Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save analyticsindiamagazine/54681cd0aa2758cdf6c0d8d453688d32 to your computer and use it in GitHub Desktop.
Save analyticsindiamagazine/54681cd0aa2758cdf6c0d8d453688d32 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Deep_Neural_Network.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "RGxe5H9TNCM7",
"colab_type": "text"
},
"source": [
"## Regression With Tensorflow 2.0"
]
},
{
"cell_type": "code",
"metadata": {
"id": "sX3FalwWNU2N",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "9a021702-8258-4123-d0a2-8bd7f36be4c9"
},
"source": [
"#Imports Tensorflow 2.0 in Google Colab\n",
"try:\n",
" %tensorflow_version 2.x \n",
"except Exception:\n",
" pass\n",
"\n",
"import tensorflow as tf"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"TensorFlow 2.x selected.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jMlc5th0JQXi",
"colab_type": "text"
},
"source": [
"X_train : An array consisting of the independent variables from the training set.\n",
"\n",
"y_train : An array consisting of the dependent variable / Target from the training set.\n",
"\n",
"X_test : An array consisting of the independent variables from the test set.\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "BK1u6YRBY1B5",
"colab_type": "code",
"colab": {}
},
"source": [
"\n",
"#Initializing The Neural Network\n",
"model = keras.Sequential([\n",
" keras.layers.InputLayer(input_shape = 'number_of_independent_variables'),\n",
" keras.layers.Dense(500, activation = \"relu\", kernel_initializer = 'uniform'),\n",
" keras.layers.Dense(1)\n",
"])"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "RpgxGwiMJ1pM",
"colab_type": "text"
},
"source": [
"The above code block initializes a neural network with :\n",
"\n",
"* An input layer consisting of n number of nodes where n is the number of independent variables.\n",
"\n",
"* A hidden layer with 500 nodes , activated by relu activation function and uniform initializaton of weights.\n",
"\n",
"* An output layer of a single node.\n",
"\n",
"---\n",
"\n",
"Click [here](https://www.tensorflow.org/api_docs/python/tf/keras/activations) for complete list of available **activation functions**.\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "W0V6N-DdbENO",
"colab_type": "code",
"colab": {}
},
"source": [
"#Compiling The Neural Network With an optimizer,a loss and metrics\n",
"model.compile(\n",
" optimizer='sgd',\n",
" loss='mean_squared_logarithmic_error',\n",
" metrics= ['RootMeanSquaredError']\n",
" )"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Fa0o8q35K7fU",
"colab_type": "text"
},
"source": [
"Click [here](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) for complete list of available **optimizers**.\n",
"\n",
"Click [here](https://www.tensorflow.org/api_docs/python/tf/keras/losses) for complete list of available **loss functions**.\n",
"\n",
"Click [here](https://www.tensorflow.org/api_docs/python/tf/keras/metrics) for complete list of available **metrics**.\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0n_p-xwCcEVU",
"colab_type": "code",
"colab": {}
},
"source": [
"#Training The Network With Training Data And Validating On A Fraction It\n",
"model.fit(X_train, y_train,epochs=20,validation_split = 0.2, shuffle=True)"
],
"execution_count": 0,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "9pv0X3GIL6Ie",
"colab_type": "text"
},
"source": [
"* The above code block trains the neural network using the training data (X_train and y_train) for 20 cycles specified by the epochs. One epoch is one complete cycle of training with the training data.\n",
"\n",
"* validation_split specifies the fraction of training samples to be used for validating or testing during the training process.\n",
"\n",
"* shuffle when set to true shuffles the training sample at each epoch.\n",
"\n",
"---\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "b2VMgEeWfA8h",
"colab_type": "code",
"colab": {}
},
"source": [
"#Predicting Using The Trained Network\n",
"predictions = model.predict(X_test)"
],
"execution_count": 0,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment