTx48f15YtWxQREaFPPvlEw4YNs3kMlyxZotGjR6tAgQKaPHmyzp49q507d+rYsWPauHGjSpUqpdWrVysgIMDmOrIj/bhz5gy59E6dOqUePXro5s2b+uCDDxQVFaW9e/dq//79Onz4sJ555hmdPHlSb731lsVyjRs3lvRnsNTM/N8lS5ZUWlqaduzYYXW6eXmzVq1aafXq1YqJiVFYWJi2bNmigwcP6tixY+rSpYvxwtuW7du3KzQ0VL/++quOHDmiLVu2KDw83AjsfvXVV9q+fbtcXV21YsUKHT58WNu2bVN4eLg6dOigUaNGWV3vr7/+qpCQEJUqVUr79u0z2nbo0CFduHBBS5YsUb169Wy262F37tzR66+/rsuXL6tu3boKCwvTrl27FBwcrAMHDqhy5co6d+6cevToYWRjtmnTRuvWrTM6MdSqVUvr1q0z/vz9/e3advfu3SU9uCetZXqePHnSyOK1VhL4gw8+0O7du3Xu3Dnt27dPW7du1bFjx7Rz505VqVJFa9eu1X//+1+b2582bZo8PT0VGhqq3bt3a/v27UZQIDNHjx7V4MGDlZycrL59+yoiIkJbt27VkSNHtHTpUrm6umrTpk02A8bZMWbMGN26dUt9+vRRRESEQkJCFBQUpPDwcIWHh+vbb7/N1vjFa9eu1fXr15U3b161b99ektS5c2e5uLjo4sWL2rJlS5bX+e677yoyMlKlS5dWcHCw9u7dq+3bt+vkyZOqV6+evvrqK6vLpaWlqU+fPoqMjJSfn5/27Nmj3bt3a8eOHTpy5IgaNmyo69ev6/XXX7fIREsvO+d00qRJxrkqVaqUxbW8bt26DC/+b9++reHDh+v77783zn1UVJTRaef777/X5cuXrW4rMjJSgYGBxj2/c+dOhYWFqWLFivrjjz/0/vvv67333tPnn3+uiIgIbdu2TZGRkerQoYNSU1P12WefWazvwoUL+vHHH5UnTx4tWbJEp06d0rZt27Rnzx6dO3dOW7duzXKZzzZt2mjNmjW6cOGCxbPv6NGj6ty5s6KiojR06NAMyx06dEh9+/bVrVu31KVLF508edI4B9HR0dqxY4fNgM/ixYt1+/Zt7dy5UwcOHNC2bdssMvA/+OAD7du3T8WLF9fGjRsVGhqqoKAgnTp1Su3bt1dSUpL69u2r8+fPP9axGTFihJKTkzV8+HBFRkZq165d2rFjh06fPq3Dhw/b7PTyVzJnYp44cUI7d+7UwYMHtX79ehUqVEinTp3Szz//bDH/o37r3Lx508hSzOq1sXXrVh0+fFirV6+2+F4zmUySpLFjx2rt2rUqUKCAAgMDdfToUW3dulUREREaMGCAUlJS9MEHH9jMBt+6dat27typ33//XYcPH9aOHTt06tQpNWvWTMnJyZn+plm0aJHu3Lmj/fv3KyQkRPv379fatWuVP39+hYSEqHfv3lq8eLGWL19u3HuHDh2Sn5+fYmNj9f3332dY59dff61ffvlFJUuWVGBgoM6cOaPt27crMjJS8+fPV6FChfTDDz/YrG6Qlf0xj8vbsWNHSVLbtm0tnkMrVqyQ9OA72xzMnTJliiIjI7Vjxw4FBwfr7Nmz2rNnj95++207zuafgoODJUk1a9a0Oj0799KVK1eMwGrPnj116tQphYaGKiQkROHh4WrXrp1iYmLUq1evDFUmBg0apM2bN6to0aJauHCh8ZwNCwvT2bNnNXnyZHl7exvzBwQE6OrVq2rdurXCw8O1Z88ebd26VcePH1dUVJQmT54sT09Pq/tWq1YtSQ8q1wAA8G9EcBUAAAB2O3XqlPbv3y9JFi9qzf8+efKkMT299u3bK2/evAoPDzfGF0zv999/V0JCgkqVKqUGDRoYn2/atElbt26Vp6enAgMDVaVKFWOak5OT3nnnHfXq1Ut37tzR1KlTrbbZ2dlZ8+fPV+nSpY3P0mchtG3bVjVr1rTInJQevOifNWuWnJ2dtXDhQosXUKmpqZo4caIk6eOPP7bImnV2dtZHH31kM1vp/v37RjBh/Pjxeu211yyyu2rXrm28sP3xxx8tsmyzIzU1VefPn9fUqVONoGGLFi1Uo0aNDPN++eWXxovyESNGWGSNlSxZUnPnzlXRokW1efNmixKDtoKr5mCqucxq+ukpKSnGS8WHg6vNmjVTo0aNMmTteXh46KefflKRIkW0evVqmyUyU1JSNH78eIv15sqVS05OToqPj9eMGTMkPXiZnz4Tp0CBApoyZYpKlChhdb2nTp2SJHXs2DFD0MfZ2VnNmze3mhlmy+LFixUVFaU8efJozpw58vLyMqaVKVPGyFw+evSoMfbpk9KtWzc5OTnp8uXLFp0NzMwdJSpWrGj1pW+3bt2sBnKrVKlilO/MrLRt7ty5NW/ePJvZQbaMHz9e9+7dU7Vq1fTdd99ZLPP8888b1/isWbOsliLMDnPZysGDByt//vwW09zd3dW/f3+5ublleb3mcapffPFFubq6SnqQCWXOAMzqONYnTpwwOlDMnj1blSpVMqa5ublp1qxZNtu5ZcsW7du3Tw4ODpo5c6YqVKhgTPP09NQvv/yiAgUK6MKFCzbbld1zmhWpqanq3bu3+vTpYzw3HRwc9Omnn8rX11fJycnauHGj1WXv37+f4Z4vXry40VFj06ZNat68uQYPHmw8e1xcXDR27Fg5OTkpPDzcIgM+MjJSaWlpql69upo3b55he9WrV8/yWMXPP/+8GjRokOHZV7x4cU2dOtUoVftwgPuLL77Q3bt31aJFC02bNi1DlljVqlUzVJUwS01N1Zw5cyy+X83nLTw83AgsTZgwQbVr1zbmKVSokGbMmCEvLy8lJCRoypQpxrSsHpvk5GRFRUXJ0dFR7777boaMTh8fn0yzrjNz69atDOWmH/5LTk62uqy7u7tmzJhhUXGhTp06GjhwoCRl6Dzw8ssvy8XFRUeOHNGxY8cyrG/VqlVKSkpShQoVbAbTbElJSdEPP/xgUWLfxcVFTk5OiouL07Rp0yQ9+F5Ln2GdJ08effPNN6pTp46Sk5P13XffWV3//fv3FRAQoIYNGxqfubq6KiAgQI6Ojjpx4oTN4QRSU1M1Y8YMo8KCJNWtW9foePfrr79qxIgRatasmTHd09NTH3/8sSRp/fr1Fuu7cuWKfvjhBzk5OWnevHkZMsbbtGmjsWPHSnrwnfCk98eWixcvKjExUSVLltSrr76aITPfz89PAwYMyNI6z549K0k2A5DZec6MHz/eCHhOnDhRRYoUMaYVLlxYM2bMUPny5XXs2DGL8sr79u3Tr7/+KgcHBy1atEitWrWy+G2cP39+vfbaaxa/H83fjwMGDDAC/WaFChXSa6+9pnLlylndN3P1kYsXL1qUyAYA4N+C4CoAAADsZs5arVSpkkXmY+nSpS3Gs3uYq6ur2rRpI0lauHBhhunmLI8uXbpYvMhZvny5pAelgm0FBcylyR4O7Jk9++yzFkEra65du6bp06drwIAB6tChg1q1aqWWLVuqc+fOcnR0VHx8vMVLuJMnTxpZOrZK7PXs2dPq53v27FFMTIxMJpORJfGw2rVrq0SJEoqLi7M5TlpmgoKCjJfGbm5uqlq1qoYOHark5GT16dPHakbh7du3jcBMnz59rK63cOHCVgOp9erVk4uLiyIiInTx4kVJD16WBwcHq2TJkurWrZvy5s2roKAgY5mDBw8qISFBnp6eFoEcs4SEBM2dO1eDBg1Sx44djXPSunVr3b17V6mpqTpy5IjVdrq5uenFF1+0Om3nzp1KSkqSq6ur1cCHs7Oz+vXrZ3VZ83W0cePGDGOOZYf5hXLnzp2tljguV66cWrVqJUmZjvmYHZ6enkYg+OEgaHJysgIDAyVZz1o1O3v2rCZMmKA+ffqoXbt2atmypVq2bKn//Oc/kqTDhw9bjKWbXosWLWyWdbYlNTXVCJzZChR1795dbm5uunfvnrZt25al9dtiPu+BgYFPbCzk9JmpD2cdmf/bnNlqL/OYmtWqVbNamrpAgQI2y6eb7/1mzZpZBNnM3NzcjE40tq7F7JzT7LB2fzo5ORmBP1tjgDo5OVktPZn+WPXq1SvDdPMYgg+v23xdHDt2LFvPaVvi4+OtPvvatGmj+/fvKyUlxWKs8fj4eONa//DDD7O8verVq6tq1apWp61fv15paWkqX768WrZsmWF6rly5jEBj+usiq8fG2dlZxYsXV2pqqvHseVIcHR1Vr169TP8e7lxl1q1btwwdKiQZFQoevtYKFy5sdI7I7LeOOeiYFe7u7sb3wcOCgoJ0+/Ztubq62vxNYs6o3Lp1q9Vgsqenp9XvTV9fX2MYgPRliNOrU6eORWcOM/PvRFv3nrnEeExMjEVwbc2aNbp7966qV69uswx5u3bt5ODgoLCwMKsdrR5nf2zx9PQ0OiVt3bo1S8vaYv4tYes3bnaeMytXrpRk+7dc7ty5jYB1+t9y5izgpk2bGlmlj2Ju37Jly7IcIE2/z0/iNxUAAH83xlwFAACAXe7fv2+89LRWXrBbt24KCQnR8uXLNXbsWGMcsvTTly5dqmXLlmns2LHKlSuXpAcZCuaXVA8HGcwvkNevX29RpjC927dvS5IR1HtY+vEorfn111/19ttvKyEhIdP5YmNjjayMiIgISQ9etKXPaEnP1stq8z6lpKRkOhafuT0xMTFZznBxdXU1XnTeuXNH0dHRiouLU548eVSvXr0M50Z6kJVpfjFma1xc6c8si/THO2/evKpVq5aCg4MVFBSkbt26KTQ0VDdv3tSLL76o3Llzq27dutq2bZvOnz8vb29v44XeM888k2Ebu3btUq9evR6ZeRgbG2v188zGejSfO19fX5tjctq6Ztq3b69vv/1WR48eVeXKlfXMM8+oXr16ql27turWrZvlMT7N42JaeyltVqlSJa1evdpo95PUvXt3rV+/XmvXrlVsbKzxonPjxo36448/lCtXLnXp0sXqspMnT7fPM4YAACAASURBVNaoUaMyzay+f/++EhISVKhQoQzT7C1fnN6VK1eM+8LWMXNxcVH58uW1Z88eI6PmcQ0ePFivv/66vv76a82ZM0fNmjVT7dq1Vb9+ffn5+WVrnQsWLFBKSopKlCihpk2bWkxr0aKFihYtqmvXrikwMDBDGW5bzNeIteComa3nkj3XYuXKlS2287DsnNOscnZ2tjm2rTlbMzEx0er0kiVLWh3jMv0zPH2Fg4fniYmJsVh3uXLl1Lp1a61Zs0ZNmjRRzZo19cwzz6hGjRpq1KiRChcubPd+mW3fvl19+vR5ZKAh/bPv1KlTSklJkZOTU5a/K6TMz1tWrouoqCijHdk5Nu+8846GDRumt99+W99//72aNWummjVrqkGDBhbZ0FllLvmaHWXLlrX6uflau3XrVoZp3bp10+rVq7V06VKNGjXKyEI+f/68du3aJUdHR73yyitZboufn5/NILD5PJUtW9bm95D5PCUlJenChQsZjqmtfZUe7O+lS5ds3lu27hvzcbLn3rt165Yxj/l30tmzZ60G9c0cHR2VkpKiy5cvZ8iafJz9sSVv3rzq16+fpk6dqg4dOqhSpUpq2rSpatasqYYNG2arc8mdO3ckPQh4WpPVe+nq1atGafQvv/zSZqayeVzl9L/ljh8/LulBsNxeb731llauXKm5c+dq9erVeu6551SrVi3VrVtXTz/9tM1rVpLFtWo+DgAA/JsQXAUAAIBd1q1bp6tXr8rZ2dnqi8H27dtr6NChSkhI0KpVqzIESps2bSpPT09dunRJ69evNzIKFi9erJSUFNWvXz/DCzpzNsKZM2dsZiOZJSUlWf3cWiDRLDo6Wv369dPdu3fVoUMH9evXT35+fnJ1dTWCv/7+/rp8+bJFEMn8Qi6zcRbTl9S1tk83b97U7t27M90n6c/gcVZUr17dYhyy+/fva+bMmfrkk080YMAAFS5cOEN5ufj4eOPf2WlXkyZNFBwcrO3bt6tbt25G8LRJkybG/27btk3bt29X9+7dbY63GhcXp9dff12xsbF69tln9e6776pSpUoymUzGi9dmzZopNDTUZinHzM65+dwVK1bM5jwPl9Q0K1iwoDZs2KBx48ZpxYoV2rRpk5EtWLBgQfXo0UOffvpppttPz1za05xFY435ZW1WXwLbo1WrVkYQb8mSJUY5Q3Mma8uWLa12Hti+fbuGDx8uSXrzzTf1yiuvqHTp0ipYsKCcnJyUkJAgHx8fSbJ5jqxlgz1K+lKomR0z87Qndczatm2rpUuXauLEiQoJCdH8+fONY+Tv769PP/1Ubdu2zdI6FyxYIOlBtv7DHQFy5cqll19+WVOnTtX8+fPtDq4+znPJfGwzuy/Mx9XWmKvZOadZlTt3bjk7W3+NYT6OtrKlbbXv4bKXmc3z8LpnzZqlSZMmaf78+dq/f79RFt/Z2Vlt2rTRF198YdwLj3Ljxg316NFDcXFxev755zV48GDj2Wf+PmrcuLEOHz5scV+Zz0f+/PltHpvMZHbesnJdpKWlKTEx0ehMkdVj89Zbb8nd3V1Tp05VaGioZs6cqZkzZ0p6UM1h5MiRFiVe/w62jo35WrOWyW7uHGHObjRXCAgMDFRaWpqaNGnyyGoaWWmLlLXzlH5+e9f/uPeWPfde+mNp/p109epVu8q7W/ud9Dj7k5mxY8eqTJkymj17to4fP24EJB0cHNS0aVONGTPGCGTbw9yp6caNGzbnycq9lD6L19b4uumlP3bm68JahyhbatSooXXr1mncuHHatm2blixZoiVLlkiSvL299Z///MdmJZf0+5yd0voAAOQ0ygIDAADALuZyv8nJyapQoUKGMct8fHyMAKe10sBOTk5GUNZcGi/9vx8Oxkp/BgKmTJmiuLi4TP+yUj7TbNmyZbp7967q1KmjWbNmqUGDBipSpIjxIjs1NdVquTlzu2wFGSTbgR3zC79GjRo9cp/i4uJsZg5mhbl045tvvqm0tDS98847GTJuzO1ycXFRbGzsI9v18DhnD5cLfjh4av7foKAg3b17V3v27LH43MycRVm6dGktWrRITZs2VbFixSyyXmxlrNrDfO7++OMPm/Nk9jLX09NTAQEBioqKUnBwsAICAtSqVSslJSXpxx9/tDsQJv0ZBLty5YrNecwZKLaCYo8jfWaqOVh47do1o1yxrZLA5nm7deumr776StWrV5fJZDIytB7n/GQmfdAws2Nmnpb+mNkKjqVnq4OG9GAszN9++03R0dFauXKlhgwZIj8/P508eVI9evSwOm6tLTt37jTKUY4fP97qGJDmMaSPHTtm1wty6fGeS+Zjm9l9YT6umQVv/9fkyZNHQ4YM0aFDh3TkyBHNmDFDr732mvLly6dVq1apQ4cOVrMbrTGPI12uXDktWLBATZo0kbu7u/F9JFm/t8zn49atWzY7M2RXVq4LBwcHi3suO8emc+fO2rx5s86cOaPAwEC988478vLy0r59+9SxY0eLcsj/VLly5TLKb6f/rWOu/GHtt87jysp5Sj//P5X590ifPn3s+p1kq3TwX8HR0VH9+/dXSEiIwsPDNWfOHPXr109FihTR1q1b1bZtWyMr1B7mgHhmwdWs3Evpg8rh4eGPPHbpy3Cbr4v0ne3sUatWLQUGBurcuXNau3atRowYoRo1auj8+fN69913rQ5FkX6fc+fOnSHzGACAfwOCqwAAAHiky5cvGxl6bm5uKlasmNU/c5ZbcHCw1UxT80vFDRs2KDY2VkePHtWxY8eUJ08eY+zU9MylCM2BuCfN3Mb69etbLV0WFhZmtVRZ+fLlJT0oq2arfKOt8UDNGQ1hYWG6e/duttqdXUOHDpWbm5suXbqkKVOmWEyrUKGCnJ2dde/ePbuDOenVqlVL+fPnV0xMjI4ePaq9e/eqfPnyKlGihKQH4xq6urpqx44d2rt3r27fvi1fX98MWV3mc1KrVi2rZfIuX75slCbODvO5i46Otnn8T5w48cj1ODg4qFKlSurTp48WLlxojEe8cuVKuwP95rZktj3zNGvj0j4J5nHwDh8+rCNHjmjx4sW6f/++xZisDzOPP2wri+yvul89PDzk6uoqyfYxu3//vlEiM33JXnM2cVJSks0Ao3m5zBQoUEBNmzbVp59+qt27d6t169ZKS0szMuzsYb5W8ubNa/NZWqxYMaNkorXOKtaYr6fMAlC2nkv2XIvmDK0nfS1mVjby38Tb21udO3fW5MmTtXPnThUoUECnT5+2e2xG831Vq1YtqyVUY2JidOHChQyf+/v7y8nJSSkpKTpw4MBj7cPDsnJdlC1b1uhg8bCsHhuTyaQXXnhBo0ePVmhoqKpXr667d+/afS/kNPNvnd9//10JCQnav3+/IiIiVKBAgSxnudvDfJ5Onz5t83vNfJ7y5cuXrczZv5P5t589VTSepKw+i4oVK6aXXnpJ48aN0/79++Xl5aXY2FitWLHC7nWYx6U1n59HedS9VLx4cSMLNKvHz/z7dO/evVlazix37tyqX7++PvjgA23ZskX9+/eXJP38889W5z927JgkWR0jHACAfwOCqwAAAHikhQsXKiUlRSaTSSdOnFB4eLjVv4iICHl7eystLc3IbkvP399f1apV071797Rs2TIjq6NNmzZWy5C1b99ekrRkyRLjxfOTlDdvXkmymWUwYcIEq5/7+/sbLyfnzp1rdZ45c+ZY/bxBgwYqVqyYbt68qZ9++imrTX4srq6uGjRokKQHY2amz05wdXXVc889J0kaN25cltedK1cu1atXT5L03Xff6c6dO0ZJYOlB5nLDhg116dIlIxD1cNaq9GcQzNYYuhMnTsxWKT+zRo0aKV++fEpISLB6jaakpNh8EZiZBg0aGP+2N2ulRYsWkh5c39YyjqKiorRmzRqLeZ80f39/Y5zG9OVuu3btajNQktl9k5ycrMmTJ/8lbXV0dDTKWf/4449W51mwYIGuX7+u3LlzW1x/JUuWNNq9b9++DMudPHlSwcHBWWqPg4OD6tevL+nPDONHSUhI0G+//SZJGjNmjM1naXh4uEaOHClJWrp0qV3j0ZmD4YcOHbI6RvWtW7e0bNkyq8u+8MILkqTNmzdbDaTduHHDKGX8pK9F83nJTgn0fyofHx95e3tLsv/ayO73kaurq5599llJUkBAQFabmqkWLVrIwcFB4eHh2rhxY4bp9+/f17Rp04x57ZHVY+Pi4qJatWrZPf8/QbVq1VSxYkXdvn1bK1euNLID27VrZ3fZ+Kxo3Lix8ubNq4SEBJsBaPMzs1mzZtkqH/13atOmjXLlyqXjx4/r999//9u2+zjPIpPJZAQns3KdNmrUSNKDDndZzTy3di85OjoanRUnTJiQ6bjoDzMvt23bNoWGhmapLdaYO2DZOh7m8sbPPPPMY28LAICcQHAVAAAAj2QOuHTu3NlqNqGZg4ODkbGxcOFCq+ORmacvWLBAS5cutfjsYW3atFHjxo2VlJSkdu3aWc1yiY6O1sSJE7OV0WJ+qbV8+XIjiCU9yG4bOnSofvvtN6sZRI6OjnrvvfckSd98842WL19uTEtOTta4ceMs1pdenjx5NGrUKEnSF198oe+++y5DJl1iYqJWrVqld999N8v79Cj9+/eXm5ub4uPjM2SvjhgxQvny5dO6devUr1+/DAHO5ORk7dy5U2+++abV7ExzsNQ83uvDwVNzsMvWdOnPc7Jr1y6LUnL3799XQECApk6damT0ZUehQoX0xhtvSJJGjRqloKAgY9qtW7f09ttvKyYmxuqyEyZM0OTJkzNkjyUlJenrr7+W9CDQUbZsWbva8sorr6hMmTK6ffu2evbsaXG8z5w5o549eyolJUVVqlRRmzZtsrSfWWHOXp0zZ46RSWKrJLD05zmaMmWKRZbz9evX1bt3b0VERPxlbX3//ffl4uKiAwcO6OOPP7YIOm7ZskWfffaZpAflJNOPnevs7GwEH0eMGGERwAoPD1efPn1sZi1169ZNa9asyRDgPH36tNG5okaNGna1f/ny5UpKSlKePHmM0qG2vPLKK3JxcVF8fLwRkM1MxYoV1bJlS0lS7969LTKhYmNj1bt3b5slm5s1a6Y6deooLS1Nb7zxhkUW75UrV9SjRw/dvHlTXl5e6t69uz27arcyZcpIks6fP/+XdKL5q6xdu1afffZZhkzh1NRULVy4UKdOnZJk/7Vhvq+CgoKM7GbpwbNv3LhxmjFjhs1n32effabcuXNr/fr1euuttzJUVDh69Gi2Oj1UqFBBHTp0kCS9++67Fpmx8fHxGjhwoM6dOydXV1e9+eabxrSsHpvLly+rb9++CgoKyhBgCg0NNb4z7D2W/wTm3zXz5s0zOjX8FSWBpQeBPfOY2aNGjTIqjUjSnTt3NGzYMO3evVvOzs768MMP/5I2PEne3t4aPHiwJGnAgAGaO3duhiBhbGys5s2bpzFjxjyx7ZqfRfv27bMaYD148KDef/997du3L8Pv202bNmnHjh2SsnadVqhQQb6+vkpKSrIa0MzOc2bIkCEqWrSoQkND1a1bN50+fTrDsvv379eQIUMsOtPUqlVL7du3V1pamrp27ar169dbdGZLSkrS/PnzLdr55ptvaunSpRnK0V++fNnoQGjreJg7NJk7TQEA8G/zz+6uBgAAgBwXHBxsvGi356V69+7dNW7cOMXExGjLli0ZSou+/PLLGj58uBGUKV68uJF18zAHBwfNnTtXPXr00Pbt29WhQwcVKVJEpUqVUmpqqmJiYozxMT/99NMs79uLL76ohg0bateuXXr11Vfl7e2tokWLKiIiQomJiRo5cqSmT59uNYvyjTfeUHBwsJYvX64+ffros88+U/HixRUVFaW4uDh9++23GjJkiCRlyADs1q2brl27ppEjR2rMmDH69ttvVa5cOeXLl0+xsbGKjo5WamqqSpcuneV9epSCBQvq7bff1ujRo/XTTz/pzTffNMa6qly5subPn68+ffpoyZIlWrp0qcqWLavChQsrMTFRZ86cMQJM5qy69MzB0rS0NDk6OmbIRkg/Pf1/p1erVi116tRJy5Yt03vvvaevv/5anp6eioqKUnx8vPr376/Q0FAj4yE7hg0bptDQUO3atUsvvfSSfH19VbhwYYWHh+vevXv6/PPPNXz48AzLnT17VrNnz9bw4cPl6ekpT09P3b17V9HR0bp165acnZ01YcIEI/vlUfLkyaNffvlFHTt2VEhIiJ566in5+/srNTVVJ0+eVGpqqnx8fDR37lybWaRPQseOHTVs2DBjzNH69etnGiDu16+fFixYoKioKDVr1kxlypRR/vz5jTb/8MMPWRp7NiuqVKmiH374QW+//bamTZumBQsWqFy5crp+/brOnTsn6UEG5+eff55h2c8++0xBQUE6cuSInn76aZUrV07JycmKiIhQrVq11LNnT6tZyxs2bNDatWvl7OysMmXKyNXVVbGxsTpz5ozS0tJUvnx5DR061K72m4NmL7744iPHmHNzc1OrVq20atUqzZs3T507d37k+idOnKg2bdooMjJSDRs2lJ+fn3Lnzq2TJ08qd+7cGjp0qEaPHi1HR8t+1g4ODpo5c6bat2+v48ePq3bt2vL395ezs7NOnjyp+/fvq0iRIvrll1+e+HiNXl5eatSokXbu3Kl69erJ39/fGDdwwoQJRsnTf5qEhARNmjRJkyZNUqFChVSqVCk5Ojrq/PnzRueTt956y+5AS7169fTSSy9p1apVGjx4sMaOHWt8p8THx+utt95ScHCw1azkp59+Wj///LMGDBigBQsWKDAwUH5+fnJ2dtb58+d148YNVaxYUW+//XaW9zMgIEDnzp3T/v379dxzz6lcuXIqUKCATp06pdu3bytfvnz6+eefjQy67ByblJQULV26VEuXLlWePHlUpkwZ5c2bV3/88YfOnz8vSapbt65RZjQrbt++bXQ6sKVt27ZGVYcn5ZVXXtGoUaOMEqve3t5GAP2vMGzYMJ08eVLr1q3Tyy+/LG9vb7m7uysyMlIJCQlycnJSQEDA3zo+6eMYPny4EhIS9PPPP+udd97RJ598orJlyypXrlwW14U56/5JaNmypUwmk06dOqVKlSqpXLlycnFxUd68eY0KArNnz9bs2bOVP39+lS5dWi4uLrp06ZLRYaddu3ZWh7nITJ8+fTRixAgtWbJEderUsZiWnedMiRIltHTpUnXv3l2bNm1SzZo1VapUKbm7uyspKUlnz541xmh99dVXLbY3adIkxcfHa+vWrerSpYvc3d3l7e2t2NhYXbhwQcnJyZozZ46xvd27d2vhwoVydHSUr6+v3NzclJCQoNOnTyslJUUeHh768ssvM+xzaGioIiMjValSJdWtWzdLxwsAgH8KMlcBAACQKXNGaJUqVewaF6lUqVJGUM1aNmmRIkUsygd27tw508CRyWTSypUrNXv2bLVq1UrOzs46cuSIzp07J3d3d3Xu3FmzZs3SwIEDs7prcnJy0tKlS/Xhhx/K19fXGM+zVq1aWrRokZGdao2Dg4N+/vlnjR8/Xk899ZRiY2MVGRmpqlWravHixRaBEGvBiMGDBys4OFh9+/aVr6+voqOjdfz4caWlpalx48b64osvbJbwfFz9+/dXkSJFlJCQkCGb6dlnn9W+ffv08ccfq3r16vrjjz8UFhammzdv6qmnntL777+vjRs3qlixYhnW+/TTTxsBo6pVq6pw4cIW0ytVqmQs5+/vb3UdkjR9+nSNHDlSFSpUUGxsrKKiolSpUiVNmzZN33777WPvf968ebVixQqNHDlSfn5+unTpks6ePavGjRtr3bp1NstbDhgwQMOGDdMzzzwjJycnnThxQpGRkSpWrJi6d++uoKAgdezYMUttqVy5soKDg/Xee++pbNmyOn36tKKjo+Xv76+PPvpI27dvN7Jp/iqurq5q166d8d+P6kRRqFAhbdiwQb1791bx4sV19uxZXb58WS1atNC6dess1vVX6Nq1q4KCgtSlSxe5urrq6NGjiouLU4MGDTRp0iQFBgZazfCrUKGCNmzYoHbt2il//vw6ffq0UlNT9fHHH2v16tU2swJnzZqlPn36yN/fX7GxsTp06JCuXbumGjVq6PPPP9e2bduM8aYzc/LkSSPzL7PM4PTM823fvt2usYY9PDy0adMmDR48WN7e3oqKitLly5fVrl07bdu2TaVKlZIkY+za9Ly9vbVt2zZ9+umnqly5ss6dO6eIiAj5+vpq0KBBCg4O/ssCM//973/Vu3dvFStWTMeOHdOuXbu0a9cum+Pj/hM8++yz+uabb9S6dWu5ubnpzJkzOnr0qHLlyqXWrVsrMDBQY8eOzdI6Z86cqREjRqh8+fK6du2a8eybMWPGI9fVtm1bhYSEaMCAASpbtqzOnDmjqKgoubm5qWvXrllui5nJZNKaNWv09ddfq1atWrpy5YqOHz8ud3d39erVSzt37szwzMzqsXF3d9fUqVP16quvytfXV5cuXdKhQ4eUmJioBg0a6Lvvvsv0Hs1Mamqqdu/enenfX5Ex/XDHsS5duvyl4wu7uLhowYIF+umnn9SwYUMlJCToyJEjKlCggDp37qwtW7aoR48ef9n2nzRHR0d99913Wrdunbp06aKiRYsaJdPz5MmjF154QQEBAZo4ceIT26bJZNKqVavUunVrOTs7G52wQkJCJD34vp44caI6duyoEiVK6Pz58zp8+LDu37+vZs2aafr06ZozZ06Wz/Nrr71mBHDv3btnMS27z5lq1aopJCREo0ePVr169RQfH6+wsDDduHFDfn5+GjhwoH777Tc99dRTFssVLFhQy5Yt04wZM9SsWTOlpqbqyJEjun37tmrWrKmRI0dadBIICAjQm2++qaefflq3bt1SWFiYYmJiVLFiRX344YcKDg622kFm4cKFkqS+fftm6VgBAPBP4hAXF5f9AYsAAAAAWLV37161aNFC7u7uf2mZVACw19ixY/Xtt9+qa9eumjp1ak43BwAgafTo0QoICFBAQID69OmT0835S127dk3VqlWTm5ub9u3bl+lwIwAA/JORuQoAAAD8BczjhTZs2DBnGwIAelAeNTAwUBLPJQD4J/nggw9UvHhxjRs3LsP43v/ffP/990pMTNTo0aMJrAIA/tUIrgIAAADZFBAQoLCwMIvPbt26pS+//FILFiyQg4NDtsaIA4DsuHHjhr755psM40SfP39ePXr00NmzZ1WsWDF16NAhh1oIAHhYgQIFNG3aNOM5/f9VWlqaPDw89MUXX6h9+/Y53RwAAB4LZYEBAACAbGrUqJGOHj2qggULqlSpUnJwcFBERISRdfDJJ5/o448/zuFWAvhfceXKFfn5+Ul6MI6ll5eXEhMTFRkZqbS0NBUoUEDz589XkyZNcrilAAAAAPDv5TR06NCROd0IAAAA4N+oUKFCSktLU3x8vC5duqQrV66oSJEiatasmcaNG6fu3bvndBMB/A/JlSuX8ubNq5SUFMXHx+vcuXO6efOmSpUqpU6dOmnq1KmqVq1aTjcTAAAAAP7VyFwFAAAAAAAAAAAAADsw5ioAAAAAAAAAAAAA2IHgKgAAAAAAAAAAAADYgeAqAAAAAAAAAAAAANiB4CoAAAAAAAAAAAAA2IHgKgAAAAAAAAAAAADYgeAqAACwKSYmRjExMTndDAD/QDwfANjC8wGALTwfANjC8wHAv4lzTjcAAAD8c929ezenmwDgH4rnAwBbeD4AsIXnAwBbeD4A+DchcxUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOxAcBUAAAAAAAAAAAAA7EBwFQAAAAAAAAAAAADsQHAVAAAAAAAAAAAAAOzgnNMNAAAAAAAAAPC/wduzsJScmNPNAPAPU9rL/cE/eD7g38y5QE63AH8TgqsAAAAAAAAA/hbOTs4qtN4rp5sBAMATFf/ChZxuAv5GlAUGAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAtnNmowAAIABJREFUAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFwFAAAAAAAAAAAAADsQXAUAAAAAAAAAAAAAOxBcBQAAAAAAAAAAAAA7EFzF/6w2bdrIZDLpq6++yummAAAAAAAAAAAA4F/AOacbgOxLS0vTmjVrtHbtWu3bt09XrlxRYmKiChYsKF9fX9WuXVsdOnRQ/fr1//a2HT58WL///rsKFSqkt956y+Z8O3bsUNu2bTN87uTkJFdXV1WoUEEtWrTQG2+8IZPJ9Fc2+V8lPDxce/fu1eHDh3X48GEdPXpUiYmJkqSwsDCVKlUqh1sIAAAAAAAAAADw/w/B1X+psLAwDRw4UCdOnDA+c3Z2VsGCBZWQkKCDBw/q4MGDmj59uurUqaPZs2erZMmSf1v7/o+9Ow+zsqz/B/4+MzCAsgzgkoqKuJEJuRT6dU0UDC2xXFiyzSI1rW9d1Rct61dioaWpmS1qliIKuGSCEUolpFG5IRopFOtIKCmrsg2c3x9eHEUYPCyHAXu9ruu5POd57uVzGOdx5D33/TzzzDO58sors+eee24wXH2z2tra1NTUJEmWL1+e+fPn569//Wv++te/5qabbspdd92VLl26VLLs7caXv/zlPProo41dBgAAAAAAwH8V4ep26Pe//33OOeecLF26NG3atMmFF16Y0047LQceeGAKhUJWr16dKVOmZPTo0fn5z3+ev/3tb5k2bdpWDVc3xZAhQ3LssceW3r/88su56aabctVVV2Xu3Ln52Mc+lsceeyzNmjVrxCq3DdXV1TnggAPStWvXdO3aNStXrsygQYMauywAAAAAAIB3NOHqdmbGjBk599xzs3Tp0hxwwAG5++67s9dee63VpqqqKp07d07nzp1zwQUX5Nvf/nYKhUIjVbzp2rdvn4svvjgrV67M1VdfnVmzZmX06NE5/fTTG7u0RnfvvfemSZM3vn0ffvjhxisGAAAAAADgv0RVYxfAxrn88suzcOHCNG/ePLfffvs6wepbNW/ePFdccUWOOuqo0rmpU6fm+uuvz+mnn55DDjkku+22Wzp06JCjjjoq3/jGN/LCCy80ON6pp56a2traDB48OCtXrswNN9yQ7t27Z++9905tbW1GjRqV2traXHjhhUmS2bNnp7a2dq3jggsu2KjP3K9fv9LrJ554Yp3rixcvztVXX50TTjghe+21V3bdddd07do1F1xwQZ599tmNmuutpk6dmq985St53/velz322CO77bZbunXrlq9//esb/HPakIEDB6a2tjZHHHHEBtsVi8UcfPDBqa2tzeWXX77WtTcHqwAAAAAAAGwdEprtyLx58/LrX/86SXLmmWfmgAMOKLtvVdUbOfpHP/rRzJ49u/S+TZs2Wbx4cSZPnpzJkydn6NChGTFiRLp169bgeCtWrMhpp52WCRMmpLq6Oq1atSqtjt1ll12ybNmyLFq0KFVVVdlpp53W6tu6deuy606S3XffvfR60aJFa117/vnnc8YZZ6Suri5JUlNTk+bNm2fWrFmZNWtWhg8fnsGDB+e8887bqDmT5Gc/+1m+8Y1vZNWqVUmSZs2apVAoZMqUKZkyZUpuv/32DBkyJMcff/xGjduvX7/8/Oc/z/PPP58nn3wyhx122Hrb/elPfyp9rr59+250/QAAAAAAAGxZVq5uR8aPH18K+j784Q9v8jjve9/7csUVV+TJJ5/Miy++mJkzZ+bFF1/Mgw8+mO7du2fBggX51Kc+lWXLljU4xk033ZRJkyblRz/6UWbPnp0ZM2Zk+vTpOeKIIzJlypQMHjw4SbLHHnuUwsg1x5VXXrlR9c6cObP0um3btqXXS5YsSd++fVNXV5edd945t912W+bMmZNZs2bliSeeyEknnZTVq1dn4MCBefDBBzdqzuHDh+fiiy9OkyZN8tWvfjXPPvts5s6dm3//+9/529/+lt69e2fRokX5+Mc/vtErWA855JAcdNBBSZI777yzwXbDhg1LknTr1i377bffRs0BAAAAAADAlidc3Y784x//KL3u2rXrJo/zy1/+Mueff346deqUZs2aJUmaNm2abt265a677spBBx2UOXPm5P77729wjCVLluTnP/95PvGJT2SHHXZIktTW1mbnnXfe5LoactNNN5Vev//97y+9vuWWWzJ9+vRUV1dn+PDhOe2000rb5e6777658847c+ihhyZJvvWtb6VYLJY136uvvpqLL744SfKTn/wkl156aTp06JBCoZBCoZADDjggt956a3r16pVFixblhhtu2OjPtGar43vvvTcrV65c5/prr72WkSNHrtUWAAAAAACAxiVc3Y7Mnz+/9PrNKzi3pOrq6vTo0SNJMmHChAbbde7cOR/60IcqUkOSLF++PP/4xz/yla98Jb/85S+TJPvvv39OPvnkUpu77747SXLKKaesd2vdpk2blkLS5557Ls8880xZc99///2ZP39+9t5775xxxhkNtluzVe/YsWPL+1BvctZZZ6W6ujovv/xyxowZs871UaNGZfHixWnWrFk+8pGPbPT4AAAAAAAAbHmeubodKXflZTkeeuihDBs2LE8++WReeumlvPrqq+u0mTNnToP9jzzyyC1Wyxob2up4n332yZ133llambpixYr8/e9/T5KccMIJDfY77rjjUl1dnVWrVuWpp54qa8XvmlB57ty5G3yu7YoVK5JkrefXlutd73pXunfvXvo6vDWoXrMl8CmnnJLa2tqNHn9zvfDCC1m+fPlWnxfY9qzZjn7atGmNXAmwrXF/ABri/gA0ZNWqVdlyf7sFANuO4upipvv5d4tq1qxZ9thjj8YuY72Eq9uRdu3alV7Pnz8/u+2220aPsXr16px//vkZMWJE6Vx1dXVqa2tTU1OT5PVtcdccDdlpp502eu638+Yaqqur07p16+y3337p2bNnzjrrrNL2w8nrn3/N/7Bv6JurRYsWad++fV566aXMmzevrDrmzp2b5PXVsy+99NLbtl+6dGnp9b333ltaLftWQ4YMyRFHHFF637dv3zz00EN58MEH88orr5S+vnPnzs24ceOS2BIYAAAAAABgWyJc3Y68+93vLr2eNGnSJoWrt99+e0aMGJGqqqp86UtfSr9+/dKpU6dUV1eX2lx++eW56qqrNrhS9s3tt5QhQ4bk2GOP3eh+hUJhi7ZbE9r27t07t95660bVsnTp0gYD2TUrXdc49dRT07p16yxatCj33HNPBgwYkCQZMWJEVq1alV122SXdu3ffqPm3lG31t0GArW/NipNOnTo1ciXAtsb9AWiI+wPQkGnTpqW8v50BgO1Loarg59//Ip65uh057rjjUlX1+pds5MiRmzTGmueUfvzjH8+3vvWt7L///usEpS+++OLmFboVtG3btlT3Cy+80GC7pUuX5pVXXklS/mrbXXbZJUkyefLkja7rYx/7WBYsWLDe463BcfPmzUvPU12zDfCbX5911lmlbZABAAAAAABofMLV7cjOO+9cCuPuvvvuTJkypey+q1evTvJGEPne9763wXbjx4/fzEpTCoG35HNi36ympiYHH3xwkuThhx9usN0jjzyS+vr6JMmhhx5a1tj/8z//kySZOnVqJk2atHmFvo012/4+8cQTmTp1ap5++ulSqGtLYAAAAAAAgG2LcHU7c+mll6Z169ZZtmxZzjnnnMyePXuD7ZcvX55vfOMbmTBhQpKkTZs2SZJnn312ve1vvvnmzJw5c7PrbN26dZJk0aJFmz1WQ84888wkyQMPPJCJEyeuc72+vj5XXnllkqRz587p2rVrWeP27t07tbW1SZL/+7//y/LlyzfYfv78+RtT9lqOPPLI0lYBw4YNK61a7dKlSyk8BgAAAAAAYNsgXN3O7LPPPrn55pvTvHnzTJkyJccee2x+8IMfrLWKtVgsZurUqbn++utz2GGH5YYbbiitXD3xxBOTJLfeemt+8YtflILDV155JYMHD87FF1+cdu3abXad73nPe5K8Hq7eddddmz3e+nz605/OPvvsk/r6+vTp0yejRo0qPS912rRp6d+/fx5//PEkyWWXXVb2uG3atCmFsn/5y1/Sq1evPPzww1m5cmWpzYwZM/LLX/4y3bt3z80337xZn6Nv375JkuHDh+eee+5J8varVpcvX56XX365dLw5xF6wYMFa195cNwAAAAAAAJvOAx23Qz179szo0aNz/vnn5/nnn893v/vdfPe7302TJk3SqlWrLF68uLQVbpIcc8wx2W+//ZIkF110UUaOHJnnnnsuX/nKV/K1r30trVu3zsKFC1MsFtOrV6+85z3vyVVXXbVZNXbs2DHdu3fPH/7whwwYMCBf/vKX07Zt2ySvrwy9/PLLN2v8JGnZsmWGDRuWM844I3V1dTnnnHPSrFmzNG/ePAsXLkzy+vbEgwcPTs+ePTdq7D59+mT58uX52te+lieffDKnn356mjZtmlatWuXVV19dazXrKaecslmfo2/fvhk8eHDq6uqSJE2aNMlZZ521wT533313LrzwwvVeO/7449d6P3LkyHWe9woAAAAAAMDGs3J1O3XooYdmwoQJGTJkSPr375/9998/O+64YxYvXpxWrVrl0EMPzfnnn5+xY8dm1KhR2W233ZK8vipzzJgxueiii9KxY8dUV1enUCjkyCOPzI9+9KPccccdqa6u3iI1/upXv8oXv/jFHHjggVm1alVmz56d2bNn5+WXX94i4yfJgQcemD//+c+59NJLc8ghh6SmpiZLly5Nhw4d0q9fv4wbNy7nnXfeJo39iU98Ik888US+/OUv573vfW9atGiRhQsXplmzZunSpUsGDBiQ3/zmN/nSl760WZ9hr732ytFHH116f+KJJ2bnnXferDEBAAAAAADY8goLFiwoNnYRAMC2adq0aUlSej40wBruD0BD3B+AhkybNi37dNg5tQ/t2dilAMAWtfDkuqRJy8Yug63EylUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDE0auwAAAAAA4L9D/ar6LDy5rrHLALYxxdXFJEmhqtDIlQC8PeEqAAAAALBVzP73/HTq1KmxywC2MdOnTUsS9wdgu2BbYAAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKEOTxi4AAAAAALaY+iWNXQEN2KfDzqlfVd/YZQAAbBbhKgAAAADvKG3GdGjsEmjAgh6zG7sEAIDNYltgAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKINwFQAAAAAAAKAMwlUAAAAAAACAMghXAQAAAAAAAMogXAUAAAAAAAAog3AVAAAAAAAAoAzCVQAAAAAAAIAyCFcBAAAAAAAAyiBcBQAAAAAAACiDcBUAAAAAAACgDMJVAAAAAAAAgDIIVwEAAAAAAADKIFwFAAAAAAAAKENFwtW2bdumffv2+e1vf7tR/X7/+9+nXbt2ad++fSXK4h2gS5cuqa2tzdChQxu7FAAAAAAAAP7LNKnUwMVicav2Y/2WLVuWzp07Z8GCBUmS+++/P8cdd1wjV7V9+tOf/pRHHnkke+21Vz72sY81ai0TJkzIpEmT8vTTT2fSpEl5/vnns3Llyuy555555plnGrU2AAAAAACAd6qKhatsG+6///5SsJokQ4YMEa5uokceeSRXXnlljj766EYPV3v16tWo8wMAAAAAAPw32qaeufraa68lSZo3b97Ilbxz3HbbbUmSz372s0mSkSNHrhW2sn1q3rx5DjvssHzqU5/KD3/4w5x99tmNXRIAAAAAAMA73ja1cvXxxx9Pkuy0006NXMk7w/Tp0/Poo4+madOmueSSS/L000/nsccey/Dhw3Peeec1dnlshrq6ujRp8sa375w5cxqxGgAAAAAAgP8Omx2uPvvssw0+43H8+PFZuHDhBvsXi8W89tprefrppzNixIgUCoUcdthhm1sWeX3VarFYTM+ePdO+ffv0798/jz32WIYMGfK24erSpUtz22235YEHHsjkyZOzcOHCtG/fPnvuuWd69OiRs88+Ox07diy1v+CCC3LnnXemX79++clPfpLbb789d9xxR55//vm88sor+d73vpfPf/7zpfaLFy/OjTfemFGjRuVf//pXli9fnl133TVHH310Lrzwwhx88MFv+/leffXVXHPNNbn//vsze/bsNGvWLO973/ty0UUX5QMf+MAG+44ePTq33XZbnnzyybzyyitp3bp1Dj744PTp0yd9+/ZNVdUbi7pnzpyZ9773vaX3jz76aGpra9cab+DAgbnkkkvetuYkOfroo/P3v/89n/nMZ3L11Vc32G769Ok59NBDkyT33XffWp/pzcEqAAAAAAAAW8dmJzSjRo3K97///XXOF4vF3HjjjRs1VrFYTKFQyKc//enNLeu/Xn19fe68884kSb9+/ZIkH/3oR3PJJZfk2WefzVNPPVUK7t7q73//e/r375+ZM2cmSaqqqtK6deu89NJLmTt3bh577LG88sorueKKK9bpWywWc+655+bXv/51qV91dfVabZ5//vmcccYZqaurS5LU1NSkefPmmTVrVmbNmpXhw4dn8ODBGwyAFy5cmBNPPDHPPfdcmjZtmhYtWmTBggUZO3Zsxo4dm0svvTRf/epX1+m3cuXKXHjhhRkxYkSSpFAopE2bNlmwYEHGjRuXcePGZfjw4bn99tvTqlWrJEl1dXV22WWXvPrqq3n11VfTtGnTtG3bdq1xW7Zs2WCtb9WvX79ceumlueeeezJ48ODU1NSst92ar98ee+zhObkAAAAAAADbgC3yzNVisbjW0dD5tzt22WWXXHfddTn++OO3RFn/1caMGZO5c+emffv2Ofnkk5Mkbdq0yamnnprkjWexvtWcOXPykY98JDNnzsy73vWu/OxnP8usWbMyY8aMvPjii3nssccyaNCgdOjQYb39R40alZEjR+Y73/lOpk2blhkzZqSuri69e/dOkixZsiR9+/ZNXV1ddt5559x2222ZM2dOZs2alSeeeCInnXRSVq9enYEDB+bBBx9s8PNdeeWVmTNnTm6++eZS/4kTJ+aDH/xgkuTyyy/PmDFj1ul3+eWXl4LViy66KP/85z8zY8aMzJw5M4MGDUp1dXXGjRuXL3zhC6U+HTp0yJQpU3LRRRclSbp165YpU6asdby5/ds5++yz06RJkyxYsCCjR49eb5tisViqs0+fPmutpAUAAAAAAKBxbPbK1VNPPTV77bXXWucuvPDCFAqFDBgwYK3tVNenqqoqO+64Y/bee++85z3vWWeVI5tmTXh65plnpmnTpqXz/fr1yz333JN77rkn3/3ud7PDDjus1e+yyy7LSy+9lNra2vzud79ba+vfpk2bZv/998/+++/f4LxLlixZZwvgFi1aZI899kiS3HLLLZk+fXqqq6szfPjwtbaA3nfffXPnnXemZ8+eeeqpp/Ktb30rPXr0SKFQWGeehQsX5p577smJJ55YOtexY8fcfvvt6dWrVx577LF85zvfKQXLSfLvf/87P/nJT5Ik5513Xi6//PLStZYtW+YLX/hCqqur8/Wvfz333XdfnnjiiRx++OENftZNtcsuu+TEE0/MmDFjMmzYsFLw/GYTJkzIjBkzkiR9+/bd4jUAAAAAAACw8TY7XO3SpUu6dOmy1rkLL7wwSXL88cfnlFNO2dwp2Ej//ve/M3bs2CRvbAm8Rvfu3bP77rtnzpw5ue+++9K/f//Stddeey333ntvkuSLX/ziWsFqudq0aZPPfvazDV6/++67kySnnHLKep+t27Rp01x88cXp06dPnnvuuTzzzDPp2rXrOu26deu2VrC6RpMmTfK1r30tZ599diZPnpzJkyfnoIMOSpL85je/ycqVK1NTU5OBAweut77Pfe5zue666/Liiy/mrrvuqki4mrz+dRkzZkzGjh2b//znP9lpp53Wuj5s2LAkyfve974ccMABFakBAAAAAACAjbPZ4er63HDDDUnytqtWqYyhQ4dm1apVOeigg3LIIYesda2qqipnn312rr322gwZMmStcPXJJ5/MihUrkqS0ve7GOvzwwxt8huiKFSvy97//PUlywgknNDjGcccdl+rq6qxatSpPPfXUesPVDW0dfcwxx6SqqiqrV6/OU089VQpXn3rqqSRJ165d065du/X2bdKkSY477rjcddddpfaV0KtXr9TW1mbBggW5++67c/7555euLVu2LPfdd1+SdcPxreWFF17I8uXLG2VuYNuyatWqJMm0adMauRJgW+P+ADTE/YHGtk+HnRu7BDagmGS6+wPwFn5+AN6qWbNmpV1RtzUVeZBj//79079//232Q7+TFYvFDB06NEnDwdyaQHXChAmZOnVq6fxLL71Uev3WrZ7L9dYVmG82f/780n8kN/TvRosWLdK+ffskybx589bbZvfdd2+w/w477JDa2tp1+v/nP/9527nffL2huTdk4MCBOeCAA9Z7vFmzZs3ykY98JMkbq1TX+O1vf5tFixalWbNm+ehHP7rRNQAAAAAAAFAZFVm5SuMZP358pk+fniT55je/mW9+85sbbH/bbbdl0KBB65xf33NOy1HuM3PLHb+hdpvTf3Pn3pBFixatFVJvSL9+/fLLX/4yEydOzD/+8Y+8+93vTvJG2HryySenbdu2G13DluAXI4A11vzGaKdOnRq5EmBb4/4ANMT9gUZXv6SxK2ADCnF/ANbl5wdge1KRlavrs2LFisybNy+zZ88u62DT3HbbbRvVftiwYVm5cmWSZNdddy2dnzlz5hatK0natm1bCl9feOGFBtstXbo0r7zySpKGV8JuqP9rr72WBQsWrNN/zesN9X3z9Q2twm3IT3/60yxYsGC9x1t169Yt++23X5I3AtV58+blD3/4Q5LG2xIYAAAAAACA9atouDp9+vQMHDgwhx9+eHbbbbcceOCBee973/u2x1ufE0p55s+fn1GjRiVJfvzjH2fGjBkNHs8++2xqamoyb968jB49Okly6KGHlp6XuubcllRTU5ODDz44SfLwww832O6RRx5JfX19qab1+dOf/tRg/0cffTSrV69ep/9hhx2WJHn66aczf/789fZdtWpVaey3zl1V9fq3S7FYbHDujdW3b98kyV133ZXVq1dnxIgRqa+vz84775wePXpssXkAAAAAAADYfBULV++6664cffTRuemmmzJ9+vSsXr06xWKx7IONN2zYsCxfvjwtWrTI6aefntra2gaPDh065IQTTkiSDBkyJMnrzyo944wzkiTXX399ZsyYscVrPPPMM5MkDzzwQCZOnLjO9fr6+lx55ZVJks6dO6dr167rHecvf/nLegPaVatW5eqrr06SvPvd785JcE70AAAgAElEQVRBBx1UunbaaaeladOmWbFiRa666qr1jnvzzTdn7ty5SZKzzjprrWutW7dOkvWuQt1Uffr0SaFQyJw5czJu3LjSCtYzzzwzTZrYtRsAAAAAAGBbUpH0ZtKkSbngggtKgWrz5s1z6KGHZvfddy+tjGTLWxOS9ujRIy1btnzb9h/5yEcyZsyY/P73v09dXV06dOiQb37zmxk7dmzmzZuXD37wg/nOd76TU089NS1btszKlSszffr03HPPPWnZsmW+8IUvbHSNn/70p3PLLbdk+vTp6dOnT66++ur06tUr1dXVmTZtWi6++OI8/vjjSZLLLruswXHatGmTT37yk7nmmmvy4Q9/OE2bNs2MGTPy9a9/PX/5y1+SJN/61rfW6rPbbrvl85//fK677rrccMMNadKkSf73f/837dq1y5IlS/KrX/0q3/72t0t/Nocffvha/dcEtc8//3z+/Oc/56ijjtroz/9We+65Z4499tiMHz8+gwYNyjPPPJPk7bcEXrJkSZYvX156v3Tp0iSvr6p9+eWX12rbvn37za4TAAAAAACACoWr119/fVatWpVCoZBzzz03/+///b/Sqj8q4/HHH8/kyZOTJB/96EfL6nPKKaekWbNmWb58eYYOHZqBAwdm9913zz333JP+/funrq4u5513XqqqqtK6dessWrSotN3u+eefv0l1tmzZMsOGDcsZZ5yRurq6nHPOOWnWrFmaN2+ehQsXJnl9+93BgwenZ8+eDY4zcODA3HbbbTn33HNTU1OTFi1alPonySWXXJJevXqt0+/SSy/NnDlzctddd+W6667L9ddfnzZt2mTRokVZtWpVkuS4447Lj370o3X6HnPMMTnwwAPz/PPP55RTTknr1q3Tpk2bJMkFF1yQz3/+85v0Z9KvX7+MHz8+Tz75ZJLkPe95T4Mrdtf42te+ljvvvHOd83V1ddl3333XOrclV9oCAAAAAAD8N6vItsATJkxIoVDIBz7wgVx99dWC1a1gzarVHXfccYOh5Ju1bt06J510UpJk6NChpe2Yu3btmr/+9a8ZNGhQjjzyyLRu3Tqvvvpqdt111xxxxBG59NJLNzlITJIDDzwwf/7zn3PppZfmkEMOSU1NTZYuXZoOHTqkX79+GTduXM4777wNjtGmTZuMHTs2X/3qV9OxY8csX748bdq0Sffu3XPvvfdm4MCB6+3XtGnT3HTTTbnjjjty8sknp3379lm8eHFat26d4447LjfccEPuu+++tGrVap2+1dXV+c1vfpNzzz03++yzT5YvX57Zs2dn9uzZawW7G+u0005ba6XxmuewAgAAAAAAsG0pLFiwYIs/4HTXXXfNypUrc+211+YTn/jElh4eANhKpk2bliTp1KlTI1cCbGvcH4CGuD/Q6OqXpM2YDo1dBQ1Y0GN2CjXr/lI78N/Nzw/A9qQiK1fbtm2bJKUtUwEAAAAAAAC2dxUJVw8++OAkycyZMysxPAAAAAAAAMBWV5Fw9eMf/3iKxWLuvffeSgwPAAAAAAAAsNVVJFzt3bt3Tj311Dz99NO57LLLKjEFAAAAAAAAwFZVkXA1SX7xi1/kzDPPzLXXXpvTTz89v/vd7/Lyyy9XajoAAAAAAACAimpSiUHbtWtXel0sFjN+/PiMHz++7P6FQkEQCwAAAAAAAGxTKhKuFovFDb4HAAAAAAAA2N5UJFw96qijUigUKjE0AAAAAAAAQKOoSLj6wAMPVGJYAAAAAAAAgEZT1dgFAAAAAAAAAGwPhKsAAAAAAAAAZRCuAgAAAAAAAJShIs9cfbNVq1blvvvuyx/+8IdMnTo1r7zySurr6zNx4sS12k2ePDmLFy9O69at8+53v7vSZQEAAAAAAABslIqGq48++mguuOCC1NXVlc4Vi8UUCoV12o4aNSpXXHFFWrZsmSlTpqR58+aVLA0AAAAAAABgo1RsW+AHH3wwp59+eurq6lIsFlNdXZ3WrVs32P7Tn/50qqqqsmTJkjz44IOVKgsAAAAAAABgk1QkXJ0/f34GDBiQ+vr6tGrVKtdff31mzpyZG264ocE+O++8c4444ogkybhx4ypRFgAAAAAAAMAmq0i4euONN2bRokVp2rRp7rvvvpxzzjnZYYcd3rZft27dUiwWM2nSpEqUBQAAAAAAALDJKhKujh07NoVCIaeffnoOPfTQsvt16tQpSTJ9+vRKlAUAAAAAAACwySoSrk6bNi1Jcuyxx25UvzXPZF28ePEWrwkAAAAAAABgc1QkXF2yZEmSN8LSci1btixJUlNTs8VrAgAAAAAAANgcFQlX27ZtmyR5+eWXN6rf1KlTkyTt2rXb4jUBAAAAAAAAbI6KhKv77bdfkuTRRx/dqH4PPPBACoVCDjnkkEqUBQAAAAAAALDJKhKu9ujRI8ViMQ888ED++c9/ltXnlltuyXPPPZckOemkkypRFgAAAAAAAMAmq0i4+slPfjJt2rTJihUr0qdPn9J2v+uzevXq/PSnP83FF1+cQqGQXXfdNX369KlEWQAAAAAAAACbrEklBq2trc0PfvCDfO5zn8v06dNzzDHH5KSTTsoOO+xQanPrrbdm8uTJGT16dOrq6lIsFlNVVZUf/ehHqampqURZAAAAAAAAAJusIuFqkpx11llZvHhxLrnkkqxYsSKjR49OkhQKhSTJl7/85VLbYrGYpk2b5oc//GF69OhRqZIAAAAAAAAANllFtgVe49xzz83YsWNzyimnpFAopFgsrnMkrz9j9aGHHso555xTyXIAAAAAAAAANlnFVq6u0aVLlwwdOjQLFy7MX//618yaNSsLFy7MjjvumN133z1HHXVUdtppp0qXAQAAAAAAALBZKh6urtGmTZv07Nlza00HAAAAAAAAsEVVdFtgAAAAAAAAgHcK4SoAAAAAAABAGbbKtsCrV6/O9OnTs2DBgixbtqysPkcffXSFqwIAAAAAAAAoX0XD1T/96U/58Y9/nPHjx2f58uVl9ysUCnn55ZcrWBkAAAAA71QLT65r7BJYj+LqYupX1adpYxcCALAZKhauDho0KNdcc02SpFgsVmoaAAAAAHhDk5aNXQENmD5tWpKkU6e2jVwJAMCmq0i4OnLkyPzwhz8sve/UqVOOPPLI7LrrrqmpqanElAAAAAAAAAAVVZFw9cYbb3x98CZNcu211+ZjH/tYJaYBAAAAAAAA2GqqKjHopEmTUigUcs455whWAQAAAAAAgHeEioSrq1atSpIcc8wxlRgeAAAAAAAAYKurSLi65557JnkjZAUAAAAAAADY3lUkXO3evXuS5IknnqjE8AAAAAAAAABbXUXC1c997nPZYYcdcscdd2TWrFmVmAIAAAAAAABgq6pIuLr33nvnpptuyrJly3Laaafl8ccfr8Q0AAAAAAAAAFtNk0oN3KtXr4wZMyYDBgxIz549c8ghh+Twww9Pu3btUlX19pnuwIEDK1UaAAAAAAAAwEarWLhaX1+fsWPH5j//+U+KxWImTpyYiRMnlt1fuAoAAAAAAABsSyoSrtbX1+ecc87Jgw8+WDpXLBbL7l8oFCpRFgAAAAAAAMAmq0i4OnTo0IwZMyZJ0qJFi5x11lk58sgjs+uuu6ampqYSUwIAAAAAAABUVEXC1VtvvTVJ0q5du/zud7/L/vvvX4lpAAAAAAAAALaaqkoM+q9//SuFQiEDBgwQrAIAAAAAAADvCBUJV9c8M7Vz586VGB4AAAAAAABgq6tIuNqxY8ckyaJFiyoxPAAAAAAAAMBWV5Fw9bTTTkuxWMwf//jHSgwPAAAAAAAAsNVVJFwdMGBAOnbsmPvvv1/ACgAAAAAAALwjVCRcbdWqVUaMGJGOHTumf//+ufbaa20RDAAAAAAAAGzXmlRi0A9/+MNJkh133DHLli3LZZddlu9+97vZf//907Zt21RVbTjTLRQKuf/++ytRGgAAAAAAAMAmqUi4+sgjj6RQKCRJ6Z/19fV57rnn3rZvsVgs9QEAAAAAAADYVlQkXE1eD0nLOQcAAAAAAACwPahIuDp//vxKDAsAAAAAAADQaDb88FMAAAAAAAAAkghXAQAAAAAAAMoiXAUAAAAAAAAog3AVAAAAAAAAoAxNKj3BvHnz8vDDD+e5557LggULsmzZsrftUygU8uMf/7jSpQEAAAAAAACUrWLh6uLFi/ONb3wjw4YNS319/Ub3F64CAAAAAAAA25KKhKsrVqzI6aefnqeeeirFYnGj+xcKhQpUBQAAAAAAALDpKhKu3njjjXnyySdTKBTSqlWrDBgwIMcff3x233331NTUVGJKAAAAAAAAgIqqSLj661//OklSW1ubhx56KPvuu28lpgEAAAAAAADYaqoqMejUqVNTKBRy7rnnClYBAAAAAACAd4SKhKurVq1Kkhx88MGVGB4AAAAAAABgq6tIuLrnnnsmSZYuXVqJ4QEAAAAAAAC2uoqEqyeffHKKxWL+9re/VWJ4AAAAAAAAgK2uIuHqeeedlzZt2mT48OGZNm1aJaYAAAAAAAAA2KoqEq7uvvvu+cUvfpFCoZDevXtnwoQJlZgGAAAAAAAAYKtpUolBr7zyyiTJBz7wgfz2t7/Nqaeemq5du+b9739/2rVrl6qqt890Bw4cWInSAAAAAAAAADZJRcLVK664IoVCIUlSKBRSLBYzadKkTJo0qewxhKsAAAAAAADAtqQi4WqSFIvFDb7fkDXBLAAAAAAAAMC2oiLh6siRIysxLAAAAAAAAECjqUi4eswxx1RiWAAAAAAAAIBGU9XYBQAAAAAAAABsD4SrAAAAAAAAAGWoyLbA61NfX59nn302c+fOzZIlS9KyZcu8613vSpcuXVJdXb21ygAAAAAAAADYJBUPVydOnJjrrrsuY8aMybJly9a53rx58/Tq1Stf+MIXcsghh1S6HAAAAAAAAIBNUtFtgb///e/npJNOym9+85ssXbo0xWJxnWPp0qX59a9/nR49euSqq66qZDkAAAAAAAAAm6xiK1evueaaDB48OIVCIcViMa1atcqRRx6ZfffdNzvuuGNeffXV/Otf/8pf/vKXLF68OPX19fne976XJk2a5Etf+lKlygIAAAAAAADYJBUJV6dPn14KVmtqanLJJZdkwIAB2WGHHdZpu3Tp0tx0000ZPHhwli1blsGDB6d3797ZZ599KlEaAAAAAAAAwCapyLbAv/jFL7Jy5coUCoUMGTIk//u//7veYDVJWrRokS9+8YsZMmRICoVCVq5cmVtuuaUSZQEAAAAAAABssoqEqw8//HAKhUI+/OEPp0ePHmX1Oemkk9K7d+8Ui8X88Y9/rERZAAAAAAAAAJusIuFqXV1dkqR79+4b1e+EE05Yqz8AAAAAAADAtqIi4eqyZcuSJK1atdqofmvar+kPAAAAAAAAsK2oSLjavn37JMnUqVM3qt8///nPtfoDAAAAAAAAbCsqEq527do1xWIxQ4cOLXsV6rJly3L77benUCikS5culSgLAAAAAAAAYJNVJFz90Ic+lCSZPXt2PvWpT2XJkiUbbP/aa6/lM5/5TGbNmpUk6d27dyXKAgAAAAAAANhkFQlX+/Xrl86dOydJHnzwwXTr1i3XXHNNJk6cmCVLlqRYLGbJkiV5+umnc+2116Zbt24ZPXp0CoVCOnfunD59+lSiLAAAAAAAAIBN1qQSg1ZVVeWOO+7IySefnHnz5mXu3LkZNGhQBg0a1GCfYrGYXXbZJXfccUeqqiqS+QIAAAAAAABssoqlmPvss0/Gjx+fHj16pFgsvu3Rs2fPjBs3Lh07dqxUSQAAAAAAAACbrCIrV9d417velREjRmTy5MkZOXJknnjiicydOzdLlixJy//P3n1HaVne+eN/DwygoTiKdAQLRVFiLKvYsBEbiIIxgphYoiauGv0mZHWNi4khQVZzdKNxk01ZjaKgqJQolsQGaqIbDSkoaJAOoihdZYD5/cFvJiAz8FAeBvT1OmdOnrnvq3zuZ8bnkPOe67oaNUrLli1zyCGHpHfv3tlvv/2KWQoAAAAAAADAFilquFqpS5cu6dKly7aYCgAAAAAAAKAoihKu/uxnP0uStGnTJqeffnoxpgAAAAAAAADYpopy5uq///u/57rrrsvkyZOLMTwAAAAAAADANleUcLVx48ZJkn322acYwwMAAAAAAABsc0UJV1u3bp0kWb58eTGGBwAAAAAAANjmihKuHn/88amoqMgf//jHYgwPAAAAAAAAsM0VJVz92te+lp122ikPPPBApkyZUowpAAAAAAAAALapooSrHTp0yG233ZZVq1bljDPOyJNPPlmMaQAAAAAAAAC2mdJiDDp06NAkyTHHHJNnnnkm/fr1S7t27XL44YendevW2WmnnTY6xjXXXFOM0gAAAAAAAAA2S1HC1ZtuuiklJSVJkpKSklRUVGTGjBmZMWNGwWMIVwEAAAAAAIDtSVHC1SSpqKjY4PcbUhnMAgAAAAAAAGwvihKujh07thjDAgAAAAAAANSaooSrRx99dDGGBQAAAAAAAKg1dWq7AAAAAAAAAIAdgXAVAAAAAAAAoADCVQAAAAAAAIACbNGZqzNnzqx6vccee1R7fXOtPR4AAAAAAABAbduicPXAAw9MkpSUlGTBggVV1z//+c+npKRks8f95HgAAAAAAAAAtW2LwtWKiorNugcAAACw3Vi5tLYrgM+Evdo2y8pVK2u7DACALbJF4Wr//v036ToAAADA9miXJ9rWdgnwmbDwi1t+nBgAQG3aonD1zjvv3KTrAAAAAAAAADuqOrVdAAAAAAAAAMCOQLgKAAAAAAAAUICihKsPPvhgPvzww2IMDQAAAAAAAFArihKuXnrppencuXMuv/zyPPfcc8WYAgAAAAAAAGCbKtq2wEuXLs3999+fPn365IADDsgPfvCDTJ48uVjTAQAAAAAAABRVUcLVq6++Oq1bt05FRUUqKioyZ86c3HrrrTniiCNy/PHH53/+53+yYMGCYkwNAAAAAAAAUBRFCVdvuOGG/O1vf8uYMWMyYMCANGrUqCponThxYq699trst99+6devX0aPHp0VK1YUowwAAAAAAACAraZo2wInyTHHHJM77rgjU6ZMya9+9aucdNJJqVu3bioqKlJeXp4nn3wyF154YTp16pT/9//+X/7whz8UsxwAAAAAAACAzVbUcLXSTjvtlL59+2bEiBF5/fXX86Mf/Shf+MIXqlazLlq0KHfffXdOO+20HHTQQbnpppu2RVkAAAAAAAAABdsm4eradt9991x22WV55pln8sc//jFXX3112rRpUxW0Tps2Lf/5n/+5rcsCAAAAAAAA2KBtHq6urVOnTlXnsw4ePDj169evzXIAAAAAAAAAalRam5PPnTs3I0eOzPDhw/P666/XZikAAAAAAAAAG7TNw9Vly5ZlzJgxGTFiRCZMmJDVq1cnSSoqKpIkzZs3z1lnnbWtywIAAAAAAADYoG0Srq5evTpPP/10HnjggTz66KP58MMPk/wzUN15551z6qmnpl+/fjnhhBNSt27dbVEWAAAAAAAAQMGKGq5OnDgxI0aMyEMPPZR33303yT8D1ZKSkhx55JHp169fzjzzzDRu3LiYpQAAAAAAAABskaKEq7fddltGjBiRyZMnJ/lnoJokHTp0yDnnnJMvf/nLadeuXTGmBwAAAAAAANjqihKufv/7309JSUlVqLrbbrulb9++Oeecc3LooYcWY0oAAAAAAACAoiratsD16tXLSSedlHPOOScnn3xy6tWrV6ypAAAAAAAAAIquKOHqLbfckrPOOitlZWXFGB4AAAAAAABgmytKuPq1r32tGMMCAAAAAAAA1Jo6tV0AAAAAAAAAwI5AuAoAAAAAAABQgKJsC1xp1apVeeyxx/K73/0ub7zxRhYuXJiPPvpoo/1KSkry5z//uZilAQAAAAAAAGySooWrkyZNykUXXZQpU6asc72iomKjfUtKSopVFgAAAAAAAMBmKUq4On/+/PTu3Tvvv/9+VZhaWlqapk2bpn79+sWYEgAAAAAAAKCoihKu3nbbbVmwYEFKSkpy4IEH5oYbbshRRx0lWAUAAAAAAAB2WHWKMehTTz2VJOnYsWPGjRuX448/XrD6GTB9+vSUlZWlrKws06dPr+1yAAAAAAAAYKsqSrg6e/bslJSU5Ktf/Wp23nnnYkyxUUOGDKkK+srKyvKb3/xmo31++MMfrtNn2LBh26DSbWP8+PEZMmTIp+aZ5syZk1tuuSWnn356unTpkpYtW6Z169bp2rVr+vfvn1/+8pd5//33a7vMolu6dGmGDh2ao446Km3bts0ee+yRY445JrfcckuWL19e2+UBAAAAAAB8qhQlXG3QoEGSpG3btsUYfrPcc889G7y/evXq3H///duomm1vwoQJGTp0aO67776izVGvXr107NgxHTt2TL169Yoyx6pVq/K9730vX/jCFzJ48OCMHz8+c+bMSWlpaerUqZOZM2dm3LhxGThwYD7/+c/nZz/7WVHq2B7MmDEjRx11VIYMGZK///3vWbVqVcrLy/PXv/41gwcPTvfu3TN37tzaLhMAAAAAAOBToyjh6j777JMkWbBgQTGG3yS77rprGjdunFdeeSWvv/56je2efvrpzJo1K+3atduG1X26tG7dOq+88kpeeeWVtG7dequPX15eni9/+cu57bbbsmLFinTv3j3Dhw/PzJkzM2vWrMyaNSszZszIsGHD0rNnzyxbtixjx47d6nVsD1auXJl+/fpl+vTpadGiRR566KHMmTMnc+fOzfDhw7P77rvnrbfeyrnnnpvVq1fXdrkAAAAAAACfCkUJV/v27ZuKioqqs1dr084775y+ffsmSe69994a21VuG3zeeedtk7rYdN/97nfz+9//Pkny/e9/P2PGjMkpp5ySxo0bV7Vp0qRJevbsmWHDhuXJJ5/MnnvuWUvVFtewYcMyadKkJGtWZZ944okpKSlJSUlJTjnllPz6179Okrz22mt58MEHa7NUAAAAAACAT42ihKsXXXRR9ttvvzzxxBMZN25cMabYJF/5yleSJCNGjEh5efl69xcsWJDHH388devWTf/+/Tc63rhx49K/f/907tw5zZo1yz777JMzzjgj9913X42rBC+77LKUlZXlsssuq3Hc8ePHV533+kmVZ8j27NkzyZptfvv165cOHTqkefPmOeiggzJo0KAsWrRonX7Tp09PWVlZhg4dmiR54YUX1jlXtqysLEOGDKlq/+GHH+axxx7LN7/5zRx99NHp0KFDmjVrlk6dOuXss8/OqFGjaqy/cq6ysrJMnz59g882bdq0XHXVVTnggAPSvHnzdO7cOZdcckn+8Y9/VDv2lClT8stf/jJJ0r9//1x11VU11lHpX/7lX3L77bevc21Lnu+Tz/CXv/wll156afbff/80a9YsRx999EZrSpJ33nknTZs2TVlZWcaMGbPBtv/7v/+bsrKytGnTJsuWLau6Xrm987HHHpvDDjtsvX7du3evuv5p3u4aAAAAAABgWypKuLrTTjvlvvvuS8eOHXPBBRfk5ptvXi/025YOPfTQ7Lfffnnvvffy2GOPrXf//vvvz4oVK9KjR4+0atWqxnHKy8tz6aWXpn///hk3blzmz5+fhg0bZuHChXnuuefyr//6r+nTp0+WLFlSzMfJ7bffntNPPz2PP/54ysvLU15enrfffjs/+clPcuqpp64TwtWtWzfNmzdPw4YNk6w5F7V58+brfDVq1Kiq/cMPP5xzzz03v/nNb/K3v/0tS5cuTf369TN//vw89dRTueCCC3LxxRenoqJis+ufMGFCunfvnrvvvjsLFy5MsiZwfPDBB3P88cfn73//+3p9fvGLX2T16tWpU6dOrr322oLnqlNn3V/xrfV8Y8eOTY8ePfLAAw9k8eLFKS0tLbimFi1a5IQTTkiy8eBz+PDhSZLTTz+96me4dOnSvPzyy0mSL37xizX2Pemkk5Kseb9XrFhRcH0AAAAAAABUryjh6umnn54rr7wyO+20U1asWJEhQ4Zkn332yRFHHJGePXvm9NNP3+BX7969t3pNldv9Vrc1cOW1yhWuNRk8eHAeeOCBJMkVV1yRt956K9OmTcv06dPzgx/8IHXr1s1zzz2XK6+8citX/09/+9vfcsMNN+Tyyy/P5MmTM3369MyaNSs33XRT6tWrl0mTJuW//uu/qtq3bds2U6ZMyRVXXJEkOeywwzJlypR1vtaud5dddsn555+f0aNH5x//+EfmzZuX2bNn5x//+Ed++MMfpnHjxhk5cmR+8YtfbPYznHfeeTnssMPy4osvZtasWZkzZ05GjhyZ5s2bZ/HixfnOd76zXp9nn302SXLggQemffv2mz331nq+yy67LMccc0z+8Ic/ZObMmZk7d27uuuuuguuoXCH9u9/9rsazid9+++388Y9/XKd9kkyePLkq/O3SpUuNc+y3335J1pzP+uabbxZcGwAAAAAAANUrfLndJpgwYUJKSkqSpOp/V61alcmTJ2+0b0VFRVWfralfv375/ve/n9///veZPXt22rRpkyR5+eWX88Ybb6R58+Y55ZRTauw/d+7c3HnnnUmSr3/96xk8eHDVvUaNGuXKK69M3bp1c91112XUqFH505/+lEMOOWSrP8eiRYvyrW99K4MGDaq61rBhw3zjG9/IjBkzcuedd2bkyJG57rrrNmv8Xr16pVevXutdb9q0aS6//PK0adMmF1xwQX72s5/l0ksv3aw59ttvv4wYMSJ169ZNkpSWlqZHjx657bbbcu655+bFF1/MnDlz0rp16yRrwsG33norSfL5z39+s+astLWer0OHDhkxYsQ6K1Y7dOhQcB2nnXZadtlllyxatCgjR47M17/+9fXaVK5qbdu2bbp37151fc6cOVWvK9+j6lT+jifJvHnzsv/++xdcHwAAAAAAAOsrynAqZNAAACAASURBVMrVZE1IuvZXddeq+yqWpk2b5tRTT83q1aurzqtMknvuuSfJmvB1Q1u7jh49OuXl5alfv36uueaaattceumladGiRZLkwQcf3IrV/1ODBg1y9dVXV3vvtNNOS5JMnTo1y5cvL8r8J598ctUc8+bN26wxvvOd71QFq2v74he/mPr16yfJOlsDf/DBB1W/G7vuuutmzVmoQp/v6quv3qStgD9pp512Sp8+fZJUvzVwRUVF1Srpfv36rfMHB0uXLq16vfPOO9c4x9r3ir1VNQAAAAAAwGdBUVaufvDBB8UYdot95StfyejRo3Pvvfdm4MCBWb58eR555JEk/9w2uCavvfZakjUrJ3fbbbdq25SWlqZ79+558MEHq9pvbZ07d06TJk2qvbf2KsaFCxfmc5/73GbN8d577+VXv/pVnn766bz55ptZvHhxVq5cuV67uXPnpmXLlps8/qGHHlrt9Xr16mX33XfPnDlz1vkdWjt03xqrmrfG83Xr1m2L6+jfv3/uuuuu/PnPf84bb7yRfffdt+reSy+9lGnTpiVZE65uqU1932bPnp2PP/54i+cFdnyrVq1KsuaPTgDW5vMBqMmO+PmwV9tmtV0CfGZUJHl7B/p8ALaNHfHfD0BxNWjQYJ0dOrcnRQlXt1cnnHBC2rZtm+nTp+f555/PjBkzsnTp0nTr1i2dOnXaYN/33nsvSTb6g6y8/+67726doj+hcePGNd5bezVoeXn5Zo3/yiuv5Oyzz87ChQurrjVs2DBlZWWpU2fNQuf58+cnSZYtW7ZZc9QUDif/fIa1699tt91SUlKSioqKvP/++5s1Z6Wt9XzNmtX8f7y7d+9e7arXI488cp1zWQ8//PDsvffemTp1aoYPH57vfe97VfeGDx+eZM0ZuZ/cbrhRo0ZVrz/88MMa61j73tp9AAAAAAAA2DyfqXC1Tp066d+/f26++ebce++9mT59epKNr1pdW6ErAItxbmyxrVy5Ml/72teycOHCdOnSJYMGDcoRRxyRXXbZparNqlWr0rRp0yQp6jbOaystLU2HDh3y5ptv5i9/+ctmj7M1n6+6bY0rvffee1UB7dqqW9Hdr1+//OhHP8oDDzyQQYMGpU6dOvnoo48yatSoqvuftPYK5blz566z4nVts2fPrnq9qSuMt9e/BgG2vcq/GN17771ruRJge+PzAajJDvn5sHLpxtsAW0VJdrDPB2Cb2CH//QB8ZhXtzNXt1XnnnZeSkpKMGjUqL7/8cho3blx19uWG7L777knWDayqU3m/sn2lyvM5N7TV6uLFizdaRzG9/PLLmTFjRurUqZMHHnggp5xyyjrBY5LNPmd1Sx133HFJkokTJ1aF4ptqWz3fpEmTsnDhwvW+Ro8evV7byvNU58yZk+eeey5J8thjj2Xx4sVp0KBB+vbtu16fzp07V4X3a59N+0mvv/56kjW/ex07dtzi5wIAAAAAAPis267C1Q8++CAvvPBCXnjhhaLN0b59+3Tv3r1q29k+ffqkYcOGG+138MEHJ1kT7tV0puyqVasyfvz4JMlBBx20zr2ysrIkGw5n/+///m/jD7CZKre83dBqzLWD4bZt21bb5plnntn6xRXgkksuSZ06dbJ69eoMHTq04H6rV6+uer09Pl+7du1y1FFHJUnuv//+JP/cEvjUU0+t+r1ZW6NGjXLYYYclSZ566qkax668d/TRR6d+/fpbtW4AAAAAAIDPoi0OV3fdddc0bdo0jz32WI1thg4dmqFDh+att97a4FgvvvhievXqld69e29pWRt07bXX5oorrsgVV1yRyy67rKA+vXv3Tr169bJixYrccsst1bb55S9/WbXy8eyzz17nXteuXZMkr776ambNmrVe33feeSd33333pjzGJqk853Tts0Y/qXIV57vvvpt33nlnvfuLFi2q8dmLrVOnTrnooouSJPfdd19+8pOfbLTPn/70p3zzm9+s+n57fb7+/fsnSR599NG8/fbbefrpp9e5Xp1zzz03SfL8889XG8pPmDAhf/zjHzc6DgAAAAAAAIXbKitXN3b25k033ZShQ4dmypQpW2W8LXXEEUdk8ODBGTx4cPbbb7+C+rRq1Sr/+q//miT56U9/mhtuuCHvv/9+kmTp0qW544478t3vfjfJmtWwhxxyyDr9Tz755DRu3Djl5eW58MILM3ny5CRrVrs+++yz6dWrV1Gfu0uXLkmSyZMn58UXX6y2zeGHH55GjRqloqIiF1xwQVWNFRUVeeGFF9KzZ89a3br4Rz/6UdX2wIMGDcqZZ56Zxx9/PEuX/vNsnCVLluSJJ57I+eefnx49euTtt9+uure9Pt8ZZ5yRhg0bZtmyZbnooouycuXKNG/ePCeeeGKNfQYMGJAuXbqkoqIi5513XlUgW1FRkSeffDIXXnhhkjUrqD8Z9AMAAAAAALB5tqttgbd3119/fVVQ9V//9V/p0KFD9tprr7Rv3z7XX399Vq5cme7du1e7qnKXXXbJ0KFDU1JSkldeeSWHH3542rZtm9atW+fMM89MRUVFUVdNHn300encuXNWrVqV0047Le3atUvXrl3TtWvX3HnnnVU1/vCHP0ySvPTSS+vU2LNnz0ybNi133XVX0WrcmPr162fkyJG54oorUr9+/Tz77LPp169f2rZtm3bt2mWPPfbIHnvskXPOOSejR49O48aN1zmzdHt9vkaNGqVXr15Jktdeey3JmpXPlef0Vqe0tDTDhw9P+/btM2/evPTt2zetWrVK69at8+UvfznvvvtuOnTokPvuu69qS2gAAAAAAAC2jNRlE9SrVy+/+MUvct999+Xkk09O06ZNs2TJkjRp0iTdu3fPT3/604waNSqNGzeutv+5556bhx9+OMcff3yaNGmSlStXZo899sjAgQPz7LPPpnnz5kWrvW7duhk9enQuuuii7LXXXvn4448zc+bMzJw5M4sWLapqd/755+ehhx7KsccemyZNmqS8vDzNmjXL+eefn+effz7du3cvWo2FKC0tzeDBg/Pqq6/muuuuy9FHH52WLVvm448/rno/TzvttNx6663561//mq997Wvr9N9en69ym99K/fr122ifdu3a5YUXXsi1116bLl26pE6dOqlbt24OOOCAXH/99Xn++efTqlWrYpUMAAAAAADwmVOycOHCLdqLdtddd01JSUnuvffenHbaaZvdJllz5uR5552XkpKSqi13AYDaM3Xq1CTJ3nvvXcuVANsbnw9ATXbIz4eVS7PLE21ruwr4TFj4xZkpqV/9wgTgs2uH/PcD8Jll5SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABtlq4WlJSslXaAAAAAAAAAGyPSrfWQAMGDNjg/YqKio22AQAAAAAAANhebbVwNVkToFZn7RWrNbX5ZDsAAAAAAACA7clWCVc3FJgWcn9T2wEAAAAAAABsa1scrn7wwQdbow4AAAAAAACA7Vqd2i4AAAAAAAAAYEcgXAUAAAAAAAAogHAVAAAAAAAAoADCVQAAAAAAAIACCFcBAAAAAAAACiBcBQAAAAAAACiAcBUAAAAAAACgAMJVAAAAAAAAgAIIVwEAAAAAAAAKIFwFAAAAAAAAKIBwFQAAAAAAAKAAwlUAAAAAAACAAghXAQAAAAAAAAogXAUAAAAAAAAogHAVAAAAAAAAoADCVQAAAAAAAIACCFcBAAAAAAAACiBcBQAAAAAAACiAcBUAAAAAAACgAMJVAAAAAAAAgAIIVwEAAAAAAAAKUFrbBQAAAADUtkUnz6rtEuBTr2J1RVauWpl6tV0IAMAWEK4CAAAAn22ljWq7AvhMeHvq1CTJ3nvvWsuVAABsPtsCAwAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAUoWLlxYUdtFADuwlUtruwKgiCpWr/lnQkmdklquBNje+HwAauLzAahJxeqKrFy1MvV23rW2SwG2M1OnTk2S7L333rVcCcDGldZ2AcCOb5cn2tZ2CQAAAMAOYOEXZ9Z2CQAAW8S2wAAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrAAAAAAAAAAUQrgIAAAAAAAAUQLgKAAAAAAAAUADhKgAAAAAAAEABhKsAAAAAAAAABRCuAgAAAAAAABRAuAoAAAAAAABQAOEqAAAAAAAAQAGEqwAAAAAAAAAFEK4CAAAAAAAAFEC4CgAAAAAAAFAA4SoAAAAAAABAAYSrbLaePXumrKwsQ4YM2epjd+3aNWVlZRk2bNhWHxsAAAAAAAA2h3C1yIYMGZKysrL1vpo3b5599903X/rSlzJs2LCsWrWqtktlB/Tiiy/m/PPPz7777lv1O3X++efnxRdfrO3SAAAAAAAAPnWEq9tQ8+bNq75KS0szb968/O53v8vll1+eU089NYsWLartEtmB3HLLLenZs2dGjx6dd955JzvttFPmzZuX0aNHp2fPnvnxj39c2yUCAAAAAAB8qghXt6EpU6ZUfc2ePTuvvfZa+vTpkyR5+eWX8+1vf7uWK2RHMXr06AwePDgVFRU577zzMmXKlMyYMSNvvvlmBgwYkIqKivzgBz/ImDFjartUAAAAAACATw3hai0pKSnJXnvtlV//+tfp1q1bkuShhx7Ku+++W8uVsb1bvXp1Bg0alCQ57rjjcscdd6RZs2ZJkmbNmuWOO+7IsccemyQZNGhQVq9eXWu1AgAAAAAAfJoIV2tZSUlJ+vXrlySpqKjIq6++us795cuX54477sgpp5ySvfbaK82aNUvnzp0zYMCAPP300zWOW3m26/jx47Ns2bIMGTIkhx9+eFq1apX27dvnzDPPzDPPPLPB2j7++OPceuutOfLII9OyZcvstddeOf300ze6GnL69OlV80+fPr3Gdj179kxZWVmGDBmywfG29thrvzcLFy7MoEGDcvDBB6dly5bp0qVLLr/88sycObOq/fvvv58bb7wxhx56aFq2bJl99tknF1988Qbn35BrrrkmZWVlOfzwwzfYrqKiIgcccEDKysoyePDgqusTJkyomru61c4lJSX51re+lSSZNm2a81cBAAAAAAC2ktLaLoCkdevWVa8XL15c9fr111/POeeckxkzZiRZE5o1btw477zzTh599NE8+uijueSSS3LzzTfXOPb8+fNz3HHH5c0330yDBg1SWlqaRYsW5dlnn81zzz2Xn/70pzn33HPX67dw4cL07du3KuytW7duGjRokAkTJmT8+PGfii2M58yZk8suuyyzZs3KzjvvXHVt2LBhefbZZ/PEE09k5cqVOfPMMzNt2rSqNgsWLMjIkSMzfvz4PP3002nTps0mzdu/f//8/Oc/z+TJk/Pqq6/m4IMPrrbd+PHjM2vWrCSpCuCT5Nlnn02SNGrUKEceeWS1fY866qg0atQoS5cuzTPPPJOjjz56k2oEAAAAAABgfVaubgfWXgG56667JlkTivbp0yczZszICSeckMcffzzvvPNOZsyYkWnTpmXw4MFp1KhRfvGLX+TnP/95jWN/+9vfzurVq/Pwww9nzpw5mTVrVv7whz/kkEMOSUVFRa655pp1At1KV111VV599dXUq1cvN910U2bMmJHp06fnjTfeyFe/+tX8+Mc/zl//+tet/2ZsQ//2b/+WJk2aZNy4cZkzZ05mz56dkSNHZrfddsvs2bPzve99LxdeeGE+97nPVdvmnXfeyY033rjJ837hC19Ily5dkiT3339/je2GDx+eJDnssMPSoUOHquuTJk1KknTq1Cl169attm9paWk6duy4TnsAAAAAAAC2jHC1lq1cuTJ33XVXkjWrQytXMf7oRz/KvHnzctJJJ+XBBx9Mt27dUr9+/SRrtrW94oor8t///d9JkptvvjkrV66sdvw6derk0UcfzQknnJC6deumpKQk++67b4YPH54GDRpkyZIlefzxx9fp89prr2X06NFJkiFDhuQb3/hGGjZsmCRp0aJFfvKTn+TMM8+sNpTdkdSvXz9jx47NEUcckZKSktStWzc9evTI9773vSTJyJEjM2vWrA22GTNmTI3v/Yb0798/SfLwww+nvLx8vfvLly/P2LFj12lbae7cuUnWXfFcncr78+bN2+T6AAAAAAAAWJ9wtZYsXrw4f/jDH9K3b9/8/e9/T5Kce+652W233fLxxx9nxIgRSdasIK1pdWKvXr3SpEmTvPfee/nzn/9cbZsLLrggLVu2XO96s2bN8i//8i9JUjV/pZEjRyZJWrZsmQsvvLDaca+77roCnnL7dv7556dp06brXe/Ro8dG25x44olJkg8//DBvvfXWJs999tlnp27dulmwYEGeeOKJ9e7/9re/zZIlS9KgQYP06dNnnXtLly5Nknzuc5/b4ByV95csWbLJ9QEAAAAAALA+Z65uQ2VlZTXeO/HEEzN06NAka1aOfvjhh0nWhKMlJSU19qsM2mbOnJlDDz10vfvVXatUubLxgw8+WOd65TmrRx99dI3BbqdOndK6devMmTOnxvG3d4cccki115s3b77RNi1atKh6vXDhwk2eu2XLljnhhBPy1FNPZfjw4enVq9c69yu3BD7ttNM2+HtTiA39/tRk9uzZ+fjjjwtqu1fbZps8PgAAAPDZVJHk7alTa7sMYDuzatWqJMlUnw/A/69BgwZp06ZNbZdRLeHqNrR2aFe/fv3suuuu2X///XPmmWfm5JNPrgrB1t7G9d133y1o7OXLl1d7vXHjxjX2qQxOP7kt7XvvvZckadWq1Qbn3NHD1UaNGlV7vbS0dJParP3+Pfzww7n22mur7XPPPffk8MMPr/q+X79+eeqpp/Lkk0/m/fffz2677ZZkzc//ueeeS7L+lsBr11TTz7xS5f2angEAAAAAAIBNI1zdhqZMmVJQu8q/0knWrCCsPO90W9ucFY+fdR9++GHmz59f7b0VK1as833Pnj3TpEmTLF68OA899FAuueSSJMkDDzyQVatWpXnz5jnhhBPWG6dVq1aZOHFi1dmrNakMvqvbFnpjNumvQVYu3eTxAQAAgM+mkiR77713bZcBbGcqV6z6fAB2BM5c3Q6tvcJ10qRJ23z+3XffPUk2uiq1pvtrr+rc0Nayixcv3uTaijn21jBgwIAsXLiw2q9jjjlmnbY77bRT1XmqldsAr/367LPPXud5K3Xp0iXJmrB+7SB+bStXrsybb765TnsAAAAAAAC2jHB1O3TwwQenfv36SZKHHnqoVuZPkhdeeCGrV6+uts2bb75ZY7i69hmhs2fPrrbNkiVLMnny5E2urZhj14bKbX//9Kc/5c0338zEiROrAvXqtgROkuOOOy7Jmud88cUXq23z4osvVp3He/zxx2/lqgEAAAAAAD6bhKvboYYNG+bss89Oktx111157bXXNtj+gw8+2Krz9+3bN0kyd+7c3H333dW2uemmm2rs37Bhw6rtG8aMGVNtm9tuu229bXILUcyxa0O3bt2qnmf48OFVq1a7du2aAw44oNo+Rx11VNq3b58kufXWW6ttU3l9zz33zJFHHrm1ywYAAAAAAPhMEq5upwYNGpTWrVvno48+Su/evfOzn/0sCxYsqLq/cOHCPPXUU/nGN76RU089davOfcghh6RXr15JkmuuuSb/8z//k+XLlydJ5s+fn6uvvjoPPfRQmjRpUuMYX/rSl5Ik9957b37+85+v03/QoEG59dZbs8suu2xWfcUcuzb069cvSTJixIiqlco1rVpNkrp16+bGG29Mkjz99NP55je/mffeey9J8t577+XKK6/MM888kyS58cYbU6eO/8wBAAAAAAC2BqnLdqpFixYZPXp09t133yxZsiTXXnttOnTokPbt26ddu3bZc889c/bZZ2f48OFFWaV5xx135MADD8yKFSvyb//2b1Vzdu7cOXfddVe+9a1vpWvXrjX2v+qqq9KlS5eUl5fnmmuuSdu2bav633777fn+979f48rMjSnm2LWhX79+KSkpyaxZszJ//vyUlpZWrVyuyRlnnJHrr78+JSUl+c1vfpOOHTumffv26dixY+65556UlJTkP/7jP9K7d+9t9BQAAAAAAACffsLV7VjHjh3z/PPP5/bbb88Xv/jFNG/ePMuXL095eXnat2+fXr165Y477shTTz211ecuKyvLE088kf/4j//Ifvvtl9LS0iRrtqT9zW9+k0GDBm2wf8OGDTNu3LhcddVV2WuvvVJaWpo6deqkR48eGTVqVK688srNrq2YY9eGdu3a5aijjqr6/sQTT0yzZs022m/gwIF59NFH07t377Ro0SLLly9PixYt0rt37zz66KP59re/XcyyAQAAAAAAPnNKFi5cWFHbRQA7sJVLs8sTbWu7CgAAAGAHsPCLM1NSv3FtlwFsZ6ZOnZok2XvvvWu5EoCNs3IVAAAAAAAAoADCVQAAAAAAAIAClNZ2AQAAAAAAsCNYsmRJxo0bl1GjRmXixIkpLy+v7ZI+FVavXp0kqVPHejDY0dWrVy8HHnhgzjzzzJx66qlp3PjTdxyAcBUAAAAAADZizpw56dOnT7p165ZLL700RxxxRBo0aFDbZQFsVz7++OO89NJLeeSRR/LjH/84jzzySFq3bl3bZW1VJQsXLqyo7SKAHdjKpdnliba1XQUAAACwA1j4xZkpqf/pW8HCp9+SJUvSo0ePXHPNNenbt29tlwOwQ3j44YczdOjQ/P73v0+jRo1qu5ytxhp7AAAAAADYgHHjxqVbt26CVYBN0Ldv3xx++OEZN25cbZeyVQlXAQAAAABgA0aNGpU+ffrUdhkAO5w+ffrkkUceqe0ytirhKgAAAAAAbMBf/vKXHHHEEbVdBsAO58gjj8zEiRNru4ytSrgKAAAAAAAbsGLFijRo0KC2ywDY4TRo0CDl5eW1XcZWJVwFAAAAAAAAKIBwFQAAAAAAAKAAwlUAAAAAAACAAghXAQAAAAAAAAogXAUAAAAAAAAogHAVAAAAAAAAoADCVQAAAAAAAPgUuvTSS1NWVpaysrLMnj27tsv5VCit7QIAAAAAAOBTZeXS2q5g2ytttM2mKisrW+f7/v3757//+78L6jt8+PB84xvfWOfa2LFjc8wxx2y1+j4rPvlzWFvDhg2z6667pkuXLjnhhBPSr1+/DbaHHYlwFQAAAAAAtrJdnmhb2yVsM4tOnlWr848ZMyY333xzGjXaeMA7bNiwbVARy5Yty7JlyzJr1qw8+eSTufnmm3PnnXfm5JNPru3SYIsJVwEAAAAAgB1OaWlpVq5cmWXLluWRRx7JV77ylQ22nzZtWiZMmLBOX7aOe++9d53vly1blkmTJuWBBx7I3Llzs2DBgnz1q1/N448/noMOOqiWqoStQ7gKAAAAAADscFq1apUmTZrk73//e+67776Nhqv33XdfKioqUq9evRx//PF58sknt1Gln369evWq9vrAgQPz5S9/OS+99FI+/vjj3HjjjXnkkUe2cXWwddWp7QIAAAAAAAA2x4ABA5IkL730Uv7xj3/U2K6ioiL3339/kuSkk05K06ZNt0l9n3WNGzfOLbfcUvX9+PHjs2TJklqsCLaccBUAAAAAANghnXPOOalXr16SDZ+n+txzz2XmzJlJ/hnIFqqioiJjx47NJZdckgMPPDBt2rRJ69atc/DBB+fyyy/PK6+8stExFi9enAcffDDf/OY3c+yxx6Z9+/bZfffd/SN0RAAAIABJREFU065duxx55JEZOHBgJk2atNFxevbsmbKyspSVlVVdGz16dM4666x07tw5zZs3z/7775+LL744EydO3KTnLJb999+/qt6VK1dm+vTpG+2zcuXKDBs2LAMGDMgBBxyQli1bpl27dunWrVu+853vZMqUKTX2Peigg1JWVrbB7Yevvvrqqvexa9euNbYbOHBgVbtp06atd3/KlCn5yU9+kv79++cLX/hCWrdunWbNmqVTp04544wz8tOf/jRLly7d4LNOnTq1ao4rr7wySTJ79uz84Ac/yFFHHZU999wzZWVluf7669fru3z58tx222057rjj0q5du+yxxx7p1q1bbrjhhsyePXuD867to48+yq9//ev07ds3++67b1q0aJFWrVrlgAMOyLHHHpurr746Y8aMybJlywoe89PMtsAAAAAAAMAOqWnTpjnllFMyduzYDB8+PNdff33q1Fl/XVnlmaDNmzfPSSedlLFjxxY0/owZM3LBBRfk1VdfXe/e1KlTM3Xq1AwbNiwXXnhhbr755pSWrh+7rFixIp06dcpHH3203r3Fixdn0qRJmTRpUn71q19l4MCB+e53v1tQbR999FEuvvji/Pa3v13n+uzZszNy5Mg88sgjufPOO3POOecUNF4xNWjQoOp1de/D2iZOnJgLL7wwU6dOXef6Rx99lMWLF+eNN97Ir3/96/z7v/97Bg4cuF7/7t275+23387bb7+dmTNnZo899livzfjx46tez5w5M9OmTcuee+5ZY7u2bduud/+ee+6pCkM/af78+Zk/f36ee+653H777Rk2bFgOOeSQDT53paeeeioXX3xxFi1atMF2U6dOTd++fdcLfd9444288cYbueeee3L33XdvdL633347Z5111nrvd5LMmjUrs2bNysSJE3PXXXfl7rvvzhlnnFHQc3yaCVcBAAAAAIAd1oABAzJ27NjMmTMnTz/9dHr06LHO/UWLFlUFkOecc061AWh1ZsyYkR49emT+/PlJkgMPPDC9evXKnnvumZKSkrz++uu5//77M2fOnPzv//5vysvLc8cdd6w3zurVq/PRRx+lRYsWOe6443LAAQekRYsWadCgQd5///288sorGT16dJYtW5abb745u+++e77+9a9vtL4rrrgiv/3tb9O1a9ecddZZad++fRYtWpRRo0bl2WefzapVq3LVVVfl0EMPzT777FPQMxfDggUL8u6771Z937Zt2xrb/t///V/OOOOMqhWSRx99dE466aS0bds25eXlee2113L//fdn0aJFGTx4cOrUqZNvfetb64xxzDHHVIWKzz///HorlefMmbPeFtLPP//8euHpO++8k8mTJ1eN+UkffvhhSkpKcuCBB+bII49Mx44dU1ZWltWrV2fmzJl54okn8tJLL2XevHn50pe+lAkTJqRNmzYbfK/eeuutXHjhhVm+fHn69u2b7t27p0mTJpn5/7F352FRVY8fxz9sIgqIouKOmiKRW+6gaJullSu5opVWfvWnlpYt2uKaVmZlpWmambu45dfMpUIFBbe0zNxNEtxDAUVRtt8fPHO/jMwMk4CovF/P4/Nc7j3n3DPDzPUOnznnxMaajVa+dOmSOnbsqLi4OElZz2loaKj8/Px0+fJlbdiwQevWrdNzzz0nf39/q+fLzMxU3759jWC1Tp066tSpk6pWrSpPT08lJibq2LFjioqKsvgFg6KKcBUAAAAAAAAAANy12rZtKx8fH507d04LFy7MEa6uWLHCGC1p75TAmZmZ6t+/v86fPy9HR0dNnjxZL7zwQo5yw4cP17PPPqvw8HAtWLBAXbp00aOPPmpWxsXFRcuXL9ejjz4qBweHHG3069dPI0eOVNeuXXX06FG9//77Cg0Nlbu7u80+Ll++XK+88orGjBlj1u7zzz+vV199VXPmzFFKSopmzJihyZMn2/W4C8KUKVOUkZEhSfL19ZWPj4/FcleuXNHzzz+v5ORklShRQnPmzFG7du3MyvTo0UPDhw9X165d9eeff+r9999Xhw4dVLt2baNM9iA0MjIyx+88IiJCUtbvpW7dutq7d68iIyP17LPPmpXLPrq1devWOfrbqlUr7d271+KIVylr6uGlS5dq4MCBunTpkj766CNNnTrVYlmT6OhoeXh4aO3atQoMDLRa7t133zWC1VatWmnJkiVmr5fnn39eK1as0IABAxQVFWW1nd27d2v//v2SpJCQEM2aNcviyG8p68sGmZmZNvtfVLDmKgAAAAAAAAAAuGs5OTkZU9/++OOPunTpktlx05TAjRs3tjmKL7sff/xRu3fvlpQVoFoKViXJ3d1dc+bMkaenpyRZHLnq5OSkxx57zGKwalK1alV9/PHHkrKmCl67dm2ufQwODtbYsWMttjt69GgVL15ckvTzzz/n2lZ+S05O1q5du/Sf//xH06dPN/a/+uqrVp+Hb7/91ggMP/rooxzBqomPj4/mzJkjR0dHpaena8aMGTmO+/n5STIPSE1M4WqjRo2Mc9gqJ1keuRoQEGA1WDXp0aOHQkJCJGWF4WlpaTbLS9KYMWNsBqvnz5/X0qVLJUmlSpXSt99+azGIDwkJ0YABA2yeK/tUwKGhoVaDVUmqVq2afH19c+t+kUC4CgAAAAAAAAAA7mp9+vSRJF2/fl3Lly839h88eNCYztRUxh6LFy+WlBWMDho0yGZZLy8vPf7445KkqKgoXb9+/V/13aRFixbGtinYtcVWv0qVKqUHH3xQkhQTE5PrOqd55eXlZfavcuXKatu2rRECStLQoUP13HPPWW3D9JyXK1dOvXr1snm+OnXqqGHDhpKk8PDwHMdNYeipU6dyTAFsClKDg4ONEalnz541pgC+uVzNmjVtTmWcm+bNm0vKCpwPHjxos6y7u7t69+5ts8z69euVmpoqKSu8LVeunNWygwcPthmYlihRwtj+7bffbJ4X/8O0wAAAAAAAAAAA4K7m5+enpk2bateuXVqwYIFeeuklSf8btVq8eHF17drV7vaio6MlSWXKlNH27dtzLW8KVK9fv66///7bGDmZXVxcnBYvXqzIyEgdOXJEiYmJunbtmsX2Tp8+nes5mzZtavN4pUqVJGVNcZyYmGiMZL3datWqpZkzZ6px48ZWyyQkJBjBo4+Pj9atW5druy4uLpKkEydOKDU11fhZyprG95tvvpGUNQLVtOZsTEyMYmNjjTJNmjRRyZIllZycrIiICNWpU0dS1u/qxIkTkiyPWs1uy5YtWrlypfbs2aPY2FhduXLF6gjV06dPq169elbbatCggdzc3Gye79dffzW2H3roIZtlq1Spolq1aunIkSMWjwcFBal48eJKSUnRxIkT9c8//6hnz56qV6+ezZHWRR3hKgAAAAAAAAAAuOuFhoZq165d+v3337V//375+/srLCxMktShQweVKlXKrnaSk5MVHx8vSbpw4cK/GvEqSRcvXsyxb+bMmRozZozVMPVmly9fzrWMt7e3zePFihUztgt65KopxJayAubY2FitXLlS+/bt07Fjx/TZZ59p9uzZcnV1tVg/NjbWWM9z//79//o5v3TpksqXL2/83KpVKzk4OCgzM1ORkZHq16+fpP9N9Vu8eHE1a9ZMLi4uat68ucLDwxUZGWmE8rlNCSxJiYmJ6t+/v3755Re7+5nb79UUiNty9uxZY9sUGttSo0YNq+Gqt7e3Jk6cqNdee01paWmaPn26pk+fLm9vbzVt2lSBgYF6+OGHVb9+/VzPU5QQrgIAAAAAAAAAgLte165dNXLkSF27dk0LFy5Uy5YtdeHCBUlZwau9EhMT89QP05StJsuXL9ebb75p/NyiRQu1bNlS1apVk4eHh1kIagoV09PTcz2Preleb7enn346x75hw4Zp4sSJ+uijj7RmzRq9/PLLmjlzpsX6+f2ce3t76/7779eBAwfM1lPdunWrpKxRv6aRvK1bt1Z4eLi2bt2qzMxMOTg4mNWxFq727dvXCGHd3d3Vrl071atXTz4+PnJzc5OTk5OkrJGts2bNkpT779We0cVXrlwxtnMb5SpJJUuWtHm8f//+8vf31+TJk7VlyxZlZGQoPj5e69ev1/r16zV69GjVrVtX48aN0yOPPJLr+YoCwlUAAAAAAAAAAHDX8/T0VIcOHRQWFqawsDAdO3ZMUtbUqG3atLG7nexhVNOmTfXTTz/lqV8TJkyQlLV+66JFi/TEE09YLJecnJyn89yJRo0apd27dys8PFxLly7Vk08+qU6dOuUo5+7ubmx3795dX3/9dZ7PHRwcrAMHDujChQs6cOCAAgICjNDUtNZq9u2LFy/qjz/+UP369Y1yderUkY+PT462IyIijGC1fv36WrlypcqWLWuxH6ZpiPNL9ufKnpHQ9ryugoKCtGrVKiUkJCg6Olq7du1SdHS0du7cqfT0dO3fv18hISGaMWOGevTokaf+3wsIVwHkWeITcYXdBQAFJDMjazoWB0fWWABgjusDAGu4PgCwJjMjU2npaXLJvSgA3LLQ0FCFhYUpPj7eCEV79+79r9aPLFWqlNzd3XXlyhUdOXJE6enpxijEfysmJkYxMTGSpKeeespqsCrlfwh3p5g0aZICAwOVkZGh0aNHq3379majdSXz6XBNa6/mVXBwsDFSNiIiQi4uLjpz5oxxzKRBgwby9PRUUlKSIiIi5OHhobi4rL95Zw9hs9u8ebOx/d5771kNVqX8/71WrFjR2P7rr7+MdWKtMa0daw8vLy+1b99e7du3lyT9888/+vDDDzVr1ixlZmZq1KhRCgkJkbNz0Y4Xi/ajB5B3zu65lwFw1zrx11+SpJo1axZyTwDcabg+ALCG6wMAa/53fShdyD0BcC9r3bq1qlWrppMnT0qSHBwc1Lt373/dTlBQkDZu3KjExERFRETo4YcfvqX+nD9/3tjO7f7o559/vqVz3Onq1Kmjrl27avny5YqJidG8efP04osvmpUpX768atWqpWPHjmn//v06ceKEatSokafztmrVSo6OjsrIyFBkZKRcXLK+3lOyZEk1btzYKOfk5KSgoCCtX79ekZGR8vDwMGvDkn/zew0PD8/Lw8ihUaNGmjt3rqSskNcUhFpy6tQpYwT3rShbtqwmT56s6Oho7d+/X/Hx8Tpy5IgCAgJuuc17wZ0zITcAAAAAAAAAAEAeODg4aOjQoWrSpImaNGmi0NBQVa9e/V+307NnT2N73LhxunHjxi31p0SJEsa2rRGESUlJmjFjxi2d427w6quvGqOHP/nkE12/fj1HGdNznpmZqffeey/P5/Ty8lK9evUkSdu2bTNGmwYGBhpBq4lphGp0dLQ2bdokKeu1ZG29VXt/r99//70OHTp0y4/Bknbt2hn9X7JkieLj462WnT59ujIyMvJ8Tl9fX2M7LS0tz+3d7QhXAQAAAAAAAADAPeOll17Szz//rJ9//llffvnlLbXRpUsXNWrUSJK0d+9e9e3bV5cuXbJaPjU1VatXr9asWbPM9vv5+RlrZP7444/69ddfc9RNSkrSs88+a0xFey8KCAhQu3btJEmnT5/Wt99+m6PMf/7zH1WuXFmStGbNGg0bNkwpKSlW27x69armzZunVatWWS1jCkcTEhK0bt06SZan+jXtS0pK0g8//CBJeuCBB1SmTBmL7ZpeG5L04YcfWgzft23bppdfftlq325V+fLljXVPExMT1b9/f4vrqq5evTrXwH7x4sVasGCBrl69arXM0aNHjfVlS5Qoofvuuy8Pvb83MC0wAAAAAAAAAABANg4ODpo/f77atm2r06dPa8OGDapfv746deqkxo0bq0yZMrp27ZrOnj2rffv2KTw8XAkJCerbt69ZO8WKFVP//v31+eefKzU1Ve3bt1efPn3UsGFDubm56c8//9SiRYt0/vx59erVS4sXLy6kR1zwRowYYQScn332mZ577jm5ubkZxz08PLRw4UJ16NBBly9f1ty5c7V27Vp17txZ9evXl6enp5KTkxUXF6e9e/dqy5Ytunr1qkaPHm31nMHBwUbAbhpxaWk06gMPPCBvb2/Fx8fbLGfSqVMnjR07VmfOnNHOnTvVrFkz9e3bV9WrV9fly5e1adMmrVmzRo6OjurevbvCwsL+/RNmw/jx47Vp0yadOnVKW7ZsUfPmzdW3b1/Vrl1bly9f1saNG7V27VqVKVNG/v7+ioqKstjO8ePH9fHHH+uNN95QmzZt1KhRI1WtWlXFixfXP//8o127dmnNmjVG+Dpo0CCVLFkyXx/L3YhwFQAAAAAAAAAA4CaVK1fWpk2bNGjQIIWHh+vy5ctasGCBFixYYLG8g4ODKlasmGP/22+/rX379mnz5s26ceOG5syZk6NMx44d9emnn97T4Wrjxo3Vpk0bbdmyRWfPntWcOXM0ePBgszINGzZUeHi4XnjhBe3bt08XLlzIMRo4OycnJ5UvX97q8cDAQDk5OSk9PV2SVKpUKTVo0CBHOQcHB7Vq1UqrV6829lka4Wri5uamefPmqVu3bkpISFBMTIzGjx9vVqZEiRL69NNPdf369XwPV0uXLq3//ve/CgkJUUxMjOLi4jRp0iSzMmXKlNG8efM0b948q+2Ypmq+evWq1q1bZ4TflsoNGDBAo0aNyr8HcRcjXAUAAAAAAAAAIJ8lPnHvTvFalPj4+GjlypXavn27li9frqioKJ05c0ZJSUlyc3NTxYoV5e/vr6CgILVv397i+q6urq5asWKF5s+fr6VLl+rPP/9USkqKypcvr3r16qlXr17q2LHj7X9wheC1117Tli1bJElTp05Vv379zNYvlaTatWtry5Yt2rBhg9asWaOdO3fq3LlzSk5OVsmSJVWlShUFBAQoODhY7dq1k4+Pj9XzeXp6qmHDhsZ0zC1btpSjo+UVM1u3bm2Eq05OTgoKCrL5WJo2bapt27bp888/188//6y4uDi5urqqYsWKeuSRR/Tiiy/qvvvusxlu5sV9992nqKgozZw5U6tWrdJff/0lKetLAU888YQxzbKt87/11ltq166dIiIiFBUVpSNHjuj8+fO6ceOG3N3dVb16dbVo0UJ9+vQx1q+F5JCQkJBZ2J0AAAB3JtNNWc2aNQu5JwDuNFwfAFjD9QGANVwfcDfz8/PTkSNHCrsbAHBXuteuoZbjeQAAAAAAAAAAAACAGcJVAAAAAAAAAAAAALAD4SoAAAAAAAAAAAAA2MG5sDsAAAAAAAAAAACAgnfkyJE8rX0ZGBgob2/vfOwRcPchXAUAAAAAAAAAACgCVqxYoQ8//PCW669Zs0bBwcH52CPg7sO0wAAAAAAAAAAAAABgB0auAgAAAAAAAAAAFAEjR47UyJEjC7sbwF2NkasAAAAAAAAAAAAAYAfCVQAAAAAAAAAAAACwA+EqAAAAAAAAAAAAANiBcBUAAAAAAAAAAAAA7EC4CgAAAAAAAAAAAAB2IFwFAAAAAAAAAAAAADsQrgIAAAAAAAAAYEOxYsV0/fr1wu4GANx1rl+/LhcXl8LuRr4iXAUAAAAAAAAAwIb69esrOjq6sLsBAHedqKgoNWjQoLC7ka8IVwEAAAAAAAAAsKFz585atWpVYXcDAO46q1atUpcuXQq7G/mKcBUAAAAAAAAAABvat2+v7du3a+XKlYXdFQC4a6xcuVI7duxQ+/btC7sr+cq5sDsAAAAAAAAAAMCdzMPDwxh9tXnzZnXp0kVBQUFydXUt7K4BwB3l+vXrioqK0qpVq7Rjxw6tWrVK7u7uhd2tfEW4CgAAAAAAAABALipVqqRffvlF69at06xZszRkyBClpqYWdrfuCRkZGZIkR0cm2wTudi4uLmrQoIG6dOmiiRMn3nPBqkS4CgAAAAAAAACAXdzd3dWtWzd169atsLtyT/nrr78kSTVr1izkngBA7vgaCAAAAAAAAAAAAADYgXAVAAAAAAAAAAAAAOxAuAoAAAAAAAAAAAAAdiBcBQAAAAAAAAAAAAA7EK4CAAAAAAAAAAAAgB0IVwEAAAAAAAAAAADADoSrAAAAAAAAAAAAAGAHwlUAAAAAAAAAAAAAsAPhKgAAAAAAAAAAAADYgXAVAAAAAAAAAAAAAOzgXNgdAAAAdy5XV9fC7gKAOxTXBwDWcH0AYA3XBwDWcH0AcDdxSEhIyCzsTgAAAAAAAAAAAADAnY5pgQEAAAAAAAAAAADADoSrAAAAAAAAAAAAAGAHwlUAAAAAAAAAAAAAsAPhKgAAAAAAAAAAAADYgXAVAAAAAAAAAAAAAOxAuAoAAAAAAAAAAAAAdiBcBQAAAAAAAAAAAAA7EK4CAAAAAAAAAAAAgB0IVwEAAAAAAAAAAADADoSrAAAAAAAAAAAAAGAHwlXgHvfbb79pyJAhaty4sSpVqqRy5crJ399f3bp105IlS5SRkWGzfmZmphYvXqynn35aNWvWVIUKFdSwYUONGDFCJ0+ezPX8ea0PoGClp6dr/vz5euaZZ+Tv76/y5curdu3aevjhhzVy5EgdOnTIal2uD0DRsWTJEnl5eRn//v77b5vlU1NTNWPGDD322GPy9fVVpUqV1KxZM40ePVrx8fG5ni+v9QHkvytXrmjlypV6+eWXFRwcrGrVqqls2bKqVauWOnbsqNmzZyslJSXXdrh/AIqe5ORkTZ48Wa1atVLVqlVVpUoVtWrVSpMnT1ZycnJhdw/ALbp48aIWLlyoAQMGqEWLFqpcuXKOvzump6fbbIPPDUDR8dFHH5n9XcGWvN473I57D4eEhITMfGkJwB3n008/1fjx440A1cXFRcWLF9fly5eNMkFBQVq6dKk8PDxy1E9NTVWfPn20YcMGSZKzs7Pc3NyM+u7u7po/f74efvhhi+fPa30ABSsmJka9e/fWgQMHJEmOjo7y9PTU5cuXjQ9AEydO1P/93//lqMv1ASg6zp8/r+bNm+vSpUvGvt9//12+vr4WyycmJqpLly7as2ePJKlYsWJycXExPsCUK1dOq1atUt26dQukPoCC0ahRI/3111/Gzy4uLnJzc1NSUpKxr1atWlq2bJlq1KhhsQ3uH4CiJy4uTh06dNCJEyckScWLF5ck48sYNWvW1Jo1a1S5cuVC6yOAW1O2bFmlpaUZP7u6uqpYsWJmf3ds0qSJli5dKm9v7xz1+dwAFB0HDx5UmzZtdOPGDWNfQkKCxbJ5vXe4XfcejFwF7lGRkZEaO3asMjIyFBQUpM2bN+vcuXOKjY3VkSNHNHz4cElSVFSUxo0bZ7GNt99+Wxs2bJCzs7MmTpyouLg4xcbGKjo6Wo0bN9aVK1fUt29fxcbGFkh9AAXnzJkzevLJJ3XgwAHVqlVL8+bN06lTpxQTE6Nz585pz549mjRpkmrVqmWxPtcHoOh47bXXdOnSJTVv3tyu8v/5z3+0Z88eubu7a+bMmTp9+rROnTqljRs36r777tOFCxfUvXt3sz+65Gd9AAUjNTVVfn5+Gjt2rKKionT+/HmdPHlSJ06c0HvvvSc3NzcdO3ZM3bp10/Xr1y22wf0DULSkp6erV69eOnHihMqXL69ly5bpzJkzOnPmjMLCwlSuXDn99ddf6tmzZ66j2wDcedLS0vTggw9q8uTJ2rNnj/F3x0OHDmno0KFydHTU7t279eyzz1qsz+cGoGhIT0/X4MGDdePGDTVr1izXsnm5d7id9x6MXAXuUYMHD9bChQvl4eGh/fv3q1SpUjnKDBgwQGFhYfL29tbx48fNjh0/flzNmjVTenq63n77bb3++utmxy9evKjmzZvrwoUL6tWrl7766qt8rQ+gYHXv3l0bN26Un5+fNm7cmOt0HNlxfQCKjlWrVqlfv34KCgpS7969NWTIEEnWR65GRESoY8eOkqSZM2eqR48eZsePHz+uoKAgXb9+XW+++aZGjhyZr/UBFJzIyEi1atVKDg4OFo8vW7ZML730kiTp66+/Vvfu3c2Oc/8AFD0LFiww7h1+/PFHBQUFmR2PiorSk08+KUmaNm2aQkNDb3sfAdy6LVu2qE2bNlaPT5kyRePHj5ckrV+/Xi1atDCO8bkBKDqmTp2q0aNHq3v37qpRo4Y+/PBDSZZHrub13uF23nswchW4R509e1ZS1jB3S8GqlDW1lyRdvXo1x7GlS5cqPT1dJUuW1MCBA3McL1OmjJ5//nlJ0urVq3O0kdf6AArO3r17tXHjRknS5MmT/1WwKnF9AIqK+Ph4vf7663J1ddXUqVOtBirZLVq0SJJUrVo1devWLcfx++67T507d5YkLV68ON/rAyg4wcHBNq8DISEhxlIjpun5suP+ASh6TP+vt2zZMscfN6WsZYoCAwMl8f86cDeyFaxK0nPPPWds33xvwOcGoGg4evSoJk2aJG9vb02aNCnX8nm9d7id9x6Eq8A9qnr16pKkv/76y2wdpOxMNzYNGzbMcWzz5s2Ssi44ltZjlaQnnnhCUlY4u2PHjnytD6DgmG40atSokeuHIUu4PgBFw+uvv65//vlHr7/+umrXrm1XHdP7u23btnJ0tPxRw/T+PnnyZI6ZM/JaH0DhcXR0lLOzsyRZnGKL+wegaLl27Zq2b98uSXr88cetljO9b6Ojo3Xt2rXb0jcAt4erq6uxffO9AZ8bgHtfRkaGhgwZopSUFCNgtSWv9w63+96DcBW4R/Xr109OTk66fPmyevbsqd9++00ZGRmSpAsXLmjs2LEKCwuTm5ubxTVXDx06JEm6//77rZ4j+7EDBw7ka30ABSc6OlpS1re4EhISNHr0aDVq1Eg+Pj6qXr262rdvrzlz5pgtMp8d1wfg3vfDDz9o5cqVeuCBB/TKK6/YVefSpUvGzBm38v7Oa30AhWvfvn26dOmSJKlu3bo5jnP/ABQthw8fNv4GYc/7Nj09XUeOHLktfQNwe2zZssXYzn5vwOcGoGiYMWOGduzYobZt2+ZYMsSSvN473O57D8JV4B5Vt25dzZmj4ySvAAAgAElEQVQzR56enoqKitJDDz0kHx8fVa1aVbVr19a0adP09NNP66efflLTpk3N6l6+fNkY7VqpUiWr5yhZsqQx5bDppiY/6gMoWMeOHZMkubi4qFWrVpo6dapiYmLk5uampKQkRUdH69VXX9VTTz2VY/0Drg/AvS8hIUGvvfaaHB0d9cUXX8jFxcWueqdPnza2bb2/sx/L/v7Oa30AhWv06NGSpNKlS6tTp05mx7h/AIqeM2fOGNv8vw4UPTdu3NCECRMkSbVq1VJwcLBxjM8NwL3vxIkTmjBhgtzd3fXJJ5/YVSev9w63+96DcBW4h3Xq1Enff/+9atWqJUlKTU3V5cuXJUlpaWlKTk42vl2e3ZUrV4ztEiVK2DyH6bip3fyoD6DgXL9+XSkpKZKk7777TqdPn9Y777yjmJgY49+oUaPk6OioXbt2afDgwWb1uT4A97633npL586d08CBA4312e1h7/s7+7FbuT5Yqw+g8EyePFmbNm2SJE2YMCHHeu7cPwBFD/+vA0XbiBEjdOjQITk6OmrKlCnG0gESnxuAe11mZqaGDh2qq1ev6p133lHVqlXtqne3XRsIV4E7xOrVq+Xl5XXL/25eEDo9PV1vv/22HnnkEaWnp2vu3Lk6cOCAYmNjFR4ero4dO2rTpk3q3LmzlixZkuf+Ozg4FGp94F6Wn9eH7OucZGRkaODAgRoxYoQ8PT0lSZ6ennrjjTf0wgsvSJLWrl2rffv25an/XB+AgpPf9w8bN27UkiVLVK1aNb399tsF0ufs7+lbeX/ntT5QVOT39cGaxYsXa+LEiZKk5557TqGhofnSf+4fgKKH9y1wb5g8ebLmzZsnSXr77bfVpk2bW2qHzw3A3embb77R1q1b1bRpUw0YMKBAz1WYnxkIV4F71PTp0zVt2jRVrFhR4eHh6ty5sypVqiQPDw81atRIc+fOVb9+/ZSenq4333xTFy9eNOq6u7sb21evXrV5HtPx7HXyWh9AwSlRooScnJyMn4cNG2axXPb94eHhxjbXB+DelZSUpOHDh0uSPvvsM5UsWfJf1bf3/Z2cnGyxTl7rA7j9wsLCNGTIEGVmZiokJMTqlF/cPwBFj73v2+zHeN8Cd79PP/1U77//viTplVde0WuvvZajDJ8bgHvXyZMnNWbMGLm4uGjq1KlydLQ/gszrvcPtvvdwzr0IgNuhXbt2Onz48C3Xv/kPoF988YUkKTQ0VKVLl7ZYZ+jQofr222+VmJioLVu2qEuXLpIkDw8PeXp6KikpyWyu8pslJycrMTFRklShQgVjf17rAzCX39eHihUrKi4uTl5eXipfvrzFOpUrV5aHh4cuX76s2NhYYz/XB+DOkp/Xh0mTJunUqVPq3LmzmjVrZjaljpS1bpLJtWvXdOXKFTk5OcnNzU2S+boltt7f2ddIyv7+zmt9AOby+/7hZosXL9bgwYOVkZGhkJAQff3112Zf4MqO+weg6KlYsaKxfebMGdWtW9diOf5fB+4dkydPNoLVoUOHauzYsRbL8bkBuHeNHDlSV65c0dChQ1WtWrUcf1dITU01tk3HXFxc5Orqmud7h9t970G4CtwhXF1d5ePjky9tXbx4UefPn5ckm3OaZz/2999/mx3z9/fXzp07deDAAav1Dx48aGwHBATka30A/5Of1wdJeuCBBxQXF2d3+ZunyOD6ANw58vP6YLoX+P777/X999/bLNuiRQtJUsuWLbV27VpJUunSpVWhQgWdPXv2lt7fea0PwFx+3z9kN2/ePA0bNkwZGRl65plnNHPmTKvBqgn3D0DRUqdOHTk6OiojI0MHDhxQ27ZtLZYzvW+dnJzk5+d3O7sIIB9NmjRJH374oSTp5Zdf1rhx46yW5XMDcO8y/V3hiy++MAZ/WVOlShVJUq9evfTVV1/l+d7hdt97MC0wcA/KPtz+7NmzVstl/5aGh4eH2bGHHnpIkhQdHZ3jGyYmGzdulJQ1zWjz5s3ztT6AgvPoo49KkhISEnTu3DmLZeLi4oxF3X19fc2OcX0AYI3p/f3zzz8rMzPTYhnT+7tatWq677778rU+gII3d+5cvfLKK8rIyFD37t3tClYl7h+AosbNzc34MpbpvWmJ6VhgYKAxGwaAu8v48eONYHX48OE2g1UTPjcAuFle7x1u970H4SpwD/Ly8jLCkMWLF1udY/ybb74xtps2bWp2rEePHnJyctKVK1c0c+bMHHUvXbqkuXPnSpI6deqkEiVK5Gt9AAWna9euxlR/n332mcUyU6dOlZQ1avWJJ54wO8b1Abg3LVq0SAkJCVb/TZs2zSj7+++/KyEhwRi1atK7d29JWd9WXb58eY5znDhxwhgV26tXrxzH81ofQMH65ptvNHz4cGVmZqpnz56aMWOGXcGqxP0DUBSZ/l/ftm2btm/fnuP49u3bFRUVJYn/14G71dixYzVlyhRJ0ogRIzR69Gi76vG5Abg3bd261ebfFd58802jrGnfV199ZezL673D7bz3cHrrrbfG5KkFAHekzMxM/fLLL0pISFB4eLjq1KmjChUqyMnJSXFxcRo/frxmzJghSWrTpo2GDRtmVr9MmTKKj4/Xr7/+qujoaHl6eqpevXpydnbWoUOH1L9/fx09elTu7u767rvvVKpUqXytD6DglChRQk5OTtq8ebP27NkjZ2dn1a1bV66urkpKStLnn3+uzz//XJmZmerdu7eeffZZs/pcH4Ci6Y8//tCPP/4oSRo0aJC8vLxylPH19dVvv/2mY8eOafPmzapatar8/f3l6OioXbt26bnnntP58+dVqVIlzZo1S66urvlaH0DB+eabbzRixAhlZmaqb9+++vLLL81mzMkN9w9A0fPAAw9o3bp1On/+vH766Sfdf//9qlGjhiTpl19+0UsvvaTk5GTVq1dPH3/88b+6pgAofGPGjDG+sP3WW29p1KhRdtflcwNQNG3dulXbtm2TlHXduFle7x1u572HQ0JCguVx8wDuahkZGRo2bJjmzZtn7HNyclLx4sWVnJxs7KtXr55WrlypcuXK5Wjjxo0b6tu3rzZs2CBJcnZ2VokSJZSUlCRJcnd31/z58/Xwww9b7ENe6wMoOJmZmXrttdc0Z84cSVnXB09PTyUlJSk9PV2S9Pjjj+u7776zOEUG1weg6Fm4cKEGDx4sKWvk6s1ThpskJiaqS5cu2rNnjySpWLFiKlasmDGNZ7ly5bRy5UrVq1evQOoDKBilS5c2pt0rV65cjjXZs2vWrJkWLFiQYz/3D0DRExcXpw4dOujEiROSZHy2uHbtmiSpRo0a+uGHH1S5cuVC6yOAfy82Nta4H3dwcLD4d8XsunTpYkwdbMLnBqDoyb4+c0JCgsUyeb13uF33HoxcBe5RDg4Oat++vQIDA5Wenq6rV68qJSVFqamp8vb2VvPmzTV8+HBNnjxZnp6eFttwcnLSM888I19fXyUkJCgpKUkpKSmqWrWqQkJC9PXXX6thw4ZW+5DX+gAKjmm638aNG+vKlStKTExUYmKiSpUqpcDAQL3zzjt69913VaxYMYv1uT4ARY89I1clqXjx4urdu7fKlCljvL/T0tJUs2ZNhYaGavbs2apevbrV8+S1PoCC8cEHHxjbV69eVXJystV/5cqVU2hoaI42uH8Aih5PT0/17dtXxYsX16VLl5SUlCRHR0f5+fnpxRdf1IwZM+Tt7V3Y3QTwLyUkJBgz4kmyeV+QnJwsPz8/Pf3002Zt8LkBKHpyG7kq5f3e4XbdezByFQAAAAAAAAAAAADswGIGAAAAAAAAAAAAAGAHwlUAAAAAAAAAAAAAsAPhKgAAAAAAAAAAAADYgXAVAAAAAAAAAAAAAOxAuAoAAAAAAAAAAAAAdiBcBQAAAAAAAAAAAAA7EK4CAAAAAAAAAAAAgB0IVwEAAAAAAAAAAADADoSrAAAAAAAAAAAAAGAHwlUAAAAAAAAAAAAAsAPhKgAAAAAAAAAAAADYgXAVAAAAAAAAAAAAAOxAuAoAAAAAAAAAAAAAdiBcBQAAAAAAgKF///7y8vKSl5eXzp07V9jdAQAAAO4ohKsAAAAAgAI1btw4I6jx8vJSZGRkYXcJhSAtLc3sdXDzv8qVK6tu3brq0aOHvv76ayUkJBR2lwEAAAAgB8JVAAAAAECBSU9P15IlS8z2zZ8/v5B6gztZcnKy4uLitGHDBr3xxhtq2rSpfv7558LuFgAAAACYcS7sDgAAAAAA7l2//PKLTp8+bbZvzZo1SkpKkqenZyH1CoXN0dFR8+bNM9uXnJysP//8U2FhYTp79qwuXLigPn36aMOGDWrQoEEh9RQAAAAAzBGuAgAAAAAKzIIFC4zt0NBQLVy4UNeuXdOKFSvUr1+/QuwZCpODg4Oefvppi8dGjBihZ555Rjt37lRKSoomTJigZcuW3eYeAgAAAIBlTAsMAAAAACgQ8fHxWr9+vSSpQYMGeu+99+Tk5CTJPHQFsvP09NTkyZONn7ds2aLk5ORC7BEAAAAA/A/hKgAAAACgQCxdulQ3btyQJPXs2VM+Pj565JFHJEm//vqrDh48aLXun3/+KS8vL3l5eal79+52nW/Dhg1GneHDh1std+rUKU2YMEGPPfaYatWqpXLlyql27dp6+umnNW3aNF29etXmeQICAuTl5aUHH3xQknTt2jV99dVXat++vfz8/FSmTBk99NBDZnUSExMVFhamoUOHqk2bNvL19VXZsmXl6+uroKAgvf766zp06JBdj1OS/vnnH40ZM0YtWrRQpUqV5Ovrq9atW2vKlClKSEiQJLVr105eXl7y9vbOtb28Pif5rUGDBvLw8JAk3bhxQ7GxsbnWSU1N1fz589W7d2/VrVtXFSpUULVq1RQYGKg33nhDx44ds1q3fv368vLyUtOmTa2WGTJkiPH6Mv3uLRk2bJhRzlK/Dx8+rKlTp6pnz55q2LChKlasqPLly8vPz0+dO3fW9OnTdeXKFZuP9ciRIzle67GxsRo7dqyCgoLk6+srLy8vjRkzJkfd5ORkffLJJ2rTpo2qVq2qqlWrqkWLFho7dqzOnDlj87zZXbt2TbNnz1bXrl3l7++v8uXLq1KlSqpbt67atGmjV199VWvWrLntrx0AAACgoDEtMAAAAACgQJhGpzo7O+uZZ56RJPXq1Us//fSTJGn+/PmaOHGixboPPPCA6tatq/379ys8PFwXLlxQuXLlbJ5v6dKlxnaPHj0slvn88881ceJEpaSkmO2/cOGCLly4oK1bt2ratGlatGiRGjZsmOtjjImJUc+ePW0Go1evXpWfn5+uX7+e41hiYqISExN14MABzZ49W2+99ZbefPNNm+fcunWr+vbtq0uXLpnt37dvn/bt26f58+ebPRe5ye/nJL8UK1bM2L65bzfbu3ev+vXrp5iYGLP9KSkpSkpK0sGDBzVnzhy98847GjZsWI76wcHBWrhwoY4ePaozZ86oYsWKOcpERkYa2ydOnFBsbKyqVq1qtVz16tVzHJ87d67F80vS+fPndf78eW3evFlffvmlFi5caDPEzW79+vUaMGCAkpKSbJY7duyYunbtqpMnT5rtP3TokA4dOqR58+Zp/vz5uZ7v+PHjCgkJyfF837hxQ1evXlVcXJx+//13zZkzRwsWLLA6BTQAAABwNyJcBQAAAADkuz179ujAgQOSpEcffdQIRp988kmVKlXKGMk5duxYubi4WGyjZ8+eeuedd5SWlqbly5dr0KBBVs+XlJSkdevWScoKtVq0aJGjzLvvvqsvvvhCkuTu7q7OnTuradOmKlWqlOLj47Vx40Zt3LhRp0+fVocOHbRp0ybVqlXL6jmvX7+u3r1769ChQwoMDNTTTz+tSpUq6eLFi2bhVUZGhq5fv64KFSrooYce0gMPPCAfHx+5uroqPj5eu3bt0urVq3X16lVNmjRJZcuW1QsvvGDxnAcPHlSPHj2MaXIDAgLUo0cPVatWTfHx8frhhx+0efNm9enTR66urlb7XlDPSX45f/68Ll68aPxcpUoVq2V37NihLl26GCMkW7durbZt26py5cq6ceOG9u7dq8WLFyspKUljxoyRo6OjXn75ZbM2TOGqJEVEROQI50+ePKm///7bbF9ERIRCQ0PN9p0+fVrHjx832rzZ1atX5eDgoIYNGyooKEi1atVS6dKllZ6erpMnT2r9+vXasWOHTp8+rWeeeUZbt261GPRmd/jwYYWFhSklJUUhISFq3bq1PDw8dPLkSbNRy/Hx8erQoYMxOrVKlSrq27evateuraSkJK1fv17r16/Xs88+q9q1a1s9X0ZGhvr27WsEq/7+/urUqZOqVKkiT09PJSYm6ujRo4qKitLevXtt9h0AAAC4GzkkJCRkFnYnAAAAAAD3lldffVVz5syRlDVar3PnzsaxYcOGae7cuZKkefPmqWPHjhbbOHfunAICApSenq6GDRtq8+bNVs83f/58DR06VJL05ptvauTIkWbHf/zxR/Xu3VuS1KRJE82fP99iaLV27Vo999xzSktLU2BgoBHYZhcQEKDTp08bP0+aNMlm8JuamqqIiAg98sgjcnBwsFjm77//VteuXXX8+HGVKlVKBw4cUMmSJXOUa9eunbZv3y5J6tOnjz777DM5O5t/b3r27NkaMWKE8bOTk5Pi4+NztJWfz4k90tLSVLZsWZt9MnnjjTf09ddfS5Luu+8+/frrrxbLJSUlKTAwUKdOnVLJkiU1d+5ctW3bNke5M2fOqGvXrjp48KCcnZ21c+dO1axZ0zh+6tQpPfDAA5Kyntcvv/zSrP6CBQs0ZMgQFStWTPfff79+//139ezZUzNmzDArt2TJEg0cOFCSNGvWLHXr1s3s+P79++Xh4SFfX1+rj33hwoUaMmSIMjMz9cILL2jKlCk5yhw5ckTNmjUzfvb09NSyZcvUvHlzq+0OHDhQS5YskSS1adNGixYtyvEaCwsL08CBA5WRkWHsO3z4sHx8fIyfo6Oj1b59e0lS9+7dNXPmTJuvawcHB1WrVs1qvwAAAIC7DWuuAgAAAADyVUpKilasWCFJKlWqlBHEmPTs2dPYNo0WtMTHx0cPP/ywJOm3337T4cOHrZbNPg1u9vZNJkyYIEkqXbq0li5danU04FNPPWWMaoyOjrYa6pl06dLFZrAqSS4uLnr00UetBlCS5Ovrq8mTJ0vKmip4/fr1Ocrs3r3bCFZr166tTz/9NEewKkkvvviiQkJCbPZJKrjn5FYlJydr586dGjBggBGsSrK5fu6cOXN06tQpSdKUKVMsBquSVLFiRX3zzTdycHBQWlpajlC0cuXKRtgaERGRo75pX5MmTfT4449LMp8m+OZykuWRq3Xr1rUZrEpSaGioOnXqJElatmyZWdBpzfjx420Gq2fOnNHy5cslSV5eXpozZ47F8L579+5WR02b/PXXX2Z9ze11TbAKAACAew3hKgAAAAAgX/33v/9VYmKipKzw8ebpaVu0aGEEWT///LPOnj1rta3sQam1dUTj4uK0bds2o+0aNWqYHf/tt9+MKYp79+5tNlWqJd27dze2w8PDbZYdMGCAzeP/RvZwbPfu3TmO//jjj8b2iy++aHU6ZUn6v//7P5vnKsjnxB7p6eny8vIy+1e5cmU9/vjjCgsLM8oNHz5cffr0sdrO4sWLJUkVKlQw66MlAQEBqlevniRp06ZNOY6bwtCTJ0/mWEvU9Ppq3bq1WrduLSlrtKtpCmATU+Dq5+enChUq2OyPLabXQlJSks0vFUhZo1YtfaEgu3Xr1iktLU1S7r/vIUOG2AxMs4eyv//+u83zAgAAAPci1lwFAAAAAOSr+fPnG9vWQp+ePXtq4sSJSk9P1+LFi62OTnzqqafk4eGhy5cvKywsTO+++26O4CcsLEyZmVkr3ty8VqaUNdrSJDMzUz/88IPN/t+4ccPYPnr0qNVyLi4uaty4sc22souNjdXixYsVGRmpo0ePKjExUdeuXbNYNvu0wyZ79uwxti2NisyuUaNGcnd315UrVyweL6jnJL/4+flp5syZevDBB62WiY+PN4JHHx8fs/DZmmLFikmSjh07poyMDDk6/u87561bt9Z3330nKWsEavXq1Y2yptGxrVu3VuPGjVW8eHGlpKQoIiJC9913nyQpJiZGsbGxknL//WzevFkrV67Unj17FBcXpytXrhjh581Onz6t+++/32pbDz74YK7r62YfbfzQQw/ZLOvr66saNWqYjVDNLigoSK6urrp+/brGjx+v8+fPq0ePHkZwDQAAANzrCFcBAAAAAPkmJiZGW7dulSTVqFFDLVq0sFiuZ8+emjRpkjIzM7VgwQKr4aqbm5s6duyohQsXGiNUW7VqZVbGNKLV1dVVXbp0ydHGyZMnje3p06dr+vTpdj+eixcvWj1WtmxZI6zLzfTp0zVu3DilpKTYVf7y5cs59mUf4Xvz6Nybmda5NI1OvVlBPSf2cnR01Lx584yfU1JSFBsbqxUrVmj//v06cuSIpk6dqq+//trqc2wKMqWsEZS2RrjeLDMzUwkJCSpTpoyxL/vrauvWrXr22Wcl/W80aokSJdSkSRMVK1ZMzZo1U0REhCIjI9WvXz9JuU8JLEkJCQl6/vnnba4ffDNLr4XsrE3nnF32144pDLalZs2aVsPV8uXLa8KECXrjjTeUmpqqL7/8Ul9++aXKli2rpk2bKjAwUI888ojq1q2b63kAAACAuxHhKgAAAAAg3yxcuNDmKFKTatWqqWXLltq6dauOHz+uqKgoBQUFWSzbs2dPY23WpUuXmoVg2ddibdeunby8vHLUN01RfCtSU1OtHitevLhdbSxZskSjRo0yfg4MDFTLli1VrVo1ubu7G+FhRkaGEeilp6fnaCc5OVlSVnDq5uaW63lLlChh9VhBPSf2cnBw0NNPP51j//DhwzV+/HhNmTJF33//vUqWLKlp06ZZbCMvj0HK+Th8fHxUp04dHT582Gw9VdN28+bNjd9V69atjXDVxPSlAgcHhxxfADAJDQ01phj28PBQu3btVLduXfn4+MjNzU1OTk6SsqZenjNnjiTLr4Xs7HktmF479pa39dqRpJdeekn+/v6aMmWKIiIilJGRoX/++Ufr1q3TunXr9N5776levXoaP358riNlAQAAgLsN4SoAAAAAIF9kZGQYa2BK0gcffKAPPvjArroLFiywGq62atVKVatWVWxsrFavXq3JkycbweaSJUuMctbC3OxrRK5evVpt2rSxq0/55f3335ckOTs7a8mSJXrssccslsstLDQ9jszMTF27di3XkOzq1au5tiUVznNiyzvvvKPdu3dry5YtWrhwodq3b28xiM3+GHr37v2vRt9aExwcrMOHD+vMmTM6cuSI/Pz8jNDUtNZq9u0LFy7owIEDCggIMILW+++/X2XLls3R9qZNm4xgtWHDhlq5cqXZyNnsTpw4kefHkl3258raVNTZ2XrtmAQHBys4OFiXLl1SdHS0du/eraioKO3atUvp6en6448/1KVLF82ePVshISF56j8AAABwJ3HMvQgAAAAAALnbvHmz4uLibqnu6tWrra4P6uDgoO7du0uSkpKStG7dOklSWlqaVqxYIUny9vZW27ZtLdavXLmysW1tmtyCcuzYMWP62o4dO1oNViXzaW4tqVChgrGdW/iWmZlpNvXvzQrzOcmNg4ODJk2aZKyHOnr0aIujZStVqmRsHzx4MF/OnX0634iICB08eFDnz5/Pccy0pq2p3NGjR3XmzBlJ5iFsdps2bTK2x4wZYzVYlXJ/Lfxb2acOtjbdb3b2lDEpXbq0nnzySb333ntav369Dh48qP79+0vKeh2OHDlSGRkZ/77TAAAAwB2KcBUAAAAAkC8WLFhgbHft2lVvvvlmrv9Ma7ImJydr5cqVVtvu2bOnsW1aY/WXX37RhQsXJEkhISFycXGxWDf7iNg1a9bc+gO8BaZgTspax9KWX375xebxRo0aGdvZp6O1ZM+ePVbDaqlwnxN7BAQEqGPHjpKk48ePG9NCZ1epUiVVr15dUtb00LbCZHu1atVKDg4OkrKeY9M6qp6ennrwwQeNcs7OzgoMDMxRTrK+3mr214KtNXMzMzMVHh5+6w/CgsaNGxvbua33evLkyTyNnC1fvrymTJmigIAASVmP+9ixY7fcHgAAAHCnIVwFAAAAAOTZpUuXtHbtWkmSq6urPvnkE40cOdKufybZw9mb1a5d2wgXf/nlF8XHxxshq2Qevt6sSZMmql27tiQpKirKGPl6O2Rfu9JWYJWQkKAZM2bYbOvJJ580tmfPnm1z7dPcpsgtzOfEXq+++qqx/fHHH+vGjRs5yph+75mZmRo9enSez+nt7W2Eglu3btWWLVskZa2Ta1oP1cQ0QnXbtm1GYOno6KiWLVtabDv71LwxMTFW+7BixYp8DyPbtWsnZ+eslaEWLVqkS5cuWS07bdo0Y93kW+Xg4KCqVasaP6elpeWpPQAAAOBOQrgKAAAAAMizsLAwXb9+XZL0xBNPyMvLy656wcHBqlKliiRp586dOnLkiNWypiAtNTVVc+fONQJBPz8/s1GdN3N0dDQL3gYMGGAEwdbExMRo5MiRunjxol2Pwxp/f38jYF2zZo1+++23HGUSEhLUt29fY1pZa5o0aaLmzZtLko4eParhw4dbDK1mz55tTJdsTWE+J/aqX7++Hn/8cUlSXFyc5s2bl6PMoEGDjClvV61apREjRiglJcVqm8nJyfruu++0evVqq2VMI0/j4+O1ceNGSZan+jWVS0hIMF6L9evXt/razz7y9YMPPrAYjkdGRpqFyvmlYsWKeuaZZyRlfRHihRdesLiu6ooVKzR79mybbS1cuFCLFi2yuXbroUOHjLVq3d3dbY7UBQAAAO42DgkJCXn7OiIAAAAAoMgLDg7WH3/8ISlrZFz2UZa5GTt2rD799FNJ0ssvvx2Jj5AAAAZYSURBVKxx48ZZLHfx4kXVqVNHqampKlasmDGS8b333rMrkBo/frymTJli/NykSRM98cQT8vX1VbFixZSQkKDDhw9r+/bt2rt3ryTp8OHD8vHxMWsnICBAp0+fVo0aNYxytowaNcoYSerq6qo+ffqoYcOGcnV11Z9//qlFixbpwoUL6tWrlxYvXixJatOmjcUA8ODBg3r00UeNYCwgIEA9e/ZU1apVdfHiRa1Zs0abN29WrVq1VLx4ce3fv18uLi7G9MkF9ZzYIy0tTWXLlpUkOTk5KT4+Ptc6O3bs0BNPPCEpaxrgvXv3ytXV1azMnj171LFjR2Ma5PLly6tz586qV6+ePD09lZycrNjYWO3du1dbtmzRtWvXNH78eA0dOtTiOdeuXavQ0FCzfREREapfv77ZvoyMDNWsWVMJCQnGvqFDh2r8+PEW201OTlajRo107tw5SVnTRPfp00e+vr66fPmywsPDtWbNGjk7O6tz585atmyZJOmbb75RSEiIWVtHjhxRs2bNJEn9+vUz3j+2xMfHq1WrVkaIX61aNfXp00e1atXS5cuXtX79eq1bt05ly5ZV7dq1FR0dLSnn73vMmDH67LPPVLJkSbVp00aNGjVSlSpVVLx4cf3zzz/auXOn1qxZY4Svb7zxhkaNGpVr/wAAAIC7BeEqAAAAACBP9u3bZ4zs8/b21qFDh6yuf2rJ4cOHjRGZPj4++vPPP40pTG/Wq1cvsylsHRwctG/fPrMpSG357rvv9O677yopKSnXsmXLltXu3btzjET8t+FqSkqKunfvbrYu5806d+6sadOmqXLlypKsh6tS1ujGvn37moV62fn6+mrp0qUaMmSIdu/erdKlS9uckjg/nhN73Eq4KklPPfWUtm3bJkn68MMP9Z///CdHmcOHD+uFF17Q/v37c23P2dlZX375pdWppBMSElSzZk1lZGRIksqUKaPjx48ba7FmFxoaajbid9myZWrbtq3Vc+/YsUPdu3dXYmKixeMlS5bU1KlTlZSUZHxhIL/CVSlrxHNISIjV9Wm9vb21YMECzZo1y1gD+eZwddy4cfrkk09yPZejo6MGDhyoCRMmyNGRidMAAABw7+DuFgAAAACQJ/Pnzze2Q0JC/lWwKkl16tQxpkw9d+6cMRWrJTcHYq1atbI7WJWk5557Tn/88Yfef/99PfbYY6pUqZKKFy+uYsWKqXz58mrRooUGDRqksLAwHTx48JZCxJsVL15cK1eu1CeffKLmzZvL09NTrq6uqlKlip566iktWLBAc+fOzTEi05rg4GDt2rVLr7zyiurUqaMSJUrI09NT9erV0zvvvKMtW7bI39/fmL63dOnSd9xz8m+MGDHC2P70008tTvtbp04dRUZGavHixerdu7dq164tT09POTs7y9PTUwEBAerWrZs+//xzHTx40OYavV5eXqpXr57xc6tWrSwGq5L5dMHOzs5q0aKFzcfSvHlzbd26VS+99JJq1qwpV1dXeXp6yt/fX4MHD1ZkZKQxfW9BMI1Ifffdd1W/fn25u7vL3d1d/v7+GjZsmCIjIxUYGGizjbfffls//fST3nvvPbVt21a+vr5yc3OTk5OTSpUqpYYNG2rQoEGKjIzUxIkTCVYBAABwz2HkKgAAAAAA95iL/9/eHaooEIVhGP5ZFptMsxnEbDRqsxrtNpv3IJi8BW/CqskiVrNJME8RTMIYFkyynC0OM/s8+YSvvwf+PI9utxtFUcR4PH57rxQAAIC/830QAAAAama9XkdR/PylHgwGJa8BAACoD3EVAAAAKuRwOLzugb6z2WxitVpFRESz2YzJZPKpaQAAALX3XfYAAAAAIN18Po/b7Raj0Sh6vV60Wq14PB5xuVxit9vF8Xh8vV0ul5FlWYlrAQAA6sXNVQAAAKiQfr8f5/P51zeNRiMWi0XMZrMPrQIAAPgfxFUAAACokNPpFNvtNvb7fVyv18jzPO73e2RZFp1OJ4bDYUyn02i322VPBQAAqB1xFQAAAAAAACDBV9kDAAAAAAAAAKpAXAUAAAAAAABIIK4CAAAAAAAAJBBXAQAAAAAAABKIqwAAAAAAAAAJxFUAAAAAAACABOIqAAAAAAAAQAJxFQAAAAAAACCBuAoAAAAAAACQQFwFAAAAAAAASCCuAgAAAAAAACR4AtpjLzAQyFTbAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1820x780 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "3iWvj8_LlZyV", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "YBSRmVpRlZyX", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "nTa2uBOnlZya", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Nf7E3NDGlZyc", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment