Created
March 17, 2020 11:38
-
-
Save analyticsindiamagazine/2741d7d89cd49c3ffe4dda5ba9e46fcf to your computer and use it in GitHub Desktop.
COVID-19 - TimeSeries - Sample Submissions.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.4" | |
}, | |
"colab": { | |
"name": "COVID-19 - TimeSeries - Sample Submissions.ipynb", | |
"provenance": [], | |
"include_colab_link": true | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/analyticsindiamagazine/2741d7d89cd49c3ffe4dda5ba9e46fcf/covid-19-timeseries-sample-submissions.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "bX8THuepSX5f", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"\n", | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "2_wfNuWtSX5l", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Read the Data\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "FeFJIdRESX5m", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "8b2d0542-236f-4259-e002-fb8cfa037cba" | |
}, | |
"source": [ | |
"confirm_data_df_old = pd.read_csv(r'/Users/anurag/Downloads/time_series_19-covid-Confirmed (2).txt')\n", | |
"confirm_data_df_old.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Province/State</th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Thailand</td>\n", | |
" <td>15.0000</td>\n", | |
" <td>101.0000</td>\n", | |
" <td>2</td>\n", | |
" <td>3</td>\n", | |
" <td>5</td>\n", | |
" <td>7</td>\n", | |
" <td>8</td>\n", | |
" <td>8</td>\n", | |
" <td>...</td>\n", | |
" <td>43</td>\n", | |
" <td>43</td>\n", | |
" <td>43</td>\n", | |
" <td>47</td>\n", | |
" <td>48</td>\n", | |
" <td>50</td>\n", | |
" <td>50</td>\n", | |
" <td>50</td>\n", | |
" <td>53</td>\n", | |
" <td>59</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Japan</td>\n", | |
" <td>36.0000</td>\n", | |
" <td>138.0000</td>\n", | |
" <td>2</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>2</td>\n", | |
" <td>4</td>\n", | |
" <td>4</td>\n", | |
" <td>...</td>\n", | |
" <td>274</td>\n", | |
" <td>293</td>\n", | |
" <td>331</td>\n", | |
" <td>360</td>\n", | |
" <td>420</td>\n", | |
" <td>461</td>\n", | |
" <td>502</td>\n", | |
" <td>511</td>\n", | |
" <td>581</td>\n", | |
" <td>639</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Singapore</td>\n", | |
" <td>1.2833</td>\n", | |
" <td>103.8333</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>4</td>\n", | |
" <td>5</td>\n", | |
" <td>...</td>\n", | |
" <td>108</td>\n", | |
" <td>110</td>\n", | |
" <td>110</td>\n", | |
" <td>117</td>\n", | |
" <td>130</td>\n", | |
" <td>138</td>\n", | |
" <td>150</td>\n", | |
" <td>150</td>\n", | |
" <td>160</td>\n", | |
" <td>178</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Nepal</td>\n", | |
" <td>28.1667</td>\n", | |
" <td>84.2500</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Malaysia</td>\n", | |
" <td>2.5000</td>\n", | |
" <td>112.5000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>4</td>\n", | |
" <td>4</td>\n", | |
" <td>...</td>\n", | |
" <td>29</td>\n", | |
" <td>36</td>\n", | |
" <td>50</td>\n", | |
" <td>50</td>\n", | |
" <td>83</td>\n", | |
" <td>93</td>\n", | |
" <td>99</td>\n", | |
" <td>117</td>\n", | |
" <td>129</td>\n", | |
" <td>149</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 54 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 \\\n", | |
"0 NaN Thailand 15.0000 101.0000 2 3 5 \n", | |
"1 NaN Japan 36.0000 138.0000 2 1 2 \n", | |
"2 NaN Singapore 1.2833 103.8333 0 1 3 \n", | |
"3 NaN Nepal 28.1667 84.2500 0 0 0 \n", | |
"4 NaN Malaysia 2.5000 112.5000 0 0 0 \n", | |
"\n", | |
" 1/25/20 1/26/20 1/27/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 \\\n", | |
"0 7 8 8 ... 43 43 43 47 48 \n", | |
"1 2 4 4 ... 274 293 331 360 420 \n", | |
"2 3 4 5 ... 108 110 110 117 130 \n", | |
"3 1 1 1 ... 1 1 1 1 1 \n", | |
"4 3 4 4 ... 29 36 50 50 83 \n", | |
"\n", | |
" 3/7/20 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"0 50 50 50 53 59 \n", | |
"1 461 502 511 581 639 \n", | |
"2 138 150 150 160 178 \n", | |
"3 1 1 1 1 1 \n", | |
"4 93 99 117 129 149 \n", | |
"\n", | |
"[5 rows x 54 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 4 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "PV4TbEYTSX5p", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "648cbeee-f4f9-43a1-caeb-dacdf5e6a950" | |
}, | |
"source": [ | |
"confirm_data_df_old.shape" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(404, 54)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 5 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "MkwaHKmzSX5s", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "ed801a89-fc16-4ae3-dba9-4104cacb22a2" | |
}, | |
"source": [ | |
"confirm_data_df_old['Country/Region'].nunique(), confirm_data_df_old['Province/State'].nunique()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(114, 297)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "L6VMxXxpSX5v", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"# confirm_data_df.replace({'China' : 'Mainland China'}, inplace=True)\n", | |
"# confirm_data_df.replace({'Taiwan*' : 'Taiwan'}, inplace=True)\n", | |
"\n", | |
"confirm_data_df_old.replace({'Taiwan*' : 'Taiwan'}, inplace=True)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Z4CFqvRDSX5x", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "b55552d3-9449-42a5-8f64-7fca8a2503f5" | |
}, | |
"source": [ | |
"reco_data_df = pd.read_csv(r'/Users/anurag/Downloads/time_series_19-covid-Recovered (2).txt').iloc[:-2, :-1]\n", | |
"reco_data_df.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Province/State</th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Thailand</td>\n", | |
" <td>15.0000</td>\n", | |
" <td>101.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>2</td>\n", | |
" <td>...</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>31</td>\n", | |
" <td>33</td>\n", | |
" <td>34</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Japan</td>\n", | |
" <td>36.0000</td>\n", | |
" <td>138.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>...</td>\n", | |
" <td>32</td>\n", | |
" <td>43</td>\n", | |
" <td>43</td>\n", | |
" <td>43</td>\n", | |
" <td>46</td>\n", | |
" <td>76</td>\n", | |
" <td>76</td>\n", | |
" <td>76</td>\n", | |
" <td>101</td>\n", | |
" <td>118</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Singapore</td>\n", | |
" <td>1.2833</td>\n", | |
" <td>103.8333</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" <td>96</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Nepal</td>\n", | |
" <td>28.1667</td>\n", | |
" <td>84.2500</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Malaysia</td>\n", | |
" <td>2.5000</td>\n", | |
" <td>112.5000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>18</td>\n", | |
" <td>22</td>\n", | |
" <td>22</td>\n", | |
" <td>22</td>\n", | |
" <td>22</td>\n", | |
" <td>23</td>\n", | |
" <td>24</td>\n", | |
" <td>24</td>\n", | |
" <td>24</td>\n", | |
" <td>26</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 54 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 \\\n", | |
"0 NaN Thailand 15.0000 101.0000 0 0 0 \n", | |
"1 NaN Japan 36.0000 138.0000 0 0 0 \n", | |
"2 NaN Singapore 1.2833 103.8333 0 0 0 \n", | |
"3 NaN Nepal 28.1667 84.2500 0 0 0 \n", | |
"4 NaN Malaysia 2.5000 112.5000 0 0 0 \n", | |
"\n", | |
" 1/25/20 1/26/20 1/27/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 \\\n", | |
"0 0 2 2 ... 31 31 31 31 31 \n", | |
"1 0 1 1 ... 32 43 43 43 46 \n", | |
"2 0 0 0 ... 78 78 78 78 78 \n", | |
"3 0 0 0 ... 1 1 1 1 1 \n", | |
"4 0 0 0 ... 18 22 22 22 22 \n", | |
"\n", | |
" 3/7/20 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"0 31 31 31 33 34 \n", | |
"1 76 76 76 101 118 \n", | |
"2 78 78 78 78 96 \n", | |
"3 1 1 1 1 1 \n", | |
"4 23 24 24 24 26 \n", | |
"\n", | |
"[5 rows x 54 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 10 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Rg5slp8jSX50", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "b3ada999-be2d-4177-88b2-582a601455d5" | |
}, | |
"source": [ | |
"reco_data_df.shape" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(404, 54)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 11 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "nqxbGS8FSX53", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "bc30a800-15cd-4801-b55b-8c7d2c835af5" | |
}, | |
"source": [ | |
"death_data_df = pd.read_csv(r'/Users/anurag/Downloads/time_series_19-covid-Deaths (2).txt').iloc[:-2, :-1]\n", | |
"death_data_df.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Province/State</th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Thailand</td>\n", | |
" <td>15.0000</td>\n", | |
" <td>101.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Japan</td>\n", | |
" <td>36.0000</td>\n", | |
" <td>138.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>6</td>\n", | |
" <td>6</td>\n", | |
" <td>6</td>\n", | |
" <td>6</td>\n", | |
" <td>6</td>\n", | |
" <td>6</td>\n", | |
" <td>6</td>\n", | |
" <td>10</td>\n", | |
" <td>10</td>\n", | |
" <td>15</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Singapore</td>\n", | |
" <td>1.2833</td>\n", | |
" <td>103.8333</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Nepal</td>\n", | |
" <td>28.1667</td>\n", | |
" <td>84.2500</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Malaysia</td>\n", | |
" <td>2.5000</td>\n", | |
" <td>112.5000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 54 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 \\\n", | |
"0 NaN Thailand 15.0000 101.0000 0 0 0 \n", | |
"1 NaN Japan 36.0000 138.0000 0 0 0 \n", | |
"2 NaN Singapore 1.2833 103.8333 0 0 0 \n", | |
"3 NaN Nepal 28.1667 84.2500 0 0 0 \n", | |
"4 NaN Malaysia 2.5000 112.5000 0 0 0 \n", | |
"\n", | |
" 1/25/20 1/26/20 1/27/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 \\\n", | |
"0 0 0 0 ... 1 1 1 1 1 \n", | |
"1 0 0 0 ... 6 6 6 6 6 \n", | |
"2 0 0 0 ... 0 0 0 0 0 \n", | |
"3 0 0 0 ... 0 0 0 0 0 \n", | |
"4 0 0 0 ... 0 0 0 0 0 \n", | |
"\n", | |
" 3/7/20 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"0 1 1 1 1 1 \n", | |
"1 6 6 10 10 15 \n", | |
"2 0 0 0 0 0 \n", | |
"3 0 0 0 0 0 \n", | |
"4 0 0 0 0 0 \n", | |
"\n", | |
"[5 rows x 54 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 12 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "5G7jZ5dPSX55", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "203b6f87-f61e-4248-ff05-50ed146b9b0d" | |
}, | |
"source": [ | |
"death_data_df.shape" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(404, 54)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 13 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "YDoLf_ouSX58", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def preprocess(input_df):\n", | |
" \"\"\"Takes the raw dataframe andd groups it by country, Format needed for the hackathon.\"\"\"\n", | |
" \n", | |
" grp_confirm_data_df = input_df.groupby('Country/Region', as_index=False).sum()\n", | |
" grp_confirm_data_df.reset_index(inplace=True, drop=True)\n", | |
" return grp_confirm_data_df" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "IfyrizfQSX5_", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "n2EJLR49SX6E", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Group based on the Country Name " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "WazacuXrSX6F", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "fedcb66b-0207-4a41-f727-af2fe8473ae6" | |
}, | |
"source": [ | |
"#lets groupby countries and take the daily counts.\n", | |
"\n", | |
"grp_confirm_data_df = confirm_data_df_old.groupby('Country/Region', as_index=False).sum()\n", | |
"grp_confirm_data_df.reset_index(inplace=True, drop=True)\n", | |
"grp_confirm_data_df.shape\n", | |
"# grp_fin_df.to_csv('Train_timeseries.csv', index=False)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(114, 53)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 15 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "PX2p0_zFSX6H", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "346efabc-e27b-4a61-f658-b20345acb8a9" | |
}, | |
"source": [ | |
"#lets groupby countries and take the daily counts.\n", | |
"\n", | |
"grp_reco_data_df = reco_data_df.groupby('Country/Region', as_index=False).sum()\n", | |
"grp_reco_data_df.reset_index(inplace=True, drop=True)\n", | |
"grp_reco_data_df.shape\n", | |
"# grp_fin_df.to_csv('Train_timeseries.csv', index=False)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(114, 53)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 18 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"scrolled": false, | |
"id": "Q88Ehh4cSX6J", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "aabae1d4-f672-4456-fb85-5e4c9db7c501" | |
}, | |
"source": [ | |
"#lets groupby countries and take the daily counts.\n", | |
"\n", | |
"grp_death_data_df = death_data_df.groupby('Country/Region', as_index=False).sum()\n", | |
"grp_death_data_df.reset_index(inplace=True, drop=True)\n", | |
"grp_death_data_df.shape\n", | |
"# grp_fin_df.to_csv('Train_timeseries.csv', index=False)" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(114, 53)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 19 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"scrolled": true, | |
"id": "8XCj50FESX6M", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "47ceed29-68e0-40d5-9300-a434f61349aa" | |
}, | |
"source": [ | |
"grp_confirm_data_df.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>1/28/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>Afghanistan</td>\n", | |
" <td>33.0000</td>\n", | |
" <td>65.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>4</td>\n", | |
" <td>4</td>\n", | |
" <td>5</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>Albania</td>\n", | |
" <td>41.1533</td>\n", | |
" <td>20.1683</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>10</td>\n", | |
" <td>12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>Algeria</td>\n", | |
" <td>28.0339</td>\n", | |
" <td>1.6596</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>3</td>\n", | |
" <td>5</td>\n", | |
" <td>12</td>\n", | |
" <td>12</td>\n", | |
" <td>17</td>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" <td>20</td>\n", | |
" <td>20</td>\n", | |
" <td>20</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>Andorra</td>\n", | |
" <td>42.5063</td>\n", | |
" <td>1.5218</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>Argentina</td>\n", | |
" <td>-38.4161</td>\n", | |
" <td>-63.6167</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>2</td>\n", | |
" <td>8</td>\n", | |
" <td>12</td>\n", | |
" <td>12</td>\n", | |
" <td>17</td>\n", | |
" <td>19</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 53 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \\\n", | |
"0 Afghanistan 33.0000 65.0000 0 0 0 0 \n", | |
"1 Albania 41.1533 20.1683 0 0 0 0 \n", | |
"2 Algeria 28.0339 1.6596 0 0 0 0 \n", | |
"3 Andorra 42.5063 1.5218 0 0 0 0 \n", | |
"4 Argentina -38.4161 -63.6167 0 0 0 0 \n", | |
"\n", | |
" 1/26/20 1/27/20 1/28/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 \\\n", | |
"0 0 0 0 ... 1 1 1 1 1 \n", | |
"1 0 0 0 ... 0 0 0 0 0 \n", | |
"2 0 0 0 ... 3 5 12 12 17 \n", | |
"3 0 0 0 ... 1 1 1 1 1 \n", | |
"4 0 0 0 ... 0 1 1 1 2 \n", | |
"\n", | |
" 3/7/20 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"0 1 4 4 5 7 \n", | |
"1 0 0 2 10 12 \n", | |
"2 17 19 20 20 20 \n", | |
"3 1 1 1 1 1 \n", | |
"4 8 12 12 17 19 \n", | |
"\n", | |
"[5 rows x 53 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 20 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "6Bgf4KkkSX6O", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "b076757d-ecfb-41ad-eea5-a12264085509" | |
}, | |
"source": [ | |
"grp_reco_data_df.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>1/28/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>Afghanistan</td>\n", | |
" <td>33.0000</td>\n", | |
" <td>65.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>Albania</td>\n", | |
" <td>41.1533</td>\n", | |
" <td>20.1683</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>Algeria</td>\n", | |
" <td>28.0339</td>\n", | |
" <td>1.6596</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>Andorra</td>\n", | |
" <td>42.5063</td>\n", | |
" <td>1.5218</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>Argentina</td>\n", | |
" <td>-38.4161</td>\n", | |
" <td>-63.6167</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 53 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \\\n", | |
"0 Afghanistan 33.0000 65.0000 0 0 0 0 \n", | |
"1 Albania 41.1533 20.1683 0 0 0 0 \n", | |
"2 Algeria 28.0339 1.6596 0 0 0 0 \n", | |
"3 Andorra 42.5063 1.5218 0 0 0 0 \n", | |
"4 Argentina -38.4161 -63.6167 0 0 0 0 \n", | |
"\n", | |
" 1/26/20 1/27/20 1/28/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 \\\n", | |
"0 0 0 0 ... 0 0 0 0 0 \n", | |
"1 0 0 0 ... 0 0 0 0 0 \n", | |
"2 0 0 0 ... 0 0 0 0 0 \n", | |
"3 0 0 0 ... 0 0 0 0 0 \n", | |
"4 0 0 0 ... 0 0 0 0 0 \n", | |
"\n", | |
" 3/7/20 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"0 0 0 0 0 0 \n", | |
"1 0 0 0 0 0 \n", | |
"2 0 0 0 0 0 \n", | |
"3 0 0 0 0 0 \n", | |
"4 0 0 0 0 0 \n", | |
"\n", | |
"[5 rows x 53 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 21 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "m36sYTiDSX6Q", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "c6798315-5f4b-41d0-8ffa-bba8b6b40ec4" | |
}, | |
"source": [ | |
"grp_death_data_df.head()" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>1/28/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>Afghanistan</td>\n", | |
" <td>33.0000</td>\n", | |
" <td>65.0000</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>Albania</td>\n", | |
" <td>41.1533</td>\n", | |
" <td>20.1683</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>Algeria</td>\n", | |
" <td>28.0339</td>\n", | |
" <td>1.6596</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>Andorra</td>\n", | |
" <td>42.5063</td>\n", | |
" <td>1.5218</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>Argentina</td>\n", | |
" <td>-38.4161</td>\n", | |
" <td>-63.6167</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 53 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 \\\n", | |
"0 Afghanistan 33.0000 65.0000 0 0 0 0 \n", | |
"1 Albania 41.1533 20.1683 0 0 0 0 \n", | |
"2 Algeria 28.0339 1.6596 0 0 0 0 \n", | |
"3 Andorra 42.5063 1.5218 0 0 0 0 \n", | |
"4 Argentina -38.4161 -63.6167 0 0 0 0 \n", | |
"\n", | |
" 1/26/20 1/27/20 1/28/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 \\\n", | |
"0 0 0 0 ... 0 0 0 0 0 \n", | |
"1 0 0 0 ... 0 0 0 0 0 \n", | |
"2 0 0 0 ... 0 0 0 0 0 \n", | |
"3 0 0 0 ... 0 0 0 0 0 \n", | |
"4 0 0 0 ... 0 0 0 0 0 \n", | |
"\n", | |
" 3/7/20 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"0 0 0 0 0 0 \n", | |
"1 0 0 0 0 1 \n", | |
"2 0 0 0 0 0 \n", | |
"3 0 0 0 0 0 \n", | |
"4 0 1 1 1 1 \n", | |
"\n", | |
"[5 rows x 53 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 22 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Z0hyPiTcSX6S", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "bc56c8df-ef97-4a63-8669-fb7a0a93ca03" | |
}, | |
"source": [ | |
"grp_confirm_data_df[grp_confirm_data_df['Country/Region'] == 'India']" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>1/28/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>48</td>\n", | |
" <td>India</td>\n", | |
" <td>21.0</td>\n", | |
" <td>78.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>5</td>\n", | |
" <td>5</td>\n", | |
" <td>28</td>\n", | |
" <td>30</td>\n", | |
" <td>31</td>\n", | |
" <td>34</td>\n", | |
" <td>39</td>\n", | |
" <td>43</td>\n", | |
" <td>56</td>\n", | |
" <td>62</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1 rows × 53 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", | |
"48 India 21.0 78.0 0 0 0 0 0 \n", | |
"\n", | |
" 1/27/20 1/28/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 3/7/20 \\\n", | |
"48 0 0 ... 5 5 28 30 31 34 \n", | |
"\n", | |
" 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"48 39 43 56 62 \n", | |
"\n", | |
"[1 rows x 53 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 23 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "VYLhBWadSX6U", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "6213777a-0bf2-410f-9afb-58764d8fdd35" | |
}, | |
"source": [ | |
"grp_reco_data_df[grp_reco_data_df['Country/Region'] == 'India']" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>1/28/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>48</td>\n", | |
" <td>India</td>\n", | |
" <td>21.0</td>\n", | |
" <td>78.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>3</td>\n", | |
" <td>4</td>\n", | |
" <td>4</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1 rows × 53 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", | |
"48 India 21.0 78.0 0 0 0 0 0 \n", | |
"\n", | |
" 1/27/20 1/28/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 3/7/20 \\\n", | |
"48 0 0 ... 3 3 3 3 3 3 \n", | |
"\n", | |
" 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"48 3 3 4 4 \n", | |
"\n", | |
"[1 rows x 53 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 24 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "AedT-JycSX6W", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "3bc221b4-78e3-4f8c-a168-3529651e81e3" | |
}, | |
"source": [ | |
"grp_death_data_df[grp_death_data_df['Country/Region'] == 'India']" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Country/Region</th>\n", | |
" <th>Lat</th>\n", | |
" <th>Long</th>\n", | |
" <th>1/22/20</th>\n", | |
" <th>1/23/20</th>\n", | |
" <th>1/24/20</th>\n", | |
" <th>1/25/20</th>\n", | |
" <th>1/26/20</th>\n", | |
" <th>1/27/20</th>\n", | |
" <th>1/28/20</th>\n", | |
" <th>...</th>\n", | |
" <th>3/2/20</th>\n", | |
" <th>3/3/20</th>\n", | |
" <th>3/4/20</th>\n", | |
" <th>3/5/20</th>\n", | |
" <th>3/6/20</th>\n", | |
" <th>3/7/20</th>\n", | |
" <th>3/8/20</th>\n", | |
" <th>3/9/20</th>\n", | |
" <th>3/10/20</th>\n", | |
" <th>3/11/20</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>48</td>\n", | |
" <td>India</td>\n", | |
" <td>21.0</td>\n", | |
" <td>78.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1 rows × 53 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", | |
"48 India 21.0 78.0 0 0 0 0 0 \n", | |
"\n", | |
" 1/27/20 1/28/20 ... 3/2/20 3/3/20 3/4/20 3/5/20 3/6/20 3/7/20 \\\n", | |
"48 0 0 ... 0 0 0 0 0 0 \n", | |
"\n", | |
" 3/8/20 3/9/20 3/10/20 3/11/20 \n", | |
"48 0 0 0 1 \n", | |
"\n", | |
"[1 rows x 53 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 25 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Jsep8iE5SX6Y", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "eyckoQ4ESX6a", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Predict using Moving Average " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "WoCQ0WpPSX6b", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def cal_moving_avg(input_df, window=2):\n", | |
" \"\"\"Calculates Moving avg using the window size.\"\"\"\n", | |
" _df = input_df.rolling(window, axis=1).median()['3/10/20']\n", | |
" \n", | |
" return _df\n", | |
"\n", | |
"def cal_ewma(input_df, comm=0.3):\n", | |
" \"\"\"Calculates the exp wighted moving average using the window size.\"\"\"\n", | |
" _df = input_df.ewm(com=comm).mean()['3/10/20']\n", | |
" \n", | |
" return _df" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "fT9iU5z_SX6d", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"all_pred_df = pd.DataFrame()\n", | |
"all_pred_df_ew = pd.DataFrame()\n", | |
"\n", | |
"for df in [grp_confirm_data_df, grp_reco_data_df, grp_death_data_df]:\n", | |
" _df = cal_moving_avg(df, window=2)\n", | |
" ew_df = cal_ewma(df, comm=0.4)\n", | |
" all_pred_df = pd.concat([all_pred_df, _df], axis=1)\n", | |
" all_pred_df_ew = pd.concat([all_pred_df_ew, ew_df], axis=1)\n", | |
" \n", | |
"all_pred_df.columns =['Confirmed', 'Recovered', 'Death'] \n", | |
"all_pred_df_ew.columns =['Confirmed', 'Recovered', 'Death'] " | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "I4xbvKgTSX6f", | |
"colab_type": "code", | |
"colab": {}, | |
"outputId": "c633a4c7-7032-40fd-a043-82b26d8db7c5" | |
}, | |
"source": [ | |
"all_pred_df" | |
], | |
"execution_count": 0, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Confirmed</th>\n", | |
" <th>Recovered</th>\n", | |
" <th>Death</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <td>0</td>\n", | |
" <td>4.5</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>1</td>\n", | |
" <td>6.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>2</td>\n", | |
" <td>20.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>3</td>\n", | |
" <td>1.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>4</td>\n", | |
" <td>14.5</td>\n", | |
" <td>0.0</td>\n", | |
" <td>1.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>109</td>\n", | |
" <td>1124.0</td>\n", | |
" <td>7.5</td>\n", | |
" <td>25.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>110</td>\n", | |
" <td>1.0</td>\n", | |
" <td>0.0</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>111</td>\n", | |
" <td>59.5</td>\n", | |
" <td>9.5</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>112</td>\n", | |
" <td>353.0</td>\n", | |
" <td>18.5</td>\n", | |
" <td>5.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <td>113</td>\n", | |
" <td>30.5</td>\n", | |
" <td>16.0</td>\n", | |
" <td>0.0</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>114 rows × 3 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Confirmed Recovered Death\n", | |
"0 4.5 0.0 0.0\n", | |
"1 6.0 0.0 0.0\n", | |
"2 20.0 0.0 0.0\n", | |
"3 1.0 0.0 0.0\n", | |
"4 14.5 0.0 1.0\n", | |
".. ... ... ...\n", | |
"109 1124.0 7.5 25.0\n", | |
"110 1.0 0.0 0.0\n", | |
"111 59.5 9.5 0.0\n", | |
"112 353.0 18.5 5.0\n", | |
"113 30.5 16.0 0.0\n", | |
"\n", | |
"[114 rows x 3 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 28 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "TMOVR2GsSX6h", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "lHdlZEplSX6j", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"all_pred_df.to_excel(\"Sub_Mov_Median.xlsx\", index=False)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "n3vhNGLcSX6k", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment