Last active
April 21, 2023 18:17
-
-
Save andersy005/349378feffc2af0f896f6d684294d7eb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "82ed25e1-5b74-4feb-9584-46ac7c07ba81", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [], | |
"source": [ | |
"import xarray as xr\n", | |
"import matplotlib.pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "252be04f-402e-4563-8a1b-fd87fd0810d0", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [], | |
"source": [ | |
"store = 'https://carbonplan-data-viewer.s3.amazonaws.com/demo/dryspells_corn/CanESM5-ssp370-full-time-extent.zarr'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "1f6a1ac2-e0a4-41d6-b747-45de9c0e0a46", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", | |
"<defs>\n", | |
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", | |
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", | |
"</symbol>\n", | |
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", | |
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", | |
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", | |
"</symbol>\n", | |
"</defs>\n", | |
"</svg>\n", | |
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", | |
" *\n", | |
" */\n", | |
"\n", | |
":root {\n", | |
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", | |
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", | |
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", | |
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", | |
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", | |
" --xr-background-color: var(--jp-layout-color0, white);\n", | |
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n", | |
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", | |
"}\n", | |
"\n", | |
"html[theme=dark],\n", | |
"body[data-theme=dark],\n", | |
"body.vscode-dark {\n", | |
" --xr-font-color0: rgba(255, 255, 255, 1);\n", | |
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n", | |
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n", | |
" --xr-border-color: #1F1F1F;\n", | |
" --xr-disabled-color: #515151;\n", | |
" --xr-background-color: #111111;\n", | |
" --xr-background-color-row-even: #111111;\n", | |
" --xr-background-color-row-odd: #313131;\n", | |
"}\n", | |
"\n", | |
".xr-wrap {\n", | |
" display: block !important;\n", | |
" min-width: 300px;\n", | |
" max-width: 700px;\n", | |
"}\n", | |
"\n", | |
".xr-text-repr-fallback {\n", | |
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-header {\n", | |
" padding-top: 6px;\n", | |
" padding-bottom: 6px;\n", | |
" margin-bottom: 4px;\n", | |
" border-bottom: solid 1px var(--xr-border-color);\n", | |
"}\n", | |
"\n", | |
".xr-header > div,\n", | |
".xr-header > ul {\n", | |
" display: inline;\n", | |
" margin-top: 0;\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type,\n", | |
".xr-array-name {\n", | |
" margin-left: 2px;\n", | |
" margin-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-obj-type {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-sections {\n", | |
" padding-left: 0 !important;\n", | |
" display: grid;\n", | |
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n", | |
"}\n", | |
"\n", | |
".xr-section-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-item input + label {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label {\n", | |
" cursor: pointer;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-item input:enabled + label:hover {\n", | |
" color: var(--xr-font-color0);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary {\n", | |
" grid-column: 1;\n", | |
" color: var(--xr-font-color2);\n", | |
" font-weight: 500;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary > span {\n", | |
" display: inline-block;\n", | |
" padding-left: 0.5em;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label {\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in + label:before {\n", | |
" display: inline-block;\n", | |
" content: '►';\n", | |
" font-size: 11px;\n", | |
" width: 15px;\n", | |
" text-align: center;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:disabled + label:before {\n", | |
" color: var(--xr-disabled-color);\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label:before {\n", | |
" content: '▼';\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked + label > span {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary,\n", | |
".xr-section-inline-details {\n", | |
" padding-top: 4px;\n", | |
" padding-bottom: 4px;\n", | |
"}\n", | |
"\n", | |
".xr-section-inline-details {\n", | |
" grid-column: 2 / -1;\n", | |
"}\n", | |
"\n", | |
".xr-section-details {\n", | |
" display: none;\n", | |
" grid-column: 1 / -1;\n", | |
" margin-bottom: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-section-summary-in:checked ~ .xr-section-details {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap {\n", | |
" grid-column: 1 / -1;\n", | |
" display: grid;\n", | |
" grid-template-columns: 20px auto;\n", | |
"}\n", | |
"\n", | |
".xr-array-wrap > label {\n", | |
" grid-column: 1;\n", | |
" vertical-align: top;\n", | |
"}\n", | |
"\n", | |
".xr-preview {\n", | |
" color: var(--xr-font-color3);\n", | |
"}\n", | |
"\n", | |
".xr-array-preview,\n", | |
".xr-array-data {\n", | |
" padding: 0 5px !important;\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-array-data,\n", | |
".xr-array-in:checked ~ .xr-array-preview {\n", | |
" display: none;\n", | |
"}\n", | |
"\n", | |
".xr-array-in:checked ~ .xr-array-data,\n", | |
".xr-array-preview {\n", | |
" display: inline-block;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list {\n", | |
" display: inline-block !important;\n", | |
" list-style: none;\n", | |
" padding: 0 !important;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li {\n", | |
" display: inline-block;\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:before {\n", | |
" content: '(';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list:after {\n", | |
" content: ')';\n", | |
"}\n", | |
"\n", | |
".xr-dim-list li:not(:last-child):after {\n", | |
" content: ',';\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-has-index {\n", | |
" font-weight: bold;\n", | |
"}\n", | |
"\n", | |
".xr-var-list,\n", | |
".xr-var-item {\n", | |
" display: contents;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > div,\n", | |
".xr-var-item label,\n", | |
".xr-var-item > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-even);\n", | |
" margin-bottom: 0;\n", | |
"}\n", | |
"\n", | |
".xr-var-item > .xr-var-name:hover span {\n", | |
" padding-right: 5px;\n", | |
"}\n", | |
"\n", | |
".xr-var-list > li:nth-child(odd) > div,\n", | |
".xr-var-list > li:nth-child(odd) > label,\n", | |
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", | |
" background-color: var(--xr-background-color-row-odd);\n", | |
"}\n", | |
"\n", | |
".xr-var-name {\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-dims {\n", | |
" grid-column: 2;\n", | |
"}\n", | |
"\n", | |
".xr-var-dtype {\n", | |
" grid-column: 3;\n", | |
" text-align: right;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-preview {\n", | |
" grid-column: 4;\n", | |
"}\n", | |
"\n", | |
".xr-index-preview {\n", | |
" grid-column: 2 / 5;\n", | |
" color: var(--xr-font-color2);\n", | |
"}\n", | |
"\n", | |
".xr-var-name,\n", | |
".xr-var-dims,\n", | |
".xr-var-dtype,\n", | |
".xr-preview,\n", | |
".xr-attrs dt {\n", | |
" white-space: nowrap;\n", | |
" overflow: hidden;\n", | |
" text-overflow: ellipsis;\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-var-name:hover,\n", | |
".xr-var-dims:hover,\n", | |
".xr-var-dtype:hover,\n", | |
".xr-attrs dt:hover {\n", | |
" overflow: visible;\n", | |
" width: auto;\n", | |
" z-index: 1;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs,\n", | |
".xr-var-data,\n", | |
".xr-index-data {\n", | |
" display: none;\n", | |
" background-color: var(--xr-background-color) !important;\n", | |
" padding-bottom: 5px !important;\n", | |
"}\n", | |
"\n", | |
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", | |
".xr-var-data-in:checked ~ .xr-var-data,\n", | |
".xr-index-data-in:checked ~ .xr-index-data {\n", | |
" display: block;\n", | |
"}\n", | |
"\n", | |
".xr-var-data > table {\n", | |
" float: right;\n", | |
"}\n", | |
"\n", | |
".xr-var-name span,\n", | |
".xr-var-data,\n", | |
".xr-index-name div,\n", | |
".xr-index-data,\n", | |
".xr-attrs {\n", | |
" padding-left: 25px !important;\n", | |
"}\n", | |
"\n", | |
".xr-attrs,\n", | |
".xr-var-attrs,\n", | |
".xr-var-data,\n", | |
".xr-index-data {\n", | |
" grid-column: 1 / -1;\n", | |
"}\n", | |
"\n", | |
"dl.xr-attrs {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" display: grid;\n", | |
" grid-template-columns: 125px auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt,\n", | |
".xr-attrs dd {\n", | |
" padding: 0;\n", | |
" margin: 0;\n", | |
" float: left;\n", | |
" padding-right: 10px;\n", | |
" width: auto;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt {\n", | |
" font-weight: normal;\n", | |
" grid-column: 1;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dt:hover span {\n", | |
" display: inline-block;\n", | |
" background: var(--xr-background-color);\n", | |
" padding-right: 10px;\n", | |
"}\n", | |
"\n", | |
".xr-attrs dd {\n", | |
" grid-column: 2;\n", | |
" white-space: pre-wrap;\n", | |
" word-break: break-all;\n", | |
"}\n", | |
"\n", | |
".xr-icon-database,\n", | |
".xr-icon-file-text2,\n", | |
".xr-no-icon {\n", | |
" display: inline-block;\n", | |
" vertical-align: middle;\n", | |
" width: 1em;\n", | |
" height: 1.5em !important;\n", | |
" stroke-width: 0;\n", | |
" stroke: currentColor;\n", | |
" fill: currentColor;\n", | |
"}\n", | |
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", | |
"Dimensions: (time: 84, lat: 600, lon: 1440)\n", | |
"Coordinates:\n", | |
" * lat (lat) float64 -59.88 -59.62 -59.38 ... 89.62 89.88\n", | |
" * lon (lon) float64 0.125 0.375 0.625 ... 359.4 359.6 359.9\n", | |
" * time (time) datetime64[ns] 2015-01-01 ... 2098-01-01\n", | |
"Data variables:\n", | |
" CornEnergy (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornLikely (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornLikely_binary (time, lat, lon) bool dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornPossible (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornPossible_binary (time, lat, lon) bool dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornSafe (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornSafe_binary (time, lat, lon) bool dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" DrySpellFraction (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" dry_spell_days (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray></pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-def9fc5f-aae5-47a6-a414-7f3afbc116f7' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-def9fc5f-aae5-47a6-a414-7f3afbc116f7' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 84</li><li><span class='xr-has-index'>lat</span>: 600</li><li><span class='xr-has-index'>lon</span>: 1440</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-014dd96d-e0a7-4ae8-a42d-e6c813580181' class='xr-section-summary-in' type='checkbox' checked><label for='section-014dd96d-e0a7-4ae8-a42d-e6c813580181' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-59.88 -59.62 ... 89.62 89.88</div><input id='attrs-71c0f755-e361-4d24-81d9-ae35fb4a158c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-71c0f755-e361-4d24-81d9-ae35fb4a158c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5a0663a2-8fc9-46bb-9df1-d71ad764f34f' class='xr-var-data-in' type='checkbox'><label for='data-5a0663a2-8fc9-46bb-9df1-d71ad764f34f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Y</dd><dt><span>standard_name :</span></dt><dd>latitude</dd></dl></div><div class='xr-var-data'><pre>array([-59.875, -59.625, -59.375, ..., 89.375, 89.625, 89.875])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.125 0.375 0.625 ... 359.6 359.9</div><input id='attrs-39f9d226-b2d4-43d8-932f-7fc1f24c720b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-39f9d226-b2d4-43d8-932f-7fc1f24c720b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-849b1180-7e9f-4854-b674-f46acd011d57' class='xr-var-data-in' type='checkbox'><label for='data-849b1180-7e9f-4854-b674-f46acd011d57' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>X</dd><dt><span>standard_name :</span></dt><dd>longitude</dd></dl></div><div class='xr-var-data'><pre>array([1.25000e-01, 3.75000e-01, 6.25000e-01, ..., 3.59375e+02, 3.59625e+02,\n", | |
" 3.59875e+02])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2015-01-01 ... 2098-01-01</div><input id='attrs-fb405cb6-99f6-49e7-b330-0a1b7c85a234' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fb405cb6-99f6-49e7-b330-0a1b7c85a234' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3a30d828-7fa7-4525-a731-8ba58c059285' class='xr-var-data-in' type='checkbox'><label for='data-3a30d828-7fa7-4525-a731-8ba58c059285' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array(['2015-01-01T00:00:00.000000000', '2016-01-01T00:00:00.000000000',\n", | |
" '2017-01-01T00:00:00.000000000', '2018-01-01T00:00:00.000000000',\n", | |
" '2019-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000',\n", | |
" '2021-01-01T00:00:00.000000000', '2022-01-01T00:00:00.000000000',\n", | |
" '2023-01-01T00:00:00.000000000', '2024-01-01T00:00:00.000000000',\n", | |
" '2025-01-01T00:00:00.000000000', '2026-01-01T00:00:00.000000000',\n", | |
" '2027-01-01T00:00:00.000000000', '2028-01-01T00:00:00.000000000',\n", | |
" '2029-01-01T00:00:00.000000000', '2030-01-01T00:00:00.000000000',\n", | |
" '2031-01-01T00:00:00.000000000', '2032-01-01T00:00:00.000000000',\n", | |
" '2033-01-01T00:00:00.000000000', '2034-01-01T00:00:00.000000000',\n", | |
" '2035-01-01T00:00:00.000000000', '2036-01-01T00:00:00.000000000',\n", | |
" '2037-01-01T00:00:00.000000000', '2038-01-01T00:00:00.000000000',\n", | |
" '2039-01-01T00:00:00.000000000', '2040-01-01T00:00:00.000000000',\n", | |
" '2041-01-01T00:00:00.000000000', '2042-01-01T00:00:00.000000000',\n", | |
" '2043-01-01T00:00:00.000000000', '2044-01-01T00:00:00.000000000',\n", | |
" '2045-01-01T00:00:00.000000000', '2046-01-01T00:00:00.000000000',\n", | |
" '2047-01-01T00:00:00.000000000', '2048-01-01T00:00:00.000000000',\n", | |
" '2049-01-01T00:00:00.000000000', '2050-01-01T00:00:00.000000000',\n", | |
" '2051-01-01T00:00:00.000000000', '2052-01-01T00:00:00.000000000',\n", | |
" '2053-01-01T00:00:00.000000000', '2054-01-01T00:00:00.000000000',\n", | |
" '2055-01-01T00:00:00.000000000', '2056-01-01T00:00:00.000000000',\n", | |
" '2057-01-01T00:00:00.000000000', '2058-01-01T00:00:00.000000000',\n", | |
" '2059-01-01T00:00:00.000000000', '2060-01-01T00:00:00.000000000',\n", | |
" '2061-01-01T00:00:00.000000000', '2062-01-01T00:00:00.000000000',\n", | |
" '2063-01-01T00:00:00.000000000', '2064-01-01T00:00:00.000000000',\n", | |
" '2065-01-01T00:00:00.000000000', '2066-01-01T00:00:00.000000000',\n", | |
" '2067-01-01T00:00:00.000000000', '2068-01-01T00:00:00.000000000',\n", | |
" '2069-01-01T00:00:00.000000000', '2070-01-01T00:00:00.000000000',\n", | |
" '2071-01-01T00:00:00.000000000', '2072-01-01T00:00:00.000000000',\n", | |
" '2073-01-01T00:00:00.000000000', '2074-01-01T00:00:00.000000000',\n", | |
" '2075-01-01T00:00:00.000000000', '2076-01-01T00:00:00.000000000',\n", | |
" '2077-01-01T00:00:00.000000000', '2078-01-01T00:00:00.000000000',\n", | |
" '2079-01-01T00:00:00.000000000', '2080-01-01T00:00:00.000000000',\n", | |
" '2081-01-01T00:00:00.000000000', '2082-01-01T00:00:00.000000000',\n", | |
" '2083-01-01T00:00:00.000000000', '2084-01-01T00:00:00.000000000',\n", | |
" '2085-01-01T00:00:00.000000000', '2086-01-01T00:00:00.000000000',\n", | |
" '2087-01-01T00:00:00.000000000', '2088-01-01T00:00:00.000000000',\n", | |
" '2089-01-01T00:00:00.000000000', '2090-01-01T00:00:00.000000000',\n", | |
" '2091-01-01T00:00:00.000000000', '2092-01-01T00:00:00.000000000',\n", | |
" '2093-01-01T00:00:00.000000000', '2094-01-01T00:00:00.000000000',\n", | |
" '2095-01-01T00:00:00.000000000', '2096-01-01T00:00:00.000000000',\n", | |
" '2097-01-01T00:00:00.000000000', '2098-01-01T00:00:00.000000000'],\n", | |
" dtype='datetime64[ns]')</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-31c715e1-dd78-4b07-ac0a-5548a6bd1836' class='xr-section-summary-in' type='checkbox' checked><label for='section-31c715e1-dd78-4b07-ac0a-5548a6bd1836' class='xr-section-summary' >Data variables: <span>(9)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>CornEnergy</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-5b118a81-fc63-4026-af21-01869bf11e88' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5b118a81-fc63-4026-af21-01869bf11e88' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d748e9f3-879e-48ab-a1e8-f80b0efe98cb' class='xr-var-data-in' type='checkbox'><label for='data-d748e9f3-879e-48ab-a1e8-f80b0efe98cb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 276.86 MiB </td>\n", | |
" <td> 5.25 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> float32 numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CornLikely</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-f80c5647-4e14-424b-9b7d-a8ae08e057f0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f80c5647-4e14-424b-9b7d-a8ae08e057f0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-aa628041-4c6f-43b1-b453-9694cd0387a5' class='xr-var-data-in' type='checkbox'><label for='data-aa628041-4c6f-43b1-b453-9694cd0387a5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 276.86 MiB </td>\n", | |
" <td> 5.25 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> float32 numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CornLikely_binary</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>bool</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-68e7f65c-d27f-4f5a-a2f7-dd5e7bed854d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-68e7f65c-d27f-4f5a-a2f7-dd5e7bed854d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0f945c0c-2910-4fa4-9d96-ec49493fcac0' class='xr-var-data-in' type='checkbox'><label for='data-0f945c0c-2910-4fa4-9d96-ec49493fcac0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 69.21 MiB </td>\n", | |
" <td> 1.31 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> bool numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CornPossible</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-0d733620-fca8-4fd1-8ecd-8b0a56e9ee84' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0d733620-fca8-4fd1-8ecd-8b0a56e9ee84' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-00f6ef98-c6c3-4ce3-9bc3-7100c2a32307' class='xr-var-data-in' type='checkbox'><label for='data-00f6ef98-c6c3-4ce3-9bc3-7100c2a32307' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 276.86 MiB </td>\n", | |
" <td> 5.25 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> float32 numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CornPossible_binary</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>bool</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-e7b9ca44-cbfa-42c0-8766-233e19f6a677' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e7b9ca44-cbfa-42c0-8766-233e19f6a677' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8b33b6c9-f0ff-45d1-a1fe-e0804f8d12c0' class='xr-var-data-in' type='checkbox'><label for='data-8b33b6c9-f0ff-45d1-a1fe-e0804f8d12c0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 69.21 MiB </td>\n", | |
" <td> 1.31 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> bool numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CornSafe</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-00509dd8-5c13-4239-b0fc-5ba6120ec761' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-00509dd8-5c13-4239-b0fc-5ba6120ec761' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-910f785d-ceca-450e-9581-de00a7506eaa' class='xr-var-data-in' type='checkbox'><label for='data-910f785d-ceca-450e-9581-de00a7506eaa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 276.86 MiB </td>\n", | |
" <td> 5.25 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> float32 numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>CornSafe_binary</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>bool</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-96f4f0a7-2d68-4323-b2f5-202b39858b37' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-96f4f0a7-2d68-4323-b2f5-202b39858b37' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c7de9b1f-55ff-4100-b564-b63697294ef5' class='xr-var-data-in' type='checkbox'><label for='data-c7de9b1f-55ff-4100-b564-b63697294ef5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>tasmin: area: mean time: minimum tasmax: area: mean time: maximum</dd><dt><span>description :</span></dt><dd>Temperature-based index used to estimate the development of corn crops. corn growth occurs when the minimum and maximum daily temperatures both exceed 4.44 degc and 10 degc, respectively.</dd><dt><span>history :</span></dt><dd>tasmin: \n", | |
"tasmax: \n", | |
"[2023-04-20 01:02:12] chu: CORN_HEAT_UNITS(tasmin=tasmin, tasmax=tasmax, thresh_tasmin='4.44 degC', thresh_tasmax='10 degC') - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Corn heat units (tmin > 4.44 degc and tmax > 10 degc)</dd><dt><span>original_name :</span></dt><dd>STMX</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd></dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 69.21 MiB </td>\n", | |
" <td> 1.31 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> bool numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>DrySpellFraction</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-82c832a8-2db9-4577-96e6-498ad8b93ebb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-82c832a8-2db9-4577-96e6-498ad8b93ebb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-df638318-79d1-44b2-8e2e-9d8457082ea7' class='xr-var-data-in' type='checkbox'><label for='data-df638318-79d1-44b2-8e2e-9d8457082ea7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>area: time: mean</dd><dt><span>comment :</span></dt><dd>includes both liquid and solid phases</dd><dt><span>description :</span></dt><dd>The annual number of days in dry periods of 14 day(s) or more, during which the total precipitation within windows of 14 day(s) is under 1.0 mm.</dd><dt><span>history :</span></dt><dd>[2023-04-20 01:02:12] dry_spell_total_length: DRY_SPELL_TOTAL_LENGTH(pr=pr, thresh='1.0 mm', window=14, op='sum', freq='YS', resample_before_rl=True) with options check_missing=any - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Number of days in dry periods of 14 day(s) or more, during which the total precipitation within windows of 14 day(s) is under 1.0 mm.</dd><dt><span>original_name :</span></dt><dd>PCP</dd><dt><span>standard_name :</span></dt><dd>precipitation_flux</dd><dt><span>units :</span></dt><dd>number_of_days</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 276.86 MiB </td>\n", | |
" <td> 5.25 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> float32 numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dry_spell_days</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(84, 128, 128), meta=np.ndarray></div><input id='attrs-aaba8c43-4b06-4b9d-aa9b-2d99291bd9aa' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-aaba8c43-4b06-4b9d-aa9b-2d99291bd9aa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-289d3b8e-3692-4a04-a91e-0cb7e3661057' class='xr-var-data-in' type='checkbox'><label for='data-289d3b8e-3692-4a04-a91e-0cb7e3661057' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>area: time: mean</dd><dt><span>comment :</span></dt><dd>includes both liquid and solid phases</dd><dt><span>description :</span></dt><dd>The annual number of days in dry periods of 14 day(s) or more, during which the total precipitation within windows of 14 day(s) is under 1.0 mm.</dd><dt><span>history :</span></dt><dd>[2023-04-20 01:02:12] dry_spell_total_length: DRY_SPELL_TOTAL_LENGTH(pr=pr, thresh='1.0 mm', window=14, op='sum', freq='YS', resample_before_rl=True) with options check_missing=any - xclim version: 0.42.0</dd><dt><span>long_name :</span></dt><dd>Number of days in dry periods of 14 day(s) or more, during which the total precipitation within windows of 14 day(s) is under 1.0 mm.</dd><dt><span>original_name :</span></dt><dd>PCP</dd><dt><span>standard_name :</span></dt><dd>precipitation_flux</dd><dt><span>units :</span></dt><dd>number_of_days</dd></dl></div><div class='xr-var-data'><table>\n", | |
" <tr>\n", | |
" <td>\n", | |
" <table style=\"border-collapse: collapse;\">\n", | |
" <thead>\n", | |
" <tr>\n", | |
" <td> </td>\n", | |
" <th> Array </th>\n", | |
" <th> Chunk </th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Bytes </th>\n", | |
" <td> 276.86 MiB </td>\n", | |
" <td> 5.25 MiB </td>\n", | |
" </tr>\n", | |
" \n", | |
" <tr>\n", | |
" <th> Shape </th>\n", | |
" <td> (84, 600, 1440) </td>\n", | |
" <td> (84, 128, 128) </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Dask graph </th>\n", | |
" <td colspan=\"2\"> 60 chunks in 2 graph layers </td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th> Data type </th>\n", | |
" <td colspan=\"2\"> float32 numpy.ndarray </td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
" </table>\n", | |
" </td>\n", | |
" <td>\n", | |
" <svg width=\"200\" height=\"120\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n", | |
" <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n", | |
" <line x1=\"10\" y1=\"32\" x2=\"30\" y2=\"52\" />\n", | |
" <line x1=\"10\" y1=\"42\" x2=\"30\" y2=\"63\" />\n", | |
" <line x1=\"10\" y1=\"50\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"50\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 30.84805948652768,20.84805948652768 30.84805948652768,70.84805948652769 10.0,50.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"20\" y1=\"0\" x2=\"41\" y2=\"20\" />\n", | |
" <line x1=\"31\" y1=\"0\" x2=\"52\" y2=\"20\" />\n", | |
" <line x1=\"42\" y1=\"0\" x2=\"62\" y2=\"20\" />\n", | |
" <line x1=\"52\" y1=\"0\" x2=\"73\" y2=\"20\" />\n", | |
" <line x1=\"63\" y1=\"0\" x2=\"84\" y2=\"20\" />\n", | |
" <line x1=\"74\" y1=\"0\" x2=\"94\" y2=\"20\" />\n", | |
" <line x1=\"84\" y1=\"0\" x2=\"105\" y2=\"20\" />\n", | |
" <line x1=\"95\" y1=\"0\" x2=\"116\" y2=\"20\" />\n", | |
" <line x1=\"106\" y1=\"0\" x2=\"126\" y2=\"20\" />\n", | |
" <line x1=\"116\" y1=\"0\" x2=\"137\" y2=\"20\" />\n", | |
" <line x1=\"127\" y1=\"0\" x2=\"148\" y2=\"20\" />\n", | |
" <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"10.0,0.0 130.0,0.0 150.8480594865277,20.84805948652768 30.84805948652768,20.84805948652768\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Horizontal lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n", | |
" <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n", | |
" <line x1=\"30\" y1=\"52\" x2=\"150\" y2=\"52\" />\n", | |
" <line x1=\"30\" y1=\"63\" x2=\"150\" y2=\"63\" />\n", | |
" <line x1=\"30\" y1=\"70\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Vertical lines -->\n", | |
" <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
" <line x1=\"41\" y1=\"20\" x2=\"41\" y2=\"70\" />\n", | |
" <line x1=\"52\" y1=\"20\" x2=\"52\" y2=\"70\" />\n", | |
" <line x1=\"62\" y1=\"20\" x2=\"62\" y2=\"70\" />\n", | |
" <line x1=\"73\" y1=\"20\" x2=\"73\" y2=\"70\" />\n", | |
" <line x1=\"84\" y1=\"20\" x2=\"84\" y2=\"70\" />\n", | |
" <line x1=\"94\" y1=\"20\" x2=\"94\" y2=\"70\" />\n", | |
" <line x1=\"105\" y1=\"20\" x2=\"105\" y2=\"70\" />\n", | |
" <line x1=\"116\" y1=\"20\" x2=\"116\" y2=\"70\" />\n", | |
" <line x1=\"126\" y1=\"20\" x2=\"126\" y2=\"70\" />\n", | |
" <line x1=\"137\" y1=\"20\" x2=\"137\" y2=\"70\" />\n", | |
" <line x1=\"148\" y1=\"20\" x2=\"148\" y2=\"70\" />\n", | |
" <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"70\" style=\"stroke-width:2\" />\n", | |
"\n", | |
" <!-- Colored Rectangle -->\n", | |
" <polygon points=\"30.84805948652768,20.84805948652768 150.8480594865277,20.84805948652768 150.8480594865277,70.84805948652769 30.84805948652768,70.84805948652769\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", | |
"\n", | |
" <!-- Text -->\n", | |
" <text x=\"90.848059\" y=\"90.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1440</text>\n", | |
" <text x=\"170.848059\" y=\"45.848059\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,170.848059,45.848059)\">600</text>\n", | |
" <text x=\"10.424030\" y=\"80.424030\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.424030,80.424030)\">84</text>\n", | |
"</svg>\n", | |
" </td>\n", | |
" </tr>\n", | |
"</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-d57cbb28-2eb1-4c99-b1f7-caec0c4b0ccb' class='xr-section-summary-in' type='checkbox' ><label for='section-d57cbb28-2eb1-4c99-b1f7-caec0c4b0ccb' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-fa0f42d0-26b9-48c1-b497-187395e90703' class='xr-index-data-in' type='checkbox'/><label for='index-fa0f42d0-26b9-48c1-b497-187395e90703' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([-59.875, -59.625, -59.375, -59.125, -58.875, -58.625, -58.375, -58.125,\n", | |
" -57.875, -57.625,\n", | |
" ...\n", | |
" 87.625, 87.875, 88.125, 88.375, 88.625, 88.875, 89.125, 89.375,\n", | |
" 89.625, 89.875],\n", | |
" dtype='float64', name='lat', length=600))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-c652b0d3-1204-45b3-b43c-6299fbc23545' class='xr-index-data-in' type='checkbox'/><label for='index-c652b0d3-1204-45b3-b43c-6299fbc23545' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 0.125, 0.375, 0.625, 0.875, 1.125, 1.375, 1.625, 1.875,\n", | |
" 2.125, 2.375,\n", | |
" ...\n", | |
" 357.625, 357.875, 358.125, 358.375, 358.625, 358.875, 359.125, 359.375,\n", | |
" 359.625, 359.875],\n", | |
" dtype='float64', name='lon', length=1440))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-74edad7c-59be-47e0-b941-78c10ce84efa' class='xr-index-data-in' type='checkbox'/><label for='index-74edad7c-59be-47e0-b941-78c10ce84efa' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex(['2015-01-01', '2016-01-01', '2017-01-01', '2018-01-01',\n", | |
" '2019-01-01', '2020-01-01', '2021-01-01', '2022-01-01',\n", | |
" '2023-01-01', '2024-01-01', '2025-01-01', '2026-01-01',\n", | |
" '2027-01-01', '2028-01-01', '2029-01-01', '2030-01-01',\n", | |
" '2031-01-01', '2032-01-01', '2033-01-01', '2034-01-01',\n", | |
" '2035-01-01', '2036-01-01', '2037-01-01', '2038-01-01',\n", | |
" '2039-01-01', '2040-01-01', '2041-01-01', '2042-01-01',\n", | |
" '2043-01-01', '2044-01-01', '2045-01-01', '2046-01-01',\n", | |
" '2047-01-01', '2048-01-01', '2049-01-01', '2050-01-01',\n", | |
" '2051-01-01', '2052-01-01', '2053-01-01', '2054-01-01',\n", | |
" '2055-01-01', '2056-01-01', '2057-01-01', '2058-01-01',\n", | |
" '2059-01-01', '2060-01-01', '2061-01-01', '2062-01-01',\n", | |
" '2063-01-01', '2064-01-01', '2065-01-01', '2066-01-01',\n", | |
" '2067-01-01', '2068-01-01', '2069-01-01', '2070-01-01',\n", | |
" '2071-01-01', '2072-01-01', '2073-01-01', '2074-01-01',\n", | |
" '2075-01-01', '2076-01-01', '2077-01-01', '2078-01-01',\n", | |
" '2079-01-01', '2080-01-01', '2081-01-01', '2082-01-01',\n", | |
" '2083-01-01', '2084-01-01', '2085-01-01', '2086-01-01',\n", | |
" '2087-01-01', '2088-01-01', '2089-01-01', '2090-01-01',\n", | |
" '2091-01-01', '2092-01-01', '2093-01-01', '2094-01-01',\n", | |
" '2095-01-01', '2096-01-01', '2097-01-01', '2098-01-01'],\n", | |
" dtype='datetime64[ns]', name='time', freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-187ab6aa-a4c0-4918-a9c1-117136875a36' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-187ab6aa-a4c0-4918-a9c1-117136875a36' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" | |
], | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (time: 84, lat: 600, lon: 1440)\n", | |
"Coordinates:\n", | |
" * lat (lat) float64 -59.88 -59.62 -59.38 ... 89.62 89.88\n", | |
" * lon (lon) float64 0.125 0.375 0.625 ... 359.4 359.6 359.9\n", | |
" * time (time) datetime64[ns] 2015-01-01 ... 2098-01-01\n", | |
"Data variables:\n", | |
" CornEnergy (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornLikely (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornLikely_binary (time, lat, lon) bool dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornPossible (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornPossible_binary (time, lat, lon) bool dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornSafe (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" CornSafe_binary (time, lat, lon) bool dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" DrySpellFraction (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>\n", | |
" dry_spell_days (time, lat, lon) float32 dask.array<chunksize=(84, 128, 128), meta=np.ndarray>" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ds = xr.open_dataset(store, engine='zarr', chunks={})\n", | |
"ds" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "97a274c7-804b-4348-a9a1-57694ffa2c4d", | |
"metadata": { | |
"tags": [] | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8oAAAN5CAYAAADQMcLvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZykVXn3j3/OuZeq6n16hpmenhlmhmHYR/ZdHsaFEZUQ4i6KYojRAJrRRBNioiTPE0iIIlGeYEj8EpQA+gtijJp5QESCCsrisIw4wjDDLD1Nz9B713Iv5/z+OPe5l1p6reqq6r7er1e9urvqrqpTXXXqPte5PtfnYlJKCYIgCIIgCIIgCIIgAAC83gMgCIIgCIIgCIIgiEaCAmWCIAiCIAiCIAiCiEGBMkEQBEEQBEEQBEHEoECZIAiCIAiCIAiCIGJQoEwQBEEQBEEQBEEQMShQJgiCIAiCIAiCIIgYFCgTBEEQBEEQBEEQRAwKlAmCIAiCIAiCIAgiBgXKBEEQBEEQBEEQBBGDAuVFyE9+8hMwxjA8PFzvoRAEUWVofhPEwoXmN0EQxPxBgfICZ/Pmzdi6dWviuvPOOw8HDx5EZ2dnfQY1S1zXxZ/92Z9h06ZNaG1tRW9vLz70oQ+hr68vcVyhUMAnPvEJLFu2DK2trbj00kuxf//+xDF/+7d/i/POOw8tLS3o6uqq+Jz/9m//hte97nVIp9Po6enBtddeO+U4H3nkEZx++ulIp9M46qij8LWvfS1x+44dO/DOd74T69atA2MMt9xyy7Rev5QS119/PXp7e5HJZLB582bs2LEjccztt9+OzZs3o6OjgxZTiwCa36Xze8+ePbjqqquwfv16ZDIZbNiwAV/4whfgOE7Jc9L8JhoZmt/lz9+XXnopjjzySKTTaaxcuRJXXHFFyeMANL8Jgpg7FCgvQmzbRk9PDxhj9R7KjMhms3j66afxV3/1V3j66afxne98B7/97W9x6aWXJo7bunUr7r//ftx777346U9/ivHxcVxyySXwfT88xnEcvPvd78Yf/dEfVXy+m2++GZ/73Ofw53/+59ixYwceeughvOUtb5l0jLt378bb3vY2XHDBBfjVr36Fv/iLv8AnP/lJ3HfffYnXcdRRR+Hv/u7v0NPTM+3Xf9NNN+Hmm2/GrbfeiieeeAI9PT246KKLMDY2lnjsiy++GH/xF38x7cclFhaLfX7/5je/gRAC//zP/4wdO3bgy1/+Mr72ta+VzAma30QzstjnNwC84Q1vwLe//W3s3LkT9913H3bt2oV3vetdiceh+U0QRFWQxILlwx/+sASQuOzevVs+/PDDEoAcGhqSUkp5xx13yM7OTvlf//Vf8phjjpGZTEa+853vlOPj4/Lf/u3f5Nq1a2VXV5e89tprped54eMXCgX5mc98Rvb29sqWlhZ51llnyYcffnheX+Mvf/lLCUC+8sorUkoph4eHpWVZ8t577w2POXDggOScy23btpXcX7/2YgYHB2Umk5E/+tGPZjSez372s/K4445LXPexj31MnnPOOWWPX7t2rfzyl7885eMKIWRPT4/8u7/7u/C6fD4vOzs75de+9rWS44vfY2LhQfNbMdn81tx0001y/fr14d80v4lGh+a3Yjrz+z//8z8lY0w6jiOlpPlNEET1oIzyAuYf//Efce655+KjH/0oDh48iIMHD2LNmjVlj81ms/jKV76Ce++9F9u2bcNPfvITvOMd78APf/hD/PCHP8Q3v/lN3H777fiP//iP8D4f+chH8LOf/Qz33nsvnn32Wbz73e/GxRdfjBdffLHimN761reira1t0stMGBkZAWMslE8/9dRTcF0XW7ZsCY/p7e3FSSedhJ///OfTftwHH3wQQggcOHAAxx9/PFavXo33vOc92Ldv36T3e+yxxxLPDQBvectb8OSTT8J13em/sCJ2796N/v7+xGOnUilceOGFM3pdxMKB5rdiOvN7ZGQE3d3d4d80v4lGh+a3Yqr5PTg4iH//93/HeeedB8uyAND8Jgiiepj1HgBROzo7O2HbNlpaWqaUCLmui9tuuw0bNmwAALzrXe/CN7/5Tbz66qtoa2vDCSecgDe84Q14+OGH8d73vhe7du3CPffcg/3796O3txcA8Kd/+qfYtm0b7rjjDtxwww1ln+df//VfkcvlqvL68vk8/vzP/xyXX345Ojo6AAD9/f2wbRtLlixJHLtixQr09/dP+7FffvllCCFwww034B//8R/R2dmJv/zLv8RFF12EZ599FrZtl71ff38/VqxYUfLcnufh8OHDWLly5QxfZfS4+rGKH/uVV16Z1WMSzQ3N74jJ5veuXbvw1a9+FV/60pfC62h+E40Oze+IcvP7z/7sz3Drrbcim83inHPOwfe///3wNprfBEFUCwqUCQBAS0tLeJIF1Bf4unXrEjvEK1aswMDAAADg6aefhpQSxxxzTOJxCoUCli5dWvF5Vq1aVZXxuq6L973vfRBC4J/+6Z+mPF5KOaOaLiEEXNfFV77ylXAX+J577kFPTw8efvhhvOUtb0n8bz74wQ+Gph/FzyOlLHt9Jf793/8dH/vYx8K///u//xuGYVR87GarVSPmn8U6v/v6+nDxxRfj3e9+N/7gD/4gvJ7mN7GQWIzz+zOf+QyuuuoqvPLKK/jrv/5rfOhDH8L3v/99MMZofhMEUTUoUCYAIJQsaRhjZa8TQgBQC03DMPDUU0+FJwHNZPKrt771rXj00UcnHcv4+Pikt7uui/e85z3YvXs3fvzjH4e70QDQ09MDx3EwNDSU2JUeGBjAeeedN+njxtE7xyeccEJ43RFHHIFly5Zh7969AIDt27eHt+kx9PT0lOx8DwwMwDTNSRcgcS699FKcffbZ4d+rVq3CwYMHAaid6fiu9sDAQMkuNUEUsxjnd19fH97whjfg3HPPxe233564jeY3sZBYjPN72bJlWLZsGY455hgcf/zxWLNmDR5//HGce+65NL8JgqgaFCgvcGzbTrhFVotTTz0Vvu9jYGAAF1xwwbTvN1fplj7Jvvjii3j44YdLTl6nn346LMvCgw8+iPe85z0AgIMHD+L555/HTTfdNO3nOf/88wEAO3fuxOrVqwGoWqjDhw9j7dq1AICjjz665H7nnnsu/uu//itx3QMPPIAzzjijZOFSifb2drS3tyeuW79+PXp6evDggw/i1FNPBaCcux955BH8/d///bRfF7GwoPldfn4fOHAAb3jDG3D66afjjjvuAOdJOw6a30QzQPN7eudvnfUtFAoAaH4TBFE9KFBe4Kxbtw6/+MUvsGfPHrS1tSUMbebCMcccgw984AP40Ic+hC996Us49dRTcfjwYfz4xz/Gpk2b8La3va3s/eYi3fI8D+9617vw9NNP4/vf/z583w93f7u7u2HbNjo7O3HVVVfhT/7kT7B06VJ0d3fjT//0T7Fp0ya8+c1vDh9r7969GBwcxN69e+H7fri7fPTRR6OtrQ3HHHMMfvd3fxd//Md/jNtvvx0dHR247rrrcNxxx+ENb3hDxTF+/OMfx6233opPf/rT+OhHP4rHHnsMX//613HPPfeExziOg1//+tfh7wcOHMD27dvR1tZW9uQNqGzA1q1bccMNN2Djxo3YuHEjbrjhBrS0tODyyy8Pj+vv70d/fz9eeuklAMBzzz2H9vZ2HHnkkVV774nGgeZ36fzu6+vD5s2bceSRR+KLX/wiDh06FD6HrvWk+U00AzS/S+f3L3/5S/zyl7/E61//eixZsgQvv/wyPv/5z2PDhg0499xzw9dH85sgiKpQF69tYt7YuXOnPOecc2Qmk5myvUScL3zhC/Lkk09OXPfhD39Y/u7v/m74t+M48vOf/7xct26dtCxL9vT0yN/7vd+Tzz77bE1ey+7du0vaZehLvK1FLpeT1157rezu7paZTEZecsklcu/evSWvZarHGRkZkb//+78vu7q6ZHd3t/y93/u9kscpx09+8hN56qmnStu25bp16+Rtt902rddx4YUXTvq4Qgj5hS98Qfb09MhUKiX/1//6X/K5555LHPOFL3yh7GPfcccdU46baD5ofpfO7zvuuKPi48Sh+U00OjS/S+f3s88+K9/whjfI7u5umUql5Lp16+THP/5xuX///sTz0fwmCKIaMCkDzQpBEARBEARBEARBEKA+ygRBEARBEARBEAQRgwJlgiAIgiAIgiAIgohBgTJBEARBEARBEARBxKBAmSAIgiAIgiAIgiBiUKBMEARBEARBEARBEDGoj3IRQgj09fWhvb0djLF6D4cgiBhSSoyNjaG3txecz3yfj+Y3QTQuNL8JYmEz1zlOEPMNBcpF9PX1Yc2aNfUeBkEQk7Bv3z6sXr16xvej+U0QjQ/Nb4JY2Mx2ji8EfvrTn+LNF1yInz7xC5xxxhn1Hg4xBdRHuYiRkRF0dXVh37596OjoqPdwCIKIMTo6ijVr1mB4eBidnZ0zvj/Nb4JoXGh+E8TCZq5zvNmRUqKXZzAOD12wsE/m6j0kYgooo1yElmt1dHTQiZYgGpTZyippfhNE40PzmyAWNou1NGLbtm0Yhot3YCX+A3145JFHcOGFF9Z7WMQkUIEAQRAEQRAEQRBEjRBC4ENvuwynoBPtMHEyOvDezW8BCXsbGwqUCYIgCIIgCIIgasR//Md/IAcfJ6INALAJHRiBix/84Ad1HhkxGRQoEwRBEARBEARB1ADP8/CH7/0ATkMnzCD0ssBxGjrx4d95B4QQdR4hUQkKlAmCIAiCIAiCIGrAm60eSADHBtlkzQlohwOBb3/72/UZGDElFCgTBEEQBEEQBEFUmXw+j6cwjDPRBQNJEzMDDKejCx97/xVwXbdOIyQmgwJlgiAIgiAIgiCIKvOmTC9scGxAS9nbj0ErOIA32z3zOzBiWlCgTBAEQRAEQRAEUUXGxsbwNEZwFrrAUL4lFgfDGejCUxhBLkd9lRsNCpQJgiAIgiAIgiCqyJs61qATFo5EZtLjjkILMjDwppZV8zQyYrpQoEwQBEEQBEEQBFElBgcH8QxGJ80maxgYzkQXfoURjI6OztMIielAgTJBEARBEARBEESVeOPS9ViOFHqRntbxa5BGFyy8sfPIGo+MmAlNEyh7noe//Mu/xPr165HJZHDUUUfhb/7mbxK9x6SUuP7669Hb24tMJoPNmzdjx44ddRw1QRAEQRAEQRCLhb6+PuzAGM5C17Tvw8BwFrrwLEZx+PDh2g2OmBFNEyj//d//Pb72ta/h1ltvxQsvvICbbroJ//AP/4CvfvWr4TE33XQTbr75Ztx666144okn0NPTg4suughjY2N1HDlBEARBEARBEIuBi1YdizXI4AikZnS/lUhjJdJ40xEbajQyYqY0TaD82GOP4Xd/93fx9re/HevWrcO73vUubNmyBU8++SQAlU2+5ZZb8LnPfQ7veMc7cNJJJ+HOO+9ENpvF3XffXefREwRBEARBEASxkHn55ZexE+M4cwbZ5Dhnogu/xhj2799f3YERs6JpAuXXv/71eOihh/Db3/4WAPDMM8/gpz/9Kd72trcBAHbv3o3+/n5s2bIlvE8qlcKFF16In//85xUft1AoYHR0NHEhCGJhQPObIBYuNL8Jgmg0Lt7wOmxAK5bAmtX9l8HGWmSwZc3xVR4ZMRuaJlD+sz/7M7z//e/HcccdB8uycOqpp2Lr1q14//vfDwDo7+8HAKxYsSJxvxUrVoS3lePGG29EZ2dneFmzZk3tXgRBEPMKzW+CWLjQ/CYIopF4/vnn8TKyOGOW2WTNGejCbzGBl156qToDI2ZN0wTK3/rWt3DXXXfh7rvvxtNPP40777wTX/ziF3HnnXcmjmMsacEupSy5Ls51112HkZGR8LJv376ajJ8giPmH5jdBLFxofhME0Uj8zqazcDza0A5zTo/TBQsb0Yq3bjy5SiMjZsvc3sl55DOf+Qz+/M//HO973/sAAJs2bcIrr7yCG2+8ER/+8IfR09MDQGWWV65cGd5vYGCgJMscJ5VKIZWaWbE9QRDNAc1vgli40PwmCKJR+MUvfoH9yOP9WFWVxzsdnfgW+vDss8/ida97XVUek5g5TZNRzmaz4Dw5XMMwwvZQ69evR09PDx588MHwdsdx8Mgjj+C8886b17ESBEEQBEEQBLE4eOc5m7EJ7WiBUZXHa4OJ49GGS08+pyqPR8yOpgmUf+d3fgd/+7d/ix/84AfYs2cP7r//ftx88834vd/7PQBKcr1161bccMMNuP/++/H888/jyiuvREtLCy6//PI6j54gCIIgCIIgiIXGQw89hENwcDI6qvq4p6ITfcjjscceq+rjEtOnaaTXX/3qV/FXf/VXuPrqqzEwMIDe3l587GMfw+c///nwmM9+9rPI5XK4+uqrMTQ0hLPPPhsPPPAA2tvb6zhygiAIgiAIgiAWGlJKXP7mt+EUdCBVpWyyJgMDm9CBd533BuwXuUk9l4jawKSUst6DaCRGR0fR2dmJkZERdHRUd2eIIIi5Mdf5SfObIBoXmt8EsbBZiHP0P//zP/H+y96B92MVrBoIdQsQuAcH8F8PbMNFF11U9ccnJqdppNcEQRAEQRAEQRCNgO/7+Mhl78Zp6KxJkAwAKXCcgg58YMsloNzm/EOBMkEQBEEQBEEQxAy455574EHgeNS2xPNEtGMCPu6///6aPg9RCgXKBEEQBEEQBEEQ08RxHFxzxUdwOrpgoLa1wxY4TkMnrnrn++D7fk2fi0hCgTJBEARBEARBEMQ0eVNqJTgYNqJ1Xp7vOLRBQOLN5op5eT5CQYEyQRAEQRAEQRDENMhms3gaIzgTXeA1ziZrDDCcjk48iWEUCoV5eU6CAmWCIAiCIAiCIIhp8cbWVWiFgfXIzOvzHo1W2OB4U3rlvD7vYoYCZYIgCIIgCIIgiCkYGRnBdoziLHSBzVM2WcPBcCa68DRGMDExMa/PvVihQJkgCIIgCIIgCGIK3ti1FkthYRXSdXn+tcigHSbe2La6Ls+/2KBAmSAIgiAIgiAIYhIGBgbwHEZxJpbMezZZw8BwFrqwHaMYGhqqyxgWExQoEwRBEARBEARBTMKbVxyNXqTRg1Rdx7EKGRwBG2/qXlfXcSwGKFAmCIIgCIIgCIKowN69e/FrjONMdNV7KACAs9CF5zCG/v7+eg9lQUOBMkEQBEEQBEEQRAXesvZErEcGS2HXeygAgOVIYTXSuGjlMfUeyoKGAmWCIAiCIAiCIIgy7Ny5Ey9iAmc0SDZZcya68ALG8corr9R7KAsWCpQJgiAIgiAIgiDK8LbjTsMxaEUnrHoPJUE3bByFFmxZd2K9h7JgoUCZIAiCIAiCIAiiiN/85jfYixxOR2e9h1KWM9CJXZjA7t276z2UBQkFygRBEARBEARBEEX09fWhFQZaYdZ7KGXpgIU0DDL1qhEUKBMEQRAEQRAEQRBEDAqUiYbH+dm36z0EgiAIgiAIgiAWEY2pIyCIGPb576n3EAiCIAiCIIhFisHqPYJJkPUewMKFMsoEQRDEgsLf91y9h0AQBEEQRJNDgTJBEASxoDDWbKr3EAiCqAGDY9l6D4EgiEVEUwXKBw4cwAc/+EEsXboULS0tOOWUU/DUU0+Ft0spcf3116O3txeZTAabN2/Gjh076jhigiAIgiAIohp0t7fUewjEIoQBMBhr2Esjq8KbnaYJlIeGhnD++efDsiz893//N37961/jS1/6Erq6usJjbrrpJtx888249dZb8cQTT6CnpwcXXXQRxsbG6jdwgiAIgiAIYk6MZ3P1HgJBEIuMpjHz+vu//3usWbMGd9xxR3jdunXrwt+llLjlllvwuc99Du94xzsAAHfeeSdWrFiBu+++Gx/72Mfme8gEQRDEPCJ2/RJ8w1n1HgZBEDXAnCJtVpgYQ6q1fX4GQxDEoqBpMsrf+973cMYZZ+Dd7343li9fjlNPPRX/8i//Et6+e/du9Pf3Y8uWLeF1qVQKF154IX7+859XfNxCoYDR0dHEhSCIhQHN70WGFLO+q9j1yyoOhJgP5nN++7/+CcRLj9fs8YmpSWcykx8g/Io3OcMDVR4NsdgwWONeiNrRNIHyyy+/jNtuuw0bN27E//t//w8f//jH8clPfhLf+MY3AAD9/f0AgBUrViTut2LFivC2ctx4443o7OwML2vWrKndiyAaCu/gi3D7d8E9tHdG9wEwo/sQ9aNe83v/4Pi8PA+RRHpu4m/vwAtw+3cBANxXd096X8pENx/zOb+NEzaDH30OAMDfs71mz0NMn3x2AvlcDvlcTmWT27sqHmt3LUdhbBgAwp8EQRBT0TSBshACp512Gm644Qaceuqp+NjHPoaPfvSjuO222xLHMZbcWpFSllwX57rrrsPIyEh42bdvX03GTzQGzs++Hf0hPDApACkmDXzdgT1wD+2Fe2gvpGHBPbQX1hFHwhnqR2F0cB5GTcyWes3v1d1tODg8MS/PtVgp/OiO0is9J/zV37MdLJjj7qu7gUnOA8XEg2vaFGtc6jW/jXWnzMvzEJVxRg6D+S6Y74D5DuC75Y8bHkBhdBD57ATADRTGR8LbCmPDdA4nCGJSmqZGeeXKlTjhhBMS1x1//PG47777AAA9PT0AVGZ55cqV4TEDAwMlWeY4qVQKqVSqBiMmGhH7/PcAAMRvfwbzmPPh7d8BMA6rZ13Z4wujg2CpNiXpjMk6neEBSMMGDGs+hk3MknrO75VdrQCUAU1byxSSQWLGpN78kZLrjJPeBO+ZB8BSGRjHXQB/99MA42AAzJUbp//gjE+ZgS6HO7AH1vJ1M74fMTtqOb/93U/DWH/atI71nnkA5slbpj6QmDN6jtmdywAAzlCgGCxTduEM9UOaaYAbAOOQUO7FkD4FyMSM0K7XxOKjaTLK559/Pnbu3Jm47re//S3Wrl0LAFi/fj16enrw4IMPhrc7joNHHnkE55133ryOlagP+Qe+Pq3jnEfvBT/mfAAA81ww4YWS6jiFiTGkOrohDQuSmwA3AcYBbgZ/G+onQUwCBcnzi3nyFhjHXQAAMNafBua5gPBm/XjWEUdO/9jl6+AO7Jn1cxGNw3SDZAAUJM8j1vJ1aoM7gLl52Et6wNxCybH2kh6AMUhWutRlc/AzqBb+8w/Bf/6heg+DIIhJaJpA+VOf+hQef/xx3HDDDXjppZdw99134/bbb8c111wDQEmut27dihtuuAH3338/nn/+eVx55ZVoaWnB5ZdfXufRE/NBestVib+dR+8te5x9wfvgPvE9AIGETnhlF9I+tzCezUGYKcCwVMBs2FGQbNjwZNVfBrHAoHrl+sJ8BywmydZ4B14ouU6XWER3nnkGgTLKzQ/VIDc25uoT4b66G97BF8HcHLwDL4B5eXgHXgjntXtoL5yRw+FmdsIILFCIMeEh1dFdj5cQYpz0pro+P0EQk9M0gfKZZ56J+++/H/fccw9OOukk/O///b9xyy234AMf+EB4zGc/+1ls3boVV199Nc444wwcOHAADzzwANrbG7tdwDef3l/vISxI7AveV/E2xo3E3+aq4xN/FyZU720JwBdSnWwZVxKuIJMsGQPFycRUrO5uAwAMjmXrPJKFRe57X6l4m/PYfckr5DRnagNkmYj6M5sa5JLPHFFTmO8AwlPn7iDoNVcdX3Iu15njwsQYmPAA4aufReVUBDEV9Xa2nuxCovDa0VS60UsuuQSXXHJJxdsZY7j++utx/fXXz9+gqsAVp62u9xAWJN6vtsE89eLyN5pW1HO1jCxLMg5fSvgiMoPj3AoTTFKqANoXFCoTUzM4lkV3e0u9h7FgyH33y8hc9qnKB8TaxEzXzTqUTMcXz1JS3TExLWSuvHnfTGqdiQj/1z+BccLmirczNw9wDn/fc2BCwFh7cvkDpQhMO2UUIHtOGEBrc06CIIhyNFWgvJD50YuH8OaNR9R7GE1NWOvDDRgnbK4cJANghpEIkL2+nTB7j00cI6S6QEqAM0hIMFnmdoKYAh0k53O5qXuBEhU5/JU/gd3eio6P/M2kx2nTvknhZuSGzbi6lMkwUZBMTIfUGz9U9noKkqeP//xDkIU8YFowT94C76kfwDz97WWPZb4LKYMlbJkSibAuWatJpFAlVn7U7QJSUla5ingHXijJ6BNEs9M00uuFDgXJc8c46U3qcsJmiJefBKB2pcvCDfCjzlD1TIyXBMmSG/CFhCckfAn1M/hbX3whF730Op+lFkjTJZ+dUHJBYlYc/sqfYNknvwQ/r/6H+R/eNunx7i++W/E2f99zaiHNWFBGwYO/Y6dEkmbCGeqvenuswo+/UdXHa0Qme42hSzNRgq7XlXlVplLcFz2BV4Cx7hR1CbLJYtcv1U0HXojMugJZtvYqYL4L+G7YWsrq2RA+5HzXpte7Pjmfy1X18RZ2kMxgsMa9ELWDAmViQeC/8oy67H4aAMCPOgMAwOx02eOZnVbOmdyE2Xus6pc6sCdcxHhCoru9JREk+xLwZZRJlgCWLlI5bS6fBwAw4alelEFNN1EZJjyk2jrL3hZfsDgjh+drSE0F4xzDt/8FhK9k1dLJT34HzhOOsuKlx8OFtA6KreXrAMMEOAc4T7rjlinJWEw4I4eVa3DAbNpllaNS5rXZyd73xahuPib9B5RiSWMv6YEz2DefQ2sK/N88CiAKjr2nfgCgQr/04Dix65cQLz8Jf8/2sBUcANUKqtL81VLs4Pc4i6k/dmF8hNRNBDENSHpNLAw4B0R00hMvPwnJOFhR+ybnsftgLFkOpNshzTSkmVKLllQrJDdDB8z2oKXPyq5W7D48BoMzWDIwTWAMfBFv4OWzE8i0qB7BqbZO1Y9SMuSzE0gH1xOl6CDZGR6A3bU8cVt8waL7g9YaZ6g/EQg1Ol42DykEln3ySxi+/S9gL+kqOSa/7XYwOw2WaQVPtyYyNvzoc8LfzdUnhr9LwwYQmP4wT/VaDVzwrRVRtqlRmI+aysLoIFLB51AyDufw/hIDRCJJyzv/FIAymctc+snEbcWKJXCz7PdANXEG+2B399bs8auO8OE99YPEBpgs41Zf+NEdYK0dMNq7ACmiFo3cAF+rZO7x/3dhbFjN6SB4ZrrEQoqGzICK3/4sbF9ZS/T5aDybg+NL8tAgiAos7i3zBuW5gyM1fXzdAsU5vHDcto01mxJ/86POULvK3AyzSABgtHeBWSlI0wIMS2WTDBvSTFVsE+GJyLhLAJBSLtpMMqACinIZZCY85HO5MNvcbLzy2vy0carl4hgI1BX7noO/77mKxzjDAzUdQy0QvoD01WYYMzha3v3ZkmPSF/+hcqYHJvUoSBBzsgdX2WVr+bqGrU2udZDsjBwONwoAqO9IRDWf1ZZiLyRy3/0yMpd+EvkHvj7pcXbX8lnL+t1De+EO7JmyXzfzZ987vB5I14H0XPXTdaIgmRvIff//AoiVWwgf0o9l7RmrbOZVBnPlxtLNiwZhPoLkuKJBQnlo9I9QGdVksAZwtp7sQtQOCpQbkE0ry8sz54o7sEfJ5wJZGPMr1/8025dm2BPVtODvfloFCYypGsQgYyReehws0w5pZyCtFkgrHWaVhZmq+Ngbl7fDERKOkPAFsLxTZU0XW7BcGB1EYXwEkAKp1vbwulRHt9qdlhLMd5BJl5e7z5WDw7X9TK5d2lbTxweiBYp38MWqP7b47c/C2nxdc+vt31H2WObmASmaRgI68MU/hvQFvKA+WfoC2fu+WHJc4Ud3ILX5A7DPfee0HzvV1qnqlA0LkpvNlYWrBcU95RmHvWw1YJgLanO1FkzqxF7MNKT98XpmvbktDVN9XrUZXRnEy08CvttUmxrSyUM6eaTe+CElvxYCEEJJ9bWUPdjUghCA5wLCh7H+tEmD5FR7l9oEZ6q8Yja90RcKusSsHNZilskRxCRQoNygvHSo+jWf1vJ1Ra1PSne089kJjGVzsDnD4FgWw+NN0vuVm5B2i8oss0CGzTmkYYYnRhlkjqVhQ1oplUVu74LkJrwp7KuPXd4BXwD+dPuxLkBY6BIqVcAMAIyjMD6Cwthw6CJaGBuuyfOv7Gp+WXcYhNXAJIofc35Ymw+g7EI8DJz18zdJHW5qSTuYwbHyuv87+XFv/giAyY28ypFuaY36pDcxcw2MnME+QIqE6kHGylfsZatranDm9e+q3mMFNa71IL3lqimPmUpZ4owcrvy/Dmrqi/F3Pw1/99OQVipydm4SmGnDvuB96o+ijHEoZY/VfsuiOvDJFDRAUNJSbNjXZGgPlrlid/eGqiIdHlOYTBDlad5vjAXOVIHbbGGBAySEDyZFIrPljBxWtwMwuKrDNTlrCimtuXIjzJUbAShDDr3rDm5CmrZyubVSkKYdBMzp8IQpwKgf8nQIW2qIsOVGqr0rcUiqvavkOqKUeZP9FbVAAzfh9u9KBD/NkFXuvOr/JIJk6QcZpSKcx+6D+8T3lJFXzPHeHdiTkJuHGz0Asjn1/SbAKhsANQlzlmUHPg/xzwSTImHsVUtJutlTvZrwSm2F5gvnsfvmdP8wsCtGe3GIMkFwEAiG81tKOIf3N8Ucj5dKiJHXVIbZdUIzr9z3vqL8B6zAU4AboUx5Mrfqwuhg8oom2jwoZs6txoJzt3toLyAFCmPDMIJMMtUoT029na0nu9BGR+0gM68G5bgVHTgwNIFVS6qcRQva0zDfCU/C3sEXIc0UYNqAz2Gawa4rYzA4A4vt3DqH96usQoCW3jYS3oEXQjdrTShR4wakpaTBkpsYmcihszWD/FgWB4Ym4EuJnCfgC8DxBVxf4swjlwDQ2eTF/XXEhFfab5ZxpNra6zeoJsTfs72sw2pVDH6kTLi/en071cI5KEEAN1TdaYW+wXG8X22DeerFcJ/4HqwzL53buKqI8H20vPe6xHXuL74LbqcBbiQW3d6BF2CtOh7OyGEVIAeBRD6XU5tkwaZPSybdFJuCNadcAFYsxyamxD73nfCffyhhKDdTg6242Z51xJGRYsCP3iPv4IvhBiYzDLXZE7Q8A4LvbNl8G0DxrHx+2+3gLe1gqQxgWspYjhvKKTvdDmPdKfD3PRf+L6Rhw1qxXm0QWLEAMLbJu9jw9u9Q5qaMK3Mzz4G9pAeF0UHkhU9GnARRgeb79lxErFrSipcPV1eCzaQA870ws6yyyx7gu4Cv/mZSwOBBkBycVAqjg3CG+sGEFwadzuH9iSC52j35Zk1RkKzquiyVUbZbVM0y45CxWiWdwfeFhJTlJdZCLtpzLICYVFAK5YQbBB56QVYryfVCxFh3CvzdTyeM5oAaGX1puSE31DwwbWVaFZMhugN74B18MZGZ8Z76QWioEw+S6ylp1Sy99h9KrmOmBXADLJNc8Ekz2BhjHJAy0S9ZSIm4mGQxz28AUdsczuEM9oVZ+HjAFvpBEJPiPfWD6kv5pVDy4wobXPqzHSoj9PHCh9u/C27/roRvQVx1EV63++mwVVO9KN4EAzdUkMx55L7OY68xQBZ9pzWboVktSUjxg9+dwT71v6WNMIKoCAXKDcx9z/XhqGXtePTl18LrDgxNoH9kYlbGRt7BF1W2QErA9wHPhbFmE5hbAPPy0Zel74J7BXDfBfMKKqiWAsxzAOHDWrEe3oEXYC9bnZA16cCzROo0z2gJtntor1roWWnASisDL8MKAwYdHB8cnsDyzlasWtIKX6psPgCcsqoLVsxOkLwuoDZV4n0oGQ8/N9Kw6jiw5sNYf1q4cBG//RmAuZt8iV2/jMxqimSbknFAlx7ojFNcqllU0yg9N9GqpfCTf1fP4eSVvLnBME9/O3h7F5BqVQFB306VgQsW1qmObqWcCTbJJGOQQKLsQiz2SFnPbSEq1nI2YkudRsQ8/e0ANyBeejzcgLK7e2e9oRgaccaDZSmUSizuOaA3wRCVWjHfURcvD54fg//rn8D9xXdhnLAZ3jMPhM8hfvszMDcHmWsMM8/cd7+Mwo/uAG9tB29pB2/pUPLrdEskwRYe/H3PwVizCVbPBkjDgrVivapzttLJTQUh1G2LEGPNpkBdICK/ESHAfDdsFUVUhkEFTI16IWoH/X8bmHdu6sWLA2NIm9HbtGpJK3o6W2dlbGSu3Kh2ZPWXpfAgXn4yOJF64ck3+hIN3LG9ggqCfBdWzwb4+54D8xx4B19MZJSZ8FEYG1Y1bTG3znrgHtobGHnxKCjgBqRhw+cWXHAIqRbJtsFwYEgtDGyD4df9o7A4w46DozhlVVf4mMet6JgXZ+SGJibL1MGVPsmSdGsWCB/+bx5VLq9Qc9Tr2zll65dKyKC9UfLKpEw+NK2KZ514FDT7v/5JmDW2z39PYqzOo/cCRQF0PRj44h9j9I7Pl97ATSXN1Js3pg1ptyhjJKh+1dqTQAfIfiw2bmvJlDzkoiM8BwSfG1e9117fzjoOqjkxjrsg8MOIdlmlYWE8O3v1lVZ9Qcpow1K/X8WbG1JEm5vCA3MLgaO0H6pFzJO3AAD85x9Sdwncp+vJa7d+Rs1v04YUAsy01bxOKXUIs+yEsVcx7qu7y5qZxcvGFiW+H5VRMBZsilE2mSAmgwLlBuelwSwGc0nTmr2Ds+/3qoMb5juJlighvhdIFGMBkZkC8woAosWSNMwwcwso2W26pRXMyyd3uOuEDpJDAjmaZAxusEj2hIQvgZwr4EuJQ6NZHNndhhN6OnDcig6cuLIDz/aN4Nm+2va1bjpi9W/E3ODHnA/juAvA0m0JR1M932aKsf606L0pzhYD4U/JlRt8vHbZXLlRLZ7sdEK+7Dx6r/pF+BC5CYjcBKRbubXcfMBtE9wutdiQjAOeC54fS3yvycCdHVC1yG0tGbS1ZOD6EnKxZ5Hj6M+O8NXmqeeEbQQbte9sw8MYpJUOZezpllaYs1AnWSvWx0qlVIZYbXKZoeorPs/136GBp++DuSpAl4V8yRyWrgsxMQY/MNLSvYvrwdJr/wHM4GCcg7e2wzr7smCMjupm4TrhsWGrrGBz0Vq+DtaK9TBXbgTPjTS9k3218Hc/HbTM5GEZCoQPVlBJgmYwfCOIekBmXg3O3pE8OtMm9g6O48hulc2ck0NzsGiWViYqyAt2u1Wm2YoW00Bk+CM8FTC76jZWFAhrp2N7SU9D9G6Mtz+AFKpXMjPApVoYM8awtC2T+L+W6x1tMIa817wumVWHR5I+9elJBsz57ARllmeIeOlxSMOOHE2FB1bG0XnaFJn56DnMpICUSUWAfh/1ul0aJphvAtwIF6e6ZYtuvZT73ldmP7YqseyTXyp/g6nk/8JMwypyUC5MlPo9SCQzyosdybgyb5QCCBKUi1WqWlUYT/gPzKYm1O3fFQXEQpRuVgoBsCA4BqIss4htknEDcPKJ1krOo/fCvuB9oQFe4Ud3QAoBWaiv5wi3guUpN5TCxbTCto8QArBsGMddAO/ACzBXHV9ZhTNJ5nkxYaw/Df4rz0RX6A2UgEXfP34aGI3cg7uRx9bkUFqowfnY2WvRmTLDYA4ACnNY2SlTKyUvZMJTJx0dMAcmTQkpjq6HMmww302cnHXfwuK6SuuIIxvi5BSXXDMpwBjgSqCrrQWdrep/oP+vB4cnYBUVIe8cGMWJKztw+pqu+R5642LYsDuXqQV10YkWUJ+pcgEJURlp2In/o7n6RKXMmMPjybhZlz6BxjJOAgySG4FUW/10BvuAoMc4szOJ2sU4mUs/CTHyWtnb6o1+7XG1C6CMBnOyNLO0tL0F1BmuCC3JlALwXXh9O5MGUPHFNjEl0jBVbXwM5sy8Btjq2aC+JwLpdGjGKYWS1EqpVACxNn5hGZWUYVvIOPltt8O+4H3Ib7s9vC715o8gveUqtLzzT2f3gqtE6/v/MpSJa5hlwTx5C8xTL4ZxwmYACINknS2PI1qXNlxXjnpirD059BgIFQe+kzjGOby/HkMjiIaFAuUmoDgu1mZTs8Favg7SSis5nd5tNgwlVQ4yTFqaE+5eAyp4DiRMoaRRCHh9O8su6hshC5Hq6FYZM24iDxNSAk7wz9Q1yYDKJDNW2vjp2OWz/z8vVOzOZQCQqI2L96QFQLLsmWJapcZbc80oAypADuasfr+0C6yQyt1dmVoFwXQgYZSGHb6H3lM/gPOzbyP/w9sST9Hy7s/Ofnw1QOz6pdq4YxzMSS6Yc/k8CkJ9jx4azZbct+ot+JqYeA2nDsTM3mNhrj4xvN5Ye3I9hta8lCtVma0bs+/HTDcDD5Hi/vbxMgsRC4aKTK0QmHMCgMw3hnlXCUEbKCl8lUX3/XADTxsguq/uDstLivspszxt2pYjDJKFB2PNpsTm16Kv4yaIIkh63QS4vsArr43P2UgqlERzE9JKqROPrXoM6syr+iOQaWoX46DvHnwPzLBU0CxiAbRf/+xxJWTgyuxJ9VoygTHakrSBscBQxWAMBU/A5gzD41l0tUV9F3V98ut6K7tCvjaWRcbkaMmka/UyGg79f1V/JHdy4tLrRuyz3XD4fslC2jjuglk9lHfgBVVzrLPFRvAVH28Zwxh4XKYVd7+2UuH7ylIZwLLBUWTq1UA4j94L44hVQKpVfZ9xE+b605SzcPB9lmlth5fNKdfSWarTnJHD4SbRoiEIrLz9OxKBMjFzeFG202lZCnu2D+a7alNXtzjkalNbe4uEWWURM/yKl1y4LsTEaGjYlfv+/0Xmsk/NdjQ1JXPJNWGbLenkwew0RH4C3q+2gWVa4f/mUXDhQ7oOeGvpxra0M9XpTb/A0IkQeC7Ey0/COOoMAJE6sFiRQyiMBlY3N/DQmh5K/TQBaZPDrYI+UOrFsmGprJHdoq6LyS+1OUjYj9GwIYyYi2xwMlYZaA7muTDWnTLnsdUUKWEwoOAJ5DyBQ6NZCCnBALS3ZHBERwsMzsrWKr6ut3PSIBlQTtmGXyjbR7rerbJqgTNyOLH40vXpAEqCZgqSp0amJs9olut1Wolw84LxyMmam+F81aUWjFUoaQrmt7H+NDA7A2Zaqs1Ng6LaxKRUUBzPpgHKkb21PfzTMhiExIxb6xXGRwApFpckMdZuqDhIjvdRLu4DTpRBCoiiOR7fqMrmZlZmIYWSxIcZZBH5hjCp2v1oeXaxqab0XIj8RKhYkZ6LzCXXzOZVzR+mlXDyt899pzL0KuRgHHeBkmAL5bsinXyiz7u9pGdaQfJrt34Gw7f/RS1G35Aw31FeGDJZ626u3Jj4zMQNJglisUKBchOwJGPh6CPapz5wCrSUTjIOaWUgrAykmYK0UiqzbNqQZrDPzTiEoYy9HF+qwDrVBiYFzFXHg/lKstPwQXJwErANjk7Dg8HUrmBbSwZZNzohdKUNZF2BUUdl72dCe0sGOVhwy+1lLCDHzcLYMArjIyUmUXGY74SteIjpoTeq4sTrg+MOr1OipZm6VUy4OWYn+qty3wUTPpiUSn4dOODDV1Jbf99zkIyDH3N+VV5jrWB2Wn03mTakaUHaQXun4PXrz2J7Swa+kLC4mv/x0oupSLV1AsIDdyYStboLCbd/V2SGFFc3lDOdCkpv/D3bwTecVfvBLQBYkdQ6rj6akRJJG216LqRbCAIebb4W1SeHfZPj3wXCh5gYhf/qXqS3XAWRm0Dm0k9W5fXVEmYY6hIEzM7Pvq2y4UJAvPQ4vKd+APPUi+HvfQFoXwq+ZAX83zw6o+dYeu0/wF7aXVJispDw92yHt39HuNGllQehiaRGePBfeUZlmotvI4hFCEmvm4D2Mm1QZgPzCsrplnGVYQLCRY80U8ogJJBcS27CFxImlMu2sNJgwldGXUAUUDcQ2w8Mo9UysHF5OwbHsuhub1FpMykhpIQhfGQ4oLxuW9Bhc7w2lkWryZDJZNDl5zAw4c3KPLDFGS7rGplovdXEFCbGgqxdsg2JvaSn5FjJOJzhAUjDTmabifIE8sk4urdp8e9TEtYnysicjxuQMuqfrsx/BFBkMARE9WnMyTVkEOQ98wCYZYdGPjzTChHUeEszDXATzvAAUkEWKZe3kMvnkUmnwZjqnyyAGbeEis9t7+CLC0qa6B18MQyOncG+0DFZGja4m6zpdl/dDSvo9V3c+YCoTNV9GwK5MeM8crgWPoCg5tjJA6atgsvguaUQsM68FNaZ6iEm9h5AS9kHrx9aZq0duJ2ffRvG0pWqnhpQmWPXDUtBvF9tC53u/ZHXwA8fAJtliYR08uC96+H87NsNW2oyW8RvfwakgtK90Dm9fMmcntdi5DBl0mIwNLjrNVEzaB40ON98ej/MaiYldZDMTUgzrdom2a1BViYFadjRiRWAC1Wf7AuZqD3VzomNRN4TMHiULRrL5pBq60SO2bD8AlId3Ui1dYbBGxMelra3YNRRJ4bO1gwyJsO4M/Oaa7u7N5FtyuWVnI5JgXy2QY1Spkk+O1HSk7ZcNtkZHlByLidLQfIMYL4LY82mOT+O/5tHgwWQV/LeANqHwIyMvcKfMrbQVjRikCx++zPwti6AG/Cff0gt/swUuJOD5CasFethdy1PSC0zabXBB6j5LQF4vgqWZ8tCCpIBhBJM7ZrMvIJSDXn50s8lY3Bf3V0+E0WURwrI1Nz8RQDlNs6EB1nIQRbygOeqgNh3VYbZc1VbJ8+FyE0AnqMk1vq7wEsqU4741JfnPKZqIl5+Ery9C/7QAJxH74X7xPfA27pgHHcBpOuCpdIwT70Yqc0fAAC4v/iuypJnx5B/4OvIXHINCr95EtLJQXSvmfHzt77/LyFGXoN9/nsS8u1mx3vmgbA0henSukBdVPw97x14QUn5J4bCzQpi4XHjjTfizDPPRHt7O5YvX47LLrsMO3fuTBwjpcT111+P3t5eZDIZbN68GTt2JBVVhUIBn/jEJ7Bs2TK0trbi0ksvxf79yRKloaEhXHHFFejs7ERnZyeuuOIKDA8P1/olVhUKlBscISUGxufggBtHG3bF65INGx44PAnVLsbKRI7XUDtoBkvWVDUqaZNDSOVi293eAoMxjAeGXaExWUA8eI3XJq/ubpt132Rz9YmhfDGTVnK6VGv7rHpmNiS6JrmjG3bnspJssuQm7O5eMCkoSJ4B1VIdsKKsNESsPQxjSUMvbkS/6wxDg7uVy1QbpJ1RdYknvQn8mPPBjzoDftuykp7JcdzYaW5pu/IjmO0r9fc9FxreFLfFa0a8vmBxVGT4BKCkNlkFyOrLshE3ShuaapTgCF/VJgdI4UP6vgqGtYN1mGk2ovvo4wuzbzk3H/CjzoDMdMDccDLsC94H3toB8+QtEC89rl5XkWmoFD7ADdjnvjP87mt9/18i99TDMEb7ZzWGx677OrL/v5sa2pdhpjAj9tkTSpZvrjq+fNlcINHXih1iYfLII4/gmmuuweOPP44HH3wQnudhy5YtmJiI1sU33XQTbr75Ztx666144okn0NPTg4suughjY5GT/NatW3H//ffj3nvvxU9/+lOMj4/jkksugR+bq5dffjm2b9+Obdu2Ydu2bdi+fTuuuOKKeX29c6WxV0aTcOONN4Ixhq1bt4bXTWcHpNn48OlrsLTFmvrAaSANK8wmI5BXexLwhITjSxQ8AU8isaD2pQRjDELKGZuOzDe+UOPVtGTSaGvJoKutJZENB5Qzszb66eaFxG2nLpv6/31oNFvSFgkARLpDZVZjpNomNwNrZHL5vGq5U8HhOkHwmdHyfGJ6GBOvVbX2Vfe3TkitgShYDuY+gKCeMcg6NfhmmLRbIFKlXg3W8nWT3q+9JZP4e2VXK1Z3l2b49g9G3gTOkFpoO4N9iWNEqj3aYFgIG2CxzweTAtYRR06aMbdWrG+I1n9NBePg2aFw03Y2ePt3qLIoISDzWQgnrzLITh6ykId0XRU0az8D0woDS+m5kLkxiGwTtEry3LD9WFhecfQ5ME9/e0kJin3uO8OsZ+rNHwmvb/vA5+Hu3zXp0/T9nz8qe333xu6w9Z3zs2/P6iU0JHrDRMqK6iX31d2QVoaUIpOgPW4a8TITtm3bhiuvvBInnngiTj75ZNxxxx3Yu3cvnnrqKQAqlrrlllvwuc99Du94xztw0kkn4c4770Q2m8Xdd98NABgZGcHXv/51fOlLX8Kb3/xmnHrqqbjrrrvw3HPP4Uc/+hEA4IUXXsC2bdvwr//6rzj33HNx7rnn4l/+5V/w/e9/vySD3cg0ZaD8xBNP4Pbbb8frXve6xPXT2QFpRtImw3MHS4OymaLlNnqRLLkBT0j4UmVVRRA06+yyzrTqSdgM7Y/4LEzyi52ZK9WTaTl1YXQQR3S0INXWGbq+es88oIIdxhdkKwqhM/KT1SUuIOOyeUV4JWY/s0Uyrtq1CS9wxNUBswzMvVi4oRG2gfIdMN9t+A0dc+XG+av5D94PXZvsHXgB3v4dsJavC7PXCyKrGvMckIzD7a8cYFgr1k96O1EeadiQVrpsV4XpUFwPLj0ncrUWAtJz1HXa/dowwCxbZRKDLLPITcC+4H3VeDm1xaxOUsA9UP5zuuuP1f8gs7T8d13n+ujcvVDqlGUhD3BD9UyexHzVWrG++rX0xLziOA5GR0cTl0KhMOX9RkZUfNHdrdbCu3fvRn9/P7ZsiTanUqkULrzwQvz85z8HADz11FNwXTdxTG9vL0466aTwmMceewydnZ04++yzw2POOeccdHZ2hsc0A003K8bHx/GBD3wA//Iv/4IlS5aE109nB6QchUKh5IPVSNz7zAG8PJRH2qjCW2WY0WIZau3sS1V/7EsZnsh1TTJnCHqPMrQVZWUaEctg2Li8Cu7gZYLBXD6vsu7jI4nAmm84C8PjWZgnb4HXvW7BSY51Apl7BVXfPUm7J2FUZ5FTTRp9fgMIXZvnTFBWASCsIWe+F2U+i+XVjKtssvCaokewM9gXmo3VgtXdbRiZUFm/4ucxVx2/IHsJM99TGysAYFgl5l1x3EN752lU06cZ5jcYBzwHToVIWasXKqJ7Isev8n2VRdZ1yEJEgbN+P7mhSixcJ2wH1egIqzr2Yjxd+jgDX/xjcEudo5b80d+Vvd+6v7+zKs/fkEjlEk4sXL7xjW+EtcD6cuONN056HyklPv3pT+P1r389TjrpJABAf7/6TlqxYkXi2BUrVoS39ff3w7btRBxW7pjly0sTR8uXLw+PaQaaLlC+5ppr8Pa3vx1vfvObE9dPZwekHDfeeGPiQ7VmzcxNIGrJ+05ehSVpCxPuzA2m4hTGhpV5V2DkIAwLrpAQEgljG8ZYGBzrn82QSQZUn+RqEO+9Goez8jLqrjZ1Ui6Wdzc7AyMTELp9kGFPaUrG3XyJ7LzeNPr8BlQfZdGypOLt0zGW8Z55QLnW+07UIkZ44eI5NOvy3UiGFxxfzq29EZFVWkQDwEuHkiqjvYPjGBiZQGdr428IVgv30N6g1zZTnxdnYmpTuQbLODXD/AYAcA6rwr+uXOeAOOaq49Wc9QqQuYlYUOwr2XUhHwbM0lEmXyHBXLfPfWe1XkltqdLna2zXKyXXLf/Tf0TP/zqzKo/fTLBMqyq3kwL86HMmP5ac7CsSefY05oUB+NCHPoSRkZHE5brrrpv0dV177bV49tlncc8995S+5qJyLBmUYk5G8THljp/O4zQSjXXWm4J7770XTz/9dNkdkunsgJTjuuuuS3yo9u3bV91BV4G9IznsHpp9fROAQHLJwqyTL2TYIkV/CJRpV2TcxRlr9LLFmlFcT8Z9F76orJ17bSyLsTnUoDUirlD9pj0hIcCm3Ajwg42YRqIZ5rc0bNhLesL+lsXMxlgmXPAE0lrdU1UH0mGLryZaGBUb8s0Fv6jWXkpgeefC2uiaCsk4pGGrmtDpBCh686WBaIb5rZUcJp/9yVTXJ4ebXPEyFxFkl51YwOw6Ub2yaI457hzeD5mqzhxc8dmvlr1e5pq7A8VsME7YTJLqRYJt2+jo6EhcUqnSNpCaT3ziE/je976Hhx9+GKtXRyqqnh61eVccOw0MDIQxVk9PDxzHwdDQ0KTHvPrqqyXPe+jQoZJYrZFpmtmzb98+/PEf/zHuuusupNOVM5wz3QFJpVIlH6xGo+AL/N5JK+f2IIxDmCkIMxUaeAkZGAFwBoszGDzIIkOGl8wk/+ta0j8y8xPabN2qy1EsNWfOBDKsclZ/aXujdaScO6uWqEVL3lPS/CkzytKfVJpdD5phflcjAGSGES6eS7ICUoB5jnLG9T0geL56Ol27r+6OHJenSTUVG8cuT34O1i6de/ueZsNethpm77HqjzLt3ophfuPJd5thfls9GwDGYQkHB4dnGajp94YbAOehk3Fo6JUdhRgbghgbVvXKQCjDbpo2P6Zdc3+PlvdOnl1bqDDhTeu7XhqNtdFN1AYpJa699lp85zvfwY9//GOsX580aFy/fj16enrw4IMPhtc5joNHHnkE5513HgDg9NNPh2VZiWMOHjyI559/Pjzm3HPPxcjICH75y1+Gx/ziF7/AyMhIeEwz0DSB8lNPPYWBgQGcfvrpME0TpmnikUcewVe+8hWYphnuTky2A9KsaEnxK6+NT3FkZSTjkEGArI27AJVBjjvnhW2g6pw96JlFdueCo5bWYCQKVpioKMnW2F5uTs6mjYovJXwhIdjkZl3cWXy79dVA18POyRxK1zgHjvW61zXTkmvthB37O+yHXQesFeujIK2J8F95pt5DqA1Bj+1KuP27ACkWXg/p+URKTCJKmhLGuZLKB8FyKL928soN28lDOnkw01YS7Caj1kHy0G1/XtPHb3QkN+H/+icVb3dGDjeN+qAuNICzdbVcr6+55hrcdddduPvuu9He3o7+/n709/cjl1PrV91R6IYbbsD999+P559/HldeeSVaWlpw+eWXAwA6Oztx1VVX4U/+5E/w0EMP4Ve/+hU++MEPYtOmTWFp7PHHH4+LL74YH/3oR/H444/j8ccfx0c/+lFccsklOPbY5jn/N02g/KY3vQnPPfcctm/fHl7OOOMMfOADH8D27dtx1FFHTbkD0qx8+HRVdzXbrEc+l4NgBlyhAh4tITY4g20oSZhtcJhMZQV1axnmTe2Wt1hgUpS0x/IOvoh8LgqMUx3dMJmqB292fvPqKHYcVMY4PZ2tcIXq6V2OsWwO2Vwewl5c0tVGQvcRlUVmXgCi4DgWMGuawcRrvihXOlEYHUz8rVvXLATiJlLaUdzf91zJcaHTdRPJ9BsOxpFq78KsPTn1XDYMMO0MzY1IZl3IQbrKf0BMjEJMjIWBM6Fwxko3cl+6dmE4W08F33AWgMl7abPcCG12LxJuu+02jIyMYPPmzVi5cmV4+da3vhUe89nPfhZbt27F1VdfjTPOOAMHDhzAAw88gPb2KGH05S9/GZdddhne85734Pzzz0dLSwv+67/+C0asd/e///u/Y9OmTdiyZQu2bNmC173udfjmN785r693rjSNzqK9vT10ZNO0trZi6dKl4fV6B2Tjxo3YuHEjbrjhhsQOyGLFlSrIkbEdbS235lDu1pB+VLcogt99p67jbiTMlRuBgy8CmY0ojA0j1d4F5mRhjPQBmQ3hcelMBkBzGwJp5YJAFBirevby25YMgOFmqT1UA6AldjLsnczDmmRpBFln4U2aPVysuLPt39NkOCOH1S/l1ARlMkrheYHqHGeN3pDqTM3yO1L4KmvsB+Z8QiSdrIvfN8+BdOj7OI6uW375U5fjqC+rTii+01g199XAf/4hGCe9qeR6JgWQKl9K5x18EdzJRm0uiAWNnMb7zBjD9ddfj+uvv77iMel0Gl/96lfx1a+W9wQAVMupu+66azbDbBgW1Grps5/9LHK5HK6++moMDQ3h7LPPLtkBaVb+5sGd+PxFs5MqtLdkcGg0avsRyqyln6g7U/1WhVpIC0EZ5SLMlRvh7d+BVNAmxlh7MhbaUmRgZAKMAa6Q2LQycvgWULJ8Z6i/xKXV8nKqTyN9XuqHYUXmXIyD+Z5qOZW4zoHkpqpX5iYZvBTRvQB9BopxDu8HE+qzEXc79/c9B2amlaS3mECBEG60ELNiPJubfZtFbgS9kwWk8FUG2ckHbtguwA34uSys9l74hw6Ad6oypGZpCzWf6CAZAI69/Tt1HEltkK4L75kHYJ68peiGmBkcAH/30zDWn6ZMJIPbjPWnzfNomwftek0sPpo6UP7JT36S+Hs6OyDNymyDZI0vZaiz59q4y/MiGWbMBVf1Xg1azRAJFmIv1TiMKZVBMVIq0/R4kKzNvVjQj5c5lXuwEjVGB7269rj4NikgrQyY76p3NwieC6ODDWfARtQYKUsykMaaTcpcLXa9/8ozkFZafX6EN2mPZWJq5iRYKJrTMtYiCtyAcPIwMi3wXlNyehYE0RQoL05kvvxclW4sMSIF/FeeAZNSbaIWssj/8Dak3/ZH8zVMgmgKKKWwSPBF1C+ZMQbuuyqb7OaVxNpzwIILfBfMzYIXqF5lMTE8ng1d0OPZZAAJExpnqB+FCdWHVrcegu/AWr5uHkdLxJGGpVpzcTMy+4nDOJhXiILoQJpNQfLkLLT/j/af0AZyGv+VZyC5GdZgewdfhLRblIxfy/THXpvv4S4oOlszs+rmAKB82z3hB1JsH8LxIJw8vIk8pC8gXQdiYgyZSz85x1ETzYT3zAMqyWGW6aTgu8madeGpTTMpIAtZeP17KUgmiDJQoLxIkFKqRIL+XTvjFi+opQz6rXrgR51Rl7ES80+xkdGzfSOJv21Dba4AAHxl9Ma8AiB82F3LEzJOYv6Rph0GNdIwo6A57mwd/C4Dh+OFFgTWgoVgzKdxD+0Fgu9+Z7AveWOQmQzNvHQZju+AeXmYq0+EccLmeR/zQmM23RwAKEksN8AsC8y0lHlf4HQvhQ9mcHgTeTCDgxk8qGOu3M6QWHh4v9qmfuEGUBQo5x/4OsTEGKyzL1PHPvUDyPwEkB0GChMwTtgMMUobYVNRb2fryS4kCq8dFCgvAl4cGAtbQkndGooFbSbikq5Abs18Z0G5uxJJDgwlsxrlWlqZPPm122ZzpFrb4e/ZDl4YA8uNqM9KYfYty4jqIQ0b0kpBplohrRZIMx1mmSXj6nZuKv28YZLb9TRJtXfVewizorhHtfvq7ihwKtMKylh/Gqzl65QEe/+O0KvCXH3igi83aQb8PdtVltC0wew0WCoTZg2lEGGAzC31vkrPWbQ9gxcDzqP3Jv52f/Hd6A/Owaykn0B6y1VwDyj3+vy22yHyExATY3D3/hbGcRcAADKXfaqmYyaIZoUC5QXOr/tHISBD12uNLGdKoI28qK5pwXJgaAIFX2D/YPkAV39CiuJkGHnVKop5eYCbYF4exuirJRJOoj5IM6WCYzMVSK+DTTDGYj9pz3mh4x14Ae7AHgi7NQyW3YE9qjxCO6EXb5DGEC8/CUCVVBQHyOKlx2s3cKIiXt/OcB4z01JBUNBPmRkGGOeQvohaxPlC1TATCw7/+YfgPHYfYFpwfvZtALEgOa4g4EY4lzWZS64BoAzeZCEPf2gA6Yv/cD6GTRBNTVObeRFTI6WqT/YAGBwwEAuCYoGzrjVlnkvOhwuUbC6Pgi+QcyV8A+gfmUDaYGCxAEoEioNid0e7azkAgB99DuQrz5DioMGwl61WfXHjNcjamI+p/sq6n3Kxa3klXhwYw8blzd8xYDEhrQxEpgs8OwTJTXh9O8F0izDhJZyrdZu7OPyoMyD274CxZlPpY5PrdX0ISqR0nTKzARbIruMt+bhtQjgepBDo/ND/qcdIiRojC3kwboDZaUjPgfvE99Rnw3PBYCnJPeeTyu7F2BAgfKpfnyHK9breoyDqAWWUFzjFSaSySSUROV6HWQdiwdGSUT0UBSR8KZFzRcKkS8OZ2lTZOTBa9nHk4MFaDpOYJUpurSXWQT2yoWqWQy+CGWSVKUhuLrwDL0CkO1Q2KdMZ9T8uQhqT74+zCooi2kCtH1J7DeiNMM5VBpkbYNwAt0wwruTXnVdRkLwQyX3//0LkJ5T0PtMKZtpg3FBBcrwmeQo1gTuWpSCZIGYABcoLHJ09Zky92QYLWkMJP8o6SRFll6m36oJlLJuDLwBfSAgJWJxBQv0tpVRu6IFC12CsYs/AhHMm0RBkc3lIw4oCYb2oNmx10SZfJmUFFyrmquMBwwqDKslN1f5PeFFNciC7ltqjogzMoW4HjYQ23wNjJb1wGedgqbQKmkwbRipVx5ESNUX44GllBsc4B7Os4HcVLIMbkJ5Tvhd6DHei1JOEIIjKUFS0wDluRQc4UwGzaTBYHLBY1CaE+V6USWYcxrpT6j1kosq4/crEw/WlyiYL1Vdb7ztHRm8SDIDNGUzOcPQR5TOKFCg3Ho4vIJgKfFiQRZSGrQy9zFSshjldz2ESNcTf/bRq9cKNxKaJlkyrz4CdcD8v5+rNjzl/PodNTEUsk8yEF/VG1sZe6Vbw1nYVMGdm56pNNAHCh8iOgVkWpJUBs9V3ObPTKqPMtdt5tJniPfWDkoc54lNfntdhLyR0AqERL2R7XTsoUF4ExDOEJmcqyxD0z7OOOFK5XZPkesFi9WwAEKkLXCHgeBJeTHddbOJlceDQaLbs49kXvK9WQyVmwaHRbLDZEbyLwotuZMqtXBo2YFgVs4hEc+G/8kzJ39JKJZRBzHcBoRRDYf9sxsEKEwBjFaXZ3jMP1Hr4xEzQKhGZrJNhhgGWyihDpqButWz/XKKpee3WzwAApOuGJm6IZ5EdVbcMIKxdlq7aTJHUIowg5gwFyosAgzHYQTa5rSUD+C6Y8EJTH6tnA8yVGwHGS9qKEI1FYWIM7sCekuvFrl9C/PZn4d/l3kc3WBOL2ILLFapemQFgTBl7GVx9Xlqt0q+Hwo+/MefXQFQXx5dKPg8g1dap5nUQAKValSognclAGBYZMjUBhdHBkuty+aSKo9hMj/nJumLm5lR22bQDUzcn6rOdblcZSinK9tI2T95ShVdBVI1YmRSkgHHCZhUYcR5uWqYv/kOkL/5D8PYldR4sMRX+vufgHXxx0mNy342yvoYdtAHznHBDRBpmmEXWmWWRHQv/ZplWlQg589LavRCCWCRQoLwIsDhTTcmDdGGqo7t8H1XhkZlXg+NzCzLVVnI933DWlJJJg6nPQsowkDY5DMYgZVS3bgQSfYOpPspclu5Gp974oaq9FqI6rFqi5JZxYza7a7mS38bIpEl23QwIu6UkWC5+75zBvsRmmM4YM08F1EyKIlM3G/CDDJSuYy733LHNNqIx0IogMA5+9DkAAPP0t8M+/z2lB5uWah9ENCySm+C5kcmPKeQx9o3rASDsjd36/r8MM8fqBgPMslWtsmmB22n1dyqjHsMt1GL4ixqDNe6FlNe1gwLlRUDKVJLr9pbMpMdVkuIRjQOHVG1fDr4If99zZY9x+3eVZA7dV3fDMtTnIGNxpEyGjMmC4BnhRorFABMCJgTSLVTv1iwwxtDZmpzf5d6/sv3TiYZCSsC3WjCeLW+64wz2RcEvAvUIN8LyGd3zHIyrvtq+A2mmIFqXquBZyqSDcvy5qf9uwzId/xDGjdDwiWhcJDchfvsz1d6pDCzTCmvZCgzf/hfo+MjfAACy37oRPGjnFpbKcQPSdVWAnGmNSmuEDzlRvmsFQRAzg/ooLwIMxtDd3jL1gb4PRiWMDU06k0FhNAe/fbky9xjYA2v5OgCAd/DFKIvIGLwDLwDcDGT1Kki2OEPaVPXqvgQ6UwZ8KUMndOWS65P7eZMhZZk+X0TT4kslpx8LguX2lgwKo4PB/BSAZas53rcTZu+x8Pc9p3plOznIlJJdSjsD5jmQqXbAtAODLxU8M99Bqq2z9Ik9Z55fKTEtpvt9zPmUrsdEfWHCg7RSkFYKXAi4v/gurLMvg/Ozb8MfOgSeboG19jiwVAZSCIx943q0f+j6ICh2wFItaq5DuV/DssBMC1IIMNOCGBtWawMy3SSIqkDfqIuAIzqmESQj2LH2ldy2XB0s0RjoekPfaoHX0YN8dgL5XA5+2xGQVlq523JTuRxzE87h/ep+UsIOsspmILV2fAGDBUGy74J5BTAnC54bLnle71fb5vmVEtNleef0s0hj2RyGx8sbtRH1Ryf9fe3LBSCfnVCtnwwbMtUGyTiklQ4DKMlNgJuh9Fr/rVuCSW6Grujh7WUwTnpTzV4XMXsqSeWLYYEcFwDES4/XckjEbPGURwy4CdHVC2PJEfB+tQ3MtGGuWANr3fHgrR3wDx2AtXIduGXitVs/A5ZKA54bqf6COczSrUHtckaZ9WVaIYUP+9x31vFFLjwY6u9sPanrNVEzKFBeQFSS6s0GnaUkGpCg/tDxBRxfwgWHKwFhpZUck3PAUCdRmW4PZVrMK4BBKQx4ILW2DQ7GlBkQEx6YmwcvjIF5pfVNLEU1rvUkn8uhf6R8j9uBCtdPRiVXc6Jx8IUEZ0y1fOJmJK2M9UpWShJbbZBZmeA7wAiDYWnYUUDNVNcD6nLQmPi7ny57fVinPBWBIzIAUgU1KEyKMCEBAKK1G2xJD/iKdTC6e1Q2eGwY5oo1ADfg5x3YHa1B1ji6n+6Frua7GfZPZ7pNVBHZb904L6+PIBYa9E26gNBmXXEK45ObRhQjqb1EQ5LP5ZDL55HPTkCaaQiw0LxJv+tSQmWdzDTgBy2CfCe6UQpYgfs5Y8r8SUgJFtzGnCyYmwNzCzB7jy0Zg3HC5lq/TGISmFeAVWaOA+Xnfjky6TQYgK62Fhi0Cd0wvDaWxXhWzXFfyIQxGxBMX501YCy4cCXhDCTVYTBspuByG8JKQ6Q7g0y0pdztpVSmXkUu2URjwPy5Sd/NUy8GMy34v3kUfMNZVRoVMVe8Ay/A37MdQBDgSgHoDStuQtoZSCsF/3AfAMAfGoAUAry1HUbahtnRCem5ysxLz/W4z4AUaoNECojcRNm2UC3vvW6+Xi5BLCgoUF5AcN9FYWw4cV1x25CpH0RlIdxDe+G+urtKIyPmgm4N4wupMktmCr6UiK+lVXsndRKWZip2Aw8Xxcx3YDHANiKpjoSqmWK+o9qGOTklCwMqmoUR9SHV3lUxuF06HQ+CgLbA1G9avgVEzXltTGX2JYKAuMJxUiJystYYtmoBFZfeSQFfqu8LwYLFc0x2zaQAEx6cof7qvxhiTkizVLXjv/KM8puYLtyEcdwFFbPTRJ1gDP6e7SWKDhkoQ8BNsFUbISbGVNCbUuU0xtKVYOlWJbHWcFNtkpkpwEy2/ZNOnvpp14IGcLae7ELUDgqUFxCp1vYS12rmZEuC58nQmUTJOKwV66s5PGIWDI9nwaSEDMy3Cp5QUmtfZZ1kYMRlcKayRQikXdrQxffAhAeeHwXPj4FPvAYz6JOs65UhfLDCBLibBXMmwI86A0Dlujix65fz8tqJUtJVPCOOZ3OhWRRRH+K14lrhASDMKvvBdfoiGQvnZXyBHa85ZsIDZ+q+vpRwuB31ShceIDzYXcvBChMz3hCdyrvCGeyb/osnSjGM0hZduo/yNNHf38b606o5MmIWuP274PXtjEwyAcjcGKSjlFuh4suwgtKJFrAlPTDXnwQExlzm0h5Vg2yqNlAykFlLw4a0W9RPK5V4XuvMS5F/4OsAgPy22+f1NRPEQoMC5VmQzTWumyBzknWH1hFHzqrlk71sNS166ozONGl8IeFLwPUlPCHV4lcbcQULbMkNuMwMa5SY70YZZt8BkwKWcMLe2tx3wdysOpH7PqSnss/+vudgrj6x7LhI0lc/mFu9wLatJTNlyziitqhAOOqBLYES2TWPZYuljLWG0RtZcfmllICUoWIk/tgae0lPaPBnHXHkjDZEp/KusLt7p/1YRCmSmyUtupTix5v1Y/qvPDPXYRGzRKbbIexWdT7WkmtuQE6Mgnl5MM9VJRSMQxomEHgISNOGNNPgS1YoybVphSZtYFw52xcZ+UnDVOqxos9P+uI/nO+XTRALCgqUZ0FLpoFNjcq0hphu3ZM7sCdcQAFq0eMMD1RtaMTMCGuPGVOy6/htjEWTN7ZQ5r4LEyLIKhtgvqOCKynBfC/8nUPCZFAZ5NwImJsH8x2qQ250DAvOyOHEVVqaPxWFibHwosnncsjnKKtcD0YmcvCDKFaXmLPgdyPYyDI5C7PMmjB7HOt7z3SQrK+HkuPxQJZncgYTIlmbzKkXYKNhrjq+pEWXdAsw1p48rfuLl58skVxP975E9ZHcVEaZvqsCYykgJkYBbkCMvBaWOQFQAa6UoSkXpIA0LPD2LtU/mXPVMsq0wDwnLLfgblYpwgoTkE4e1tmXqYcborVbNdFGqI16IfV17aBAeQHiHtob/u4dfDEydprsPgN7lGOiFMlguWs5CqODtRgmMQlj2Rw4UwGxDpJ1ZogzwOJq8ctZzOQHUKZcftBCQht66J1nw0wssiOX64kSl+vptiMh5pdUa3vJdayMcctU6GA5ncnMSnFCVA/OogAZ0IsxwDIYynm0iWBJxGSwIRaTdWqTL8ZUJtpgLOqR7rtIdXQDUIohUO/txqRt6bQOK27Xp9tBMeElguUZ1TcTVcMd2BP5fwTtoPzX+sBMG9JzVBsn3eJJn4+D+mXmBJuXupzKtGF0LoVsX6Z8CQxTlUx5eSXhzo9B5sYS7d2oSwVBVIemWQ3feOONOPPMM9He3o7ly5fjsssuw86dOxPHSClx/fXXo7e3F5lMBps3b8aOHTvqNOI6wXi0aNJXTcfQKwiMrCOOBJCsNUt1dCeyUERt0XWL2slYIjDykhIGA2yDw+QMlpEMkNMtrSpzLLzYTxUESVO5YUtbSW1Z4HzLfBdibBBidDAhqa4kuyYaACkSSo/pzG89f1Ot7SqrGAuO0y2tNL/nmeIsfhQsMzAGmAywguv8mMGXkKrkQrvYhxfthA2EPxkDOCS474I7E0i1dyWekzwoIhrN2Cxep8w4h/+bR0uOMU+9OHkF4+BHnQG+4SwVLAcuy+aq42s5VKIMXt9OtQ7zHBX0chMyG3Ug4e1LlJxan6ODc7G5ciOkYUWZ5vxYaMzF0kpuLQ1LqcOEB3guxNCr8Pr3lvRAt9YcM2+vlyAWMk0TKD/yyCO45ppr8Pjjj+PBBx+E53nYsmULJiai/qE33XQTbr75Ztx666144okn0NPTg4suughjY4tnEWgv6QGAKAsck+cV4x14Idxt1gEyEGQbgMRivFwmi6gNXW2RGzFnUW2ywVkguVYGXiZXcptMOq2C5IC4sY9uQ4Gg5yKAcFHNpADz8jBP3lK66CJKKJY814PCxJgyfYm5nE5WWqHbw8WN/nRWMW7yR/N7/tGKESAopQiC5LBdm/DC+uT2lkzoVp5AirD+UXIT0koHyiCJTDoNSIFUazvsruXz+dKaDntJT8NsFhnrTkn87R06UPFYf99zoblifKOTbzgr4YTu9e1U6jJi3lDZZFdtUmdHIHIT4K0difI4Gaj4rJ4NMFduDK6U6hyug2VuKOm1nuPcBKSIWjhyA6nNHyh5fvP0t9f4FS4+6u1sTa7X9aFpAuVt27bhyiuvxIknnoiTTz4Zd9xxB/bu3YunnnoKgMom33LLLfjc5z6Hd7zjHTjppJNw5513IpvN4u67756XMcYdTOuJtDPhjqTZe2yyDibA278j2YcPyWA5fls+O1F8d2IeaG/JhDWMDJE8kwlPmXAJP2H0AyCQXkeBU9z4R5t+qOMk7M5lMNZsqvj8bv+uKr6a5sfuXDbjvuTVRgW8Esx3EhtZFRf5sfmdauuMrg+cdKmsoj7ocom47DoRJAcbnIwBna1RgNzWkilfiyYFYBS1jgISbWiIyUm1tk+73r+W+Hu2qxpWLaW2K0tohdWS3BjV1wfBszbyMnuPjQIxouboIJYJD7wwAZi2CpKFH5pySc+tPD+lUEZfQJBFtpUpJzcS92HCo01ugqgxTRMoFzMyohas3d0qO7J792709/djy5Yt4TGpVAoXXnghfv7zn1d8nEKhgNHR0cRltnS1tTRGu5VgseQM9sEZHoDkZknQI820+vKNZabi2Et6ILmJwsRYIltJzA/ajVi3frKMoNYQUcaYCQ+GSMpuUx3doQmI5KZ6f/VJ1rSDnWo/lGFO1ivZ6tkw6/E3iglcNec3gLKL0vmG+U44jsLEGPx0R0XVSKXx6qwyUR8y6TTaWzJIBW3aDBa1d9MuuDozXIzJkHy/DVP1Uo6RzgTB9Szq15uJas/vTLoB6joNA2JiFNLJw3vmAdWJoMz7mM/lINPtZdtA8Q1nqcwl5/AOvDBlWy+i+pi9x6r2T74LMTYEmZuI2jwBocKLecnNmbDPMmNgVipyyjYif5HQfZ42wgii5jRloCylxKc//Wm8/vWvx0knnQQA6O9XNUYrVqxIHLtixYrwtnLceOON6OzsDC9r1qyZ09iKW3HUBS23BVQwnGotzSoHwXQ52aaWZKbau8Jd9mwu3xibAIsMIQELAlaQRkpkkIVfWTIbtJoI5VqmHZq16SDJfXV3SSuJOHPJKDeK1LPa81s2iFMwEx4kNyEMtegSZqrkmErzNaxX7uiOZNijg3XPli9GeExyrRFgJZnhOInvcq38CS66xyqgvsfLqYkWEtWe30AD1Ct7LnhrhwqW81lwOw3npWdLDhNT+NwaazbBWLNJ1SgLP2HSScwPzPeidl/cgHQdwEyBcR4GzMWqLn7UGYBXCFpEpSDNYPMmdMOOFpnSqb8CYrHQ6K7XRO1oykD52muvxbPPPot77rmn5DZW9IGRQa/ZSlx33XUYGRkJL/v27ZvT2OIyuXphL+kJTL0E+MRr4LmR0oVXUKca1rnEKDZ98YOevb6QODTaGPLyxYLFVV9F5hXU79rlWsszy8G4Mg8xbZVZttTJVupMlT7MzS741iHVnt9+A+yE2V3LA2leHkZ+VJk1+W6iROK1sazatCvzGam0ucJ8t6F7xC9EDOGiJZOO+qAH5yrJGCTjUWY4TtzNvihIjhM38ytHvDtCs1Lt+Q1EPh/1wlh/GkTLEmDdKWBrjgdfsgKZSz+ZUP/k8nm4Qk4/o8gNMOE1hM/CokP4KqAVvmrvxE3ATIXma+WQdsxzxLSCc3mgGom952JibgqKyaCadoJQ1F9HOEM+8YlP4Hvf+x7+53/+B6tXrw6v7+lRJ7f+/n6sXLkyvH5gYKAkyxwnlUohlSrNxjQ9TMmuwvYhhg3v4IuhJBdTSEjzuVxikeYLCSHVxsOBoQlIKbG6u63Wr2LRwxjA3FzSvClwvbU7l5W9j921XGWTpACYeu9hWMo4pDgbNRkNkj2dC9We32UNleqFfv98F9KKfAkGgyBZSlm2r7qmMDGGVGt7WKcsrIxyVAYwMKKCbsYYjuhoqfgYxByRQmX4uamCY6mcrTkYWIX5mWrvKq0t1wFzbM5KxpGq8B2xUFio52+z91h4B1+EsFsBKcKMhr9nO7yl6+AZU79mb/8OmKtPVMogbkCm2iADBYpWm7Q30vfZQkRKtbElBKTww1Z+ws6ATdK2U5pWUJscrNNiczt+DuetHRUfw3nsPhhLlsM47oJZDZ1q2glCMauM8u///u+XdZKemJjA7//+7895UOWQUuLaa6/Fd77zHfz4xz/G+vXJ1hbr169HT08PHnzwwfA6x3HwyCOP4LzzzqvJmBqZhPSVcVUHI0Uk2wnqlyoRD5LbWjLoamtBd3sLlne2YtWSVgqS5wkZZAVZYOwDBFmnaUptdO9kGcs8aQnelG1DqM9qwxKqRooM+bQZkXZULu6PHUdnlrUEO93SGi6cl3eqjIakz0Bt0eZdvgMmZdj/GED5bHJAQk1S9LteSFMdenNjrtwItutJyP1BG8yx1wDDCINdewqrW93iz+rZENa0akO/9pZMONfHqaSqZhjrToH0fbXWEkJll7XkehI1l7n6xCihEZdcByaM4eOfsLniY/CW9lkHyUR5dKlMI15IfF07ZhUo33nnncjlSr9cc7kcvvGNb8x5UOW45pprcNddd+Huu+9Ge3s7+vv70d/fH46DMYatW7fihhtuwP3334/nn38eV155JVpaWnD55ZfXZEyNjt3dG7YSgO+HraKYbhdUBQ4OkyN2zdHvIVQ2mUmZdDAuR5EkT7voqkX5NPpqA+GCjGhM7K7loZSeCS9oNSKRsXjYMmIuNarLO1vDgJmoEXrzMnS7Dlzup7vqibX/0/3TIWWi9dek9yUaGrbmeBhLjsDQbX+O8cd+BEwMQ/7o67AQfFYmyUoWU0mBRNQWZtmRiRc3VKbYmlylo13LQ+I90wH4u5+e8nn91/oT/bgJgpgdM5Jej46OQkoJKSXGxsaQjjlE+r6PH/7wh1i+vDYmPrfddhsAYPPmzYnr77jjDlx55ZUAgM9+9rPI5XK4+uqrMTQ0hLPPPhsPPPAA2tsXb49Qa8V6uK/uBndegzDaw7o1aaVD+bUzcnjWJ9GVXbSQriWMITJei9cmTnU/4cHuWh4Z0+iaZuEDjMHr21m2Pl3jDPVPO6Am6keqoxuF8RFVfx5I87jvwuQmLOnB7lwGZ6h/TnWXw+PZRG9vooowHgW6vqsW1IY1tfuyFNH8jpk3qnKLaW6Cklqg4VHf0ceiw3Nx+Pv3oWXJapjnroXwCqqcJjPFhinREDBuAKHbtTllWZO0M5FqJJjT4WY342Du1CoAlmkFP+b8WY/ZfXU3rBXrpz6QIBY4MwqUu7q6lJyPMRxzzDEltzPG8Nd//ddVG1yc6UgAGWO4/vrrcf3119dkDM2KtWI9vIMerJ4NcAf2qCyzluEG5h6F0UGS6jUgTMogUyhCp+PJJJkhOpPIeOh+DeGHJ1/mTmHaJAWdJJuEVFsn8tkJSAm0ZNLI5QEDAHy1CQYp4BzeD3vZ6qkeqiwN4F+2YNGtvlId3dPLAmv0/JYicK4XSt4pxZT+E9GTk1ivWRDL1mHp5R+HuWI9/FeewfBdX0b7x29AQQB+Lg8zNwi7u3dWj91QvgsLFOvsy+A//xCYaUEwDuuII6e8j7lyI7y+ndEVcQUIN+DvfrpsazCN0TO38zed/4tgAJui3KGu0Pd5zZhRoPzwww9DSok3vvGNuO+++8IexgBg2zbWrl2L3t7ZfVkTtUUbM1jL1ymTkFjfzbCdyPjI1JJeYv5hHHawkK7odF1EuGjS2aW4dEv4k9auauaaiSTmj3ivcyYleGEs6JnthaYxsw2WOZ1/a4bdtTzcrEy1d6EwNoxMpZZv8fsl5rfOSActAYNjpny/q1R+Q9SesG8uAG/pOnDLhPjh/0XbGReBuTm4y4+hze4GxzjpTRAvPwmrZ8PUx8ZbRoU1ylFGWZrpkv7LGn/PdhjrToky2LPEPbR3WgE9QSx0ZhQoX3jhhQCA3bt3Y82aNeCTmEERjYsI5Fphq6Dg52yD5EOj2Xl1xt0/OI7ujImWzBTyxAVAOpNBYSwIaoO2UDMhfI+ljKRbhgVZpu9ugiKTKKLJ8BwwE4DvRZ+BWX5f10N2PZ7NwZJe5T7hC4lKxlzThQftoXR2WWg/g8kfS9L8bkpSbZ3ACSqQ8vfvhNmzDjCspqo5z2cnEpt7CxmWaoH3q20wT724pIXbVJi9x8Lr26lUZUCiTlnmy/vDGOtOUbczHgXNs2AuQbI7sCexuUMQzcys2kOtXbsWAJDNZrF37144jpO4/XWve93cR0bUDLtrOQrjI+oPKSNp7iyZ74zT6u42ZHN55HM5SMbgCwkTAswrLOgd9VRbZ/S+zQQpVU2U7qsanGjFS4+DH31OhfuIUJpPJjDNRTqTQcFvD2peOVgQLM9WmlkPDM4AX7WwCg3LfBdgbMGqXkpaPk2HwOhPcjMwbvMAEfgRTOUxwLmqceYmzfEmw1x/EjAxBG/9WeCt7eADe+B1NI/6J93SGn7ewxaWvgcmvAUXYPENZ0E884Ay1krNoltI0BpKSp7ojc7syRMFTApI05rSj6QWLLT3UMMbWXpN1IxZBcqHDh3CRz7yEfz3f/932dt935/ToIjak2rrVP07w5ZDsw+Ul7bXyehHCoAZSmqoa66HB8IgD4zXfAHoDPVDpDunVzc8WxiLZPEzfZ9ivXajekbVNopNso62u3vhDA9Q1qlJSbV1KkmvYUMKARiz+qoHUNpTfT7whSxtyRBs6OXy+bDf8HzUV9Y8+yUFnOGBin2TJ8PuXKYCjkSrMO1u70x9/1mWVhTGhpFq75rVfYm5o2tT/ZHD8He/CLlkNfyFYCYgJdz+XaEaYj56+boDe8CcibCdVs2YwsBL4//mUTA7A37UGeqKuKkXkFCGTQYrTCizNzqHE8ScmNUM2rp1K4aGhvD4448jk8lg27ZtuPPOO7Fx40Z873vfq/YYiRqhZY1xx9xmwS8ydxNgatc16D2oewc7I4fhDPbBO/gi3P5dcA/thTPYB3dgz5TPkTDSqIA0VK33rLJB00X4AONqY2OmMIZUe5faifac4CQrp+2Oy6SYXRabqDt25zK1UWTac1oszaXF1GyRKLN5x7j6ropN/ZGJHAbHsuHf+VwOhfGRqs3HfHYCzCsgm5vC/K5azFA+GwXJLNoghMq+T/m+BZtmukZ6JlCQ3BjYncvgrjgWItUOr8kCZSa86DOqXZ01QTDoHXwR7qu74Q7sgXtor7q8uhvewRerMobC+AiYMzFt74/ZwlIZSMOGjHnDVDzWtKIgOSCRoRVBi88pFCMivQjKVghiHpjV6unHP/4xvvzlL+PMM88E5xxr167FBz/4Qdx000248cYbqz1GooakWtuD+rbJj9s/OI7+kcbpmSwkwkVhuJOua3diC2wZZFmkoXoYyiBomOqE5R14YcpFqzPYB2ll4Mmp6wHnxBx3hJ2hfthdy5UUSz+WmDxQdgb7AAT/P2ojsyCYbfBYjzrhcM0ftDVjwlMmdMJTiWWm5NlG8DObyyOXD4LZYM5XcpHWm2TegRcmHYMzcjhs2cRl7VRSYVZ3FhsSOruk1SZxN/sp1SC6Zr2JaluJ8jCvoMoVpsHIRLK10Gw2SqqGFGBONmE2GZ5LE0aUsXN8INV2+3dN+tD+vuemfv5gE7rWMNMKJNTTUPbExuPvey782+rZkNhYEFO45DMpYK46HpJxuIf2znboRABjDMzgDXshases/rsTExNhv+Tu7m4cOnQIALBp0yY8/fTUjdCJxkIyBjFFMGQbDD2djWW+IcDCILnEGT9uRqWDZZ1tNmyAm3AO7y95TK9vZ7RbPdVJjZuQjCnpdy0Xm9yAZHxaAUu516QX4lLLb4N/VvGudQLGYXfVpid6MWPZqXtCEnNnsvp9rVbI5xrjvehszSQXykGQDOGD+y6Y8JW7N1PBMmPK7TtER9NF6AWj279rWotW/Zy1XkzP1OQnTrzfqjRtgAffdUblzUDn8H5VXqH7rBNNS7qlFcJKY7Iw+eDwBIbHlfKiszVZrlDX+nQ/qLn1vaThpFaPxOedUJtVzHfAPAfMy5cNlv19z4VBsr9ne8WnLowOgnl5MM8Bal0uGLyO6ZQySTfqSGGs2VS6tuDq/8JSk9coG2s2wTv4onLZnqfNsGpl+gmikZjV2fnYY4/Fzp07sW7dOpxyyin453/+Z6xbtw5f+9rXsHLlymqPkagxUkYtRYoZHMtiIOthZZuqhxnL5tAe1AVmc3kIKVHw5bzXKXe2ZjCezYW76Ez4k2Y+paEWjtJMqQVlIPVyDu8PDDJktFurJYxlMjzOYF+0wGQcvpCwGGaVDZoKXRuaam0PA5hpZ4k0ieCBq60xySGtyU+y9pIelWmYwwJ+urRTH8+aYnctr5hNLoyPwDdSMHxXtR9jDEDy/ahHjTKAZICss03chARUPS9j4NwED3qEAwgX2HphWpgYA7QMWYoomAiOcw7vB0w73BRy+3fB6tmgFBWGHX5PuDUWVcSD3RkR+96xu5ar1xN8B8ykvrMwMbY4HMYXKNwrwOflN0Z2Hx5D2uQl7vXa96JebQCZm1fz23cAQyaMJhP9wANFiTr3xUoLfBcCanObufnwnMaEiJmUlm4feH07Ia0MmGmDFyaAscNA29I5OURPhbQz0/b7MI67IHlF0dpCMg7GOFhLZVNDb/8O9f8LMu/TaUlVDeajppwg5ptZrYK3bt2KgwcPAgC+8IUv4C1veQvuuusu2LaNO++8s6oDJGrPZNlk22A4ssOGkBLD41nYBsfB4Qms7GoFYwAHgy/qJ91jUsJkQQ/RSovMQPKkd6jVqTMIhjmHNNLqRFtcJ8W4kmnqhbgUYIalgmTfg0y1wXYnIA0r7GFaTeLBiZg0XxBR4mwcez3Mc0LJ+Xy7YBL1pWK9qvBhusPq92COFMaGQ+MsYViQ0/zsVZt0SyuckVxUWw9ACqHaXsXnctBjVAYKDzAjzC6rCg0jXISHc1w7/QetldxDe8HcHJie86YdOknPh6Gd5KZ6LbPYcCsb5DAGb/+OaRkUSW7WJUimvr/VwzdSFeWBjpDoffo+4I0fAhBsHgVyfWfkcF2CZEC1H3Jf3R3V1ceVEcVqCOGpTbJ4T2HfBbNSqi0a58lznfACVYUReY0Ec4sF3xXh90ZXT7B+qN1umLFmk8pyz3AjLC69BgLlSfBdNpkijEkBo/dYePt3qI0+6olcFVgju1438NCanVmtAD7wgQ/gyiuvBACceuqp2LNnD5588kns378f733ve6s5PmIeaGvJwBcylGaNx6SwBmfg0ofBGWyDg0sfS2zlesq9AhgD6hUma8db5jtqZzpe3xQjPLlyA4Ipw69Q6iiU7Cv8OybTltyEtNKQdktY4wxAtbHwCsgxWwXJXqHm0qappPEV0U7gUAsTe0nP1LXXwfF257LQDIxochgva8rGhAfmBvLD+PwJPm++kHDraRKkDX98N8oMew7gO0qCGVwfZp6joUOAKZNCXXYRD3gZj1QmcdWErocUIix5ADfg1/pfEGS+Zhy0BKoYjb1sNQBl/lMpSHYO74e9bHXifvns/PtPUJBcPeyhV2Bu/0H4t79blcDtHxyH40vsOekydf0rz0AEbsnO8AAgvPD7vh7w/KjaJPLVnA5bGALhnAg3+eK3+S7ExJiap1JAmulofgeb2up3Ed6XeS6Y58JYswlMeOBuDjw7BBzap+5j1NjQNBjLdIxENcaaTQlVl7nqeHV94Ho+6f2AoNTMou4VBDEHpp1R/vSnPz3tB7355ptnNRiifnS1tYTusQZnyOdy8KT63QOHGUisMywy3QA4mJTImA36JcwY9F6QjF+lzbcYB6x0lMWRAlL4SblWsMhmpg2JIMsU7GYbnCEvbaRsE1x44QK0FnDGkMvnZ95CRoqSWuOpehwmjtdu275LC9smRrcRyuXz4EFwGb6fOqPjZCFTbVHpgRT136UO2x7J6G9NYOrD9FilkmHrwLe0bjlQkBSf9hhTSgvhq+DYiEk+pYBkKrAIW7TV6HVql/6Z1Iza3b2lvgRTKXwCaba9bDWcwT6kOrrrEigT1cPsPRaumYIzchh87FWlogBgGixQfQEHhiawbNlRAAIFg+4PWEczN2PtyRD9u9Rc81zAUJtTTHhKDaLneNEYpRBgmdb4Feo8nmiThqCuTMm4ZaBE8fp2xvqOA7y1PVwfOI/dB/vcd9bktUrTntb/2t/3XBTootS/YCrjUP+VZ2CsPRlApBybyvisWngHXgiDeYJYKEw7UP7Vr341reNYmZoQojmwDYbxbA5tLZlg4cTD+mVPAmkjlj6OGe0YjGNwLIvuOvRTloyVruV1u5Twb6Y1mGrhrGWcwW4rEx6Y76oTqe8l6nyVAZgByVX2WhiWMhPCGCwGZH0JaRlq17fGzoOZdDpy9p0mTIqwrno6VFyo045088MNFSRLgVRHd1CTHBnmaOmvrgMGM8CDnSX9vTDfKPlkUTZYz08hAIjQACjcxDJsNeeLs8iA+tsIAmshAB4YBxk2YAft3rgB5hXAnAlIS32ncYaYFXf1SbW2ozA+Arute0Y9ip2h/pKF81SbdYnvAm4qqf0UPVmJxof5LqTvAIYN5uTg9e0Eb12NNpujK22gszWDwsRYVJagg0Up6iqDDzet9Tk72PhivhMF0PrYoP6Y8WgDnHnBuVtjGEqOHZsX2shTd75gvhf5snBDzXm3ULMgGVClT8bak6c0vIoHyf6e7WCp1oq3l71/ECRr3IE90+7hPFcWepDMG1l6TdSMaQfKDz/8cC3HQTQAbS2ZRCAmoSS/DIAvAVNHyYwD0IYZHAZjqNcyyxdSmfkwGdYgJtC1iKz8IlcbeUWL7CIZJiLptgCD4wmkg2PGXAkpJTwhwWtsetWSicy3cvk8MunJzbhCdEAwV2gDrOlJtXUq+XWxjJ9ztXDUmVkdLEsODgnGWd06hKU6ugNpqBfLcnNV/hC2lJHRPIYK+MOaX8ZVaYTvlBjTMSnCfs2MG0oxYqbC+zDPgUirDLLjS9g1zrxNN1sdrze0l/TMrfVLEJBICpSbHnPlRoiXHodIt4MfdQb8/l3o5C66DAfs+Z/DOeYcFURDn9NYWLPPpJjRBk1V0efZMhlX5ke9llWmOdgUC85pLOglzBxPSYx120edlY6vBwwL0jCVTBt5MOFDTIyqHsfp9sgQsEaEAewMvkeMdafMyUna278DrLi8hCCIGUFpIiKBDsDSLWoX05dK9pviScmPzsYqR0ofRp0CqUSWK74zXVyXqMeXMOtiSPRn1H0Oi+VbjMOTQN4TyPsSXnCXTjGOkYKAwRiE3TIvO/K+UIH5ZMQdjnX/5Jmg+89qJ9xETXeM8Rq3dcrmZpY9J6Ym1daZXAy7+SiDI4UytfE9VQPsZsF8B76QYAwzVjNUiygbZCaDXe2KHdQ3qlYvBVVz7WSVOZdXANy8crf1HHW/RNspL3wOaWXggqMggucUvno84ak67XlSVUgzNentczHlKW4HZS/pgTTsmvSBr2t/3kUKP/ocyANBYMU48Iv74ac7YJ19GfxMV+Tn4UUtiCCCzTHfqcuYzd5jk+ffYOxa6QWvAHiFYOwqAy4LOXXJj8N/rQ9i6FWwwnhpfXOsJ7MOkqWVUc8jBZhlA6natb309u8ouW7G/2fhTa8ndDkMW30v1qArx3TwX3mmLs9LENWEAmWiIjr0dXyh+gXHexsWXRirXz9cYVhR5hgI6/1CUy79ux5rLBM1k91dzmIThjFIM4WeNhNcqt6ujUK5gN19dfe07isZDwOp+G683jiJU2spbjyLTtQAKcIFs65bl9oJWgTtWYJexUBRve88kuroTszjuFt1ySWQGDIpVK/V/JjKHAclFokWNAGhCWDcNTf4nedGILkJX2Desm2zCVhCZ98pHzya09rEiflOTVyv69qfdxFjnX0ZAKWWMo4/ByMFH+Klx6P5y1i0keQ7JY7R9YCJmGIkIFxrBNJodWBQJmIYgBCQuQnwTCtYphXSySc382MbYiroViqUsFVcsGmgSi3chi0v4vmxGR2fCKqFB2PNJgir+ufqcpsAxRTLwJsaBjDOG/dS7//PAqYxvxmIhkL3KpbcCF1kNQJMucsG5+Dh8SxeC0zB5otMOq0W0mYqcnhkHJKpsQlmINXajnRLq2ofA5SVWSU2AWIw4cFkgMkZbIPBZJHBRt6TEMyouWxL09aSmVbf4cJEdHK1jjgS4Mb0DD2C157PToTBsSTZ9YKEBYtFnh1SBjeGGQag8Z7i1njkipvP5eqS6U91dEebXUBgzmNDWilIMwVz1fEwe49V18Xcb6WViv5mPFGGEKoktKO278JigMVZYABkhJl2u0a1aVq9kXitMzQMs444EtJMTc9NVwo4I4dVkBz8X4rN/uYDyjbPA8KDyHSizeLgR58TSZwNG8b4YRijr4J5av4zV22YFUYHURgfKeuQX0uMNZuSrtb6J1f+H/zoc9Rlw1lKAWGnE2Ze0nXA0q3R/ObR5jjzPZVVdSbUxpkzoVQzjAOtS8AK42BeviY9lMs5z8/UgZpvOAuS8Wlllb39O8LWWt7BF8OaYVaDjfzptJ4jiIUABcpERXRLFDOoUdSXqHaXqfZQUobti1hgrnVodH6D5XRLayARNsIgWUo1tnhmMpEUmyoAjEs0pYDBGUy9iDZMMK+ANptDSNlwLZQk46EE2xnsixb+k1CYGAMYC35GXw3Trocmmg7mFsALExB2TDHAOKSdNOYzsoOJv+sii4+b/WiZJjeTUmTGI5+ByT7vsc83C1pQsUB+yhEpTbibBXwXR3TMv1HhVMRLLNQmwOSbdYXRwURwXIuMb2JMMYoDY8o2zxM7H0NmYCdevekToWmWAAMMIzCwtEMlhjRTgbJCoh6mBGHWV2/SBcqRkn7BQYZZFnKRgsQKapODOZDYHAMA31cKEzcL5uSiPsvcAKYodag20w0wvQMvRH8UbfJVgnkuIDx4B1+kllAEUSWowp+oiMUZHF8AYPClDE1fbcMAkxJMyjDbqINqzgDJUPu+o2XwJAApQ0nw8HgWXW3JBW7eE2gxOHjQfgLFJ1QgNAQCAsMfATDhg3EDTDuFcjNc7OVz9ZGcT4ZgBgy9KA5ayMR3lZ3hgUQmqTA+Ev4PJONIZ+bf4bhRKf5fLSjyY6ol2pJYH3EEZlhePujDaULareEClhkWpFTB8nzK47UZmd1W2QvAXtIDZ+QwJItq8nSAEMrK9VzX5kGeE7SBCjLpOuCUEsaaTailX+xcNthYrCWdNMyps0YxtcxM21BNl0o+DRQY1wFuAhvPhvfsj9F1zQ3qc814uKntdR8JPvEaREYpGNScV7XAkps1+4xUwlizCf6e7VO6OkvDBIQN3toBMTGqrhR+0AsZgBDqYx54kDDfDb0ImAugMAGRbleZ9QaWBvPcCNyBPWFZTKKuvAzewRfBoL7vjJUbE7dZK9YnTABrjXj5ydINjgVAQ7teN/DQmh3aciIqorLFyvFVSEBK5fJc8Ip6GkLdBiTn6nxnldtaMom62eIgGQC621uQbmktH/jEMlbx3Vhdw8gCeSakTNbvNmBQ2ZJJA4xF5j28aKqXa5sTtNgpV4+8mFmoQbJkHKKrF2jpUlfENo1Y4BLNfAfSboU0bOUFIHy1ScamFmTUgunIku3OZapFUlBrXTGzok3MguCY+a7KOgXZZGvF+moOvfowrvrAAyWO3sUUxoYT7sEUuC4O/J9/B4ceeTRURUnGwRnDePfRMPp+DWm3quA5HZtXMeMnXcc+X0xH/myuPhHG+tMAqEyydGPto6QoPddJAem5kE5eXQpZZe7X6HATPBdI4BmHKDIdq2SUpaXX9WQhBsnE4oUCZaIinpBIm6UfESEB5ubUCUiqv4VUjswyuJ2zoPdog5LN5ctLM3UEEDcCK0Y7dDY6cRdRLTNDkCFtkoVyvZyWFwPMyULaGfidPSWfZ73YkmYa0rBVmYWUyghIeKGipOHhvNTRWf8dl3jqeS9F6ARe7BDdaNidy8KaYwCT9kLWrXIk43Xrl0vML8LKYPQ3L6LnHe9Wm0BBeYEhXHAG+CuPA/MKygVam1xqs6zQ8LK+Jl+TwY8+RxlxWepzL4PWUfB9wHMj+TjjYKYFZlqBZDsPaViqrKKB4UedAXl4P9z+XcoZvIh4Ntzt36XWY6ZVdm0yn9lkglhoNMFqn6gHuXweFgQM4UbZYsZC+XXeyKgTr+66FFz8KVoXNQoq48rLp8XiC+eY03fYZ7YJGM/mwtZOAJJBvxSJWsJ8dkK9vgbstUj10bWDF8YAw4Yxfii6Mu4cb0R9TVncIb7BF9BxmF+hLUqxO25MlswCZYW0m0BZEXf4ZxzegRdC0z5nsA9AVDdcrxYxRJ0wbTijWYhVJ6hNIc8BpADPDsGCcoXnE6+FLdDCc0A80GrwDeGwTpkbKhAGSjayw/ZyiTvOzzpl1m2doOTLbOkq9Ti7n67Yws3fsz38zmr096uZYQxgBmvYC2mvawfNKqIsUgLczcFhJlhRMCmh6pelYYfnmzCrLNXtQONP27LZ4jI1y+HfRY7Y+WzjyrfaWjLI5dXOeWjOZaosob2kJ5lV0gvtwAitUs11rfsmNzqNnmGcCYWxYVWjN3oQftsRpUFwrP9oeD2gvhiEH2anGj3jP11DmxLHe2405MZRHGd4IDlGrjY3rJ4NAJQ3gSb+2uZbTkvUB+//fR2977tcqSoKE+BuDsxzIE0bzHfBs0MqgBSeUohpgh7DzbAZxls7wkwxgCgzHoexsE86My1IJx/0UK/965uq3noy+FFnwFh3CpjwIFq7Ic10Wbm1aOmCNKzoPF5JBYcZtJGrIu4T35v35ySIarIgA+V/+qd/wvr165FOp3H66afj0UcfrfeQmhIZuEHqjDJnCKXVjEHV98WiYSklfBGZfgHKUKtRkcXS65iZVfzvRIY5PJaBSTHvbTRmgmqbZQSLZFYS/OdzuTDQibeAKq65rmeA3FCbEZWyk80IY+DDffBblwZ/xz/rseCYG+Fno9gsquFdVYV2568wzrAFTWDyZSjVhTTtQIHR2Ft9dtdyZQYWM+2TdnLuFsZHwsBBBkFEpQ2Acq2qiOZE/PZnSJ39VniH+8F8D7wwDgR9g6WZVt4Dh/fDb10Kc2g/wDi4mwvme5nMcqPCOGBYUTYZSCq/GAsM/BhgWgA3YSztCeeEePlJeE/9oB4jnza6DIblx0rqr+MtH7kzDubmy/dhD9Zw9dj8s868dN6fkyCqSRN8E86Mb33rW9i6dSs+97nP4Ve/+hUuuOACvPWtb8XevXvrPbSmQQdGPrfCTLEMXK9DN2jhQzCjHl0kakOwKI7LGGXQNiMMMrXJUbCAEEb5eqBGYTybU9Ll2AZAuWxSWH8aoDPKxS2AeB0Ch0YyFrOXra73EKpLa1fpdVpqHXzOVXAVfTZUfbJqIaNrlRuWYlOfSuha/nhrKcax7aUhuK/urt34qkXwnsV7IzuH94dzPXTzZjzKPCGSZIffCU2QQSSmh7dsPV77jzvATn4TAECk2gBD9R1X5nUeJrY/Bp4dgt/RAyA49wWbYc0g5fV3Pw0A0TiLx6pbXUE5ZYcbANrVXvgQI4fBUo1b3uO/8kyYLZfp9pJNv3hQrG/TgbX/m0fh7d8BIDImpPKLucDADN6wF6J2LLj/7s0334yrrroKf/AHf4Djjz8et9xyC9asWYPbbrut7PGFQgGjo6OJy2JHAuCQ8AOXaz8IlsPbGFCQPGgZJcEZYDDA4AwGZ+AsOr6RS5aVOZEOhnnYh1mAqUxsIL/Ujr9avgVuhLLzRs6qhQ7gcRltfLxShIGODDcKGNKZDLK5PBhTter6cRo8wVYWmt+lFCbGwHwXfsfK0nrEosVWQsaoza4C2bUOlhsNvTiEKOOAWzwHglpsPc+9dBe0G/bb1rfB7+ipqWqkWjLoUFodvF/2stWlcz14z+ItqZzhgVgden0C5bn8D2h+l0eaaXS/7w/VZ9tKA9yAsDKqZj94n9ve9C7IVGtggOWA+U5CfaB/VuqNXW8SwXyZeZ08mANxN+hgw4+l0hC52qmWwu+iWWKsPTl8vyTjJT2YQ4drKSHtVoiWJdGN6XYwKeZUJ10N/OcfquvzE8RcadxV/ixwHAdPPfUUtmzZkrh+y5Yt+PnPf172PjfeeCM6OzvDy5o1a+ZjqA2PrlkK20IhkmBrh2sR1CMzBEEyS9Yl6xj5tbEGll/Hs8dQG9B+ICGXEhBgEGDwhYQnA1OsoIbLEC6yfmNHj2FWOJBfF0uv4tnkeHKQMSXdLjbTyudyjSWHnoLFOr9DJ+QySMaBwLwnvsiMz4PkHUSYRU7UMEsBCF/VwDcQ0izNEIU9lIvRG2WBcsQsqECLeQXAdzGQ8zEqKrtJz5W5th5zBvsSipF4XbJ2tlctc3SmXH1fFcaGkeroht21HPaSnuRjTvLZqQVz+R8s1vk9Zd0n4xBtRwCGBWG3QmS6ANOO5rcQKkjWBnZODszNR3M9eIxGzihDCsC0lNMzypRM6WN0CYbuDV90DCvX/aJKFAe2s8Favi7sgR2XWofENvsBgOfV97FutRWvkzZ7j51z8D5TjJPeNK/PRxDVpoG/BWfO4cOH4fs+VqxYkbh+xYoV6O8vb8Rz3XXXYWRkJLzs27dvPoZadybrcSykqk/W5lx+LDAGolrluMO1wQDGVEYZiKTauqZ5YKTxgivJWGhgpTPJYZAMQEgJV6iLNikTYPAk4IHDZSacRk6ZFyG5mcgmAZhUOlscFDMpkc4ot/PC2DAK4yPzEjTPJRBbrPN7UoIsaqWF8KQqCd9TWakwq6wC5kbaPNFmVmFgXClADn5Kw46yyoEvAwvqs4/sbsMRHaX92BsFu7s3mtOT1WIHPXSjljkMhdHBpEFdvH/uyOGmqFlerPN7srpPf99z4NkhFOx2+NxS6i8zDWG3QtotQWClZPj6M8F8R7lfB8FysS+HM3IY7qEGK1+LZZSlURwsKw+RRNDPDZVx5UYoMUemA7zriDoMfmaEEuuioL5YAQAAIhP1xGZOqb8IkwL+K8/A37N90uec6vbFCDdYw14a3j23iVlQgbKmxKVZypLrNKlUCh0dHYnLYmCyxZ8MM4xRBjlOWLcM3TOZgTOVUQ6PKXo8AeDAUOMspjVKPs2CftCypCe0DLPL2qhMgjMGkwEmA3o6G6eGthIzqfNNZJDjC43g73x2IsosTvOx5ypdTbW2zzpYXqzze7I+2ZKxaMGVkFaXSvNLPgNF9wnrlaVoPAds7Wpbyd1WqOBRgIWbZlotwpxsiXlZQxMENiVzrXgjLHYeZF4+aVCnTcFin51K865R5LiLdX5PhrFmE/jQfvhChhu/ji9im8KmkiHH5jsTXjJIBkq+C6Rpwzm8vw6vqALCj5QtQPmNonidsvYYAQAzBck4jPWngW84a54GPDv8V54JS75K0JuVPFID6Xpkd2BPZNY4CV7fzhI3bH/P9jAjXQ28Zx6o2mMRxHyzoALlZcuWwTCMkuzxwMBASZaZmBrGVL0xZ9HvDOpvIJJl61plIKhVZuqDpYPLRkcHwHqkutaaAYmsuisQ1GvLsJa30WnJqMBXy2zjrZ/SLa2TGvgU355uaUW6pVVlsGIn7XwuV7alVC6fRz6XQ6qts+S2mZJqbZ/zYxARzCtM46BJTg8xOaMOvpiUDRUsJ+qneZGbt65RjPWJZvGaaykAt3Fey2QUty2LS6fjWX8WCxogfMhUO+xlq+Ee2gtnsC+UQMdrhvUmVXEArtvLNUrATCTJHnlGUA4VV3khLDGQjEMaau5Gn3mpNod8JzqGm5Gsl5uA1TjGVyJoe1jSKz3RnYKH3grMKwCeG5aZNLSsPIax9mRYy9eFjvxxg0Fz1fHqF6Hmtw6Wdfbf6tkA78ALiceThg1j7cmQqVaIl59UahozBXdgT/ScQZBcrayyefKWqQ8iiAalOb4ppolt2zj99NPx4IMPJq5/8MEHcd5559VpVM2HCKTFOjA2ioLl4mN1dhmIBZmMQUAFlnEODE1g/+D4PLyKmROXlqsNAfVifRnJzqNMc12GOCty+XxiUVAYHwlllZUMfJiUyGcnJg9yixYaxfLbTDqNdCaTaEM1WxpJ2rsgKO6TWql/sr4tcV8ZfW7imenAHK5hgmUpwbwgg1S8KBai9H8Q3EcfX+xy3qj9h4trjPVi2Tm8XwU9set1jSYL6ssBwDriyLC22RkeKK0ZDiSuhYmxknlIAXNjIr91IwzGwCHDc3cCVrRxFL/J9xLzoLg3ry67qTfmqReH2dSwvKKc8zXn0WZAIfr8VjNjOh8w3w0Df/Hyk1EQG/8+jiGDTY0wmA4we4+F17cz8ltBsHEq/BKX/3jAXG9TsLrDAMZZw16I2rGgAmUA+PSnP41//dd/xf/3//1/eOGFF/CpT30Ke/fuxcc//vF6D61pSJscnLHQpIsFv+sTLkNg8BWTaOvMMRO+OkEzBHJm9ZjxDxpjDAeHJ3BwuL7Bj5YZS0SBPoBwF56FtdjqNTq+hCdKs+T57ETjBAdlyKTTSloaLJZSbZ3hrns8Uyti0X9xD1m9ONJSTNVnlgdS7CjgKEyMlcg105lMiSnYTGmkNlHNTiadjtxSY5QsthirvCMUmMvEW8iwoG6ZCb8hTN+sFevVOHU2ORYYJLKriMZeDh0gz9V4q5ak2rsCKaqMJNTLVkfmXvq6WFBd/Hqdw/sB4cEZ6g/l14XxkSBr54bBUnyjLXz+jm4KlhsIe8VKCF17jEg1BcRUINrgLd5z2HdU/W5Y+8qiOuCwvZhqlzjfpm/lYG5BZUR15tgwwsBZxh3tA9m1bF9WUmKiza2KM6+NhL/vucB0UL0X/KgzwvfIWrEe1hFHAkjWLDMnp8z+AtxXd6vLwB6YvcdCWinIVCt4dkhJuJnaUPD271BtqWLogLmR/0cEUSsWXKD83ve+F7fccgv+5m/+Bqeccgr+53/+Bz/84Q+xdu3aeg+taRBFi+Pizar437pOWceO8cW2CByki9H3NxpgE6z4tQLBOiCQYgJBRjm8rXTQzRDEhZsC8WA5oFwgW2LyFQusC4HkTR1XVK8KVJRz6/7cRANRnE0q996VC5aDzRGhHUSkDGvXWdCKKN3SWvdguezriWeTpVDfAaExUOn8truWl8ibG5qi12Av6YHdtTzxv9AO5/GFdBhYx+exlGDOREJpUOycHz7tAunDvCDa2YRKjyA4hlJ3xZ2hJSvKKEsJ5sc2jBgPPTzCx2Q8zERKbtZ9XhjrTwuDPE3C/TpwfJdmWjl7C69knmtn6uLMayXEy09W7wVME2PNJsB3w6AfCF57Bexlq4ONwmR7P2vFeuWiDYQeDdJKgefHwv7a4CZEurTW31izadr/I4JYSJQ/4zU5V199Na6++up6D6NpaWvJYGQiFway8bpkINYjGYAQMtxtsYygFig4VvVhjiTbbiwTyxiwvAGMsDhjoUEXC/LK8SBRyGg3iTP1miywRICdz04gM81gOZfPzzm7OlvUe1H5dj7JjTqwLoyPlMixdTAkg8wToNpS6fro8Wwu6uncYJSVmi4miiXWMddYtdBU8lzJOBgrbR0jpIQhfDA3C+jMTrydaZ2DJ3PlRpUpNXjFDRweZM55YSxaXDchqY5ulemtoAKIm3QxL5/oqZs4LshCa1l1PpeDZAxGbhgiHcx9boTfBQttDi2Edjb2USdCcgYIFpY/SSkhDSMQHRjgUkBaaTCvAClFZJobbHZJKcC4oc6HUgDgAANkcF1xB4W6w7kKDE1Tta1kAtDO3oyrVlKMgwV7CN7+HWGQ7O97LtFGaTK0w/Z8Y/VsUKqNci7+QJhVjhNXjegA2RnsgzTTSAWlJe6hvfDtVvW9YViBWojBGTmc+M5wB/ZEQfYihRuNm1tsgLzTgqVx33WirlicodxyS/dUVr8rWbI2uQqvhDb6Uhlbi0d1zppG+eC1ZNLKtRsyrK+Oy87C2mwEarXgfsVB5XSl1/UKkgH1WierrW7JpKO+yxWYrGZZt9QBY+BBgAWojZdGDZYX0gJ/JiT6ic7U1CYm75PQjrmFqL1Q7EPWDCZsXH+jVQiS472KGx0Wq0meinILa008U5jOZMB9FyLdCV4YU5thUoTfBXoOTea0Tswv/Jjzwd18osSCBd0dfKlKiKRhh1Je3SItPDZwfWeBs7RWiQBl1EZAQplQFxhXRl3aCTvWL1ob2klt/FXOBb+SM34ZjLUnV2nQM4f5TsXvIi0hT9QZC7/kOLu7N9wEA4LvgWAXPeH07zth2YlzeH9zGbMQRBVpjrM/Me9wRAZWuk5Z91IWUmWTddsJxxdwdZ/lwNBHu2HL4P4pk6tAkzVONlnDpR/WVrKiEwsDYPFIcu2KMpJyxusaAM8EIWVZh2qNzgKnM5lJJeXa0RqISc+lUPVtwodgBnL5PHL5PEmuGxC7uxfMyZbKL4GkgU98QyjWFkwf5wsJ+A54dgjMzYeL6RLVwSSfuVoTd4MFkHTAjklNi/tHx11gmyVQtruWA1KEgW7iNcSPC7LG1vJ1FY9JIIWq8TRToaxX1yk7wwOJwLreclxCYbz8S/WTASkjMqb0A58NTwLSTEFYGUgzpS5FsnomPBU8afd04au65wr1/PWAaSNBV0mrWTxQBpTDvQ4whQ/mqu8iHvQY9n/9k9D4qtGxl/SE38HF5lo6O67bQwEqC+3276r4eHqDQ99HGpbKKksZthBzhvrBhBceU1y/TBALneY4+xPzDvMKofSax7LBurewjhN9CXgCoclVPKOhA22TM/AG7knKwgWAWyIV5Sxw8tZ11UUzRsuOmyUY1FldHbjMNoDRBmGaRK2y8GC4WXBXycw5Y4ls8liT/K8WOuGCMv5zKoTaVELQi1lIKGfp3GgUSJetc66jnLl4E0D/qk29ymShEu1jJqnLbUSYFGF2cDpSyXLHFDtpAwjr0EOTJDOFwugg7K7l5Y8n6op/6AAAhO2hDKY2t7UCzBPqvYRpA2ZgemXYUeY4OJcz4al+254T1q2XKEVmkJGtOp5SOEjPVRu1QKRuET6YF5mTMeGpuSGi7ymWammajTBAbXI5Q/0QqcnVOt7BFwGoYDlOYiMr/rqLHM5Zfgx87FXYS3oSGwn1zKjXE8YYmNG4F6J2NM+3AzG/cCOUU+t+wvFssu4v7PjKDdoXkXO0ZCzoPayuZ1ICwm/cD5te/AcZ0TDDJKMg2TKUbM0qcjaT3ChxiG4GBBhy+TwkY2F2WAf90w2eJ8uix7MOOksd3obm2VhYyIhUm/olbtRUnEUuQmdvQhdcAMx34Y+8Vlb2q51x61qrHG91E/8JhJlSdb3eGVS3a7Mr5uQmL+4vwjm8f64jnhN25zIwJwtnsE/1SD68H+7AnjCzpHuszoRUW2e4CRJ3CI9LOMPnX9IzKylusZM2MTd4+5Igy+qHpUJKfi3D87YLrjLJhg2ZalMlGb4fBZxM3a4ekAPcKFubXM/5baw/DcxzIQt5SCsT9krW42K+E/Va9l0137na/PL6dkLa0ysJErt+WauXMHN8D8zNwd/9NNz+XXD7d8Hr25k4pNzmnntor5qf2rE8dow0TNVbm3NIOwNppUJPAtoIIxYzDRu7EPVF7xgrCTWKWkGpINgVUWaZsSCDzM2wfRIHg4BEQSiJlx9zx24kwhM/45FbaBEiMMIyggyzkEjU8zZi/W0l0hk11tCoOHA2Tbe0IpfPh7fH0S2fJpVSF8nRK2Xh2loyYd0yUWcYUxmWRPukyL1av6cJR/PYItRgakFmtHdFraJigWgj1K3GpYgl7rgJh1wJeMGiOgiWmVuATM2sTKS4/3JdMIN606CURHIzzCyVq012D+2dNIB2Rg7HPgO6FaBXuZ9uINmcCQ1nDtXkDD7yEIzxQ+H7xgPPDV8qY0294a0yycqgShZnKXUpkmlDmunGzbwaBqSn5NXMzSmVi5TRd1KwGS5yajOYFSbAhAeeHZq2WoRvOKuWr2BG2MtWQ5ppiEynWrMYFszeYxPHJL73oGqXrSOOTMxL/f0c+jDEL5P8X4r7LRPEQqZ59GRE3SjuGxzvKewKEUi7GDwhIeyM+hm7S9YVcDgLXa9XdbbN4+inR7lMmna2NjhD3pMwdKbcF0iZHK6QSHHAa8DgfyrijtQSgBFkmH0hQ2l02Ec76M06qWN3kbzV7lwGZ+QwCmPDSLV3IZ+dSNQ8Z3N5tLVkEu7Y02EqszFi+jAnC5npBOBHQWM8GJJ+7G8WtlAKa36FD9MIFtmdy1XmqVJGus5O0uGYDQvMFZCGqfrBG2bULkb4kKk21UsWAJiAsFvU701mZBM3qfMOvqiyZ4HZj7Ra1HvGeZRpQ1Sj7Qz2Rf2XNb6jJJ/DA2p+t3epIDn4vxTfR2egFpojdjOx9E0XBzJjH+AWDOEC3FL1yUKdz6SUEMHmMDc5RLoDrKA2ReE5YIxDcgMi1a5q1CsFT3UurTLWbIIc2AsYBsTEGDgAmelQn2kPEOl2tWnQ2gG/fUUgJ3cgD+4C2lfMyASvUdCBsFKK+FEtcvFmf9HmRtnsMOMq06zndzyArvDc3sEXIRlXddCv7i4JzBciDS1xbuChNTsNuj1INAJGkCWWiGTVermrZdW+iLKSQgJZP2pHYQRJGseXKHgCfiwDHad/pL69VkuIDZIBQYCs3LsBhMZmgJIwSwAjE82ZHW1ryaC9JYOWTFqZvMQk9hKxWuQpDMtSbZ2TZoSKpXmzVavPJKgmJsdetlotog0rdCsPg2Utsy0OcINFmJZgmwyAaUNYLYAOOosojA7Ow6uZgphcHEDg9BvLgAebQWAs8frBeN1bXM0Vc+VGtYjlJqTdqt7DIGNuHXGkyjALP8yElwTJ8etiNeiptk6wwjicw/tVEF20qHYG++q+QTIT9EbCQsE8/e2hRF53IWBMn7+0Kkz9dHwBVwKukYJoXRoFW74DYVhTbwZXUGLNK2aQFfccVa+sMYKxCV8FzBOvgTlZ1Tu4d+OkTtLNgNWzIVSLsMDUTH+nWcvXwTriSLX5Mcl7FAbP8e9IANJuDed1uSyy1bMB3oEXFkWQTCxemvfbgag5llQnWZ0d1udKPwiMXSEgpAxOvuqEW/BlFEQGAVfeF8h5KggrFyAZDV7jyxhg8yCbLGRobqbl6FPJyQfHsvMwyrnT1pJBZ6u6SCnRHpOTl5NjlyPV0R3uRtudy6Jaxtb2sAYaiOqbKfCtMzowjMmQtclV3Nk23jZEB8P6GMlNVdNm2KqGscjxmsVaCdWLMKupSwJil7Avqs4qB1J05jlNmWmqhNl7bLhwBqLg1zm8f9oL3bjrLgC1OWK3wB3YUxJglwu4GxntGryQkMEmmMqgumBBayjHl7C42gB2faUAY1AGXyLVrpQjwlNzILiPMFMNvfHBLBssNwoAkIWg1pqbkGYaRnYI0slH81/4SWlxmdfl73667O+NitWzAebKjTBXHa/+js1pke6ctB2cxu5clixPMWxIu1UZgxX9j8yVG+EdeKGpNxkIYjrQJ5yoSNzZMgyWtdu1AFw/aAElVeDoi8gkxJcydMr2fJVVlrJUxq0eswFkjYalFvzcTOy8csaQc0VYl8wYC83N1HVTj727vaWGA68NbnBOHMvmZtz6Kl4DJRlHYXQQhfGRSdtNEXUk0TrJSLaMivdPFV4y6xosvgGo+sX4fRsUHfhqh19pWMqQT8vGuQFpZdQlZnbWSO1wqkEiiOUze8+YE1PP6M2SCu11QjlnQCMadnkHXqj3EGqGtXwdrFd3gjkT4WdfSAkBiZwnICVQCCRgBV+CMQbBjHCuSysNJjzYBgeTEoKVz0pOx1291shCHv7QIeVa7znKf8HKQBoWRKpV1e1LAWmpFmd+61IwtxCY9fGSjKmx/rTQwKvZVCXWEUeGmWDn8P5Z+yakMxlV621YZQNic9XxJbXRCxYGcIM37GWm2uv/+Z//we/8zu+gt7cXjDF897vfTdx+5ZVXqvVu7HLOOeckjikUCvjEJz6BZcuWobW1FZdeein270+aWQ4NDeGKK65AZ2cnOjs7ccUVV2B4eHgWb0D9aOxVDVF3LIOFAW9xjJu2OAzGlDQ5aDmh+wsbQUBZZBKN9cuSZiGHRrMN0VNZ6AUzN9TvjEVtNTgLs8jx16P/H8WvcSFwREcLBseyszJfi9dApTq6lTMu44mMchyqO64ffGIwDIjDIJcbkQkOUNrySddaBD2IwzZLUjb8gjLxurihMsfa8CpoeyTAIBmHsGIqCikaQ0JeZZyh/hlnfuOZKru7N+rdXMnpusE/EzoDt1DxXn1FtUNiHMx3YHCmsskiUIIJqcpsTA4pgwBaZ1tj751kkc9InHq7vMdhdrBhI5QPQeI204pa4nEOnh9VLt+aMp9TbeDFjzqjZmOuFXpez9VcMNXeVdl7oojJejYTjcXExAROPvlk3HrrrRWPufjii3Hw4MHw8sMf/jBx+9atW3H//ffj3nvvxU9/+lOMj4/jkksuge/74TGXX345tm/fjm3btmHbtm3Yvn07rrjiipq9rlpAZl7EpNjCAQxbtZIITpJaai2FCpb196cvJTyhguSUAXDBAChpdnFbpYGRCSzvbA0D63qj63MBFfianIEJHz44eFCrzaA2A/TtKnBWr2s6meVmo1ImPJvLwxBuaS/NSdDH5nO5Ehl3XH49ns01lYN408MNMN+NXG+5GWUJA/lluR7LUWY25pKq7x+jMDGGVAM4XwNQGSZugLs5lVEO+4YG303MUKXKDPAkh8FZ2I8YUpRthdTslDP20RngSiZc5Qy6Qhl30W3O8EBy44ycrecdvu51yltEeADLwDYYch7w/2fvzuOjqu7/8b/OuctsWUmAEHZQRAQrhZaiteKGuFEqlbp83L4Wt/pRqdSK9aPYL0JVFOvypbX1gUut2taP/lwpVtS6ICqiVURwAVnDGrLMdpdzfn/cuTczySRkmWSWvJ+Px0Ayc+fm3EzuzD3nvM/7HbUEinQOAfezTSJmS+icQepBwIh44cmMAdyKg3O95f6N3MgxwjQN0jTBVA1S2CnZrpmwIPzFYLYFBgNS9YM37IYIlnnh2G7UiPjqPfBDftD2D8tjRm2NM9POVfiDIec9OvmzPE2H2A3bPtjsdPOazSR3nXrqqTj11FPb3Mbn86GqKn1psLq6Ojz88MN4/PHHcdJJJwEA/vKXv2Dw4MH417/+hVNOOQXr16/H8uXL8d5772HSpEkAgD/96U+YPHkyNmzYgMMOy49oBJpRJm1j3KmZnJSIy/2jEVKCg3mdXbeeslNGyak/nNyJFpD4Zq+TUVMA2NcQyZlkslYiE6glnDVbgBNu5XaE3bJQALyZ8uSPk1xOhphpjAGwTcQbDrQoDxOv358Satlc805y89lk6iT3rObr1tzEbSk3IHVWObmerm2llIxK1t563D0p5f3G7dwnlUkTUnozbM42vejETqKX9UM83JD+NWwjvL5FB5oyXmed3LLOmUlNDPponEHnDBHTxv6oDV1xElI6n/POZ2HTk0Wis+nMEKWLMMqV0FvmD4H5/M5N1Z1OPnOiQ6Rb7iipRroo7geWqLnMhOW9v4m6fdk8jB7hKyoFkwLRWKzlcpm2zu9cKH2XRUxhOXsDAwzDQH19fcotHo93+njfeOMN9OvXD6NGjcLs2bOxe3fTtd2aNWtgmiamTp3q3VddXY2xY8fi3XffBQCsWrUKpaWlXicZAH7wgx+gtLTU2yYfUEeZtMkXKgZnQKliwRbO7LAbugUAAk6ZCW8NcuJC051AVpizLWOJusrNPmgHlGU/7BpwLgBMIb3SGQAA2wSXNlTOUsKvFc68TrI7u660En/dVqcxXzFhg1mx9Os23cRI7UTJvHKAsMBs0ymhJBOZ3BNr9Z0yUJYTuimawrPd8iqwzaYSQ26YCZxOssixehWSqxBebVUGyRhEYqBPJG520ppNwwsxcdZldrQucN5K5BWAFBBgLd7DumsdulG3t1v229tpk2Y4A1tGBJKrCKjc+/xuMCw0xIWXyAtI/N27mdG5Ch494OyIcejNRoRzajmCsMH8RWC6H7y00vk7lRIyUAqpBQFhOffZthdyzYxwaqZ/ONnCk9mfv9HTR9Kt9PIqxCJhJ6pGgpJxFZDHHnvMWwvs3hYtWtSpfZ166ql44oknsHLlStx999344IMPcMIJJ3gd75qaGui6jvLy8pTn9e/fHzU1Nd42/fq1HCzt16+ft00+oNBrclDFwQDijQZ0xVnQb0kJhQMa5xCQXrgiA2BYzmyMYUsIODOtkgFMspS1vFWlIezLoWzQfpVDSSQjA5pmnpgUsAQHZ8zL4g00ZQD3tmulT9Bq3cl8lhidT1nvmSENkWhKtu3uRDVeHXp5FawdGyBCFeC6mtrBZRxS9YMZkaakT8lrmJuVEwGawuvjjXVZz3adjEkBniiDJbnaYrmFyxTSixDxsv+2Mmtu7tnSrmyy+aT569niHOmmC2u9tBKx+vpu2Xdvp/UbBvHVe85rGyyHqjAU62qiRJREoym8NcqMJZYcqLazNCOxD2bFwZp9nuVUVvhEQk6IaGI2mTuJu1xcBTNjQOQAZJ/BzsCgaBYpk04ulL7KoHhjHaDokIkyl6zZIH+uJ2QkrbvwwguxZMmSlPt8Pl8rW7ftZz/7mff12LFjMXHiRAwdOhQvvfQSzjrrrFaf576HuFiai+Pm2+Q6OiPaoSGSeyGEPc1XVIoSnSOgMi+0WlUSs8RwOs488ZFqCyBmCUQtASPRs9QV5iX4cuXSaaJYMfiYgJ6UvAyMe2t3nOzeTi1lKaXXaXZno1rD44090Pru55a42lPv/O+u3Ww+EOCu++ysnuokA6kdgJyaGckCtfow6KWV4EbYmXV1QxYVzckIrfmbyil5GaP1povIdBeZOXTBZezdBkjh1JNlHIIpsBIRJMnnM+DWTU/UEk8MCrQ6KGSbaeuL5htj77ammeNEhlt3Bj55ptc4sLupnFYeMfdsyXYTso4f8gMoezdBqa+Bzp3Pb4UxWEIiYgon94bCoPDEEgxFg1B9XuZrCAvMSg3jTLfGPVu8/AqqlhLdAsB5n3JDq/uOcBIQWjHAl4hoa6Veuvjmw4IJxXYjYoTqQ1w4kxmmLTO+/C0ebsjsDnMEA8A5y9kbAOi6jpKSkpRbZzvKzQ0YMABDhw7Fl19+CQCoqqqCYRiora1N2W737t3o37+/t82uXbta7GvPnj3eNvkgd65kclhxMIADjRE0dqHDHI3lf2ZfK+kN1e0sCzgXmwpzPmA1xQlllHA6zN5zE2HbPGkUKZeyRbPERUBiqUeLGWL3QtqLyk66wAaQM2utu8PuujAUznCgMeLUj3bjzQtIJhI1tZbVO6+YsdRlBIw7nUWv1jAHFNXpTHHFySyrtNKJzKFsx+7aOjdJmRtm3RQZ4nzVvHydF5rYyrEUStko6StqSlwGAFyBYIrzO0p6bfWyfk5odrPcBLnGqE29OCu0Wf/OUkYfCyW8Dwpn3me2aUv4FCenSMQU4Ej83UvhfM4pelPd4Rw6p1tws1oL23lfSvzd6m4ywUS2ayBRX7pud+I9LP2gr0sa+X/tZtTWQPicQX+3hKdhSxhCtlz+xHiX8kuIPBxIIwe3b98+bN26FQMGDAAATJgwAZqm4dVXX/W22blzJz777DMcffTRAIDJkyejrq4O77//vrfN6tWrUVdX522TDwowLrR7lBV1vhZuLBpFIJD/SYqKggEn+YN0ZoilBCLS+aCNWonRWimhMI6wKRLbJdY0IjFT05QmJ6dCL/TSShj7d0BVfYiDObWDE/WD3QRT+xoiUDmDdAcCJMCkBG8lk1e84QCYkv+nWEDjUN1yIm7iI66CJdYwpkhcnBh1e5suUDpgT30EfUvyq+50JBoDY0CgAOpE65WDEIuEnVqqjMOSTidSU/SkdQZJneJm4ddMCuTqmJGvqNQ5NjBYQqCiWVb3A40RSDjHa0qgRFcSCQudsOvmx2Xu2uQMqln5fSFt1O2F1EOwJGBEolATF7ruYGDzQSRLAloORQuko5fnz2xFT4q9vBTqkT+Cjzmh1hFTYMLgMny8/QA4c0tGOWWgYlIDbAlFD0Jp3Asoak5FgTWnDB4Ha/t6MK5CHXREymNa3yGwdmyAMngcFDiznqwsnFiDXQco6WvAS66CF5X1zAF0o7ivFGFTwK4NexMU6Up9Ac5AeFcG/gN+yjuSDxobG/HVV19532/atAkff/wx+vTpgz59+mD+/PmYOXMmBgwYgM2bN+Omm25CZWUlfvKTnwAASktLcemll+L6669HRUUF+vTpg7lz52LcuHFeFuzDDz8c06ZNw+zZs/HHP/4RAHDZZZfhjDPOyJuM1wDNKLcpU2to/YEAYpFwQcw4cTMGn+Ik6HKzWmuJ7zmcpFeGLROJuyRs6cw2+xPrn5Qc6hw3p/epdmaWW3lcSKA0FPC+bov3WoscHoHvIC/rd/KEY/NfVmLGoTetcwoG/AVzcWDt2ABmm+CQTaGK7t96Isy6qRZp5teodzd/MAQhZdqBz7KiIOxEngJbwBv8c2uINu8wurPs+T6rLBMz5jyxNMYbD0k8nvy5FY3FnMGEPHvdMyGX6gV3lv+0K4E9W8HeewYah5ecizOGqCXAmPN3nzz2y6QEjzc4g0WK7i1TsXZ+mY1DaJPUAlCGHZX2seTs3JKrkL5iZ411opPcPPTa3vopAKfsVCGQEjBskRI1I6UzQJjMEm0vJzuY5vsrGIyBKTx3bx08nA8//BDjx4/H+PHjAQC//OUvMX78eNxyyy1QFAWffvopfvzjH2PUqFG46KKLMGrUKKxatQrFxU2lxJYsWYIZM2Zg1qxZOOaYYxAMBvHCCy9AUZrW9T/xxBMYN24cpk6diqlTp+LII4/E448/nolXpMfk/3RXN2o+49ARzevB+hOzTbFI2Ps6H/mKy4BwA2JQoSsMIc2ZPRaJhF5u6g+nT8VTRiaVROd6T30EGs+tGWWXr6gUra3ocGc6y4qC2F0XBmMMmsJavEFFYzHnvlwOU2un/Q2RlBB57wIqcXHNhI39DRGv5rJ3sdHJBCh9S4Jeje10ag7k/2BTLlOrD4PYuy2RnY+DcwUSEgIMnHEwJppqjjZPcCVsgEkw7kTRsBztTLVVgqxfaQhb9jdC88raOZ0I3iws09y9GYxxsAM7oYyZ0o2t7V7m7s1gehDMsMAUHVzRwITwcjM4y41SL6yFBJjs/OBAvOFAXtRTjtfvTx0cUVQY+3cAQuR1mRx1/DSwL96CT+UABP6zow6mLaErDP5Ews6IKZq+N6OQeggsHgZ8if9L+jjZ8HOM1m9Yu7bzBwJAYAisbeuc9cmWAWXod7zH3U6yrNsNacSQ7+m8VM686h1q4kNc48xLaOhFRfn9iFlOLpbOOugkQg6WDeyNpkyZ4i05Suef//znQffh9/tx//334/777291mz59+uAvf/lLp9qYK3LzSibPNSQ6yc3XNMei0bybgUlL2F5dYZFUg1TjzponF2Opb5qMOW/Yztcsp9YodwZPrNPmjBVsmaM+xUGvjraTvCxpPbYUYFJA4axFwrvuyPa9vTZ80A/hnlSoSf70ykHgESdBR8pYVvJ7V7NOMkv8LSTPrubrrKPTWWj6XkjZ8n07UVeW6Xl+3kvpdHgYB7MNJ1lT4tiApigSd1Y53UxTvOFAh35kW53k5muLs6l5BIFeXgVwNa87ya6Gf7/iJO9KlG7UFOa9vwNAie4st3HPZ8k4ZCLxFTMjTuK3AhgIllpiMqSVDoOo3+/UZM5zViKT/5A+ReBwrluSr+FsKRFPRNAYttN57mwEZJ+DTDDJHJwgIaQt+Xklk+PczL1FwQDqwk0X0/5AwBnJzHO+4jLoRgMCKvc6i24H2a2brHLmrWM2E50sv+LMwLrhXvn8dsmYM/LOpV2wnWSXux67NBRAaSiAYMDv/B0nOg9uArRoLNYUrss6Pwbf2uWXJZxQ/lxRHAx42cALjpRg0Tqw5r9vt8OY+F8ml4dKZMZ17s/fs7tfaQhFGk/JgJ/8vu2G4Ho1WPOc3qfaOW8tA76SPikdWZ6orw04A0NuR0oqupeg0ldclpHkXsb+HV3eR3fTy/rBqNvborZ0vim7bCF2z7sEAY2Dw/m8TvncZgwqA1jcyWDM3DrDluGUi4s763vzmVnztTM4JKz04dqWmaglnf/neHEw4HVg+5WG0LckiH6lIS/nSnEw4JXGHFgegi0S4fYZ1hCJ5vUyJa6wnL2R7pMX7wCbN2/GpZdeiuHDhyMQCGDkyJG49dZbYRipNfy2bNmCM888E6FQCJWVlbjmmmtabNPT3DWtBYdxcGl7nWSFMagc3rplhTkdG8AZrXQ70hpryjCr5PmUMmfp1ycydwaqAC6iAWcJQrplCG4HSWXOLfn+rnRoq1oJuwaAwX2KOr3f7pBu9LwQQsu0/sNbzJy11vn1wu1tqyBmmQDnvYnBGQBqHqrtZdC2DIjGAz3etkzS+g8H4HQA086UChu+UDEkV7zIEqDl+14m6mXrfaq7vI+eoJdWdkvETE8b+funoNY7JYNKdI5SH3fKPCayXzNhOZ1iYUEqKpgRBTfC4LEGSD0Aqeiw1i7P8lF0jrXmJe99Sxk8Lv1G8TBkPAb1O1N7sGU9izN4y5ySlzv1Kw11y/VLLkWEEdJeeXEl/8UXX0AIgT/+8Y9Yt24dlixZgj/84Q+46aabvG1s28bpp5+OcDiMt99+G0899RSeeeYZXH/99V372bvqu9r8gqSXVoJZca9MlFv6SUmMTHPmrokB/Ap3SknJ1IvtfB5ZdGdRD3qBWABZr1sjueJcRDNnBoIJ2wlhY05iia6UU8tnhRA14nLPVy/k1p1ZSvA6ybIp8VW+hlw3xxlrO4N3UohyoXJnl5mUTvRQ4v3dzU/QWcm1mZPlS7bq5LDsfE7yJfwlOGJAiZPl2pberLLKGWCb3oAvM6JgtuHUT9d8Xqkodfy0bB9Cp1h7toMZkdbXWdu2U2aqAEpDtaW7JiL31KePtCrYiSNS0PLiKn7atGmYNq3pDXnEiBHYsGEDli5disWLFwMAVqxYgc8//xxbt25FdbUzMn333Xfj4osvxu23346SkpJO/ezR/Tv3vF6BKxiSmOH7dl9jUqInJzTZDetxLq6c0UTDljAFoOd5dgxNYSk1oVMk1msCKJhZ5XQMWyKApgGPeGMdIAWk6oOSSBSSSUMrilBfnz8DV/Fwg5cUKV+5r23yemwvDNO9Na8zzJwkfrmazKs9An4/YtEogq0l/uIKEK0H0/J//WJ7+AMB+OEk/eHSTgySmog3Wp2bTc7BRFAd5SbmzOc1y1Jz/r6HVxajpi4MhTmZsJmUgHDWrcMyvBBlqejO51u8Ma/LovmnXeaUkjLjaR+XquZkgI8VdvJIJ6FbenpZv04nn823Eo/twgCWyyHOOdy0fJe3VzJ1dXXo06dpVHfVqlUYO3as10kGgFNOOQXxeBxr1qxpdT/xeBz19fUpN9JOycl8mPs/8xJ1Kbwp07WucO/rPI+4PqiUjkQBa54xMfmCWSayBbc34ZW73jHTDnZ+x8PtX4fV0Tbmeye5OSkT/yT9fTM33Fq0HBjK+5n1g5y/0jTyP5lXBwUDTiguLCPxurc+q2zU1rT6mF5elZH2tHZ+u9nxt9e2v6NTU9exTlE+V69wcaPpmJ3BLScyiMfqwMyI8xpzpywUi4e9D3pmm865n8daXZucIKNhsGD7JkqiLz6YoVb1rINF9RXC3zghXZWXHeWvv/4a999/P6644grvvpqaGvTvnxq2VV5eDl3XUVPT+gf2okWLUFpa6t0GDx7cbe0uNMkdASURdg04HWSVO6UlinQOn8qhCDORHIelJMnJV8XBQMsawgm+ULGXRVMv69eDrepZ6WrR+kr6wB8MOaH4kIhZ7ZtVDvj9aIxEM16D8WDnd0c6s/m8VKCrvOCA5p1kYYPZlhdBIbkKyViX6nDmijYvEt3jK4C1qh3lDYhZzixja9lxm3eGuyNEubXzu6rMee0Glrf/Qr+t3AiFihlN77fuOc5s0wm1tgwwM+asTY43OnlJonVglgkWa4DY/W2r+40tf6i7m95lra5NBsBsCyLSAN7K50NsxcMp3wfO+EVG25ZL2pvV3g233kklHEmByWpHef78+d4MZGu3Dz/8MOU5O3bswLRp03D22Wfj5z//ecpj6erySinbrNc7b9481NXVebetW7dm5uB6geQLJJ5I4KVwJMoPuLPJziyyE44swSFh2LLXJnWwtq/PdhN6RGfXL6brfHcFnd9dk3yR5L2NMu7MIDePnODcC7sudExYYL5AwUeNtEavHOTMLHcihDqT2a0Pdn5/u6+xXfvprblIRKApCsj9DHdrpDPbBDOjie8lZDziDRCJUB9o35ve6n790y7r9rZ3K2GDF5WB+1sOntQuvRH+qZdmoVHZwWPtOzf6lgQ7HJWRb5jCc/ZGsdfdJ6vD4VdffTXOOeecNrcZNmyY9/WOHTtw/PHHY/LkyXjoodQRy6qqKqxevTrlvtraWpim2WKmOZnP54PP5+t440kKXWHeGmUv9Jq5M8wMEqqXKdWnqFBbLQKUP9qcYWQMSFMiSR14eDe2KHf4gyHEImFwxrCvIZI2a3ZzRcEAGiJRr7xaJtD53UXc+RsuDQUQDzd4nSMmLEiugjEO6SasU3RIRSuI2eSDkYoG5guBD/9utpuSNSyR7MmdVT5YmKZeOQjmrk3QE5m2M+Fg5/fQivZlye+tuUiYbXpf+xQGTRhOWbjEmmRvOysGO1wPRfdDqn4ojXuBfsOy0OKeoQz/LqxPVqQtDVV+5e+y0KLs0foO6dD2A8p6X2QGKWxZ7ShXVlaisrKyXdtu374dxx9/PCZMmIBly5aBN3sDmzx5Mm6//Xbs3LkTAwYMAOAk+PL5fJgwYULG205Sa+UqzAm3bo5DAjKxbtc2IbUANGEV3PrN5iRXmxJ69VKSK2C28GqvtoeSFP2xvyGStvxSpsTr96dkr+2oTHfqc425ZwtkqKLpDmEnaiWLxCJ07kyoujWVE2HIEijo3wsAL7t7r5ZYo5zc2ToYLYOdZNJ1yWWuNIWBmaYTLWEZTi11YTm10o0YGFdg76uBUt4XUqfOEGmpNy5fIIUvLxZY7dixA1OmTMGQIUOwePFi7Nmzx3usqspZBzV16lSMGTMGF1xwAe666y7s378fc+fOxezZszud8Zq0zUyKn1Y4S6mlK8DApe3MOJhJCZ2kKPhOMoCWmYB7oagpvJqc22vD7VovGAw0zdJ3ZycZQJc6yUDhdwalqnudwXi4AcyKORfQQFO2a4U31QznCiRXUNwb1nJzBVIv7Nf/oITlZAa2DUDRst2arPpmbwNGVOb355ouLcCMOZmuhQ0mhVPqjXEwXxAQNoQRgwyUtLm+N9/Z334CZeh3IBoP9LpkfaR1jAE8l7Nek26TFx3lFStW4KuvvsJXX32FQYNSSzG4mXcVRcFLL72Eq666CscccwwCgQDOO+88r3wUyTwrqaPMAK8skvPhmphtTlxQMysGqfrzPotiLBptVzZfyVivXzFiCAmdO0neeuua9LzG1aa/dWEDttWU9dqVNKsqGe81Cc9kolZ4r5dI6tY8A35vk7ed5ORz2Y0OsG1vaYV3fksBcAX65JnZaWcPUoZ+x/mCK22uwyaE9A55ETt28cUXQ0qZ9pZsyJAhePHFFxGJRLBv3z7cf//9tD6xGyWvO7UlvFlUJgU4pPO/EQYzI5CKDl9xWdbaminMNtq1nZSpYW290f6ojbq4DcZSB1VIfhBaswGhxHIX5tYJt5uSOUmu5v0gWIdofki1d3+2MDeqAEhZz0ryg73pI+/rWDTa1GlWlJROMrNiEIFSKGOmZKGV3cda81Krj4mv34dSANcrhJCu691X8iQjtteGEdJY6iyLW2Mz8eHb1TDXnJHI5tzW+ta6cBQKA4IFHpp7MFICeyMWqov1Vktpkdzl5iCIxmLOiGqz2WMmhXN6c6A3vcB14Sj8qg9o56BZQWPciSCSAvGGAwUxGNpbKMO/Cy/LSPNlQokkfuAckgUKciBEWm2srWccUPWea0yeMPbvgN6nOtvNyBqWy3VNc7hp+S4vZpRJ7hOyqbQopHASgggrsY6xcD5wWDs6/qWhAIp6eScZAGwp4dectxhdYdhd4KUjCo27Xpy54dbuxbQUTesYE+e4V1u3FygNBWAytVdfMAJJdWgVtelvguQl7/MaziAYeCKbvRAA5wW1Jtlc/RwAQJs0o9Vt+IiJUEYf2zMNyiO9/T2P9E7UUSZdlpKkScqmtU6JC2tZQNlhJeOI1+/PdjPygmlLSAkYtkDckgVQEKx3aYg4SfiYsJwBItHsFZRO9utCOr8BwNi77aDb0ECYw0325NTWLrxZx17Djf5qNrMsVR2ygAa6AUA01Ga7CYSQPFJYVzgkK/bUR6Bw5kRfMuZcVEsBZsYKMvNzwYSRd7MJg8ugMAZLOLPLduH9KRQ0s626Xu465aR1qoVCrxx08I0IAECrGul9zWzqKOcTs+Zr72uvJBTQFE6fyLEhCqwUFAuEIL75MNvNIHmHgSs8Z28Ued19CusKh2QNZ4kQzeR1jIoKZhkFt77JqNub7SbkDYUDAhIKY8jl5T2kJbc8l3QvnAFnLXJiBtGbTSS9mztgUoCDooWsRTI6d9CLq4CiOwm9uFpwn99M91P0QydZOzZkuwmE9Di6yiFdxhmgcpZ6wWQZYGYczAgDVmGsXTP2bnPKZlDnoN2URJInW0oqEZWnBFMSF9CJDnLiAtrpMLOC6yDFotGDb0Q8enmVkwGd3hfzSkrkRGIZRbpzmRmFlVuCcQXSiGW7GXmJmfR7I70PZb0mXcaQmE0GEmuUncQgzDbALAP6wMIIZWS2CUmZMDvk0H7F2LC7nsKC8piQTkSAO4vMYDc9WID1cwX9tXaYUy6sjSzCJLc1iwjwokWkgAiWZ7FhmSdiYegTTs92M/KTsA++TaFiAFPos6E3oiFgkjHe2uSktU6FciFtf/GWk9VVClqj3AkSaFH3nOSHdK+adGeTUVhr9o39O2BS6EPHCdurCEDyUPNEfQDAGKSiFVTVisYnfpvtJuQ3ihohvRDNKJMu4wyQiSReXkkoKZwQTV9hJAKR8ag3Q046RmEMtgBsGozNS8XBAGJRNGWyFwxginN+FxquojREGa07jNYo5zdFddbtujOGXIHU/JB6CL5QcXbblkFqeV9wf2Fck2RDoYXhE9IeBXilQ7LKTZIhpdNpLpCkGUxRnFH33hx61EmcAaaUaCuJMslde+ojCGkczE3skxgIY1I4tVYLSEF2/nuA93dB8hNXIbnaVDMdABiHULTstivDRMMBiPJ+2W5G3uKjjsl2E7KKKTn8HkcTEd0mh191ki+EbIqwbl4iRB14eBZalHnK2BOdzr9NM8odUVPnjEBrnHmJvUh+sYR0wpG54lxQK2pT1utCU4jH1M3sTR8lZiMLY1C0N5KqD1B1bzkF4AwaGQU2usnL+0GfPDPbzSCE5BG6KiBdJuEk/HG+ESjUciFMWFCrD8t2M/KKwhhUzijjdR6zhYSUEpKrXn1VqagA59D7VGe7eRnlKy7LdhPyDjOjVEM5zwlFc6IpvDJwTjIvq8DeuHmAwq47K/L3O7PdBEKyguLMSJfZQkK62QC9D1pZUJ1Kc/VzUCoLq1PQEzQOWJyBAxjUpyjbzSEdtG1/IwAnakSAQeEKJBJRXgU2EEY6R4qmUF2SnywhoXPFGQATNqSiQqo+VAQKa72+fuw52W5CtxIb3+m28GhGgwxgPJff4yhir7vk8qtOctzOA2HU1IWhcOadojKxfrHQMFUDH/n9bDcjbxXeX0TvoHAGhaeGY4I7ibz08qostozkAvuz18A4B7PNghoY7S0i0Rj2NUQAJM5tRYdUNEjVD6uwJpMRW/5QtpvQ7WS67OUZktudREK6D/3lk05jzPkD8i6jGQc4L8iEOGovqLto7tmS7SaQHKMwQFcYOANsKSG5AqnozppGklfM3Zszvk+m+wE3bJfklXi4AUJKCOlEhQmmOOWgND+EHkRRMP9nkw88dBMAIPrig/BPuyzLrekB3ZRsdM+SOfCfdmW37JuQXEefbqTTOJwZJ84AzhgkOJiiAzCgVQ7PdvNIBzEr3j37ZQVTTrvXYYzBXVUhpBOiyQBwpmS1XaQTuuMiWtEo5DpP+ULFMCJR73shJXhiwMOwJfK1mxxb/pDXKdZLixF98UEEzvhFllvVM0TDAXTHO7NGJfPAGAPP5azXpNvQq07a5c2v97a4z72IVjgDY3BGpFUfoOhZaCHpKnXAobC2rcv4fjmAoRWdW59sbV+f2caQDulbEoTKGRhjsIVEcTAAw5YIBvzZbhrpIK1qJKxt62Bv/jhj+5Sqz5mF7EJGe+Odv2WsPaRj7ESyLncQzB8MweR6XtcST545Dv5sXq/pJAOAaKhF9MUHM7rP2MtLwbXOz6lZOzZksDWE9DyaUSbt4lPbN6biCxUDKO7expBuow46ImP7ikRjENIZUOl0ewYeDnvrp1AGj8tYu0jnuEuV+xQHs9sQ0mmZPL8BeLPUrAt5KWQ0nKnWkDaYuzZB658a6eVUJJBeZFhDJIriAgi57q18J12S0f0Z7/wN5t5dXasfTGXjSJ6jGWXSLv42OspuHWUqk0uSiQzFW7M4XUh3ty2J7NatUVjXBjxI4bHWLndKQwkLfMTETu9HCoHYiocz2DLSnLVtHViaDosmLegKozr3JC1pmhCmBcXX+ZwUGR+cyyKm8Jy9UdLr7kMdZdIuyZlvk7llFoWUtA6VeCLRGGzZtIa9K2QsDPHNh5lpGOk0zoA99ZFsN4PkAHP1c5BGDNIyIc2u5TbwT72025IQkSbqgENb3MesuLd0ivrJJJmx6hnISD0Uvw7ZxfOzO5Z0EdJTKPSaHNR73+5HRUBrcX/fkiD21EfApYSkT9lez6itgVT9AFcgmApdYYiYwksG1VnK2BNhf/FWZhpJ0jrYiClnDDaNhPVqjU/8FkpxGZjfqafKAyHYdfvAuNL1BELUUe5erWQl10srEQ83AEDWMpdb29dDHXh4Vn42aZ0M1wNwykIJs2vh08wyM9EkQrIi72aU4/E4jjrqKDDG8PHHH6c8tmXLFpx55pkIhUKorKzENddcA8MwstPQAqJxjoCavrcjk8pLmIIupHs12wKkcGppA4hbAipnKCvKwJpWy4C99dOu74ekdbCwavfhviW0Prm3Kjr/FtgNByAj9ZBGDCJcDxmPQVoZ+IzlCmIvL4Xx3v92fV+kpbYykwsb6MIa866iTnLuiD5/X9M3XAHT/eCBEIovnN+l/TJhwdqxIb9LULIcD70m3SbvZpRvuOEGVFdX45NPPkm537ZtnH766ejbty/efvtt7Nu3DxdddBGklLj//vuz1NrCENJ5qxfS/UpD2F0XdlLnM+oo92Z65SDE6/cDcGYgGUPmsqdyKkfUXb7a04AivfUP2qJgAJForAdbRHJVbF8dgqoG2DZkNIxghmrTSssE9wehf/8sAJlNSEQASAFzzxZofYe0fIwrkIxDMoZiymbfqwWmX4Poiw+C6X4wziEtE4EZc7q+Y2EBwgIzo4CvrOv7I6QH5VVH+ZVXXsGKFSvwzDPP4JVXXkl5bMWKFfj888+xdetWVFdXAwDuvvtuXHzxxbj99ttRUlKSjSYXBIUx6G3Ez/YrDfVga0gu85X0yfg+jVXPQO07EOjiWkiS3iF9i7G/oe21x1QOigBA5TV3e183PvHbjOwz8sxi8OJySArP7FaylVllp1IFIY7uKKclLRPMjEMZfgRQX5/x/RPSnfJmvn7Xrl2YPXs2Hn/8cQSDLcP/Vq1ahbFjx3qdZAA45ZRTEI/HsWbNmlb3G4/HUV9fn3IjqXwqg5Y3fykkl0RjXZ+JZFwBhN2pzLp0frePwhkaI9FsN4PkkaLzb0Hk73dmZF8yFoaMdTy7PZ3f7cQ4wOlDnLRPSgh2Bsh4FMzO92WQDIzznL1R2uvukxfvnFJKXHzxxbjiiiswcWL6i+Wamhr0798/5b7y8nLouo6amppW971o0SKUlpZ6t8GDB2e07YVA4wx6jq+BiEWohFAu4nbXZ4m0STMgOllrlc7vg6sLRyGlRCtpCAhp4cBDNwEAgmff0OV9BWfOBYTdqRBPOr87IEvJukj+CUy/JqP7U78ztVMDYYTkgqz2fubPnw/GWJu3Dz/8EPfffz/q6+sxb968NveXbh2tlLLNRDXz5s1DXV2dd9u6dWuXj6vQKCz3Qy/9QQr/ziXxhgMAuh7W52a7Zr7OrXWm87t9FM7gD2RoPTkpeGbYiT5oeGx+l/YTf+MJRJ5eBKV/mrWz7UDndztJAb2sX7ZbQfJI9LklGYsYMVY9A2XsiRnZFyE9LatDjFdffTXOOeecNrcZNmwYFixYgPfeew++ZkXPJ06ciPPPPx+PPvooqqqqsHr16pTHa2trYZpmi5nmZD6fr8V+SSoBpy5urneWSQ6RAsaB3V26OBMb3wHTA7A/fwPKmCmd2ged3wfn46DybqRD+s5ZgobH5nc5G65aNQQyUg97X+tRX22h87udRNfK+5DeSRhdWzplrn4OPFQMffLMDLUoixjAlNxNKkqf4N0nqx3lyspKVFZWHnS7++67DwsWLPC+37FjB0455RQ8/fTTmDRpEgBg8uTJuP3227Fz504MGDAAgJPgy+fzYcKECd1zAL0IXUeTjmDC6voMhurr1Lpk0kFSIBCgiAzSMV3tJAMAfCGAKwicdmXX90VaxWwL5u7N0PoNy3ZTSJ6www1Qisu6tA+m+2kmmeS9vFi0MmRIalhWUVERAGDkyJEYNGgQAGDq1KkYM2YMLrjgAtx1113Yv38/5s6di9mzZ1PG6y7iAAJ+mk0m7aeX9YOxfwf0PtUH37gVfMRE2N9+AmXodzLYMtIcs+IAqKNMOmbPkjkwwzFU37y0U8833vkb1L4D4c9QiSmSnvXJCrCSSuokkw4x6yMQhoWuLMhRx0+D8c7foB8zK2PtIqSn5XaGpg5QFAUvvfQS/H4/jjnmGMyaNQszZszA4sWLs920vEfln0inCNHpp9qbPgIA6iT3AEZhmaQTjPpIpzvJAKAfMwvmjs2ZaxBJzzLBpIBZ83W2W0LySPmVv0NsX12X9mGtXV5QnWSm8Jy9Uex198mLGeXmhg0bBilli/uHDBmCF198MQstKmz7GyLoU9yyJBchbdErB3Xqeda2dVCHfxfW9vVQBx6e4VY1sb94C8roY7tt/3lDdn5Ag/ReA2/9Y5eeb615Cb4p52eoNS3FVjwM/9RLu23/+UJaJviIiRDb12e7KSTP9Jv7+04/11q7HHbdvvzsZBCSpGBmlEn3oE4y6WnqoCOc/7uxkwyAOsku6iiTHmZv/RTqhNO79WdQJ9khhe1+kd2GkN6F824dCCOkp9BgD2kTdZJJNph7tkDr27mSMaRjurKOnJCOEt98CDAao+8pbsZhdwCSkJ4gGg9kuwkZxcDAOb1v9Ub0qhNCcoqxdxskXUj3GHPPlmw3gfQikqtAPJztZhBCukn8jSdg1+7JdjMIyQiaUSaE5BbOaZazB9HMPelRsQbAMrLdCkJId7EMBM74RbZbQUhGUEeZEJJTqJNMSOGi3ACEFK74ysfgO+mSbDcj85iT9Tp3Udrr7pLLrzohpJeJ1+/PdhMIIYQQ0gm+Ey7MdhMIySjqKBNCcoavpE+2m0AIIYQQQgiFXhNCCCGEEEJIa3I69Joir7tNDr/qhBBCCCGEEEJIz6OOMiGEEEIIIYQQkoRCrwkhhBBCCCEkLQbGaW6xN6JXnRBCCCGEEEIISUIdZUIIIYQQQgghJAmFXhNCCCGEEEJIOizHs16TbkOvOiGEEEIIIYQQkoQ6yoQQQgghhBBCSBIKvSaEEEIIIYSQNBhyPPSaZbsBhSuHX3VCCCGEEEIIIaTnUUeZEEIIIYQQQghJQqHXhBBCCCGEEJIOA3gOh14zir3uNrn7qhNCCCGEEEIIIVlAHWVCCCGEEEIIISRJXnWUX3rpJUyaNAmBQACVlZU466yzUh7fsmULzjzzTIRCIVRWVuKaa66BYRhZai0hhBBCCCEkvzEwznP2RrpP3qxRfuaZZzB79mwsXLgQJ5xwAqSU+PTTT73HbdvG6aefjr59++Ltt9/Gvn37cNFFF0FKifvvvz+LLSeEEEIIIYQQkk/yoqNsWRauvfZa3HXXXbj00ku9+w877DDv6xUrVuDzzz/H1q1bUV1dDQC4++67cfHFF+P2229HSUlJ2n3H43HE43Hv+7q6OgBAfX19dxwKIaQL3PNSStmu7en8JiR/0PlNSGHr6DlOSLblRUf5o48+wvbt28E5x/jx41FTU4OjjjoKixcvxhFHHAEAWLVqFcaOHet1kgHglFNOQTwex5o1a3D88cen3feiRYtw2223tbh/8ODB3XMwhJAua2hoQGlp6UG3o/ObkPxD5zchha2953jOYADL4azXlPS6++RFR/mbb74BAMyfPx/33HMPhg0bhrvvvhvHHXccNm7ciD59+qCmpgb9+/dPeV55eTl0XUdNTU2r+543bx5++ctfet8LIbB//35UVFSAsfz+y6uvr8fgwYOxdevWVmfUC11v/x0U2vFLKdHQ0JAyINaWQj6/gcJ7fTuqtx8/UFi/Azq/UxXSa9tZvf13UGjH39FznJBsy2pHef78+WlHg5N98MEHEEIAAH7zm99g5syZAIBly5Zh0KBB+Pvf/47LL78cANJ+MEop2/zA9Pl88Pl8KfeVlZV15DByXklJSUG8wXZFb/8dFNLxd2QUujec30Bhvb6d0duPHyic3wGd3y0VymvbFb39d1BIx59XM8mk18tqR/nqq6/GOeec0+Y2w4YNQ0NDAwBgzJgx3v0+nw8jRozAli1bAABVVVVYvXp1ynNra2thmmaLmWZCCCGEEEIIaY+cDr0m3SarHeXKykpUVlYedLsJEybA5/Nhw4YN+OEPfwgAME0TmzdvxtChQwEAkydPxu23346dO3diwIABAJwEXz6fDxMmTOi+gyCEEEIIIYQQUlDyYnikpKQEV1xxBW699VasWLECGzZswJVXXgkAOPvsswEAU6dOxZgxY3DBBRdg7dq1eO211zB37lzMnj27YMJVOsrn8+HWW29tEZrWm/T230FvP/5C19tf395+/AD9DgoZvbb0O+jtx0+6x7///W+ceeaZqK6uBmMMzz33XMrjUkrMnz8f1dXVCAQCmDJlCtatW5eyTTwex3//93+jsrISoVAI06dPx7Zt21K2qa2txQUXXIDS0lKUlpbiggsuwIEDB7r56DKLyTzJ0W6aJubNm4fHH38c0WgUkyZNwr333utlvQaALVu24KqrrsLKlSsRCARw3nnnYfHixfQGQwghhBBCCOmQlStXYvY5P8X7t1x68I2z5Mj/+SP+8fI/MXny5HZt/8orr+Cdd97Bd7/7XcycORPPPvssZsyY4T1+xx134Pbbb8cjjzyCUaNGYcGCBfj3v/+NDRs2oLi4GABw5ZVX4oUXXsAjjzyCiooKXH/99di/fz/WrFkDRVEAAKeeeiq2bduGhx56CABw2WWXYdiwYXjhhRcy+wvoRnnTUSaEEEIIIYSQnpIvHeW/PvcCxo8fn3J/uoSHzTHGUjrKUkpUV1fjuuuuw69//WsAzuxx//79cccdd+Dyyy9HXV0d+vbti8cffxw/+9nPAAA7duzA4MGD8fLLL+OUU07B+vXrMWbMGLz33nuYNGkSAOC9997D5MmT8cUXX+Cwww7L8G+he+RF6DUhhBBCCCGEkJYee+wxL8TZvS1atKjD+9m0aRNqamowdepU7z6fz4fjjjsO7777LgBgzZo1ME0zZZvq6mqMHTvW22bVqlUoLS31OskA8IMf/AClpaXeNvkgL+ooE0IIIYQQQkhPYwzgiXDiXHXhhRdiyZIlKfd1ZulpTU0NALSoGNS/f398++233ja6rqO8vLzFNu7za2pq0K9fvxb779evn7dNPqCOMiGEEEIIIYTkKV3XM5q8mDGW8r2UssV9zTXfJt327dlPLqHQa0IIIYQQQgjp5aqqqgCgxazv7t27vVnmqqoqGIaB2traNrfZtWtXi/3v2bOnxWx1LqOOMiGEEEIIIYS0gik8Z2/I4ATt8OHDUVVVhVdffdW7zzAMvPnmmzj66KMBABMmTICmaSnb7Ny5E5999pm3zeTJk1FXV4f333/f22b16tWoq6vztskHFHpNCCGEEEIIIb1AY2MjvvrqK+/7TZs24eOPP0afPn0wZMgQXHfddVi4cCEOPfRQHHrooVi4cCGCwSDOO+88AEBpaSkuvfRSXH/99aioqECfPn0wd+5cjBs3DieddBIA4PDDD8e0adMwe/Zs/PGPfwTglIc644wz8ibjNUAdZUIIIYQQQgjpFT788EMcf/zx3ve//OUvAQAXXXQRHnnkEdxwww2IRqO46qqrUFtbi0mTJmHFihVeDWUAWLJkCVRVxaxZsxCNRnHiiSfikUce8WooA8ATTzyBa665xsuOPX36dDzwwAM9dJSZQXWUCSGEEEIIIaSZlStX4rLzzsaa26/MdlNadcSv7sPfX/onJk+enO2mFBxao0wIIYQQQgghhCShjjIhhBBCCCGEEJKE1igTQgghhBBCSCsYz+W5xfypS5xvcvlVJ4QQQgghhBBCehx1lAkhhBBCCCGEkCTUUe6F3njjDTDGcODAgWw3hRCSYXR+E1K46PwmJDuYwnP2RpHX3Yc6ygVuypQpuO6661LuO/roo7Fz506UlpZmp1GdZJomfv3rX2PcuHEIhUKorq7GhRdeiB07dqRsF4/H8d///d+orKxEKBTC9OnTsW3btrT7jMfjOOqoo8AYw8cff9zi8UceeQRHHnkk/H4/qqqqcPXVVx+0nW+++SYmTJgAv9+PESNG4A9/+EPK4+vWrcPMmTMxbNgwMMZw7733tuv4pZSYP38+qqurEQgEMGXKFKxbty5lm4ceeghTpkxBSUkJXUz1AnR+pz+/3XMr+XbjjTe2+Jl0fpNcRud365/fL730EiZNmoRAIIDKykqcddZZLbah85sQ0lXUUe6FdF1HVVUVGMuvIahIJIKPPvoI//M//4OPPvoI//u//4uNGzdi+vTpKdtdd911ePbZZ/HUU0/h7bffRmNjI8444wzYtt1inzfccAOqq6vT/rx77rkHv/nNb3DjjTdi3bp1eO2113DKKae02cZNmzbhtNNOw7HHHou1a9fipptuwjXXXINnnnkm5ThGjBiB3/3ud6iqqmr38d95552455578MADD+CDDz5AVVUVTj75ZDQ0NKTse9q0abjpppvavV9SWOj8dvz2t7/Fzp07vdvNN9+c8jid3yQf0fkNPPPMM7jgggtwySWX4JNPPsE777yD8847L2U/dH4TQjJCkoJ10UUXSQApt02bNsnXX39dApC1tbVSSimXLVsmS0tL5QsvvCBHjRolA4GAnDlzpmxsbJSPPPKIHDp0qCwrK5NXX321tCzL2388Hpe/+tWvZHV1tQwGg/L73/++fP3113v0GN9//30JQH777bdSSikPHDggNU2TTz31lLfN9u3bJedcLl++POW5L7/8shw9erRct26dBCDXrl3rPbZ//34ZCATkv/71rw6154YbbpCjR49Oue/yyy+XP/jBD9JuP3ToULlkyZKD7lcIIauqquTvfvc7775YLCZLS0vlH/7whxbbN3+NSeGh89uR7vw+2HlF5zfJdXR+O5qf36ZpyoEDB8o///nPre6Xzm+SSa+99pocWVUhG/5yW87eBvYpke+++262f1UFiWaUC9jvf/97TJ48GbNnz/ZmVQYPHpx220gkgvvuuw9PPfUUli9fjjfeeANnnXUWXn75Zbz88st4/PHH8dBDD+Ef//iH95xLLrkE77zzDp566in85z//wdlnn41p06bhyy+/bLVNp556KoqKitq8dURdXR0YYygrKwMArFmzBqZpYurUqd421dXVGDt2LN59913vvl27dmH27Nl4/PHHEQwGW+z31VdfhRAC27dvx+GHH45BgwZh1qxZ2Lp1a5vtWbVqVcrPBoBTTjkFH374IUzT7NCxJdu0aRNqampS9u3z+XDcccelHBfpPej8dqQ7vwHgjjvuQEVFBY466ijcfvvtMAzDe4zOb5Lr6Px2ND+/P/roI2zfvh2cc4wfPx4DBgzAqaeemhLGTOc3ISRTqI5yASstLYWu6wgGgwcNETJNE0uXLsXIkSMBAD/96U/x+OOPY9euXSgqKsKYMWNw/PHH4/XXX8fPfvYzfP3113jyySexbds2L3R57ty5WL58OZYtW4aFCxem/Tl//vOfEY1GM3J8sVgMN954I8477zyUlJQAAGpqaqDrOsrLy1O27d+/P2pqagA4a4UuvvhiXHHFFZg4cSI2b97cYt/ffPMNhBBYuHAhfv/736O0tBQ333wzTj75ZPznP/+Brutp21RTU4P+/fu3+NmWZWHv3r0YMGBAp47VbXu6fX/77bed2ifJb3R+N0k+vwHg2muvxXe/+12Ul5fj/fffx7x587Bp0yb8+c9/BkDnN8l9dH43ST6/v/nmGwDA/Pnzcc8992DYsGG4++67cdxxx2Hjxo3o06cPnd+EkIyhjjIBAASDQe9DFnDewIcNG5YyQty/f3/s3r0bgDOqK6XEqFGjUvYTj8dRUVHR6s8ZOHBgRtprmibOOeccCCHw//7f/zvo9lJKb03X/fffj/r6esybN6/V7YUQME0T9913nzcK/OSTT6Kqqgqvv/46TjnllJTfzX/91395ST+arx2TUqa9vzVPPPEELr/8cu/7V155BYqitLrvfFurRnpebzq/AWDOnDne10ceeSTKy8vx05/+1JtlpvObFJLedH4LIQAAv/nNbzBz5kwAwLJlyzBo0CD8/e9/x+WXX07nN8k4BoBxCsLtjaijTAAAmqalfM8YS3uf+yElhICiKFizZo33IeBqK/zq1FNPxVtvvdVmWxobG9t83DRNzJo1C5s2bcLKlSu90WgAqKqqgmEYqK2tTRmV3r17N44++mgAwMqVK/Hee+/B5/Ol7HfixIk4//zz8eijj3ojx2PGjPEe79u3LyorK7FlyxYASMmS7bahqqoqZWbL/dmqqrZ5AZJs+vTpmDRpkvf9wIEDsXPnTgDOyHTyqPbu3btbjFIT0lxvOr/T+cEPfgAA+Oqrr1BRUUHnNykoven8Tnfu+nw+jBgxwjt36fwmhGQKdZQLnK7rabM9d9X48eNh2zZ2796NY489tt3P62rolvsh++WXX+L1119v8eE1YcIEaJqGV199FbNmzQIA7Ny5E5999hnuvPNOAMB9992HBQsWeM/ZsWMHTjnlFDz99NPeB9wxxxwDANiwYQMGDRoEANi/fz/27t2LoUOHAgAOOeSQFu2bPHkyXnjhhZT7VqxYgYkTJ7a4cGlNcXExiouLU+4bPnw4qqqq8Oqrr2L8+PEAAMMw8Oabb+KOO+5o135J4aHzu+X5nc7atWsBNF1A0/lN8gGd3y3P7wkTJsDn82HDhg344Q9/6O138+bN3rlL5zchJFOoo1zghg0bhtWrV2Pz5s0oKipCnz59MrLfUaNG4fzzz8eFF16Iu+++G+PHj8fevXuxcuVKjBs3Dqeddlra53UldMuyLPz0pz/FRx99hBdffBG2bXujv3369IGu6ygtLcWll16K66+/HhUVFejTpw/mzp2LcePG4aSTTgIADBkyJGW/7gj6yJEjvQ/VUaNG4cc//jGuvfZaPPTQQygpKcG8efMwevRoHH/88a228YorrsADDzyAX/7yl5g9ezZWrVqFhx9+GE8++aS3jWEY+Pzzz72vt2/fjo8//hhFRUVpP7wBZzbguuuuw8KFC3HooYfi0EMPxcKFCxEMBlPKYtTU1KCmpgZfffUVAODTTz9FcXExhgwZkrHXnuQOOr9bnt+rVq3Ce++9h+OPPx6lpaX44IMPMGfOHEyfPt079+n8JvmAzu+W53dJSQmuuOIK3HrrrRg8eDCGDh2Ku+66CwBw9tlne8dH5zfJNMaVg2+UNRTC312oo1zg5s6di4suughjxoxBNBrFpk2bMrbvZcuWYcGCBbj++uuxfft2VFRUYPLkya1+yHbVtm3b8PzzzwMAjjrqqJTHXn/9dUyZMgUAsGTJEqiqilmzZiEajeLEE0/EI4880iLE7GAee+wxzJkzB6effjo45zjuuOOwfPnyNkeWhw8fjpdffhlz5szBgw8+iOrqatx3333eWirAmcF2R5UBYPHixVi8eDGOO+44vPHGG63u+4YbbkA0GsVVV12F2tpaTJo0CStWrEgZvf7DH/6A2267zfv+Rz/6EQDntbr44os7dPwk99H53fL89vl8ePrpp3HbbbchHo9j6NChmD17Nm644YaUfdL5TXIdnd/pP7/vuusuqKqKCy64ANFoFJMmTcLKlStTwrXp/CaEZAKTbqYCQgghhBBCCCEAnLw2l58/C5/ce322m9KqUVfdgb+/+AomT56c7aYUHJpRJoQQQgghhJB0GANyOfSaIq+7DeU6J4QQQgghhBBCklBHmRBCCCGEEEIISUKh14QQQgghhBDSGk5zi70RveqEEEIIIYQQQkgS6igTQgghhBBCCCFJKPS6GSEEduzYgeLiYjBGaeQIySVSSjQ0NKC6uhq8E2FQdH4Tkrvo/CaksHX1HM8eBqbkcNZrSnvdbaij3MyOHTswePDgbDeDENKGrVu3YtCgQR1+Hp3fhOQ+Or8JKWydPccJ6WnUUW6muLgYgHMSl5SUZLk1hJBk9fX1GDx4sHeedhSd34TkLjq/CSlsXT3HCelp1FFuxg3XKikpoQ9aQnJUZ8Mq6fwmJPfR+U1IYcu7pREMAM/l0GvSXfJpgQAhhBBCCCGEENLtqKNMCCGEEEIIIYQkodBrQgghhBBCCGlNLode51kkez6hGWVCCCGEEEIIISQJdZQJIYQQQgghhJAkFHpNCCGEEEIIIWkxME5zi70RveqEEEIIIYQQQkgS6igTQgghhBBCCCFJKPSaEEIIIYQQQtJhyO2s15T2utvkzYyyZVm4+eabMXz4cAQCAYwYMQK//e1vIYTwtpFSYv78+aiurkYgEMCUKVOwbt26LLaaEEIIIYQQQki+yZuO8h133IE//OEPeOCBB7B+/XrceeeduOuuu3D//fd729x5552455578MADD+CDDz5AVVUVTj75ZDQ0NGSx5YQQQgghhBBC8knehF6vWrUKP/7xj3H66acDAIYNG4Ynn3wSH374IQBnNvnee+/Fb37zG5x11lkAgEcffRT9+/fHX//6V1x++eVZazshhBBCCCEkH7EcD70m3SVvZpR/+MMf4rXXXsPGjRsBAJ988gnefvttnHbaaQCATZs2oaamBlOnTvWe4/P5cNxxx+Hdd99tdb/xeBz19fUpN0JIYaDzm5DCRec3IYSQ7pQ3HeVf//rXOPfcczF69Ghomobx48fjuuuuw7nnngsAqKmpAQD0798/5Xn9+/f3Hktn0aJFKC0t9W6DBw/uvoMghPQoOr8JKVx0fhNCCOlOedNRfvrpp/GXv/wFf/3rX/HRRx/h0UcfxeLFi/Hoo4+mbMdYauY3KWWL+5LNmzcPdXV13m3r1q3d0n5CSM+j85uQwkXnNyGkpzDOc/ZGSa+7T96sUf7Vr36FG2+8Eeeccw4AYNy4cfj222+xaNEiXHTRRaiqqgLgzCwPGDDAe97u3btbzDIn8/l88Pl83dt4QkhW0PlNSOGi85sQQkh3ypsZ5UgkAs5Tm6soilceavjw4aiqqsKrr77qPW4YBt58800cffTRPdpWQgghhBBCCCH5K29mlM8880zcfvvtGDJkCI444gisXbsW99xzD/7P//k/AJyQ6+uuuw4LFy7EoYceikMPPRQLFy5EMBjEeeedl+XWE0IIIYQQQvJSTme9ptjr7pI3HeX7778f//M//4OrrroKu3fvRnV1NS6//HLccsst3jY33HADotEorrrqKtTW1mLSpElYsWIFiouLs9hyQgghhBBCCCH5JG86ysXFxbj33ntx7733troNYwzz58/H/Pnze6xdhBBCCCGEEEIKS950lAkhhBBCCCGkRzGW46HXpLvkTTIvQgghhBBCCCGkJ1BHmRBCCCGEEEIISUKh14QQQgghhBDSCqbkbug15bzuPjSjTAghhBBCCCGEJKGOMiGEEEIIIYQQkoRCrwkhhBBCCCEkLQbwHJ5bZBR83V1y+FUnhBBCCCGEEEJ6HnWUCSGEEEIIIYSQJBR6TQghhBBCCCHpMAA8d7Nek+5DM8qEEEIIIYQQQkgS6igTQgghhBBCCCFJKPSaEEIIIYQQQlrBKPS6V6IZZUIIIYQQQgghJAl1lAkhhBBCCCGEkCQUek0IIYQQQgghaTGA09xib0SvOiGEEEIIIYQQkoQ6yiTnhZ9ckO0mEEIIIYQQQnoRCr0mOS907s3ZbgIhhBBCCOmFGMvxrNeMZbsFBYtmlAkhhBSUTXMvyHYTCCGEEJLnqKNMCCGkYGyaewGGL348280ghBBCSJ6j0GtCCCEFgzrJhBBCMosBuRx6TbpNXs0ob9++Hf/1X/+FiooKBINBHHXUUVizZo33uJQS8+fPR3V1NQKBAKZMmYJ169ZlscWEEEIIIaSr1s6Ymu0mEEJ6mbzpKNfW1uKYY46Bpml45ZVX8Pnnn+Puu+9GWVmZt82dd96Je+65Bw888AA++OADVFVV4eSTT0ZDQ0P2Gk4IIYQQQrrENuxsN4EQ0svkTUf5jjvuwODBg7Fs2TJ8//vfx7Bhw3DiiSdi5MiRAJzZ5HvvvRe/+c1vcNZZZ2Hs2LF49NFHEYlE8Ne//rXV/cbjcdTX16fcukO8sQ7RWKxb9k0ISa+nzm+SGz6/8MxOP3fnol9ksCWkJ/Tk+W2segbiq/e6bf/k4Ca+/Fqbj3942omtPvbJrFMz3RzS23CeuzfSbfLmt/v8889j4sSJOPvss9GvXz+MHz8ef/rTn7zHN23ahJqaGkyd2hSa4/P5cNxxx+Hdd99tdb+LFi1CaWmpdxs8eHDG227WfA1fUSka4jQamm3JNZmNd/6WxZaQntAT5zfJHcIWKd/vWTKn3c8dMO/BTDeHdLOePL/1yTPBD/lBt+2fdNyHp52Y0gFuqyPNFSqfQwjpuLxJ5vXNN99g6dKl+OUvf4mbbroJ77//Pq655hr4fD5ceOGFqKmpAQD0798/5Xn9+/fHt99+2+p+582bh1/+8pfe9/X19Rn7sLXWvAR1wunQqpxZ736loYzsl3RebF8d3FdBhBtgvPUUeFEZwDnU76Rf/2S89RT0Y89pcb+1drn3tTp+Wje0lnRVd57fxjt/g37MrFYfN/dsgdZ3SEZ+FmnpX0d8Dyet+yDlvlhtU9TOlnmXgCkce5bMgRYKwDZMVFx9V4v9fHX1LCh+H1S/DqZwKH4denEQFVffhQMP3QSuqSi55Lfdfjyk47rz/Ca57a3JxwAAbFNgzZkngysM459b0WK71ScfD1+JDl+JD19e+VNwXYUWDGDIomXYseBKqH4d/eb+vqebTwjJE3nTURZCYOLEiVi4cCEAYPz48Vi3bh2WLl2KCy+80NuONSu6LaVscV8yn88Hn8/XLW1WJ5zeLfslnWdFmi6k/VMvRWz5Q2k7wa74ysfgO+HCFvdbn6wAhBMhQK9z7urO87utTjIA6iR3s+adZCB1RmnIomX4Zs55UEN+MIWj8pq7U7bdNPcCSNuGGgpA9evgmup0lDUViq7hwEM3gSkHD7pqfOK3KDr/lq4fEOmw7jy/28NY9Qz0yTOz9vML0auHT8DJ69ekHQhLZsUsHL92tddhTmfVCcdBD+nQQzq0kB9cU8F1DVxXsWPBle06v7ffdjkAYOCtf+z4wZDCwQCm5HLWa4qY6C55E3o9YMAAjBkzJuW+ww8/HFu2bAEAVFVVAYA3s+zavXt3i1nmnmB/8VaP/8zerj1hlv1vuB8bLjvL+97aV4PYiodb3T5dJ9n+/A1IIwYpbEhB4fS9kfVJy5kLkntGLPkrrHAMwrBaPCZtGyOW/BW+siLoxUFoIX/iFnAuqDUVjPODziY37yRHnl6U0WMguYs6yZl38nqnkklbneSbfCNx/NrVAIDYgRgmvfo6orUtc8BMXvkmAuV+6CUBqKEAtFAAWtDvDYpxhYPrbc8XDbz1jymd5G23zu7MYaW1/bbLKTcC6XHz588HYyzl5vahgPZVEIrH4/jv//5vVFZWIhQKYfr06di2bVtPH0qPyJuO8jHHHIMNGzak3Ldx40YMHToUADB8+HBUVVXh1Vdf9R43DANvvvkmjj766B5tKwAwPdDjP7O36ztnScr3W+Zdkna7wx76XwBA3cM3AwBkLNzun+ENgAjh3Eiv1FqYPskd7tpFK2bANlt2lN3ZAdWvg+tOx1j1+8B15yLavXVU8GfzutbwJOYHz2dsX6R9vrq67UgRkn0L418DAF6sHod4nYHXx0+CGTbwYvU4b5t3fngsPp55CrSQD4rfByUx+KUGdCi6CiUxENY80uRgBt32p4Nv1E5M4ZQbgWTFEUccgZ07d3q3Tz/91HusPRWErrvuOjz77LN46qmn8Pbbb6OxsRFnnHEGbLvwJo/ypqM8Z84cvPfee1i4cCG++uor/PWvf8VDDz2EX/zCGY1jjOG6667DwoUL8eyzz+Kzzz7DxRdfjGAwiPPOO69H2hh/4wkAztpkPmJiu59nrV1OM9DdYMiiZa0+tnPRL1B66QIUnX8LZLRlRzn63BLE/+U8312LbH/mhHVK03A2yoFMg/bWTw++Ecko8fX7nXqe+/dEMmP5yPGtPvavI74HkSglY9SHET/Q2GIbLeTH7sXXQvX7oPp9UHQNil+HkhSGnXU0GNfjDnmgc0ke118yPcMtIW15pOJw7I1bOGPHp4jsjSJeZ+CMHU2fh0xhUP2qc05rSYNf3LnlAmnT+Z0/GMCV3L0xZ3KweRWAeDye9mhUVUVVVZV369u3L4D2VRCqq6vDww8/jLvvvhsnnXQSxo8fj7/85S/49NNP8a9//avHXpGekhvvFu3wve99D88++yyefPJJjB07Fv/3//5f3HvvvTj//PO9bW644QZcd911uOqqqzBx4kRs374dK1asQHFxcY+00TfFaUtH16yq46d5611Jz0j+gLJbeSOBqntfeqG27uuUAx+09qaPgAIcvct1fOT3O/ycg2VY72znuzdr6yLTNm0IWzpfx0yY9S0Hw5REEp/ms8fJF9FM4SmZ8nsaLe3oOY9XHt7p57rrWEnXPVB6GABgadnoNreL2hIX71uPh/uMRl3MQthKPVcUXYGiK2CK0uagV0cy42eaSBPpQkhnPfbYYylVAEpLS7FoUfqlQF9++SWqq6sxfPhwnHPOOfjmm28AtK+C0Jo1a2CaZso21dXVGDt2bJtVhvJV3iTzAoAzzjgDZ5xxRquPM8Ywf/58zJ8/v+calSGi4QDk2uVQx0+Dufo5aJNmZLtJeWfPkjmI7j4AoO3ZZACwY4b3dfGF81tuwJ0PWPOD58F0PwBnTSNsO2WWh/HsJXdQhn83az+bdIyb+Cv28lL4T7uyxeOd6Xz3Ro9UHA6FARfsXY9TN3/S6nanbPwI7/zwWLw1+RhUHNoHVtL57lL9OmqX3gjF7wyINc04Oec04wqksBE69+buOZj2sMzs/exe5oK96zv93IG3/hEDM9iW3mpp2WhsjZq4PXgofhP5ElewYfiD3Jx22/2JiJFL93+Bh8pH47LaL1Ie10Oal8neJW0BKYQzq5y4P5uzuumWhOSztl4v0v0uvPBCLFmSugQxXbLDSZMm4bHHHsOoUaOwa9cuLFiwAEcffTTWrVvXrgpCNTU10HUd5eXlLbZpnieqEGR/WowAALRJM7wSQ9RJ7hyuqRiyaBnMSBS7F1/b5ra2abW9DVeaZo3d9cg50kEm+Sn6/H0Q4YaDb0hadfG+9agzRcpaxNbYpg0pJMY89gIOX5a61nfrzZemziI3n01OhLM1P88jzyzOwFG0X1sZ+XuC2PhOShk80roNl52FT889LdvNyGtXHvgCdxjfYEfMxPzAIW1uW2/ZmKuNwO3BQ1M6ya8M+w7+PelosGZ1k1vrEGezNNSwOx7N2s/uDgXfSc52eHVbNwC6rqOkpCTllq6jfOqpp2LmzJkYN24cTjrpJLz00ksAgEcfbfp77GgFofZuk4+oo5xDrLXLYax6psX97tpY0jo3Mdf22y7HyN8/5X347VjQcvbOZZsWapfe6H2f/DVTNef/5h3iZp3l3loaSmx8B4BTHiW+8jGYq5/LboPyRPDsG9Leb2/6yPtabHyHQrHTePXwCXixehwMIXHGjk/xryO+12aHWdgSoX4hvD/tBABOci93HamzblFD2WULvTXJTpZr98KDJ26tn/+FTnz1HvioY7zlJgdbPtDbOQminL+XD087MeWx5pmNI3+/s8falS8e7uOEWs/VRgAAGi3nXLuCDUu7vSEkorbAbyJf4nehQ/H7ksPwcJ/RsA0BRXPCrg9d+g8oWmrgpKB1wQCc0peEAEAoFMK4cePw5ZdftquCUFVVFQzDQG1tbavbFBLqKOcSYacNtVPGnphmY5JMGBasSAxGQ8S7b+9916fd9qurZ0EL+uEvK04pDaGXFTVtlG7G2L14dh/vxbPKMtFh0CfPBNN0aJNmQHzzYZZbldsC069p9bGUMHquUCh2M6+PnwSj0YQpBH7ZsBGAM2PcmpcGHwlF47BiFnwlPqy/ZDr8ZQFvZrn65qUov/J3AACm6mDu7HGzczp49g0pnZrWBjp6Uk91WPkhP2j6mWkGcEkqrqkY89gLePe4H6XU8waQNrNx9Pn7urU9+faa2RK4p3gUGi2BB8Vm2FK2uu0VbBh0zvCg2AwAuDH8JRQGFKkcZ+z4FFznYDz9jLIbfg20rJTRmySXvoz/axl1nHuxeDyO9evXY8CAAe2qIDRhwgRompayzc6dO/HZZ59lpcpQd6OOcg5RJ5wO/dhzvOzZ3SW24mHEVz7W5s+xP3+jW9uQaeVX/g5mOAYrHE25Xwv5sfXmS73vN//6IgT6lsNXXgS9rAhaSQmiz9+H6IsPpqxF9E+9FNI0IS2zZaI1zp0w+RxI6JUN9hdvpfxOmO73kp1ZOzbA2JuftfReHz8p200AkNpB6YzY8ocQW/Fwm/XBzdXP5VUUgFszVUucc88PGAsAUAMqnq06ImXbf/Q/AoqugCscisahhzT4yoq8snDNMZ8fUDXnlhgMC86ci+DMuQByo3OczF3v3l3sz9+A+Oq9pjuaDR7QzHJ6I5b8FZ9feCaOfvPfWHXCcW1uGzz7Bsh4y7q/7bFnyRzv1hZRt69T+8+WRkugPmkWWecMCnPCed1Z5SvYMO9rpVmI59V1G/Cz3Z8DcOonj33CCSeVtoC0Rcqa5P433N+rO8nGW095X8f/tQy+ky4BhE0d5rYweBnTc/EGtD/kee7cuXjzzTexadMmrF69Gj/96U9RX1+Piy66qF0VhEpLS3HppZfi+uuvx2uvvYa1a9fiv/7rv7xQ7kLTO6/0c5ybPTtZJi9OGOdgmu7VEU1HxmNNmZ7zwO7F18KKGSlJe9yEHW6yHgBQEnUUtVAATNURPPsGBKZfA+4Pttinb8r50CbN8DLPNv999bZaut7gibChjJkCwFkuoE2aAaYokMydbc/PtxW3M9adIk8vSvm/K2IvL0Vs+UMAnDC6+MrHEP/XMjDd79xUrdXOsrRaJrfKZW9NPgZcYTATM0GGkPCV+KCHNPj9TVEhbvimuz5x4suv4fBlz4PrWqv7Dky/xns/ZIrSq8Krm7M+WeEMgjUbHNQnz4Q0TWdwtRf/ftpL0Q8ebcS01v8mXW5U1IGHbkLt0hux74Ffpayrby3PRu3SGyGNznXEsyVqSzRaAn+Qm/EHuRk6Zwi0ka3araV8MAdL7NmbxJY/hNjLS5tKXKIpOsz7mjLtF7xt27bh3HPPxWGHHYazzjoLuq7jvffew9ChQwG0r4LQkiVLMGPGDMyaNQvHHHMMgsEgXnjhBSht9CvyVX5e0fYCsZeXpnyf0VkEVQfzB50ZlGbibzyB+BtPQMTCkEYM5gfPp9lB7jHDMQjDxOHLnsen556GbbfOBgAoSRcjW2++FIF+ZdCLQ9DKyqCU9/UeY6GSVvetfW+6l2iNKUrOd5C7LRpA2M56efd/OBd79mevOX9TMvGBy+htpTXBn80DkKGyP8mhwu7Xqg6m6eCBEJjP72VsT0daRt6EZ5YMLgHXFfykZh0AQOcMVtTJGMsTnZKHykejv19DIPE915v+DtWkwbJ0AtOvccrBcSXnZpCbaysSqCu1uq01LwGWCWnbztrkNHxTzk+5yM60f//whIztq7W1rd1pzGMvAAC+v3zlQbeVHSjt17y8EdfUlM821+7F12LfA7+CGvJDhOuzWtqso0wpsdh0StRcwYZhv2FDYcAcdXhKkiidM+ic4SbfyHbve8iiZRi8oPUIm3xx4KGbuvR8GQtDWiZ8J1zYNHOc+CwSsQhkpB4iFmljD6QQPPXUU9ixYwcMw8D27dvxzDPPYMyYMd7jbgWhnTt3IhaL4c0338TYsWNT9uH3+3H//fdj3759iEQieOGFFzB48OCePpQeQVe0uUpt+8KuS4TthRQnX3TFVjwMuDNN3jYiLzrLA2/9I0YscYqhj3vyZVgxA8K0IGwbql/H9tsuh14ShOr3QSsJgodKvE6Gufo58DY6FCnyYF2yO9ubadI0vYs7939v/bywASmgVh8GvbyqW35+IclEySH/tMuavhG2c+5aBqRpODPGzWYHYiseRmz5Qy06U/nQWf7O317BKRubEp4ZQnq1koVh4/HKw1GkcmhFGtSAiqJ+IfhLmrJ9Kn49ZfYtuQPhzbqnmUnNRekijrzHTrqk0/tVJ5zuDOBYZko0kbQMGO/8zfu5yWsbM+1Hbx+8g9le2c7A++9Jba/Vc0P72+J2hksvXQBh25BCQBgWpBCwTTNlNhBwZgSFaUHazv/CtNDw2HzUL7ul08fRU+ZHv0r53pZOOHY0UQ/dHfgIKAwBhcHfbA3yS4OPPOjPsGNGSmnIfFN22cIuPV+aJqRpIL7yMUjLRPxfy5zrPACBM36BwIw5CJzxi4Pspbdi2c9sfZCs16R7UEc5RzHO21xj2Fmxl5c6neB4DNI0AcvwLqAh7KbQm8T/MvG1seoZmKufS1nbkqven3YCrHAUZjiGiqvvQr+5v4deEoS/ohR6abEXZs18flhrl4MXl4H5/N5MrHucLbI59/I3I7fzlTwT4paOUcZMASSFZLZXw2PzvUztyewv3urQfvxTnfX3vhMuhO+kSyAtZ129jMec10nY3vsIc7M4F8DfscIAs9FEZH8UZtxGQOHoU+KDr8SHon4haEUafImO8o4FV0LRVGihAABnVsbtYCQnVApMv6ZDs3yFyP37gWU6M8wAIES3r4suRKpfbXHfrjv/u0P7cBPOAUDF1XdBGBZs04IdM5yvDcvLwbFjwZUQifW4bodZJLYtueS3B/1Zn557Gj6ZdWqH2tfdbJm6RjmgMIQUjpDCUaQ2m2VXGFYe6SRBXHPmyd79W+Y1DR5ZsTisWLz7G56j3M9wEWkA4xy+ky5B4IxfIPpc712vTcjBUEc5R/lOugSMc2/2pyshdcmkEF5nWBqxppubtEo0zRg6HWkz0Vm2IS0D0m668G7+5hp9sWVmz2yQtsQhD/wN1Tc74eu1S2+Er6wYet9+UPoOhFLeD0zVnGy3Pj+UMVOcEFWuwP7sNTB/0AlNB1LX23LFKxvVGzkX0Ya3RtFauzxlnZ1Mk7GdpFd84XzoFRUt1ioro4/t9D5jLy9NPZ8tw/s/vvKxRF3gZm/5bumfVc94g2He/hJJwdL9nGz7Sc06nLHjU0zf+RkUlSMUUOEv96OoXxBakQY9pEHxa9gy7xIwhaPf3N9D2DYaHpufKAPFEXl6UbeGEeelxOCoTEQUmaufa7GePRPr63sDX4kPH888JeU+K9q1vzcrMSNqRZ18HEZDBEZDGFvmXeLMIidmm4VheTcrFsfe+67HzkW/wI4FV2Lzry/y9rd2RtMyonFPvozv/O0VrL9kekpHMxvcdcrNQ67LNcUZFNMVL/u9yw1Pf2uys2zgk1mn4tNzT4NtWt42I5b81Ys8642EaUEYMchoGKLxACJPL0Ldwzd3OrEcIb0BdZRzGAuEwEIliC1/KGOdEMZ5Sui1NGJNIZvuz3A7zMJ2LiSTwxET20aeWYzAjDkpnWWm+2G89ZSXYChbJr36OgAnw/Xe+66HGvJDDQaaOrnuWs5EZ9itF6qMPhbMHwIvKgMPlUAprQBLCoH3ZuR6q6RIAwjhDSJ4s3CJC+rkmsCkddI0wYvLEPn7nRk5Z6RlNp2vifPZ7TinaFEbOGmAzDK8QTn/tMtahCK7SzVyYe3j8wPG4qXBR0INqPCV+KAlZvA0v/O9XhJKKf9WcfVdEKYFrbwcPBBqytGQB+HWPc39LHAjioCm19yO994ZuY6Y8MKrOOqZf+Ljmad4dZUH3vpH7FhwZaf2t3vxtV4GZylEomNswqiPwE7MHgNOnWBh2003wwnFdsOOzfqwt09hy5TO8ucXnglpS6+UUrYlZ7kuUp1Z5IDCUKo1Xbq+WD0OLw0+EkxhOOE/70Mv0qEXJQ3g9vIokWTJoeciGoZR1wArGvdyZ5CDYDx3b6Tb0G83h+nHzIIM14MXl6WuR+wqtxNsOOHXdrjBGVF073fXPSU61M66FufmroFjmo7I3+9EYEZTiQq3I8pULeuhPJ+dfzo45/CVFUPt0xcsVALmD4EFQlCKnUReTNO9ZEf25o+dJwobUvV5F88sab0tH3VMl0v35DUhmpJQJXWS3eRm7nrllJrApFXBs2+ACDc45YmSOmvWmpc6HIINJBJSCeGsURbC6ziLaNibZZZCOAMaQjTdkFi7Fo9B1O2DtExvOUby+070xQe9DrgVye4MxCMVhwMA9CINwYoATvjP+/CV6NCKdGghDVrIDy3kB9dUcIWjdumNAJy1ntJMDAhaJpTSipTffXvWjRYyd2aJJQ0iiHA9AHgX2MUXzs9G0/KWFbUgRFNNYL0k2KmBJqZwb/2xl4PDtGCETVjhqHef2yl2w66tmJFIdmkhsrsWZjiOz84/HWtnTMWEF17F+Oec9ehrzjwZwhYwwgbMmHWQ1nSv5A4y4MwwL4x/jVLN6SiX62pKiTiuMC+HAVMY4nVxSFtA0ZQW67h7M3cAxKg9gOieWkT31SG2rz7LrSIkt1FHOccxXwC8qCzlvs5cRCfz1qHBWafLOG81C68XqpnoRMeWP+TMSAk7JTts9Pn74DvhQoho2MmeaGY/DNedTWKcOwkquALGFeeYNd25GGQcUvWDiUQG3VHHQBn6HShjT3R+T5qvrR/Ru3AO5s5Gup0sCrfukuDZNzRFeLi40ukQbKZpidelKRKE6X5nVrnZOS5tO2mJhdGUyI8rToc4Fk7ZPnDGLyAiDRDheggjuxfSAMAZg+pXvVI8iq5A0Th8JQGooUDKrJgVi3ud5eDZNzgDfFyBaDzQu6NEmmFaIoLGHRRLDLgA8GYsSccYYRPFA4q87zs7W9t3zhIwhSfWKMe9UojBilAiJDsOO9FRdtcouzPN0hYwI1GY4TiELWCbokVnOLI3gvDuCOq3NSBenztLEgJKU9KuRF4vmELAEBLPVh0B23De15aPHA/AyTg+8eXXcNQz/4SwBRQ/fYa73AgDMxz11rm7vrzyp1lsGSG5izrKOU7tPxisrH9KZlrWxc6bCNenXkirujMDZZqpa5WTE/8kLua9mYZmWbkD068B4CQXEg21sKPZLTEw9gknEQ1TOKQQiL/xBHio2Ln4U3VI0wAfdQyEvxjKsKNgF1XC2rYuZR/apBkA4zB3bcrCEeSg5DXa7pr1Zh3lbIfd5yVVB/OHvG+lZTQlUurEvrwOcVLHWMZj3jIL6SZkS44sEaIpY3Kiw5wcLeIKTL8G9Zt3IrqvrnPty5CL961HrWF56xI/PO1EqAEVakBzznlbYPCCh1F981L0v+F+9J2zJCUMG0gMUvTyvAPpeBUAhA0RDXtZcLuacbe3KhtailBVhfd93zlLYDZ0/PNx9+JrnUFt24ZRH/FCirmuOh1ow4IwTCe81rAgEh1yZyBcpKyPdkK4nV7nOz90BuWOXfUOJr36Or79uha7ttThrqJRnT7mrkpem+wm7fp9yWFeR7nOFGi0BH5Ssw6GLJx4rwABAABJREFUaePUzZ94tdOby5Uw8lxhxeKIH2h0/obcnDUADl36jyy3LNex7IdXU+h1VtBvN8fxUcdAKir0yTOb7hv5/U7tK7kT484mNSXpEk0d5Oazy2lmm91kOAAQeWaxd/+2W2cjdO7NOTH7IG0Bxrm3LhuAMyMqmsKF1YFOCKfkKpid2maz5muo1YfRrHKy5Nk3IVqsf2Wq1lSfkbQL9we97NWAU7e7szkJUpJ1qTqYkvx6JWW1T7rPXdOcnAG6LWZ9JCdKrFywdz2EYYMpDEzhYJw50SN9yzF88eMp29Yvu6VlIjMkMl1TaGYTVfPOcW85DlLrt3Y0c3Nvp5cEIIRIWZtsGx0/v92kVExRwDVn0MedLXXLQdkxw5tVdu93k3txhUPRFchEGLjbsTzm7bfwyrDveD+nJmajzhT4VWNqsqye5naWbQncVTQKAYVB50CjJRG1JS7etx4AvNrqWpos47YpaI1ykoqr73JC9BPZ062YgUG3/SllGzcZGiHEQR3lfKDoKXUtO8tN7gMgMbvkrDv26i6665Gbr1FO3JIvNGUiG3b0uSUp4bfum27ppdlP9jN4wcMQpgWm+8GLywAhoFRUQRkzBfa3n3jbWTu/BJMCUkn9oNWqRgIA9D7VPdnsnMVUzQnt5UpTZtx4NCULsmg80DJ5FGmbqrcou9bZ36EUAiwQ8sKn3X1Jy0isQ46mzjQnQmtFNJx6v2Ui/OQC1D18M/YsmYOvrz3He2zIomUYvCDzpes6wzadNutFGrSQD2pAbzFzvHPRL7yOffKgnit5kKK348FiqOOnJb5RvPD75Nnk/jfcn42m5a1A33Kofh2BilLvvs6sCx0w70Hn/FY4FF1tSt5lWN7scOxABHYs7n2Gu+uZrVgcZrgpCZttCJiNJl4fPwkAUB9p+gz/VeNGXFb7RccPtBsZQnqzyaUax5UHvsADpYcBaErmZYRNrDrhuJTnSVv06izX6QjDghACVjiKeG0DgKaoAsCJLCCENKGOch6QXAXrM6DrOxJ2y9FVzqH4fFD8etoZl5QM2MmlpeIxZ3ZW1Vtd35wLFJ/PWeddXA4AsPfVAADk3m2wt37qrPfesRFS1cFsC/bWT73nRmPU4UtHHT+tqVavZabMyIlouEXiOZqBaod0514nuGGy3rIJrjhl0NxZwjSlo5BUH9vrOIfrYccMcE2FtAVG/j4366e771n+siDUgA5pCwyY9yB2LLjSuwGA4tdp5rgd3EgbAM7fCJWN6TIpBHxlRSk1kf0VJZ3eH+fcKXGWWHbAdRWK31lyYEUtr0yUWyrK5c4gC1siXh+HETag6Ar+dcT3sN/IzXPjD3IzSlQOhQFRW8CWwJ64c71xSGUQT/cbAwCoi7mDBqnHcdQz/8SmuRf0bKNz3MBb/wizPgwzHPP+Po55u2t5b3oLyXjO3sDSLz0gXUcd5XzAFS87bZcJ0ZSQSdWc5C2qBqb7nbXKzWpmJl9wA86Ftrl3l7eGWYbrETr35sy0rRuwQGLtp2U4s8l9B0F8/T6EEQPqdkMZfSzUCacDtuXMKCf9ngN+f7t+RuzlpYg8szjt+lz7s9cychw5IbGO3Vz9HGQ0DBlzsil7nTMgbWeEZqDaxgMhL/u6Sz+2aQbXLcnUHrGXlzaFxyf+Z5rWVAoJTkitiDQ4r59lOoNnnDsRJtEw4jU13jkdP9CAfnN/39lD63Z6kQbNr8KKGdCCAS8k1Z1tq755KQbMexDRPbXOEyyzwxn5v/j5DHw885SUWfVCZa1dDvOD55uSMqYZBN1+2+Xe1+svmd6TzctLwrBaLEVKfp9MDms/GHdgiOsauOZ0jrVgAIquQtFUBPsVwQzHYcXiMBoisGKGF4btJr0K7wojVhuDFbMQ3hXGSes+wJUHcmsGOVlfn4K+PgVR25lV/lXjRjw/YCy210bxs92f44wdn0LnDEbERLQ21mJWufkyDOKE8cfr47CiLWfhVx7ZtLTv4T6je7pphOQc6ijnAWbFoQz9zsE3PJik9ccs6WKaKc4tOauxF26tak6yG/f+aBjFF86HHY9DGLGcr7/ntJ07ZbBqdzt32iZ4sBiyvCmkmm/9DKK4P4S/BNaODQfdb3LnhQVLwHyBtGu5RTTc4r585IUGu2vaE53k5jNOjHM0PvFbAE7yGdI+zTvKKY8lrzNuz74SF9Mpa/Obr1WOhiETf5tMUcA0JzLEamxE/EAD9t53PYyGMCqvubuDR9KzFE2BoiuwEjNKboh1bF8dYvvqsHORM4gT3rnPiZrxtW/wK9noPz8HADmR6bu7edEiSYnfkm2aewH0kqD3/eHLnu/pJual5tFaalIm5o4kSUs3EMmUphlmnphlFqYFoz7sdZKZosA2BayYhVhtDCf8530YjSZiWS4D1R46Z9A5Q0Bh6OtTMEcdjo8PxFBnCjxU7nTkfrprHaK2gBk2EKuNpYQSt9e7x/0o003PSdtunQ0z7LxP2qbA5JVvpjyuhSi5ISHJWmY/IDmHxTPT2ZKmCZG01phBczJiJjJYMxiA1pTNmiXPOFsm7Lp9Xkmoxu17MGDegxlpV6ZEX3wQEDYC069B9LklCMyY49ROVp0LZGvPdoiGA5CxMPynXYn4ysfAjCjsbRuhH3sOrE9WwDr0GDBhHfTE8E05P+Xrxid+i6Lzb2mxnQg3ZPgoe1585WNeB0MmOlnuAEByiTCXUlyG3YuvRd3X29GvR1uan5iqOQMtrUieXT6YlMz0QLPka02hdnbMgBp0fqabcZvFYyi55GaUwCkVkotZUD87/3QouuJ10LQiDVpI87Lcuw554G8AnNnPbbfOxoglf8WOBVei7PAgmC+A2IqHO7Q2+ahn/pm5g8hR5urnnL8dYUNG6iFNE1Y4dSCsbORAlF/5O+xefC12vr8R3/nbK1lqbX6xm80odzaDuDtD7IZdS1uAB1XoJSGY4RiscBSKX4MZjkEvCcKOxcE15/HS4f0w7I5HvX19VRfHtfUHHxTuSTf5RiKkcPwm8iUAYI46HCcNKIZh2rhgr5O867PAIbgl+hUA4NmqI3B78FD8JvIlFMYQjlrQQgLC3/EIvH7jqjJ3IDlMGBbidXEouoLwrsYWjwcrg/hk1qnY8f4OXLo/dyMNsoKyS/dK9KrnOGv7ekBmKuw6dcbTmUVWmjJDN68nqiY6yYlZ2eQQ21zrJANO9mB1wDBYa5dDG34E4isfgzZoJJiqwarZAv/US+E74UL4T3PWLfpOuBDK8O+C+Z0ZEnPrl1Dqazr1s4vOv8UL6YyteNgr59W8Fm1eSvq7kJbphGQaMdjh1A/ZyN/vhBQCxp7diB9ozMmOVk5yz7Hu0OycZpx72XGFm4QvsbQiuaRbLr52Gy47C2pAg6+sCGvOPBnvTzsBvhKfV0e5uW23zsbAW/8Ixe8M/lXfvBR1GzeB+4Od+n27s1R7lrQsm1UIpLucxkwkdbSMFh062zSx74FfIbLnAHWSOyC5PFRXqX4dnHMn07vCE2uUdSha4n9dhW3YsKIG9OIQVL8PXHNCs5PlWif56X5jUKJyxITAFWwY5mojoHOGqGFDSVp/OT/RSQacMlF9fQoeqTgcP921DoaQ4Apr9T2hLe7gWqEzI1EYYRONu8KI7EstU/bvSUfDV6IjVhvDrobsVzYgJBfQjHKOY8KCXVaNjr/tp2qe7ZW5646T6iUnpwJgut/pSFsmJJAXSV14aQV41XAog8cBANjnb0AGSoBgGVizLMKxFU7WXv/US8GqDwXQlAipLhxFZwpCBWbMQd3DN6dk/G6e2CrfuKWepOlEJMhYOGXApLmi82/B3vuuz5msyHlBCPBDfpDRXcp4FNCceuGAMyjmrjcVpuUl75PxmJchO36gAcUZbUVmFQ3sC66r7R6kczPwJ28/YN6D2Hvf9QiNGNHhn3/M22/hn6O+iyMvmQzASVJXUOvvhQ2RWFKRLlKkftktUP0+SFukzEyStlmx+ME3aoedi34BvdgZ1JW2ABdO+UNFUyGFgOLXYSVmkLWQD3pJCLZpeR3q+IHcjm762e7P8c9R3wVXGE5evwYP9xmNS/d/gRerx2FHtGU5rV/rIzCluhinbv4Etwedz/Dz9nyO5weM7XT48PzAITj/4qNycqCwq76+9hxowQAattXi6Df/nXYbLaShflsDjn7z35jUw+0jJFfl7YzyokWLwBjDdddd590npcT8+fNRXV2NQCCAKVOmYN26ddlrZAYog8dBqevcLGcKIZyw2cSapXQzTc4Msu6sl+TOmmUk1jnKWBiRv9/Z9XZ0I8YVSKUpdFwZMwXK4HFQBx0B4a5PTvBPvdQLvZTbUkfWAx/9fwf9WZG/34ltt85ucb9WUoLI04vaXZM25yXX1hY2RMOBgz7FDOf+oEouEZF6iI2ZKckhTcNZXypEog6u8Mq3ufkHWGI2yslwbUBGw7Dq63KiNnJbuN5yVqwzpC3aHOxpy5hZ4yFtgU1zLyioTnJsxcPO34tlthqSXnLJb1F22cKU7M2kfWL76rr0/D1L5iTqIKvOjLKugmsq1EBi2RTnUAO6M3usaymlqFS/Djtm5MX7crzBwMnr1wCAF/Z7xo5P05arusP4Bqdudso8uqHaADB952dezoKOMoQsyE7yJ7NOhTCcQZO2lpEoutJqJ7rXY3AyS+fqjXSbvOwof/DBB3jooYdw5JFHptx/55134p577sEDDzyADz74AFVVVTj55JPR0JDbI6kHpSgw92zp9NOjLz6YkqirhUSZJ+Zmvw6EnEy5QjiZsM2WdVZzVWvrud1w63S0STNSvhfh9DUu6x52MgHvve96BM++AYNu+xO+vPKn3uMbLjsLwbNvgEysky4UbnIf0XgAVmPLNU0uN8N4Lobl57zWzs2OcrNYuyXdLKMpczFXwLgCNRjw1jgCgDBiiO2rg7Bzs0SMy19W3KJGcmf0nZM+63XyudyawQseRvXNSwsqk274yQVNfy/xaKvb7V58rZeoj3QM11VEnl7U6eerfqeEI0+EV6uJEGsviZeugnHnfy3oh1YShKKp0EJ+cE1FdHdtpzuPPUkPZmYJSmePdebUjkea5Lp/Tzoa0hawTavNSK+n+42BTom8CGkh7zrKjY2NOP/88/GnP/0J5eXl3v1SStx77734zW9+g7POOgtjx47Fo48+ikgkgr/+NX8LztvffgI7UO7USeskpvudZEHJF+PummR3jbKmgfn8Xqka7g+BB4vBVA0yFkZw5tzcz3Dt80MZ/t2u7yhNpyX64oPQSkpQv+yWlEzAhy79h5cBe/ApRwNATpfL6igRizgd5VgYgenXoOQSulDuDtJqGVrYUZFnFjudYsuEFDbseBx2rClzcXKZqOQsvJGd+9B3zpKcH+DQy4pSsgVn2qFL/4Evfj6j2/afq+yYE4UgIg0QkdYHlUvGHgHuD7b6OEnPaIgg2L+y1YzrW29uO6lc+MkFUPw6gv0r4SsrhhYKQAsFvMgQLRSAomneLLMW8sNfVoxAvzLoxcHEbHIc4558uTsOL6P6HFp+8I3aoW5/52bPJ7zwakZ+fi6xohasqAVFU9vMBv6z3Z+jaEBpq48T0lvlXUf5F7/4BU4//XScdNJJKfdv2rQJNTU1mDp1qnefz+fDcccdh3fffbfV/cXjcdTX16fcconU/OBm1OnYdhJLShbEFO5kgVaUlHJRyfWDk+ssS8vMn3W2qn7wbdqzm74DW9zHVA3SMtJ2FN0M2MGZczPy83OKZUDGo5C2fdB6n4xzb9Y9V+T6+Q3AOR81H+xvP0n7ePTFdnZghfA6xVIISFs0/W/bkKaZeMwGSwyQ5Xq4dTKm+73EXF0VfnJByvc7F/0Cm+Ze4JWC6k2EaXmDpm1GwnCnjFguyYfzO1RVAaga7FYqIBwsnwPT/c6MsS/xf6IcVHJ0hbDdMnDOdYIViyd9bWDMYy9k4lC63feXr8zIfmwpM7KfQmDGLNimQGRfGLbZdlRgcqQRaY41LUfMxRvpNnn1233qqafw0UcfYdGiliFMNTXOOt7+/fun3N+/f3/vsXQWLVqE0tJS7zZ48ODMNrqL1OrDYBf3Q0Qv6/Q+mKYnknZxcN3fNJuMxAW1EIlwzcQ6ZmE7nWQj5qx3zBe+UEZ2o46fllInGQAg7LQdaJfxzt/a36HJE9EXH0RgxhxEd+4ChDhoSRNpmU1r4HNErp/fAMBDxZBchVTShxW3dz2tMGKJzrHthWHyxJpeO9wIYThrUIVpQVgmrEgMZjiKfnN/n7Fj6U48VILiC+dnZF8HNm5N+d6OGSgaWJmRfeebsssWApYB0VB78I0ztUQgQ/Lh/O5zxHAA6PR7Y3DmXHBV8wa63M6MojnlHa1Y3Mtk73J/lm1asDOUTCyf/Gz359luQk54tuoInLLxIwBArDaGH61ufdIIaFnvmxCSRx3lrVu34tprr8Vf/vIX+P3pQ5gAgDVb1C6lbHFfsnnz5qGurs67bd26tdVts8XkOsqKgohFW18/1iZvNllxwi8BbwbBm1W2DCdDrmV6CYCkEYPdLAlWTzHe6USphgyW2Emukww4a5ylaP1Cx96zHbDyZ3auXRLHU3H1XYCwsXvxtW1uLs2W5WSyLR/Ob6g6mBTgsa7nUlB8Tmgy4wp40vngXkjbceeiWdoCVjTe5t90d+vowBIvzVyJnYG3/jHl+0G3/anVtcu9QbuqGlhGzuWpyIfzO3TuzYBleoNWncF8fiAxAOZ2ZrjuZLsWhgUrZsA2LAjD8s5pYTjnfG8pe0Ra+kmNk8zWNuycz0FBSK7Km/JQa9aswe7duzFhwgTvPtu28e9//xsPPPAANmxwMhfX1NRgwIAB3ja7d+9uMcuczOfzwefrvnVvuUCfPBOx5Q95swFu2KUUwkng4s0am86Hse53ZpWFyFpSKv2YWR1+jlsWqru0lg0WcEpDFRr3mOoevhlq0H/QREq5GH2QD+e3MvpYiI3vZOb3x5WUGsHMMiEMJ7GNGXYG2tx1vu5FdrZ0NPO0UlzWPQ0hMOoaoIZaH4CO/2sZoOoItJEUMRvy4fwG4CXSs9Yuhzp+WoefLm0bzOcHgzOokRwia5uWk6wpZsA2LZiRmFdGKh8yXZPu8cqw73hZwW3Dhl6k49+Tjm51Vvnra8/pyeblpa7kCiL5K29e9RNPPBGffvopPv74Y+82ceJEnH/++fj4448xYsQIVFVV4dVXm5IxGIaBN998E0cffXQWW951RcEAACBsdWHdTbqQOWGnZMiFsL2SMRDCq8GaTdba5dluQq+UXAqs9NIFsGNGq2FZ6y+Zju23XZ5X611zjYiGoYw9Efbmjzv1/PpltyR2ZDv5B+AsueCqlrROOXExbZiwDSdMPl/CrgFAGXtitptQsNxIkD1L0g/4+U66JOdmk/OKsJ2KCF0ZDGte0jHRWRaGBWE6s8rSFhCG6UWQWOFORqGRvCfsputFNwu40dh60kj3M4IQkipvOsrFxcUYO3Zsyi0UCqGiogJjx471aiovXLgQzz77LD777DNcfPHFCAaDOO+887Ld/IyoKO5cxlHjnb+lJPQC4M0mI7E+WVpmUyKgaNgrB5RtnRl97y5uaZTmiYAKTeSZxRBGDDsXNc34GQ1hJ+lPGsVD+qN4SH80bt/TU00sOOp3nCSEyrCjOvf8oJMFVyTKQzFNB7jirEWOxmHUh73wTKMhAmFaNNtEUkhbpA0PDj+5ALEVD1NHuQvcihHNSxG2F1OcpVLStr1yb06n2JlBNurDMOrDiO2rgxmOeed77EAkU4dQMD48rbAH3F4Z9h28evgEcIXh9yWHAQCOX7saTGEori5K+5yvrz0H/opSNGw70IMtJSQ/5E1HuT1uuOEGXHfddbjqqqswceJEbN++HStWrEBxcXG2m9Zl22vT1wduD+Zmg3ZHpN01yd5scmIU0TKc+xMX2zLa+Z9ZiIrOd2btCqn8U3O1S2+EiEUQ21eXUi7IjhmwWpkxLh05EA1bdqHu6+091cyCY615qUvPZz4/GFdSZgRkPOqtUzTDMS/M2p35b23gg/ROwrTSrllXSiucQZhWsjaT9kmO0ukwrjg1rhNl5KQtvFlkOxaH0RCBHTMRr3cSe4lEEi8rSud4cxNffi3bTehWtiG827X1G5Lut6FoTZf8b00+BgCwdsZUMM7RuH0Pxj+3osfbm1cYz90bWs/FRLomb9Yop/PGG2+kfM8Yw/z58zF//vystKc7WaLzYdfapBkw3nrKqdXqZrs2jaYOsrCbwqyFcNZBxcIwG6mj3NuoIT/M+kiL2cZ4bWOLNcrrL5kO1a+j7/hR8JUXoea5XTi8JxtbQNQJp3dxBzpgml44pozHIIyY1/kxIzEomgomnMfNcAxWzMCaM08uyNqhJD13HWJ0bwPGPpE6ONO8XNhXV89CxREj4OtXCa7qaPx2O6iKcucp5X07/Vw30aZI5BwQpoX4gQZYYSfTfbw+nvjfgLQlpC0hbIFoLUWN9EaNjQZ+umtdyn3SljDCTaHXXOH48LQTEeofghQC0b0RLB85HtO+XtvTzSUkp+V1R7k3GVqRPmSm3dxsmaoG2Y5BZhkLZzXRD8kOaQtYsXjKbDIAmJEozD1NF11f/HwGAv3KwTlHw5Zd2PvZVuzeTjNO2cI4h0yUf2OaDhmPNZWIMZxkP5ZtQAv5wTXVW8tIneTeR9qiRSf53eN+hFEzv4fwzn0AgC3zLkHf8aOcztfuvfAJAaOBwni7wnfSJV16vhtyrfh1mOEobMOCnZhVFoYNO3EzFQauKzSb3Au9NPhImEIgmmatsW3Y3lplAPCX+6EXaZC2hBmO0WwyIa2gjnIvwVQdUjXBksKvnVllO1EmSjiloywDEoBVX4fyK3+X1TaTnuOuvxaJDKqbf30Rht3xqPd4w7ZaHPi2HqPhhGwVVxchVhuFr8SHw5c9j8EAxmen6QQA84fALNNZLpGU9McMR2HHDAjTBE+UhnPXJ49Y8tdsNZdkwZdX/tSLOPji5zMw+s/PeY8ZYRO167/1vvdXlKBhyy5vzXL5lb9D8OwebS5JEpw5F5GnF3nLJaQQYAqHtG1YURPClojXG2CKE35pRS1YMQtHv/nvbDab9KCXBh8JANA4h85TIxCvYMNwxoBinLHjUwDAGxMnQ9E4YrUcwcoAxj+3Ai8NPhKnb/1Pj7c7r1DW616JOsq9BFM1rxZjMpkcfm0nwjaNGGUw7mXc2Udpi7TrFD99cwsu2LseL1aPQ7AygIYdjag6agDCu2kWOSdwBUz3g+nOOS4TGcpTXldue5lNhdl69lNSeL66elZKSSGlWdKuKR+u8r7++tpzoPh9KB02AOGafRh02596rJ0kvdjLSwEgJdkaV5wSj1JI2KYN27ShKs7jtmlj0quvp+yjrdJAJL89W3UEdC1R7UBhCCE1Q/of5GY8Xtm0MEraAnq5H5G9Edimc01InWRC0qOOcoGztq8Hj4fBfH5wrgDChkj8n7I2mXNACAgjhnhtAyquviu7DSfd5tNzT4Ne7MdhD/0vACeBl7v+2DZN2GlC7o3EGnlTCFSMrkDtNwew8cWN9OGaA6xPVoAHQnCHN6QRA1Oc0Gu3c6T4fWAKh5UoGXPo0n9kr8GkW3167mkwGk2UDi3HIQ/8DRsuOwtK4vx2/x6SO83Nn1s8xFlLW37l71Ce9NjuxdfmVTmxQmG88zdnAEzVwCwnBJtxDpEYBHPLAKl+5zVuLeSaOsmFYfnI8dhTF4MhJC7d/wWe7jcGCmOQtoQaUL2oguYzxBfsXe89P9QviMjeCI5fuzorx0BIPqE4gkLHOKSiObNNmjOrzFTNCc/0wrCFU35C2LBjBnWSC9iaM08G4wyKrmLT3AtQu/RGKH7dSRCTWMuarpbipfu/AOB0mBWNo3FHI3WSc4T6nalexAjTNCcXAVfAddVbj6wk/rdjcdiU7bqgCVui+uhRiO5rxFdXz3JmHhPntFsLvbWa6LbhRB0kL7twUSc5O5jqlHpzS0S5mr9PM4V5CZso5LowrZ0xFbZhY0D/ItgSeLjPaCjM6RgL6QyYcIV5t+YeKD0MtuHMICevVybtwFj2M1u3mfWadBf67RY6xgHOIbVAYlRad9YpJ25OvVXnz0BYJsxwNMsNJt3JCBvgCvdmjSO7axOln+Iww1FYMcMJ57MF1px5covn/2z359j6zjZvrRPJDSwQglJc5pzjiYtprmreWkYhmhJ7Ja9NJYVlw2VngSsMe/+zCXqxHwC8mUemcDBFAePO/24G7GRHPfNPCsvPMUzVwAIhMH+o5WOcgyc6yDwRJZAcRk8Kx4ennYiGnY1QdAX79oTR16fAEMB+w4bCAEXlUHQORVOgaEraqJGr6zYgatg4dtU7OHn9miwcBSH5hzrKBU4yDsnVRIc5dd1Kcui1tO00zyaFZP0l0xEo94PrCrSQH3YsDjMSg0i89m6tXaf2brzV/dRH6EI61zBf0LmQFsI7r+14PCX8mikcakDPcktJd5JCwDZsCFvCjplORIFIWqdu287MJMkfXGka3AYSyfksL5+EsKUXbqsGaDVdIfOV+LxIAq+DzICoLaHoCmxDgOsKuK5A0dNf3qeZaCaEtIE6ygVOqxrphF+rmtNZFrZXZkJaJmCZiYtr58238pq7s9lc0g2++PkMfPHzGTDCJqyo5cxC6BoUvw9a0O9lUgWcjMi2aYEp3Evy0ZzO6ZM210hFB7hzkSwT57QTKWB4YbaKpnqZr0lh+erqWQCAeL0zwMUVBtu0EdvXlGyPJZI/eV+3EjWi+H090GLSbskJOBPLo4RpednrvbB6hXkdZlJ4zJgFo9GZ2FAYg8KYsxSKMQQUBtWvemHVbflJzbqDbkNakkhMPOXoDXTqdxvqKPcG7voFmZhtskzAckpDBX82D8KIQVpG2rWpJP+N/vNzGP3n59C4oxFqQAVXOHii8xTdU+uEWydeeytmtDmbDNAHba4RX70HKAoghXMeGzHngtowofp1DLz1j846Zb8OX1kX67GTnLD+kukp3xv1Uaw64Tgni63hzDIGKopQMXaYtw3jvNW1ycmaZ8Qm2SWMpvr1djzu1VB2B8GOeuafsA0bnDMoGkULFJrlI53Ci/F6A7EDMSdaREqUahxDgs7Ap8Y51ICK4uoiL8+I6lfxdL8x2Ww6IQWBOsq9gEzMNCWPTEshYOzZDQAoOv8WhM69GUzhqF92SzaaSNqp7uGb27WdO8P0zZzzvPuClYHEOkUOoyEMoGn2yAzHEuF8iWgDW6QdnX59/KQutZ9knvSFnBFlOxESzxXYcWewo++cJQCczo+iq9BLgtlqJsmgw5c9n/K9m3tAGCJl0OvAV9u9zrFMJG1UNNUbKJvwwqst9j14wcPd3HrSEcxdMmUZXvSPWxvdrVygJTJeU+h17ksXxdGWaV+vBZCazVznDHviNvYbNko1nkjkJsC4M7Osh5wlNrZMu0tCSAfQu2ovwIQFZpkAV6CMPdGrsOdvtp20hVcmiOSmosknofGJ36Lo/LYHNOq+rQUAjFjyV+++yrGDEdldC6ZwcE2D6te9upxuAi/V74MpBKyoAWG0jDCgchK5R/iKwaN1kEJAP2aWd//Wmy9FReLrIYuWAQANhOWBxid+i90ffpFy7ja3687/Ru3GrSmJ2dywTKZwaH4Vql93ErklEvdJW4D5uRd2nU7t0htRfuXvMncwpMu0STMQX/kYRDSM0ksXpN1m4suvAXAiDb74+QxK2JfDDpkxCR+edqL3mqXz+vhJMMImTtn4EV49fAJOXr8GJ637AP864nvQizTIOok+OuBXnARezppkBb5SHzS/CiNsIl4fx3l7Pu/BI+sFcjq7NMVed5dcftVJpkgBSAF+yA+y3RKSAWpFFfbed32rj392/unwleh4f9oJ3n2bf30RbNMCVzj04pDXSU5O9OPONjvJvExEa2Mt9v3ucT/K/AGRLtH6DQOkhDL62JT7080MKn5K5pXrtIEjIYXAp+eelvbxz84/HUZ9BOFdYe8+aUvoRTqClUHoRRq0kC8l660zOJZaSzldZ1kNNR8+JblAWu1PoKjSOZ7TfAOHoHRoOT6ZdWqr29iGQPEAZ5mMm536/WknoLi6CKpfRbAygKIiHf5yf9LAmArNr0ILabANu9UcI+/88Ni09xNSKL7++mvcfPPNOPfcc7F7txM5u3z5cqxb17llg9RR7g2EBWX4dw++GdVXzXnKmCngxWUonXwcjHf+hsjTi7zHvplzHr74+QwouoJDLvgxSoeUYe2MqQDghVoWDekPvSTo3RS/7qxZ1lQwhcOKGeC6CiNs4KR1H7T4+VSfM0e1M5MxU+kiOtcxRcGgH5+GQy+agdqlNyLy9zsBAFvmXYIvr/wpGnY2ovL734Ft2ilrlfWQBl+JDn9ZEL6yYnC3pnbSfgEnJDt+oAGHLv1Hi5/NaX1ybhI2gjPntmtTeg1znLAxZObpOPRnJ2LT3Auw/bbLAQBfX3sO1s6Yis8vPBPjr5yCo64+A1/8fAbemDgZABAo98NXoqNsaClC/UMoH1GGUP8gfCU6fCU+7xbZ55T41ELp3+uPefutnjlOQrLgzTffxLhx47B69Wr87//+LxobGwEA//nPf3Drrbd2ap/UUe4FmN3xDnByB4zkmESWcu4PgZdWoH7ZLfhmznnwV5TCipoYcf5PYO2rwf6v9sEIOzMRWkkQgYoSKJoKNegH11RwTYUW8nsX08kX1TLN4qa2RsBJdimDx7VvQ84RW0FrUHOZtG0wnx9KeT+Exh4Fq7ER226dDTMSRexABAMnjYA0DVQc1g/12xqw5syTwRQGLaTBVxJAsKoCXFehaCq0UMDbL0tK4qeVtKzJCwChc9uXA4HkJmlLcJ0y2+cyN4qLh0rQf/J3YMcMrL9kOuq/3Y+iASUoHtIP/opS7Fr9KQZMHgsAWH3y8VAT69C1kAZ/otPsT3SOuc6hFzmve8mgEgBUT7tbMJa7NwIAuPHGG7FgwQK8+uqr0PWmwaLjjz8eq1Z17pygjnIBEd98mPZ+Zeh32vX85PVPwZ/Ny0ibSPdgqgaoGrRBIxH63nEYcvHF6HvyKTjsmtkAV7Dt9Y8w+NhR0EMaNlx2FgIVpSkdYdXvg5K4oHJDrt2QTCtqwFfSskRM8cDynjk4kpb9xVtoeGx+l/bBFAVM9yP28lJEn78vI+0imcUUxRsEU8r7IjB2IvpNm4ZBPz4Nh111IcpGDcbOf3+IgaccB3+5H9IWqBw7BMF+pbBNC/EDDU6G60SESHKotRWLwwpHs3yEpDUbLjsr7f3+aZe16/nCFt5gyJ4lczLWLpJhqu7Ux9Z09Bk7HNU/PBIjf/wD9Js4GiXDB6B+8070HX8opC2ghzT0OaQCoaoKZ7BL4SkzyMHKAPwlPmghHf6KYrBEBuzm3ASfhBSyTz/9FD/5yU9a3N+3b1/s27evU/ukjnIB8bJbdwHXaY1aLhJfvef8//X7YP4gmM8P5guA6X7npukQ4XpEP/8I0ohBS6w1jNbGwBUOrTiI+IFG2In6m8K2U9YoJofd2zETYx57oUUb3ORC226d3Z2HSlohS6u6vjxC1cEUBf7TrkRg+jWZaRjpMmvNSzBWPQMA4MFi5/xWNediWvd778vGlo3QBwyCFTUghUD15NEAkMgr4CTzkkLAaIjAijUl9wKczOdMUZw1jUF6n89F0X3hg2/UhrFPvAQ15MfmX19EIdg5xk2kyNTUGX+u+6EVhcB1FWY4CmkL1H29HbXrv4VtmPCV+KCGArBicXCFgesKRKIihVs3Ww040WGq3wc7ZkIPtYwqOOSBv3XzERKSfWVlZdi5c2eL+9euXYuBAwd2ap/UUS4kigL7s9RMiuYHz7eycXq8uAwAEF/5GIVo5ghrzUvO/9vWQXIVPBAC84cAXwhSCwCqD8wXhFLeD1rf/tj+ykoMnnUWqmbMRPmIMgSrKlC/2XnjsBMzTFIICNuGSNTj5JoKaQsY9WH4K4oBOAnA0hl025965sBJCnXAobCibde4PpjAGb+Afuw5GWoRyQT7s9eAxMWzteYlMPf85qrTSQ6EwIvLoJRWQBs4EtFN36D6h0eCB4sR3X0AVd8bASWR4VrRVGjBQCKzdeJimicS+IX8UDQV/j6l0EJ+mnHMQcNP+16L+2IvL0Vs+UPt3kegohTD7njUixgi2Rd7eSm4rjoRQcJuKtXJFWdQLFQC7ndyC9S8/zmieyOoGH849JIQyg/pC7046Axycadj7CsPJTrGOvzlzvIKLRiAbVqwTRulw/tl50ALGnOyXufqjQAAzjvvPPz6179GTU0NGGMQQuCdd97B3LlzceGFF3Zqn/TbLSDK4HGwGw6k3CeNGMTGd9q9D+ZvWrvmn3pppppGOslc/RzAkxI1Md70feLNUWo+pwMdKobafzD6TRjtJG0SNspGDYYacBJ2MYXDV1bklYEC4F1cM4VDDeiQoumxooGVPXmopB2KJ3Qtc707axlb/lCHLr5J93BfDyCpXm7S+e5lO1Z9YKESKOV94etTisC4H0CtGgJfeRH04qCTa0DhTnI+XYUW9EMLuXXTFaghP7SQH/6KEvjKi9Bv7u+x68ONAIDoiw/22PGStvmHj8I3c85LuS++c3vqZ0Abvr72HK+8V9llC9usjkC6X3zlY4ivfAzSMr3KEtKIQTQegKjb53WY3QExtaQUAyaPRfXRhwEA6r7eDr0k5K1rVnSnDjoA6MUhKH4dWsgPvdgPIQT8FSXoM3owhi9+HF9f2zQguu+BX/XwkROSHbfffjuGDBmCgQMHorGxEWPGjMGPfvQjHH300bj55s7l4KCOcifY336S7Sa0qnnotH7MLEBp/8iyb8r5zv8nXAjjracy2jbSMfbmj6H0HQTm83ujhlLVwHxBwA2zVzVI1e9cSKk+SMtE4/Y94KUV4OX9UTJsACK7D4Bxp3ZqdPcB+CtKnYtqXfPWJiuJ5F56cRBDFi3D3vuuR+U1d2f3F0BaUMq7NlOgT54JwFnz2N51j6T7KANGOusV4YRkMp8fTA8457uwAMuA9BVB6AEwPQCmKGjcWgOmaUCwDCVjRiM0sG8inDqQmHXi0EuC4JpTS9lfUQLVrzthmaaFymvuxoGHboIWcgbEAmf8Ipu/ApJM2Ijta0i5S6+oaJqBPIiRv0/9zK685m6qnZ5F2tDRUKuGAFyBEgh699sNByCMGKwD+8H8IfBAyHkfUHXUbtyK4pFDoZT3Q+nIgWCce5/NAMB1FRVHjHDWK+safGXFKBk+AKXDBkDawutUN2yr9X5exdV39eyBE5IlmqbhiSeewMaNG/G3v/0Nf/nLX/DFF1/g8ccfh9LO6iDN0SKWTmhvcqysSDPyLM3OhWtSiGaWMQapOOsUwbhTDxvw/me2AaEVQzLuJOqyAaW4DKGqCiBQgsjb/x+0/oNRPKQWdsxA4/Y9KBrYF/EDDfBXlMKsj0D1+xA/0ADFr8Ooj8BfUQoA3qwyKWzm6uegTZqR7Wb0SmbN10CgFIoVg4wnJdgSFqQRg4yGwYvLIBQV4Kpznut+cF0FuAKp+aCUVgCWASu2E4F+ZQjX7IcwLaj+pjrKRn0EekUItmGieEh/AE497eofHpmNwyZt8J10CcSy1LJdsZ27vFnijor8/U6UXPLbTDSNdILwhcDiETBVg0wkWRPRsLfMSS8JOQNkuh/MdkKyOedOx5k7+QT8FSWwYwZi++phhE2ofgtGfRhqyA8VgF4c9MLsAxWl3t/K/i9rW2sW6SRJIc55Y+TIkRg5cmRG9kUd5QLDQ8WIr3wMvhOcWPzo8/dBGzr6oM+LvbwUTPdDCgGmat7zAcB46ynqNPcwsfEdwFcEAGCaD1LzgUkB2DZkLAwWKHaSt3HVmWlm3FnTGCiGb/BwSFWH1n8wAKfTKwwLQ6Z+H8K0nJrJqg6mxGCGo7AN575gv3KUXbYQAKAVB1ttG8keZfSxKed3RxjvJJK5CAERDcM/9VJok2bAWrsc6vhpGW4pORgmLCfHABI1jhUFMh5zHgyVgwXLIFQNUHRncIxxSD0EX1kxUFwBuW0DREMtwBUUD+mPeG0Dqk78ERrWfQa9rAhmQ6QpkZdfh1Yc9Mo/FV84n8Ixc9SI6T9s13bbbp2dki9i3wO/gl4Sgh0zoIb8KDr/FgTPvgHRFx+kqIEsEF+9BwRKAWGD6X4o/hCMjevgq6oCi8cQCASdfASBkDMAxjmkpqFs1GBIIwZeXA7uDwJwBrL9FSUYNelIhLdsgxYKeJ1tkUjQCQB95yzxfn7JoOIsHTkhPeuXv/xlu7e95557Orz/vBkeWbRoEb73ve+huLgY/fr1w4wZM7Bhw4aUbaSUmD9/PqqrqxEIBDBlyhSsW7cuSy3ODj7qmNRZZa4A7jq3tqg6pBFzQnQtMyXsmjrJPU8aMUBKgHMIf6JTnHgdWbDU+T4xy8xEIhOyFIAUUPoOBLMMKBUDIC3T6RgrHIwr0Icc6iTyMmKJNcvOhynXVK+TDFA91VzWPPza3LXpoM+Jv/GEswwDzowGDzVdRFEnueeJr94DpIBkHCJQ6pzTpukk9VJ1SM0H4S9uGgSTwqmVqSjQKvtDMg6lvC+UvgPBg8XQ+g9GaNRowDIQqu4HpupO8i6/7qxl9PlanNMUjtkk10rnbL05NT9IukGN5kkVfeXFUHw+qCE/zPqId39yWUDSM6y1y738AswfgjZ0tNP5TawvVvoOdDrInCey23MwVYd+zCxo/z97bx4nVXXm/3/OuUtt9EY30DRbI4iIICBuhHEkLsiIMf4ki9GvRmPUqISoMX6HaKIxGjOuGWPGxImDcWJizJjxa4IhuCa4IpsKCMi+dUPT9FJdXVV3Oef3x7n3VlV39VZd3bX0eb9e9eruqlu3zu2qU/c+53mez6eyCtw0QYeVw2g8hsCI4bBjhhAD27EHwVFVoE6rlK9CfI9zm6UEyQBQu3DWoB6zRJIrNmzY0Kvbxo0bM9p/wWSU//73v+Pmm2/GaaedBsuycOedd2LBggXYsmULQiEhQPXggw/i0UcfxTPPPIMpU6bgvvvuw/nnn49t27ahpGTorK7RQAjGey9Cn7sY2phJXfY3mR++DBYJwzf/CvgXXIvYqqfhO+8aACKLLMsycwePx0ADBpgaSpRdu7YSzAJxLrI5VaFVJ8pL7N3rYWxdB9+ZF8JuaQQNlUIbMcrrW4rt/BT6iJEgqgYajcBsbkbNXU/m4hALjrbn7sWwK3Lb72dtWAnW1pwyN4lt9Pg83/wrYK1b4QXLxjsvyPmdSwgFsQwQJe4Fw8LyLQiuiJ5lrvrEIpiiQXXmuHVoG9Qxk0A4g9VYD+oXGSkwJkq1yypB/CGw9jCGOdnEYTKb2COTn3gBLU/fhbJr78v1UBD86jK07Eq8Zwff/gTVZ6SvCou/thx2UwOCX76j03dT9KXHELjkVvgvvFF4plNFZpYHC0rFdRdn4FoA/FgdCKXwTTxBZJh9fihKJeCUXaszF3hPVSqrxaIZs0EUCjseR3B0JaJHmjBswhhnkbMZwa8uQ/sfH4Ti19Oel6TGSJYhEO+rJO948803B3T/BfOur1y5EldffTVOOukkzJw5E8uXL8e+ffuwbt06ACKb/LOf/Qx33nknLr30UkyfPh2/+c1v0N7ejt/97neDMkajqX5QXqcnuGV4wXFX2SJr3QooZZUpmaUUlWtVA3f2YW1YOXCDlaSHKqCTTgcx4+CKDq76U32ynexxJ1sAqkAdOwkk3ga7sQ50WDmIqglBGIjMMagCUAXBxbd3e2Eo7cFSGXbFD3MujKPOXih8dpNE+9jODbC3vNXzc+cs8n7nUeHXKud2juAscdHlzGPiCyYWxQgFVB0sVAltxHjvaWrNCSDlos+YhZtBAiHwaAQs0ir6lZ0FMTqsXPz0yxaK3lJ27X1oeTr3lTTtLz4MIJFV1kK+FM/7ZGhZpVgo6YB7HNGXRJYxcPFSGSQPIurMBaL3mDMg2gpSPhJqzUSxGBYIJdSuVU30IydB/SEQTQO3TBBKoQSCnnUUKHXKssvF833+nC/eSiT5yv79+3HgwIF+76dgAuWOtLS0AACGDx8OANi9ezfq6+uxYEFiZc7n8+Hss8/Gu+++2+V+4vE4WltbU26ZoldUZ/zcbMJNEzweQ/yNZwEA5sGdnbahZZXgegg0VJp2H/rcxaC6H/E3npWlmTnA/Z8T2wCxYl55NXeyT5yq4iTMUy+glAkzoVSMBNcCoCUV4EYM6qjxILofzDKhlpaBUNorxWP3ZFzIZHN+A8KHOtdYh/fBajiY+Lt+X5dVI9bBT9Pe7zvvGhB/UJT4SwYdOvlMKONmgMbCIMwCsQ1wqibE+wAoLXVAmmoBruqegB/RfFBrJorvc2aDRSMgmu65FxQ72Z7f+ZBRhmWCGeL7/rMbvwQjHEsbKNt7PxKL3cHO1XJl194nNEdsG7FXZMVQLqBT5oGYcaFcf6xOVHy49pvOghahilft5UICIW87qqtC4CsQAlEo2g/WAVSB/8IbnRfJTMVXIilWLMvCD37wA5SVlaG2thYTJkxAWVkZ7rrrLphmL9pQ01CQgTLnHLfddhv+6Z/+CdOnTwcA1NeLbO6oUaNSth01apT3WDoeeOABlJWVebdx48b1a2zWgdz3RCsl5SA+P1hrI9r/8AACFy/1Vqk9qApwBmNX5/GaH74MQGSgfOdcJco9d64RfXWSQcXzUXUDYioywoRZYHogpezaI1QBqBrUEWPAmS2sZCD6mKzWFu8kG33pMbT/4YGuX9vJOhYy2Z7f9Wu2ZGlkmaOfMAf+Bdd6713wy3dg+yP/nnZbt4w3GXvT6wBE1sMtvba3vAW2c83ADFjSNYoiFr70gGP15rxfTqUIMaJpn0Y4gzp2svjdF4RSVglCFdBQCWipWDyOvfJkp4vwYiPb8xsAws/e0+999AcSCGHY2BEI7zuC9sYItJCOz15a32k7ruoAVboU9vNfeCOCi2+H/8IbEXvlSe+8Lhk8eKwN3La9tiluGaDBkpT7lKlnpTxHmTYfdtMR0FAJfFNmgVaMBGcMSkBklWlpZWL/RXCOLhyIZ9OZlzeQXP+D8oIlS5bgqaeewoMPPuj1Jj/44IN4+umn8e1vfzujfRZkoLxkyRJ8/PHH+P3vf9/pMUJSPyyc8073JbNs2TK0tLR4t/379/drbNyX+15oWlYJZcwU+GbMg9kWQfjZe6DWTEzZhiuiLChdOZZ22sUpf6uzFwqLKVowLe1FA6E0NWtMqCi/chWv0+E8TkuHixVr24YyYgysSAx6zQRvs/iRBgS/uqzL185EWTnfyPb8Hn7ihJ43GmBYWzPYjvehVFYj8nuRATtxee8vgpXp53a+b9p8mHu3wqr7LGvjlPQMJxTEtkR7hTOnmW+YmPPMTrsQpo45UVSU6AGwtmaxn3gMLBqBdWAniM9R0g6WFr2QU7bnNyAUwXNJ4OKl8I2biOMu/wKmXL4A3GYIVgXQ9lwHmyeq9tpf2X/hjWh++03ZajHIcNMAjznCaqoGGioF8QVAAyHweCylHSYZEioVwTRjoCHRakN8fuFakVSqbbW1DcZhSCQFw+9//3s888wzuOGGG3DyySfj5JNPxg033ID/+q//Shsz9oaCO4t++9vfxssvv4w333wTY8eO9e6vrhZlzx2zx0eOHOmUZU7G5/OhtLQ05dYfkvvJcgWdfCYQC4MFKzDsnEtRctU9UCurEVv1tJcd5ooKWF37Kyf3PLId74O1NAKcwTr4KaxD22Ad2tblcyXZgzMmSqyTSq+ZPgzcXwK15oS0z1HGzQBXdLC2ZtDqiSDDR4Pofgw79XMppba+mjHdvnYxZCCyPb9H3fHzLI0sc9SZC0AnnwnfedcgMOfzAIDmp77vzcnmtoTibace9iTcChHro1WwN70O3zlXQR19PAAg3tYibuHmgTkICQCAWCa4JvQHuOoHV33g/hIQywAbVtXl82gsLNSyFQVc0UECIWhjJ8F/2vkgmvBAp6EST5wxHeYHL2X7cAadbM/vfMG/4FoQVYNSORpjP38KZr+0CtxmCD97D+ytq2Ed2iYqEbqpGGj/44MAhOBXbNXTGH7BFz1NErZzDew9GwfhSIY4lun1FXvuI5YBWlIOdWTX51+lTGSNie4XYl8jxkCprMawueelCEpplV1/RzQ8ditiK5/KznFIJAWC3+9HbW1tp/tra2uh650r7HpDRoHyN77xDYTD4U73RyIRfOMb38hoID3BOceSJUvwpz/9CW+88QYmTkzNkE6cOBHV1dV49dVXvfsMw8Df//53fO5znxuQMeUzytSzwHas88p72j98HWqlWEzw+lu7e/60+V6JJp18JrQzLgGddDrUMScChHYZpEmyjGUAbrDsvmeEgDn+q91BykaC2KZYlQ6EoFSMhDpqvGf91ZO4C++NrZgkp7gXyuXX/wQgFGbDPsRsjgPH2hCNxUAb93b9XFUIgqkzF3TOMjvlXL4i6FPPaxQlRZSPuz81f7eLrtxpneG2DRAComrgWgBMDwC2mLcdK4M67cPKfb+9pGu02hPRsvYDMNPCJ1+7EEZrBEpomFgI4axHtXvFOd/7zrsG/gXXgkVahX0kREuGUjtroA9hyKPOWeSIcingzBY+6aoOq35fwjM9DSzcDKLpjnq2k1VWdRDdD7upwdsucPHSbl+/N1okkj6Q6/LqbkuvJQBw880348c//jHi8UQiMB6P4/7778eSJUsy2mdG/93f/OY3iEY7905Fo1E8++yzGQ2kJ26++Wb89re/xe9+9zuUlJSgvr4e9fX13jgIIbjlllvwk5/8BP/7v/+LTZs24eqrr0YwGMTll18+IGPKd/SzLgMx44i/9Rxadhz0Ah9r9yZwqsJuaez2+elKNAF4WScAslRzgBHlV45Cpu1klVUdetXY7p4GwixwX0hcTDse2aAqaEk5WLipV6/tCY9I8hd/iadsSxr3gbYdxcjDGzFMp6BmDNzs+mK6uwtlX6gEvlDu20iKHc8j2dMgEH8zf/f/e+487pZZizu5sI1jrFf95jxDYRPJ4EAnn4mSk6bDjERx4L2D2Pzf78BoPIbtD/wExIgKR4R4+h52oHPrTPLCSfLct3d37n+WZA/hk6wIQS6fH0TzQaud1qNIKvEFQUOlUKpqAKqIn8yGOmpcr0row/sOSyE3yZDg0ksv9W4bN27EX/7yF4wdOxbnnXcezjvvPIwdOxZ//vOf8dFHH2W0/z41nba2toJzDs45wuEw/P6ERYlt23jllVcwcuTIjAbSE08+KSb8/PnzU+5fvnw5rr76agDAHXfcgWg0iptuuglNTU0444wzsGrVqiHlodwRu+EA1InT4ft4PYg/CKIosJuOQOEM1uH90CDKsOik0zPaf3LQLMk+RHNKRdwSu96uHnIGteYEsF1rhfKmqougmTHQssqenw+AtfdPQVYy8Ci1s6D6S7Dn/34dY7/yFRjb3sCRNZ9g1I9+BRpuTZT79YN4uFlmlgcKJzNMOAOnije39eE1PT+XMyBULjyU3QoT2xYZR7vn950oUjE33/EvuBas5UHM/ObnYITboVcOx8TLL0V8/RvwnXq+ZwPWH5SJp/R/oJIuIa4ytaqLoBmJypGu8M7RhIKbcVExQlUQ2xTXcK3Henzd9iMt0tVAMiQoKytL+Xvx4sUpf/dX5LFPgXJ5eTkIISCEYMqUKZ0eJ4TgRz/6Ub8G1BWc8x63IYTgnnvuwT333DMgYyhEXFXbivO+AGXafFiHtsE/uwzctqDNmi/sY3whsAOboY49KbeDlXSC+IKAGQXXQ6JME72zISOmKDvhRhS8dKQo3bYNEEpBh5Uj9sqTCYuJNFjrVkCf95XsHIRkQNGqJ2HMd38EWHEE5yzCmH/aDWaL3ld2/Fzw+p2g0RZ5QZyHEFNcyCoTToRx9EDvS+g4gzrmRNh7nRXy5PMjZzD2bIXfKbPtCiYVcwuC4JfvgH/H+7Ab66GdcQmif/kFPrjvj/jnP50Du7Qa9pE9oEf3QJk2P9dDlaSBGTHocxeD7XhfVPUFSqFMmNnj8+ik04XbSLgJZPQkEMsUdlCqDhZugvnBS971XTomf/1S+Bdcm8UjkeR1ifMQFr1evnz5gO6/T4Hym2++Cc45zjnnHLz44ouehzEA6LqOCRMmoKamFyvhkkHHPYmqNSdg37JroJUGMeKqJbA+WQ11dC14tcwM5yNc9QHxdihTZgnrsW4U3JNxS+t4PNrpy92q2yMyzN3A2jtrEEjyF21krfd75P/9J1p312HUXY+DWHFQs71/J/ge9AwkmaNMmOkFu4QzcEKhl3Ut0OPiakQQ2xTey0nvEVf9oCXlsPds7La8nsrS+oKBTj4TVLiBQZ/5z9i77wmYn34AdfRE0U4Tj/WrMkwycLgZZTr5TLBda0F7ESR7llGcQSmrBKMqgESVCC2p6DFbnKyOLZFIMqdPgfLZZ58NANi9ezfGjRsHWuTWE8VKzdLvo+n5/4C1+V1otSeCVXTf79oTVt1ng1qCHQ83gzCrVxeUhY4yYWZqP1IvKiuSoSXDwZgFYopeNs4Y9ONnwfhsY/evO2IM7K2rO3k8SvKf4KU3oemny0A+XgWq+8GrjwOoCuvgp0KMr4/4Sof3vFGWMQ/vBghJWQAoVojjPqCNGA+j5WifnssdhWtwngiWOYNSUg5idJ8xJrq/28cl+YkybgYuXLYALZu2gG7bjmETx0Ofc57Qs5DkHcQfhPHei9DnLk7M115CJ58Je89GUXYNCL0SZgOUwtizFd0tdxPdj9iqp3OSVY6/trxbxX2JJJuccsopeP3111FRUYHZs2d3awm8fn3fNRkyMsadMEF4iba3t2Pfvn0wjFTBmJNPPjmT3UoGCRo+gsovfBXcF4L56Rromg92ac/lvF0yyBknX0k54q3HYDQfEa9tWwClvevrK0SSxLy41renciMK6AHwQClIPCJOtpyBWyaMd17osrxamXoW7C1vwd70epeibt1h7/2oV+VlkuyjV41FzQ//HaS9CeyzD6GPORHWgc3gWjDXQ+sbnMOs3wnCLIBZRdsawp02CevQNiBQ1sPWSMkUc1ezgKogRqJ6hPhDPfreE90Pe+tq0Y7RQ5m2JL+o+v+ugLFtHbTaE8GjEZB4pEcBuHzD3v8JlHEzYO//BIBQcs9kIS/fIYqS8LvOYDGDO33NxDYARQMBQFQdtIeFLrvpCGgoN3ZpxRkkkx57y3NJ31IoxcUXv/hF+HxiEeqSSy7J+v4zCpQbGhpwzTXX4K9//Wvax225spnXuBdF8XAz8E/HAYc+6dcXQC6sojx7K0K9MuJ46zEQKwZiGY4tkjXgJ17jnRfAws0DasPAYhFxQevYgvQFogcA2xJZK2Y76tcK1FHjwGPt3T6Xm0bGJ1oZJOcWX+lwWK11ME+9BDoArocyzs6ah3dDGzWx5w2ziSNwBcALBM0je5zHuAieMThigvam18HjMahzFg3MC/hCYNvfAdFDQC+CneRyanXsSUJnAhBWgK54G6FikawbiC+QccWILPPNLXTS6fBPOh3WwU9hHXgXWiAEhHon0pg3WCbYrrXgekBY1VEF5uHdIJZTUjxINpRs11oYWz/sVrOjPyjTz4X5ypOw1q0ALR/R4/axlU+Bhkqhn3UZAIDGI2CKDq76QMyocw6nUEZ07cMMAEbdAfinTIf54cs9WsVJJIXM3Xffnfb3bJFRdHTLLbegqakJ77//PgKBAFauXInf/OY3OP744/Hyyy9ne4ySAcJXUi4uOHvIPOQtzoU0p2rnHkzOQJgl+noBsB3vw97yFqyPVsHeujp7Q4jHQPwhmB8O3OdeHTEGhGbolccZrN2bANtM6WniltmttQggVsKll3Lhoo49CcGAyDrwHnrSu4MabdkaUq8hnAFOJjnZZzgFzmDv2QhAXOyynWu8eZ4t7D0bwaIR0AFU/SZOhYf4o29znO1am9iPk5kWwn2mp7DbJf3wUZZBcn6gjjkR5Mz/DwhV5HW2Kx1upQjgzAGqin5793xOaGIRCCIDbe//RMzz7e9kbRx2wwFRgTGAcMYAVQPz9fw6RPd7QTIA8Hi7uJ6Jt4nFbtsGt0ywtuZu9+ObeIKoGGNSY0IydNi/fz8OHDjg/b1mzRrccssteOqppzLeZ0bfrG+88QYee+wxnHbaaaCUYsKECfg//+f/4MEHH8QDDzyQ8WAkg49vWBms4eMT2ZsuMFqOilLnfIEzkTk2Y6DtTSDxNhCjHcSMg1hxoSZr2yDuqrVlJsqfmA224/1ud2+sfh6xVU93u01s1dMAs4U/Yj8CkR5xxEC4ovX4PnWCM8AyQKfMg3XkoHc3a2nsVtDL+mgVQBUQzdfj/0pSADCWsee5Mm5GlgfTC5yFLsIsUVJsGyKTbJuiBNE2xE/OxOczKftMVA321tWwN72edtexV55E+x8fRMvTd3U7BLb9HaC9GUT3D+iCET3uVIAq4E71R19gegDEjEMdc6IINFqPghMKFo30KPbjBgfZXDiUDD60vQnEjHpVFj3R8f3ujSfvgMAZuBEDP/gZwETVk1sJRsyY+MkssQi2a60I+Jygj0UjPX5uzQ9e6nEIZsM+WIf3gbU2ZuOIuoTofhBN7/P521j9PIh/GNSaE0CnzAOLhEEUBYQqaPtsR/dPdq93KM3q4uGQxm11ycebBABw+eWX48033wQA1NfX47zzzsOaNWvw/e9/H/fee29G+8zovxuJRDy/5OHDh6OhoQEAMGPGjIwapSU5xjJ6VdKrlw+MR3bG2CZIPAwabxPqvkZElF7bBsBs70JbZKacPl/XO7SLYNn84CUY77wAbho9Zly4EQNnDJwNcKsBoWJFGujxfbLWreh0n9svpJRViuBX1cCNGHzzr+j6JRUFyrT5on9ygCsOkrNikoGBMKvbMuW448tpHt49WEPqFrXmBIAxESTHwiCWCWK2i/ltxoRVim0ngoMO84JQ6i0wJWO884LwM/X5ofh7WNyiClikFTzW3nN2tp/wSKsQ7Olra4VtebZxgBDvAxEWcAiWd/k8tv0docIrF8EKHq16Eliwottzg9F8xGtd6Fhur85eOJDD6xqqgsdj4MwGMaKgZruY40bUO3/DMsVxcSYE6ygVHuFMLACnCwDND1+GtWEliKrBWP1890No3It4fT3syMC6PBDdL7LBSs8L6slBu37WZYAj9icetD0/5mB196X2vnOuEhZSp10srmcGgfgbzw7K60gkXbFp0yacfrqoeHrhhRcwY8YMvPvuu/jd736HZ555JqN9ZhQon3DCCdi2bRsAYNasWfjVr36FgwcP4pe//CVGjx6d0UAk+Yl18FMhMuNgHDuUeMwpa/a8PAcTJwim8YjIMhlRIVZlRMXNC5CthFIkIC6eme1liNj2d2Bveh3WR6tgrVshgl7GxDZpSpZirzwJAIi+9FjKfnk/yhi7wg166aTTAV9IXCT0QMc+yk5ZJaoAVIFS0f2ihyvgpUw9yyuPGyjocad2uk8Gz9mF+bvuNTcP7waNtQLA4Pci9wCPhoVYkW2IahEzLrJnTjYZnCXmsxsoKE5QSxXYW96C+eHLMN57UbRHOAtFRNW6FcNxs9FE94sFMS0woMdJXC2APgfKpldyq9TOEs9XFJFhUDovFHSEWyaIHsi42kCSP3SlxxFvPQYaaUyrUZDLTCM3ouCWAea4WMAyQZ1zNzGjYq67rRe2mN+cqoCigVsG7HCzmOObXoe1boU4h7vZcUoBVRMLRl1gb3kLrKURDRu2QwmVIPqXX2T9GNv/ICostZpaoKSqV+fSwCW3pvzNkoN4NfHdph83vdv9xF9bDuvwPsTfeDaRIBhgfOdcNSivI5F0hWmanrDXa6+9hosvFv35U6dORV1dXUb7zChVdMstt3gvePfdd+OCCy7Ab3/7W+i6jt/85jcZDUSSO6gRAdPT987Y5WNF5pYzoU4ZqvSUkLkWhNmwD3SgM6pp0IfXiIs7QsFajoL4/OCmIfpqVV1kg52gEMwGN00Qnx9E1cCiBhCPiVVeN+vEnD5BywQ3DXFxHI8i+vLjIgPrlG5z20b7iw+LbJcGkWliNoia/R6nlKA30gQMqwT6eL5jkVbvKVZjPfSySoDQlB6orrC3vJUzC5l0wbMkc2i8DUBnm6d46zEoZrsQ04HoyeWqllBRVpScqdEqE2bC3vIWuBEWlQ2sPVG9oeog1HSCYhuwDHAI8TpOKAihQsBO1YBIq+dlSqgCaLpomQAQ/csvxBx2A+hACFT3g5aPgH30EOwWkd1RB1jZn+gB0FgYrBeq1ylYcahJc4U71R+cqkC463JSd6GQqJp4fwfR3s9FigxlD67oXdq/mWoAqxdchfM2fwhA6HWwcDPU2QvBws19PaVkDWXqWeDrVoCWlKfMb27bIL4AEGvzKjnslkYolTVgiu6oe9eLbLOTYeWRsHB0oIqTvWUggRCI5hM6A/4ScNUHakZB25vAo2GwaATGrk2o+edZ4LYNqme/fDX41WUAhICqtWElSFX3Alwdia16GmplekcS7YxLun2ef8G1iK16Wlz3SCu47NCN7VDuyeexDR4nnXQSfvnLX2LRokV49dVX8eMf/xgAcOjQIVRWZiZ4mNE3wxVXXIGrr74aADB79mzs2bMHa9euxYEDB/DVr341o4FIcodacwLU1vq0j3GqgulB6GVV4FQFbW8CGzlJ2LbYBjihUCaeMsgjFqijjwcLHxNBcjQC1h4Gi4TB41FwUwS8XtbXvcBWNBBNB0vOtCaVaHLbTmSo3KDZzTCb4j5YppdBdrPOLNa9Z2l/If5QRl/ShCqIv7YcAOBfcG1q5q0LXGEyZdp8AMLLUVLYsEAZzPqd6R8LVoBwBuvgp+B6AIQzp7zZmSM5FPvjpgFaVikC4WhE9N6apvibsYSgnztvCXXUn+MiC0yo6A9MLp1WNRBfQNzvlGgTVXwvEKpAnbMIXNFFUG4ZUCurB1woiSua8I3ua0afKqnl09FW8Z1cO8ubv+lwH3MrToyjB7rcdqCQQXL2UMKHwfZ80un+eCQMDuBz94rrstjKp8R8ZrbIvlIq9ChyBDNioiXIMsDjMdjhZvGZdP5m0YhT9eAXJciEgmsBIWYVEVUwLNwEGkpSi3fOyd6cJyTR0sAZ6KTTPUEsADi2eTes1tYBDyZTxthL/AuuTWSRAagzFwDM7rFc3vVOJqoG6g8NeEWMRJIv/Nu//Rt+9atfYf78+fja176GmTOFA8vLL7/slWT3lV5fAd1222293umjjz6a0WAkuYMedyrYjveFwf3ej0DMKKzKWsBfBt+BjTBGTEZs1e/h/+K3ADievk6AaR7Zk7H1TL/HPawcrK1ZqDhHI6KEkTGvTFn0GpuiD8rtU3bLLt3yamaDW4ZTdi1OoNw0wCwTVNXExbTuT4hfORftbq+QKzJy5OHvYOTt/z4gx8kV3Qn4+1YGTcsqUzLTvbGDSb6A5VoA1oHNIGY8Zwsikv7jG1YGe89asNZ6caF5rA7qnEXeBSSnKqIr/xvBhVfCDlSAxlpATDif7YEtve8WdyEqIjJANFTiLHo589Jd1GJMBNV+pzKEKl7ZJlEUsTDGWEqLhLvIRXS/I8ingfj8QsRLCwhFe90PO9wMrWIUjNXP96oSIxOIbYIrGqxD2/pkiUMnnwnr0DZvxVuZNt/zpe0K66NV4oLbfU7tLDDXektSkNDJZ4I01oPtWovoBytBSyoQuOhmkHgY8FeALFqCeOsxaFNPB9N8IMNHg7ceFYtFg1SWmw597mJRAh0Jw26sAy2pAFRNLIYBIJqeELM0YqBGm6iWoAqUymoQ/zAoToDLohFRMUKp59jAwk1QKkaKKjNVB3cWBImmg4WbEW1oQmBkOYhCQUKl2H37lZj48H8PyLFyxoQlVg/Wah2/Z2hJaiVQT/3GbjYZSJRCW+tWAIPQVRN/67lutU8kkoFm/vz5OHr0KFpbW1FRUeHdf/311yMYDGa0z14vk2/YsKFXt40bN2Y0EEnuYf4S0RtKqQjMbNEHzI0YwBmCC74mxGMAL5PTZxXmbEOckyKznVJr2qmX11055qbT58SYyEIzBh6NCEGRJFVsN5tsx0SQDVUXF9P+IGiwJLHy7Lwmt21A1RAa07NHYsaHaRtQJp6S+P/3Eq7oMN570fu7JxurTgqonAvbGamqWPCwEcfBbmkEbz7ieZZ685hZ+PR3q73ef3En9R6zd+dGpFGdvRCEUhB/0BmSkmip6IhlghtREFOIAcE2HRs0Mb+9IJkxYY3mzF+3JcMrUXR6nLkRg93U4C1QcXvgWkyE8rXwjTX7ELRah7YJheAkelIpTwmSp80H2/6OV7ItKWzim94FLakA0f0w3nsRxDKgEUBpP4ZPLvuy2Mid85oOoungds8uEAOJF/glt0c4i9duVtgN5km0VfQu+4NQyirBFactyqkcAcRxsWhEVJYZztx3RLS45gfXnUUx3Q8tFICvvARq+XBYh3YPWJAMAHbTEbHYbHevoJ8cJKcTx2KO8GKXdNBLYdvfAaka2/uB9oOiDpIJcq9sLVWveyQajSIej3tB8t69e/Gzn/0M27Zt80So+0qvz46u3LakeFHHngTrwGaoY08C2/G+CJJtEwhVwHr9WfhOv0CUP7kKlACIFQVXdJj1O6FVTxr8QVvxpMyuDUIVcVJN6k3mzPayTyzSKlapAcAyRMm06yms6l5vsh13lCYd4R9xMa0DlIJRBSTc7K3Gc9sGa2kEMwcu8+aWPxPbhL1noxDu6Q2qBqU6sZTcU7ljR1EyYsXAWhoH1EdWMjhooyaChQ+DxyJQpp8L88geEDMGrupgO9bhtF89BMQjYJyJBRki5gyxTXDNl9Oxc6dEk8UioMESsUDlZITdC21umWCNdaD+UEogbR3eJ3oxK6sT3wuOJoFblk18fhB/SPRqEwJiRqGOGod4Yx1oqDS1fWOA8ALcHl7H3r3eq+5Qa07olxCXvXU1SI7fW0l20M64BO1P34XA1JOhz/sK4m89B7J7I9B0BB8//gec/IObgFgY1H2/nSCURVrBNb3HTOeA4VSA0bLKlMUrmIaoIgmEwGwhsulqBigVI8V2tgkWjwq7QyRrhujCZ5gq4twOeOXHXAtACR/xgm9uM9Bh5eAD3D6lz10sXq8PVnO+c67qJGzZU1WL/8Ibvd/jry0HLasE0SPAhD4MViIpUL74xS/i0ksvxbe+9S00NzfjjDPOgKZpOHr0KB599FHceOONPe+kA3IZQpIC2yuUrEEolNZ60Fgr7JIR0M9cJLKrjvUSNdpAzHZPeTZXmWU6ZZ4YrpP1RVLGiZtOltgpzQTEyjSPx7z+J7uxHtaRA2CxdrES66hec1vcxIso3v5pqFScxJEkiKOIHseSq+4Z+ANmVqJ3tBco42akz751uf/E+8h2rRUXD6NqYTUc7OZJkkLB2L4B5gHRq0zMKJQWoWK/6zfCRoUbUWHFFG8Db28B4hHRn8tEyWIu8EqkfYleY0KpWPwCPJV693dmxMDamkVLhhGD1dQAsy0iLrLddgtL2L+J/TgCQFQFVzVwVfeqSpSKkUJgyDdMXHgPAj19l3ZsgehP/zTRfGC+7AsRSnKDGYkiuvVjAAANhLDnmd8CzMav/7oTyuhJooIqqUKIWyZowFlY6iHTOWBQ8f1CqCLap9wKD0VJKQvnRkwsfMdj4jiMGIytHyK+ZQ3MAztSbRqdfcIyvYVxTlUwRYNJ1JQ5owYDKSXeA43bW91rrHjGfeQkVArttIuFOFq6sWx/p9vnJ1egpbOe7IrkKjaJZDBZv349zjpLtBj+z//8D0aNGoW9e/fi2WefxeOPP57RPmWgLElBn/cVAMKSiIWbQQ5uhfXm78APiawF4UwIYkVbxQW1K2pF1S7FggYau+mIGJvuB9GcDDClIJpTlqVqTkm2G0RTkX1qaRQXy5oOFm5KrPQyG0ShoJqa2r/lCv8klWsmZ7MGAxZp7Xtmi9Je2y0lix5xI+rZRLmfC0lh47/wRvgXXu/9Xf/8b0CMKKb++qWEyBtnMPdtTxW3YbY31wcbZepZTjWHktpTSRVH3T7pNKZqXoWI3ViHtvWipJTbDCzW7gTAznGoCU/TZGEwAF7vMy2rFBfwx+oQuHjpQB+q89p9q0whVqzHvmSXZDsgtuN90EmngxpR6INUmikZWKqWPoKya+8DIESuRp0+DcopC3DHLZ8TFWLOYrB1cAeshoNgjsWSm3XNBerMBaK/WNVASyrEOVXREoErVTx9AS8LbJmwDu0WatgVI6GUVcLYtRksJlqp4LVbCVEwGm8DNZIyxk6grI8YCWXEGNHXPABiXukCRtLHgNw8tCdlAbvH10zyjuZR55gD6e0B3URDVyRXoHW0nuzOo9rNnhcXBJzQvL1JBO3t7SgpEcJ5q1atwqWXXgpKKc4880zs3bs3o33K/66kaygFLR0usqijJwnFSUJBjAisw/u9zZT2plRlyUFGn7sYREv4C7q4ZZVU90M77WKhFOmcdAEgvn+3UJN2M0ru81UNis8HqjudCZZjFxVrF31PzE4o6VJF2FL5Bycro85c0OPJrSOc0F75s8bfes7LlgNIlGQ27O/iGf0nV72vEni9yPa6ldhwyYJElskXAmtP8u6MtnrzKme+q64QX3KQDIi2C02HOmcRtDMuceakWNCyWlsQmDABVPdD8esJ32RnwczNSLtCgDzeLhb/nP8LtwwRJDvzf0AOK01Gh2QintbLhbrohn/A/OAl8UeylZSk6GDtYWhOn96DP3sXAJxF3iCMfdvRvnmjsEuMtIrPD1XAdq7JyVh9869IOFEwBh5v9x5jkVZwy/AWa4W+iA1aVgkz3A4eE44X1J8k1ENTM9GItoJEW6DE26ASiPMhpd75v0vdg36SLmBMPsf2Bt/8K0B8/l5ldK0NKz09B+O9FxO+xpGmPr1mb+iNsGF3wbREMhBMnjwZL730Evbv34+//e1vWLBAaHIcOXIEpaXpF4x6QgbKki5hY6aBBSuw539eARRd2BMRCn5gm1iFdTyLrcN7RR8jobAOfgqzfuegZ5eV6eeKi2hP1Mu5GA6EUlZCiSP2xZktAuEkaxj3OTQQAvH5xYU1VcANUabNIq2i/JLZIMHSRL+jZeadiIW9dbX3HhDbglW/p0fBFnXCiQBVYO9eD7Zrrdev1pMVRX+QStq5g5hxHF67E2t+9N+Y+eDdooVC1YTP9pTZYhtKYdXvg31oh9AlKKmEeXi3EAIbRNQ5izwfc1Alpfoj2QaJUMXrUVZLhScx8fmFqm3AWcxy5rybUWbRiCjVDjcDbY1CLEjVoJRVgoZKQFS9W8/SbNOTGJeLO7/VsScJP/keyijt3evhn34mlKoaAAmv8l7rHfSCrhZS7E2vZ+01JL2D6H7s/cvf0fz7J1CmUaHnAQg/Yd3vtRaZ+7aDGTGvh9fes7HXFQpZxdEQESXWhrc4ps5c4GU29bMuA1F18HgM5q7N0EoSwTENhEQGNTngdc/fLY1QWuuhtNZBaWsA4Qw0WApaUi6+H6gyaOdwt0qrJzouWvBeVJKJ9hIG66NVKZlrt7d7sBkolwCJpCt++MMf4vbbb0dtbS1OP/10zJ07F4DILs+ePTujfcpAWdIl9tt/BKcqqk6elMhIEhFkIlQufJVjYVB/CDTaIjLKOVTDJo6FE518JujkM4UAUAcvUa+vWNWgj5/iZZWSex/dfSX3InMj5gh9CZsZGiqB75yrxIptjkpSu4PoAS8zpUyYKcRPkk60ndStAbCjBxKl17lWM5cMOJxQzH5J9L55PpuEih74UDmg+sQcqqwWwacDYRZASL9EpDJBtB0wKNPmQ5l6FliktdP8VucsEgJ8muZ9HwAA9QcTczx5ricvhEUjwoc91iYe1/1Qpp87oEEy70NJZUeI3cfvHafvE7YJe+vqjF+3O7rybu5tcCDJHjRUitqvfAHrnngL9676sdeGxBUVoBSBCRPALRPqyLFiEUpRxWIZs4TrwyBX++jzviJUuI0Y1JkLoEw/FyyaRmDLsX9K/K14PcvufPawDPB4FCzcJBT/j9WBRo6Bt7eAaBr0uYsHtEy4PxlV47ONsA5s9v5mkXA3WwvbN6IosJuOiMWFpO+t4iyFzgG5VrbOsur1f/zHf2DixInw+/2YM2cOVq8emPPCYPKlL30J+/btw9q1a/G3v/3Nu//cc8/FY489ltE+ZaAs6Ronw1r+peuFPYoiSvTIcacA4UbQmPPFXT1JqOJyJkoXOQMndNBXpemUeSk+weku2pRp8xMr1En9uJ5ytifso3hlWaLPybGaiEXAbRtKZY331GSVyXyBHncqSDySyCJ3WI32StUd7D0bRZmpFoAy8ZTcqJ9KBheqoP0PD2Ds52qFpRKhQvBGC4LV7wZrOgwWCYOUVoFUjQFXNRDD6WUkVAj7DSJe+4RDss1RMurMBdDnfUV4slqGo6Ib8DLJns+yk2HmsQh4eytYayPspiMim0WVPrc4ZEJvfM27glhGr79jrQObgZYjQtnfN6xfryspHDb//Hmsq2uDWlXtaG8oILYF/XNfRHjbdtFe4A9CGet4d1NV9MgTCsLZoNtG6WddlpKFTOfSoJ12scgsh0pBAyEYDUeES4WqOxVl1MtKcya0CeyWRtiN9eJ2cDvslkaQQElinwO0GNafjKo6ajxIm2MFRRUoHZwn4m89l/I3URSwaATa2PTuI1JgS5LMH/7wB9xyyy248847sWHDBpx11ln4l3/5F+zbty/XQ+s31dXVmD17Ng4dOoSDB4UQ7emnn46pU6dmtD8ZKEu6xDftdGDPRhDbALEt52YAnME6tBs8GgbzhcTNXyaykG2OTQOzgAH0He0v8deWi9IkJ+PkKei6Xo6uJyOlIL6AuKlaIgNUABlXwhlYUPSoEX/I84cFOmd4vOyUFIUYMhAzCv+cz2Psly4Rn3vOvIwyLRGfG1pWCa4HHNskp9fdNkCcMs58pqM4j5tBdhfEPCV8pwzbzTS77RW59JbtFR394rX0yraAaL/gtg2iB6BMmDnQI5PkATRYgj+/thsm517LAtH9AOcgRjuGn3+R2C5UCu4K23GWuqg6wJZo/SFw0c2AqkPx68Klws0+MwZuxIRPdPIccSzeWEtjSoXMQNIxmO0L6uyFsBsOCju4qWd16qHuuNjNohFh45im19p454U+i4hJCg/DMNDa2ppyi8fTn6sfffRRXHvttfjmN7+JE088ET/72c8wbtw4PPnkk4M86uzCGMO9996LsrIyTJgwAePHj0d5eTl+/OMfg2VYwSWviiVpMd55Aa1vvIxjb74qrBtsE8SMgsQjoLEw1BNOhXloj8ggm/GE2I4/BBKPgJgxQMnfL2bfedeIX5idEPTSdLHi7hN2EUQX3qrJwl3ELfvK80DZ3v+J6EF0hYl8IS8Itje9ntJLaO9eLx5TtXS7khQpR1/6Pbjqx9E330zcqSgis1w6ErRiFHikFcSxJCPMAlf9XsVIvuMtdrnz1xH+Ejch+kU0PaWaxG3NcNst8hll3AzAMmEd/BTcmbvWhpWelYxbXm0d2CwWNhjrs6K2pHChJeUYF1Bx5z8e9SySQBXwliPeIouxZ6sQozSiYjHFFXYjRHxW8jy4MhsOO+dkmtQqZYgS86TFAaLporWiPSxKsC1T2GTlMeaHL4P4gyCcIbbyKbD2VFspV9ws/tpyWOtWCGcAIO17Ntg6C8UKJyRvbwDw7LPPoqysLOX2wAMPdDoOwzCwbt06T+jKZcGCBXj33XcH5X85UNx555144okn8NOf/hQbNmzA+vXr8ZOf/AQ///nP8YMf/CCjfeb/1Y4kJ6jVtdj9ylpUnrsQxDbFSdMNhm0DrH63EMJwMszENrxeCXFBrffJ0iAXEFUDCYRE4OvYRiXfiE+cYImqJS62XZid4jGYbyjjZsDe/wkIZzDrd4qLas5gbVgJZfq5qQJIzBLvoaIAhHQpvGPv/WiQRi8ZaNiutQiNGYEdP7kXVeeeJwJEzsSc5QwkHvGCKhIVF2icqiKQtm2vyiS5hy7fIJoGEiwVF9Ke4rUztx27KaiOnVzSQpjnyzwI2bSeBLi6fe6O90XLC1U9BevUDVLHz2Ii4+apXkuKmvjWdfjC9y8A0f1CW8OBlI8SWVfbhh0zxOc90iTE+pIXi1R/+s9VHqGPGu0FiG7LBDcdHRJF8bLKRNVE+wWz0bqnTgTTg6At0h+BMBYJi2Oz4tBOOBVKxci0ytfq2Mki8LcMoV7ezfdWbNXTGY9Hkv9cddVVaGlpSbktW7as03ZHjx6FbdsYNWpUyv2jRo1CfX39YA13QPjNb36DX//617jxxhtx8sknY+bMmbjpppvwn//5n3jmmWcy2mdRBsrF2KCeC8adMwMkVApuRMHCzUmCVu2wG+vFydc2nYtmQ/QxUxWcqiBmHFzVc+at3Bu4ZTqZJkf8R9XFTfeD6EL1muh+kEBIWGT5kkobHT/l3lg25Apl3AzYgQqAUFiHtoHrgZQeT3vPRhH82qZY5AhVAJR2Ksv2giHOB3P4YowDJDqUCe1/fDDXQ8gaXNGw8Rd/w+SlN0MdMSZhlaQkLoytw/vEhacWAGwbNJ4qrMNVXajh5yncdnoyA27FiJaY345tnLdY5vQ7En8ILCp0CNwL7oGkP33QdPKZQvEaADiDMvEUkPKRXu+2Mm0+rLrPQI0ouKJDqRgJbsRAR45Pu798mmuS/tH+xwcBqqDtYIMQeGpp9IJlIdrFEdv0Poad8XlE1r8tetdbjgAAiH+YWExyFlDzGqoIhwpNTfytJNqnPEE/VQcNlgCqjuGnCbV3btswP3gpby2MfPOvEOdrRQPhDMauzZ2qvtjONV5ftlW3R2gspBFAc0XRaIc+Z0lxoes6SktLU24+n6/L7YmTiXbhnHe6r9A4duxY2l7kqVOn4tixYxnts+gC5WJuUB8s2K61MHZ+gvJ553j3iVJFJaXPRymrFBfRnIng2LVs4UyUAhKa16VbIpOki94dd5yUCq9J114qOeOkaqAlFeIi2og5q7gDfzGdKdbBT6FXjfWOjVMVbNfaxAaEiPdT9YG7Ik2AJxDkbkvcErUclNLnk+hQ8Mt35HoI2YNSTDh3qtejD0XzBHyg6DC3rRWLRaXDRam1qoErmtAdcNXt8/wiWli+iexxctVIcq8ecee4k10Gs8VcZwx2Y11adfi8w9EXsA5s9torrI9WicoQ2xBZ5/ZmwBcCSiq9p7nZbFfkh8ejkBQH/lPm4+3v/RfGX3WVsEqrHg9aUg7uC3laI/v+9iGs+n0IzZrrZVyJFRdtFbYNpgfyWrPCrejyVOyVxDk8GbFA5myj+2E3NYhFMMZ6ZbmUS4x3XgBXRaDjmzIrUULvwOPtiQyyc31GQsIrtunJf/V6pN3MdrogWtJ7OM/fW1+oqqqCoiidssdHjhzplGUuNGbOnIknnnii0/1PPPEEZs7MTJ8jf78FM6SvDerxeLxT8/tQhxMKFm4SpdWUimyTW6oIsRILOP6knIkTr2XA9VkmnCXsofL4RCTUb91STC31Itr9qbo2M+JkyyKtwnIiGgG3jLw+0apjThS/OCJNAFJ7S91SO0JBNJ/3uDJuhsiUW3GwHe8nvI7zvJQ+HXJ+d8bevR6INKPmymvF+07VVIsJZkEdXSsEvQgVnw/b6W1157ht5fVFtItQsE+a42k+w6IMW8x9zphXxkhLKgBmD6habDYEw4hlJi1yiO8tdeYCob3gvn+6I8bGEt8FVmM9rHUrUspy3f7mQkHO7y4gFMzmnk2a3VgHrjjtUJwDhOK4y78AtWai6O1lNuAvSfQocyaqwvK49JokO1Q4WeNOOG0XrjYBN2LeYj/PQ1vHjvBoBOC8kyaEV0IdKPWOm0daoU+Z7VUHReobwdtbEX72Hu95HQNtydBE13XMmTMHr776asr9r776Kj73uc/laFTZ4cEHH8R//dd/Ydq0aV4sOG3aNDzzzDN46KGHMtpn/l/p9IFMGtQfeOCBlMb3cePGDcZQ8xquBxCtOywyjXoIXAuAaL6EWiwAfeoc54RjCZEvKy5ubrmW2+vI2aD7rfYWWlIuyi11v1d27fYtJvqUA2IbzbnIcHq47HCzWJGO5PeFmXl4tyiH78pvj4oLbE7VlOw/8flBp8wDnXxmyrb23o9EuVeBMFTnd/NT3+/yMe4L4fD//A4sWAGu+sA1H5geEBkkBzJ8NBAoFVlkQsVcT7N0zQnNu/md3INLA6FEuXWy4rW3gSjJpo5VFC0pdy6ixSKauX87rEO7B2ysKfMrA+ytq8H8JV5ArIybkbpvqjoVAX7hj00plNpZYDvehz53MdQ5i1L6KNWZCwqqh3mozu+Niy/o9nFOKM7700MgwTKwYAXIpDlC0NHbgEGfcgqILwgSKBEq0YbINhLHHkqo3WuDbvPYW5gRAw2VeuXERPeLVgtPnC9RHeYumNW9/g6YUwnGLVP09OaxiKXvvGug1M4SPeRICBT6F1zrbUOc49SnzAaogvj2jQCAsT/6TwBAyVX3eNvqZ12G+BvPDsrYJfnNbbfdhl//+tf4r//6L3z66ae49dZbsW/fPnzrW9/K9dD6xdlnn43t27fj0ksvRXNzM44dO4ZLL70U27Ztw1lnZVahmL/LhRmQSYP6smXLcNttt3l/t7a2DomTrfHOC55qYke4FoBeGhIBlnsSsajoQ3bUoXk8Bg6AMBucMSfr7BMBmRF1Ls50rzzTqvsM6ujjB+noeqb9xYfhnzE39U5nJZYklRgTp4RcZJtskU12xU6oMiiCIP2CKoDieGO6JfHJMCbKrt2LKDeQpooIiAkV6tnOtq61DNv+DuiUebD3fjTgdjNsx/sZBxRDdX4r/q4zB0wPgSjCMxmaX7RNOLZPsG0v6ILizAfbAkBFNhkQgaQWSCy8OIth+TK/k9VduWmKthFmp28DcapleKRVVIg4fck8LjJPPB6D2oUvaT6gTD0LCkSbBQiFdfDTRCUJ4L2nxIoJcSY3o+5kCq0NKxO6BW4bCaUw3nsRdPy01H3lIUN1fs968W9dPhZ/bTkAQJ00E9zRGOCKKs5VhIIY7SK77M5nzr2KMWHraAJOuS+oCs5Z589VPmCZgF9kzJWKEV5rBbeMhP2TK9LpfLbHfHERzIM7Ha2VWMq5Pp9xA+SO50HCLHEszAb1+UEohW/KLO9x/4U3dtoXt0wY770Iu7FeWGxJegUHwHKg0zJQfPWrX0VjYyPuvfde1NXVYfr06XjllVcwYcKEXA8tY/bu3YtVq1bBNE187Wtfw0knnZSV/RZVRtmlLw3qPp+vU/P7UKCrIBkAuG8YfBOnijI+V1FVUcAV3fMidYNKsSprCLEIx1tVrOaqqT2MnOWVQm5w8e3CLiIaSfQyKo4QSFKZOagqsm6KDuoKg7gZJ6Q/EeUTnFDoFdVeVtkT/4GTOQC8IJnYpncxZLc0igumZJgNe/8nsHevB9dDYNvf6VWQ3JWKdm+hk8/MOIs9VOd3chahI9w3DGXHjQUUTVwwU8VZFPOLhRRnznPVDyi6uMgmJJFRdpTtU8r587FyxC2xNBMBYEo/HxxlXFUT1SX+EIx9n3n3c9NE8KvLuv2uzHcIZwAh4n1GklgbZ2hd/kPhGe3i/E+00y4GDZbA3vZhlz6w+dK7PVTnd3f4zrsGbVu3gPtLwFUdXPOLyjA9KOa5IhbAuR4Uj6kaCKXgjio610PePOfu+d8RhMynaiJXK4RFwk4FiOJVjyBJd4RoOog/CDqsHG2bNor7nO8C/azLoM9dnMOj6BnjnReEhoSidfr/83g7AAgvbFNkyV2BQGvDyvTVIZYBqvuhjhILSta6FZ2yzO5iS7aIrXwqq/uTZIebbroJe/bsQTwex7p16/DP//zPuR5SxvzjH//ASSedhBtuuAFLlizB7Nmz8fvf/z4r+y6qQLmYG9QHE04o6LBy5w9HtMe1j0nyEk6IZ4jfOWOJsq2UXljh3+n1OeYLlpmwggESJ9dkaxguerqIGRXBI7OF7yql+Z9NBoSYFwAaDwOKBvPIHu8xL1NMlcRFkYM6YgzYsCqAM7Cda2Dv/wTKxFNEeefEU8TCiW8YAFEtYB7uXJ7qioF1VNHOBDrp9H7vQ+LAGZo/25cIgInIFpPkha2OQnzOSrrbWpG2d9H5rOQL3LaFn6qVqITx2ioAcGZ7egssEgZnNtTSMvFkSkUmugCwt64GMaLOe6amvge2nVIu7y2U2SaCC74mSjHfeg7mhy97mWXjnRdAAyFo46fAN/8KsF1rYe/Z6O3D+mhVinp+NhjIPvChSNlZ5yfaJly8aiFnIcy1c3TO6wDE4qjzPcCdANn9CQAsUDaYh9EtrK0ZRPd7PzvqoXDL8O7jRgx2w0HYMREkJttg5TuspTFRvUNoiqUcj8cSx55UNWNvXQ1uGdDOuASxV55MDYRVHeqcRaAlFYj+5RfglgmtQ9WM77xrAKDLhbK+4l94fVb2I5F0xQ9+8AN8/vOfx4EDB9DY2IhvfOMbuOOO7AiwFlWgXMwN6oMKVUAqqgHGQCzDEeqiiQtpqniWCynPoRSwTXBT9CoTJ8gmbpDMOezd61OVl3MNpSliNgBEFsp2LqKTLhzE9ok+x3zPJrsYxw6BBcq8DEJKnzHnInAgJJFhhrggImYMdNLpoJNO93of3QttruiitB4AsWJQIo2dMopuIG7v/SjlQjsT+vt8SRLuBbP7k7POF5nOBbK34OV+PhzP9OTPijvPwRlYoCx/MsuWKcR7AO9C0hOzYbZYJHMulonPL3xLg6XeYx0zydkQ3hoIlKlniQUBRRfvm1M2a21YKdSuXZI80jljnpq9b/4V0E67GABgb3kL+ryvCFEzNwsdawMU0Yph717v2U8l018RsHzP6hUa715/T2KBhFkgtun5onvBr+IsBLkCb26wHI9481xUI2iJoJszWIe2iVL/HBO46GZhd+YPiqCX2V6JMrcMkW1uD4ObhpjbgRCsmOEtlCX3+eYz/gtvBD3uVPBYm9MSoyH+xrMwVj8PdfbCRDbd5095nlJZ4z3fd85Vif0tuBbRlx/3RL+UihGwGuthb3q903ecq18Qfflx2dsMUX6dr7ehzieffIIHHngANTU1qKiowCOPPIJDhw6hqamp3/suqkAZKN4G9cFE3bMW3BX28fTnWUI9mVDHUiXp4+Os0Kas0jqCXl7WNkkNm+1ck/MLT9FznDTeDqreYhvm/Yzt3i6yyGmUrvOlFDEtii7KahVRVkvMaEqmgRMqyvGUpAwaVcGcjDHgBLv7P0kscjALhFmw6j4D04fBdrLPVt1nwps5+eUnzBSCJEDGGUf3+ZL+Q+JtCI6s8PpUxZ20888kT2VQ6pVY8yQbOO9nxzaLPLiYVucsSnipUkXM66QsuadY7wQJPBYBLEOoRSd9t7lliP0V3hpIlHEzxOIFVcBV3es9ZpFWp4VGHLdb3UH0gCfelIzddATWhpUi+HZLV3W/+I6It4vvjjQUSq/nUCFYGRC2YGmU6d1MMlechTCnzBpAIuB0RTk5BxRVBNbu+d/5mQ8iX3ZTA4jPuVZR9UQVCGOi5cKpflPKKsEiYVSdfXYn5WfXRzmfFd+jLz+eekfS95gybb63eO9ek/FIK7iiwd7ylrddbOVTaP/DA4i/8SwCFy8Vz62sBlQf6ITpgKqDtTTC3vJWp9dzt5dI8pXm5maMHDnS+zsUCiEYDKK5ubnf+y66QPmrX/0qfvazn+Hee+/FrFmz8I9//KPgG9QHnWGVIHHnIir5Ijj5Iror24jki0/OHfsoMyXDDADcjOe89Ek77WIwIyasnxSls49o0vjcx4g/BKg6aKhDL1we20TpZVXwlQ4XmXLVBzr5TC/bq9TOgjr2JKhjTwLXUlekiZWUaXcCJXrcqbAObQP3CSsRe9sa0IZdUNqOJjy1lfSfDbZzjSyhzgP0qrEoOf9LIvPolVYmaTi42aUOSunECZJdT9LkQJmkmcvqmBNznl3msXbhDxsIiZ+qlppVpor4P1gG7KYjMI8eFtvqibngO++anC/q9QZixbz3yy2N1k67GMq4GZ20BJgeAA+UppRxAqnaFSTeBuujVYhvWQNet9PxkveB7VzTqfdRmX5uXgcafSH6l1/kegj9pmxChehLTnY6cFosQJXUsmy38kvVwE0D3ExqKSJEnOtV3dPqcL8zmBbMebAcuOhmcNsGDQnlbm+x24h5GVZhD6WBhZvA41HQYElKoKmfdRkApK2USEenoHUQCFy8VCx6OeKivvlXeOMGADplnnj/nIV9dc4iMeeTrkuI7kfwq8u87LKx42Pxc/t6hP/fcoDZYI7ImX5cZxGk5Ky0RJKPbNmyBR9//LF345zj008/TbkvE4pK9drlpptuwk033ZTrYRQsxIiI/lRmgQCJPp/kC2fOQBTNyxYTVQO3kBoweqqazFPS9PqdmA1l2vxBUU3uDkK7yIQ4JxxCnRV0TYdv9BhxAla1lKxzX4i/9VyKHcugomjd+mKqNSck/rCNlJ7VZNuZ5O24FgADQA5uBfGFhA0NAOvA5hThMABgzQ15uzJnvPfi0Cr/dHQEPGV6JuY3ce/voDHgzX1mA9C8fXgLaUmfFU5VULPde24u4UYMPBpJeMWqSQrYrighpSDBMvimzIZZtwdU93f2R89jP1kXIcimgziiih1J/p6l8QjsY/Ugur/TnHSDbKuxHuqIMVD+6Usg7U2w9m+FUiFW7JURYzvtn5YMz86B5JhiUAKONbeLigGqeP3IBPAyyd7n2V0Q60jHeWsZXim3W5KvjZqY86oRAN53klpZDW4awubRL7LjdFg5oGggfgXqyLGOoB8DOiyKWx+t6nWgnCu00y6GvXt9l4+7Il7JsGgE7hVOcqAbf2251zpm1u9EyclnI/K35xCafwkQbU278N+dU8pQgcka57zm3HPPBe+gTH7RRReBEOKJOtsZXLvn63WrJIfQKfNAzJhTsqunKEimrkrrwl/ZFxS/q5oof1JFTxPXg0I518lEJa9uE18QAHIaJAOOlYxleoFv8mo6Z0JV01XzhufPqKScSMwPXup1djxnQTIAX6iky4toF7dsmrhCZz2gjawFAPCaE4SVVONekNYjgJJa3mYd2gZ1zqLMBj4IDKkgGQBr2Cc+C+4Fs3sR7PYuqrqniO2q3oo+uKCzg0QrBrEtINoqtAwcYSCuimxOyuJLDtDPuiyljBoQrRUsFhFz2PVS5QzMiHlKsERN/fzydMFEnqGOORE02tLtYpgHZ9BOuxg81p72YfPDl6HPXQw6+Uzow2tALBN0/DSYuzaBRyPCUq4DnjigJOfM+P0rIJYhVK3d1gJCRdWQoicWrJ3zOVd9IqB0RDp5LAJimeI7woyBxsMgZrs3v93rgbyxjGIMVmO9I9Apzs3eIrirweBWwlAK4gt4JdcAEloGvSCXZci89WiX89ttEUnuJWbh5rTbumJdAKBVTwKNtmDYvAtg1+8Gi7SCmyasdSu8KhFj9fOwmxqydBQSSfbZvXs3du3ahd27d3e6uffv2rUro33n/9lfkhNaX/l94mTq2qp4qpnUU8wVdhPORSVJbMdVPSECwmwRgFJF9MsRktcluERxla+ZEPVKUsZ2y7uSA2NXXbInsm25kAmu0E9XpCxcdOMZaNbv9LIJ2shaL2hiw8eB6AHANmAe2QPr4Kew6j4Dbe+/oEI+kHxxVchop10Mdd8GIfDDWCKz5PS4ehfQyaWbDlxJFfED557vcEo5ZxK5LsF2baK4ERN2MVTYP3G3H9M2QagC1tLYKZtsrVshlN4LAG9xw6GrcmgWaRXbd1jwc+lUacMZaDwC7aTPifc5UCr0CXathb3pddhbV2fvICRZwfz7CwCEUj2x4l7JtLB8UjyxPmERlbQw5gp1KmIbwiwQIyraqJygM58Wjri70O24UDAjJua3uxBGqBCvUzXwaAQsEgYoFZaWAGKvPAkaCOXyEHqNOnNBl1U6bvDrO+cqxFY9DQDgsUiX1kyxVU97QTWddLoQRguWoG3tuwCzQcsqoc5cgNiqp0V5u+OE0v7HB719FMv5UFL4TJgwoVe3TMifbztJXlFx409B25s6r14qirNCrSayzYoC7guJIMzpg3Uf55pfBJqWmQi88sy0nXdQwHV9lIW9BEv0J7uZKWZ7npOxVU8L/9Ve2Jskr+LmCn8ggHi4GUaTsFDryttaqZ3VrYCWVj0prfUIYRbsYIX43fFl5oSmCCEVci9jcl9YoWMdrRfK5mbUE9vjml+oJyeV6YsSbb+jjp4kAudUnBDbgN3S6Ak9cap2ziTnsgSbMS+Q5/GYs2gn7N24ZYJHw0Ll2bF+EyqyieOk5SMKRnVdGzURAGAcPQCg675L9/7kSorkxb5O1R+q5vSix4FRteB6ELAN8FgblOnnCvEvB/PDl7NxKJJ+cmSt893uCXMx0Sqj+RO6BJQ6810ExsQXBAs3icopp6KItjeDH6sDwo2ecjbpMJ9z2avM21sBywALN4sgWdXAjJiwgYLQQyGaD7SkAsQXAA05PcquvWNyxVwBoEw8RXhad6Ob4F9wLWIrn4L/whs7WTO5C/b+Bdd2LrFmDKVnLwSLRWDu244jD38H/gXXgoZKvGq44JcTljvFdD7sEQ5wzvP3luv/Tx7R3NyMVatW4be//S2effbZlFsm5H/jlSRn2CUjxUU04GSJNXGCTOpV5u4nyBHv4qYpVDJVH7ivRPQmM1uIALkr1M5T2I7380NJNrnE2P2dUi9Y5pYJpaRc9DyVVYK1NHpiP3ZjHdRR40DyWMyrE4SAmDGY9TtBCBWZYc5AbKvHUnir7jOoo4939pMcKBPvPhoLg/tCniCcVp3q0UjKRkKSe9Tq8UC0RQS7gLfA5fayc0KE8rVTrs8VHbBMEM7AFFGq6fYpuwtHHTHrd4r3P9e9yk4bhVIx0muv4IwB0QgYVUBDJSCqBqWkvFNrBWtuABk+Okcj7zucUBDbhL17vfi+tuKehUxyQJsO88OXPauoZJRxMzzFe8IZEAsDkaa0Huk0VApr3Yq8brUYCoy+4FwodVthj5wMKI4HLwgY41Co4vgnqwAxAOKcmzkTVVPMFgtfjm+y3dIIxRXKUrROgXJv2nQGisAltyL60mNgznmaRcKpOgPxqFB513zgpgEaKvUWxQBAHTGmV4Fy9KXHELjk1oE8lF5hbVgJUlEN6/A+0JZGsdjHbOhzFyP+2nL4zrvGyyinw3feNd526UrOuWl41zcjb/93AOj0nZBTrRWJpBv+/Oc/44orrkAkEkFJSQlIklApIQRXXdV3UTqZUZZ0CWGWUz6tgzv9Pe7qc0qm2c086QFhz0DVhPUEVYBQBZSqGjBfiWNTJE5QeREku3gCPxQ8GhEBAVVEqWaStQwNlkIdMwnciCH+2nJR0qUoaS8u8xXfsLKEL7YryERVKBNmdplhdnuXOaEwD+8GgETADCTK+ggV1QWEijL7NPTXKkqSJfwlIjPo+iUzG2CWI+ZFQFzbGCfjwlUfiBlNlGO7Cva+ENRR48EDpU75ZuK00nGRJBeosxemZJVZW7MnypdigWSZiHz4d5h7PvXKMuNvPAtaVple8ChP0avGelZ8duMh0Vuu+7sNku1Nr3cZJAPOXHWDI9e3NViWNtOuTJsPUMXzbJbkhje+8Qh4PCY8lCHO5woTvxs2B3MXxNybootzuRP0smCF+F73haBUVoOWVQmxRmZBGzE+9cVyXCXGbRvxprCwOIq0ekEyUXXhpxw+BtgmWGsjWLgJrOkIwGyhYO32LvdAPgTJgPg+U2pnCcsr53uMBksAJKrW/Auu7ZRJjr70GABRBeeqY3uCXh+8lCJQSkOlUEeN7zbglkjyke9+97v4xje+gXA4jObmZjQ1NXm3Y8eOZbTPwjn7SwYd2t4sfnG9k1OyyYkMIgAwLZAaPCfbSPhLwfzCTohrvt6JzQwi2hmXOOXXTl+yZSQp4oqLTB5rBw2VgLW3wtz/mbgQbKxH8LRzxUn6jcxKOnKFNmK8CHTdi9+GvbAOftpJqdqq+wz2no0iiD60TdyZbCXkwuyEyBtVoVVPAtOHwWzYl/b12Y73Cyr4KEbsg9uFsr2RpFCdJvPL3YUvqgJOj7u3WMYZmK8EtHQ4mBYUn4EOQm75BPGHwCJhEUBoulDDplRkx5mNwPRThRJ0IATro1Ui+6QF0n/m8xitehLocacKGztmw26s99pDkr+rrHUrYH74Mlg0Au20i2FtWJk2wGVtzaI6iDMQ24AyYWZnW7FkKIUy/VwZLOcQqisggVBiTjNL9J46CrA2cxfCxI2rPnDNB6VihNjeUbvnigZSPsrrbU73vZ1iJZgjmGl5bVE81u7ZQoExkNIqWI1C5V07bga02hNB/CE0b97WyVe5UFCmnwt97mLY4WbYjfVeUBt/49kUPZTYK08CEIF+bNXTIohecG3Kvli4Caw9nNj3tPmgk8/EwRWvpn1t3/wrYKx+viis1PoC4/l7kwgOHjyIpUuXIhgMZm2f8kpV0iXcF/KyTCkiPc7J0s0scUXz+hdJUJRquWIfjIj+ZRYoAxzFzY5ZprzILLqCRoDXo+gq33IjJnowdT+oP+T1LEcbjsHctx2sPQylrDJnQ+8P6pgTRXA8YgIIs8B2rRUCXIe2iSwys6DUzoK9ez3UmhOgVU/ylK6T0UZNFFmFpEUUrvlEHzs690JzywQ97tROPq49USi9ooXAgf95yanwEAtXXjllB0EuwpkIflUdzF8iRH2Y5VSc6OB6EPawEeB6ANw3DHpZVS4Op0eIzy++r5wyceIPCl9l3S+sy/whKMOrQcsqhV86Y8CEGU7/dmFeiSjT5nseq0pJOawNK6GOHAN7y1uw1q0A4JRVuv6rsxemLadWZy4Q9jOugjCcypBoa9rXdXug0+1LMjhcsH29cKVwfZItQ+gJOJ9lm8MR2xTzm/uGwQ5UAKEKcC0ArodArDi45gcLVoj5nVRJkkKOF7+Di2+HFgqk9BsTXyCxgaqBx2Oi8sX5flOrqlF+4uQUz/RCxDf/CvjOuQo0VALjnRe842//wwOIvvw4/BfeiPYXHxa/dwiQvX2cdw30uYsdN4DE+zvq9Gldvi4LN4EGS7oUC5NIcsEFF1yAtWvXZnWf+ZXak+QVDc/8DFXfuF38wVmiRItQoRRLFcCyxEUkVcE1CCEnJ/tsgyBqMeh6CRRCQMFBjc69jMxfkvsVG0fZmzNb2J+oGmggBMr8IIGQJ/hlNRwEDZWClpRDP9YAEggJhdhuepxirzzplTjlK8niSxSAeXi3d591aBvUXqj+ukJCLvrwGkftuBrq2JNEZtopu3bLQNN5P3ZHdwJjkr5x3GO/E4shbhBIVWH1xBmIq7tHVXDfMBArBq4FRWWIIgS8RNm2AlsPAv5SULtri7Rc28hoZ1yC2MqnwPwNYn77QyLjpCjAsErwpnoQTYN1ZD+IqsE8sBNW3W4ESsqdxcDCzDq5dOwXtreu9u4zP3ipV6r9gGiXSRYR4tEI2M41iH/6YVr/4ULwpy1qOHNaJuIiwFVUKIQgYjMM0wgYUUCceUysOLi/BDYAakTE34QKATB/GWikEcSK50U7RTq0kiDsxjpR1eSqYFMFtKwS5qdrwFoaodXUwjq0w1PA1yae1KW+QvyNZz3v4UI4hyd7HMffeg7Bry4Tv7/xLNSaib2yQNTnLvYW0ADAN/lk2FtXo/Ev/4PS6SellHO7AXihKIZLhgaLFi3C9773PWzZsgUzZsyApqW2Vlx8cd/bJGWgLOmS0ct+AbNhn+fHSGxDqN8qKjilIEY0tRyLiPItwplYqQZgM44o41AogU8hULVA5xfKg1JsbpkgumP7xOyEPQpVwMLNnt0EZ0yIfzAGJRAUfY/JCpppyPcTbFqSsgZ9DRKsQ9u8IJv5QrAObAbhLG2Q25eLdEn24booTyJGu6eKC4hKEMWOJ8S6VL/nqcwVJkotmQWQAGzGYdgcAU0DTePTnfx5yDVWw0GYbRH4ymxxgado4ABoSbmwR9H9oBWjQPRjYM1HRC+z7s+5GFk+YR7YCZ+rL0Ep4p9+6PlPd4S1Hsv7YNne8pboqy5C6OQzwdatABnpZFKd8zKF6FPWFYBqASdzHBCLxf4ScCsOrovvArfFwm1FSvs6eeChbccMkEN7oFRWiztUHfCFRKtAxQhPuIr6Q4AfIKFS2I11oMFSUaLeATdIBgrzHG6884IInh2hr96izlmE5qe+j/LrfwLtjEsQ/csvPFGvjgQX356t4eY93LlJ8pvrrrsOAHDvvfd2eowQAtvuu/BuzhN5kvyGNu4VvzDL6VV0VmcUXWSVFS3R2+hkkl0fVkIAXSFQKYFCAIWStP1NKaJQOYI7AiBU94OESkWpli36loV3MgWPx6CUVYJbJmLbNoJomujrcbcpIrTqSTCP7IF5ZE+nTHFPJAdF+vAaUdrNmCcIlvI6Z1wi+xhzSP0vHwSJhYXtj207PaimqJ53yujd6pEUX3VCRfYZYl7rCgE12jvbjQAgZn7MDdsR8FH8emKcnIE31QsBINMQ1SOEAoxBn3m2UMhmtihZTfP5LVTcig62c02fF6qS1W7VmQsQuOhm8Fh7Wlso/azLwGPt3t/5ONeLNUh2qX/5JSDSDGJbIGYUCjOhUgLLWcCOM8BWxWIQ0/yIEd3JMAt7RFcMDISC+Us77d9VQ8810YYmpyfZBtE0EM3RU3CEOQGIRW8nKGYtjbCbGkT/PbO7tVsqNHzzr/AyzH21pYy/9RzKr/+J93fgopsR+f19vSqxbv/DA30bqESSZRhjXd4yCZIBGShLesA6tBv86AEQx2OYuFYxhILpIa8kO9mrEbblXYgSQkCdIDluMcQ7JGbMI3sG83C6hopsMvGJPmSi6SlWUTwmggBu2+CRVuhjjwMJlkIpqxQlnGphl2amQxtZm7Yf2Th2yPNh7i3d2U4l9zHau9f3ab+S/lF96ZfBm494fxMr7mVPmSNwxfSQZy0jKkjURJUBZyDMhsYtEM5gqp0rRnqyHBtMiD+EeFPYsVRJssJxFNq5aQCRJlCn5JoGQqJf0xfKq+PIFnTS6WnvT9YCsDasTH1s6+pO23fnp5ociMue5cGn+hKRTSTxNhAzBhIPgxLAZAC14uCcw7AZIlxDu8mEJ6tvmFgUU4RgG6cKaHtT+hdwvJXzAdedgujCK5rYBmAZsJuOQBtdK6rCTAPE54dVtxtKWSXosHKhgD/E6GqBI10pdehrd3VS0U6HW+4tkeQCy7Kgqio2bdqU1f3KQFnSLY3vvgfWLnxxhU2Uz8sec3+JdzIlZlwIA+lBQBXZZmrFoRBApU5WmYqgOR/hsQiIc4KlpcPFidPpWfZ6nhx/VRIIedkpovvFSbnIMso9YltpA2bj6IEula7TBRodT9ZKL3qhJdlDnblAZFGT5jWxYqC2ibjFYGtBT7iPcZ7YzhV14hzENkVQnaY82VNKzwNoqBTE54ca8CW8kpkNqJpnBwXGhCq2ERMX2W5bSYYr0YWIdWgblNpZYDvXgO1cI+y1ekEhWeQNJfY+8wzshoPiD85BbAt+KoLjw4YCQoinmttmMEQt7jlTEMsAseIioHacLDqSLzaPvvISgDGhIRIqTTh0AKAlFYCqJSwf/SH4ZswT52+fI+blLO67KtHFir3/EwAAj7XB3r2+U5XHUFw06C25VraWqtfdo6oqJkyYkHHmuCtkoCzplpq7nkT9K3/Dxmu/JVZqORPlWE4pNvMNA+AoZLsX2k6pJbFNqARQneBYSTohu6TLWOYCEhQlZUK4pET0Ljq9ysknDqLpUEcfJ3yWdT9YxFF9TfKObXn6Lu/39j8+ODgHMMi4n4OOwRHXg56qaG/Ih962oQ4vqULT/xOWQZxQIfwDIGpxxCxH4ZozcEBUhFBVlGM7VkEk3gbCRNm2ZkU77Dw/envjbzwLpbIaRNVBNdXzUOa2LS6qAa9EmI4cDx6PiYXBmBD2AyFeltX6aFWuDmNwIBRs+zvgZhywzUErl87HsuxiYO+bu0B0P4wdHwMAiBEBsU1olMCwOcJxG3Gbo90Uc9WwuVggcuyhSCwsBPyY1ckGqqObQS4xWiOi5FrVQPzDhPuCbQJlI0HLKp0WKsVZDBPnbRaNgKgauBHzFrs79iMni1sVA8q4GWC71oL4guJ7vGM1XBYCZWP18/3eh0SSCXfddReWLVuWsWdyOmSgLOmR8Q8sR8XxI0DMqLgl28Y4Aj9euaYWAPOXgiuao7YZBY2HQa04CBEr1nmJZQhLKGaJ4yHCHoqESkWWOVQibKIa68CpCrVmIuymI8IWykpV+y279j7vd09YpAghaYIg1zooUwaz383e8tagvVY+o445ES07D8L89APQ5kMik8psBFRRBRLl4qKZcSHO585tKJpT3miKz4JtdXrvc6127eI75yqwcDO4ZUAJDfMsYWjJcHDVL1ooVA2svRVcD4heR0JEdYwZh+cTDqQIU+WFtd0A06lcOk0f+oC8jiQrnPOx6ENveHct7P1bQWNhkHgbSnwKAipFzOYwnRVs96dNNXEe95eAxtvEjjjrpDdArK6V7gcbxa+L6i7LFFoqnIPrITB9GIgeEAvb7a0w93wKoung8XZxPu/pGIosw2rVfSYWs21TfH93OD63DaU/dNeKIZEMJI8//jhWr16NmpoanHDCCTjllFNSbpmQe7nhAsBat6KTvcZQY9K/P4/YK09CnzIbdlkgpfySqz6QaAzEsY4CIbAVH2zOoWgaFLMdnKqwGceYikT/S7ytBb5hZTk8qgRC7ZqJk4ebEaU0cRJxMshE9wurHNOAOnIsWCzi3Z8O1to4SEcwiFAVsC3Pf7cT/fCcHcwMsyviY+9eP+RLvif9+/NoeOxWDD9uuriDMxCnVSJmAwElsabqeicTM+aVamt1m2GXjBLVGHlI+x8fFItdpgmi6fCdcxXsrauF/Y0vJOa0ZYJHIylZcOJ6x5IuekY4g73p9aIK8lwnA/eI2c41Xi+zven1zhkoSUGw6bdrUTljsqissOLwUcBSCeI2ELc4ynwUBuPQFfHOcy0ABiIuEjkTlSQdVO3zya5P0Z3MsNNSQVxLS0UD84WA8DFw04R23Elg4WbxnIqRiQXvNLAd7wuxryLA2rAS6uyFokoAEEKsVAEnHa5durG67A3Rlx9H4OKl/dpHvsL7cW0jGRwuueSSrO9TBsq9QJ2zCMY7L0CpGFn0CpndYbc0wty3HeTksY5tDBf9i1QVPUyqLsq1FB0UHDGbQ9WIs40C2vE7ZoAyE5lAdL8Q+jBi3gmWKAro5DOFwFRUlHXRYClYSyNYexh67VRA1cHj0RRl12Tq316PiZcM7rEMBPFIGCZRQQmB4vSqcbcENxnWOauY7wz1INllxK2PYf9d16Lm2puBYSOgEMBiHBbjOMYoyv0ELRaDzgk0LSAuQlWf0CZQ453KrJMDrFwT/PIdiL/xLOzGOs/SRJl6Fuz9n4BpARBNZJyUytEgbU7JFudC7d8XElnlNJkWu7G+y0WyQsI6tA2cqp5HLndUkAln4I56MCCyvvbW1Xlv6xZ7dTlKF38n18PIK/5lj1Btb3ryX1HyhStBjQgC+jA0xUT1iK4QGDGOoLM2TMwoosQPtWw0qBERAVYef7frFeVg0QgUN0PsVIfpVWNh1u8EVRRxTg+EwG0b7evfhn/yNKijxifKsjvAjRjspoZBPpLsw3atBS0dnvg7UCba57QAtBHjU7Yluh/mhy9nrjmQR9d1kqHH3XffnfV9ytLrXqLP+8qQDpIBoXwY3bFVZBRswwmKNVgcsMtqYPlKYTkfKYsDdlJgzDnAOqzGpSvdzQucbLmbJXIDKXXEGKGGm9S3TFStU+m1i/HeiwiOLB+MEQ8o8UgYTRZFm8nQathgmh9MCyQsg9Jg1u/M6LUKsU8xWSG40Bl339OifJ4zKJR4Qj8m44iaDDYTXpLEiMBQA+CEgAXKwJvqQawYiJnUo5xn89t3zlWdfD+VcTOgV40FOIc6eyHU2QtBKAWGVcLcvk4s+kVbnOqZNK0GRSLkx1UfuL8E8UjYKa13s00UyrgZnbfP84th//l9s8TpDrb9naztK9e8depc73cSC0NhJjgHfE4JNiB6lBVmoon7EDGF7ojauAc02uLpF+QjxOe4T1AKYhugk89MZLwJBbdtkONPg93SCFJaBX30WBB/UOgQuGJ+HfdZJGXXdqgSLFgB49gh4Y9NFTB/iacxkwJV0ypf95bAJbf2Y6QSSXZYt24dfvvb3+K5557Dhg0b+rUvGSh3Q9GLtmTAgb9/BCV8GMSMi9VlQsUFtdODrFACBuJlogBhS6G1HESb2eFCM48upH3nXCVsoXSRSemYZVRnL4Td1AA6+UywCSdDO2kuzEN7YDfWp+1xKiYBEF+oBO0mQ3VZCNVlIbSbDBYobKp1XoV3FhkyXQQh/sxP0Lkin8oP+8v+u66FVbcLNNIIasagKwRu1XWbyeBXCXRmgOsh2EwIANFYK4jPD64FE7ZRQFqF3Hwl+T2kU+ZBqZ0F7cTTwVuPijsJ7aTaznauATdiYOEubHMKCc4T38eUivYKxy/bqvvM28w6sFksJOR5oJxN6JR5uR5C1pi/9j007zyIjdcvhRJpBI00goGjOWajsV28pxYTqtcU4mNhaCGw5gbhfOELwTr4qdguz66PAhcvRfDLd0Cf95VOStzaqIlQZy6A0t4Ecvzp4L4QtLGTwGPtYJGw2KjDZ9pdICkanRFmAYou5jYAUBW+0uEwjh5I3UzvbPHXF2Krnu7X8/MZlsc3ieDIkSM455xzcNppp2Hp0qVYsmQJ5syZg3PPPRcNDZlVhxTOlUwOSBZtkQimP7cC1ra1jnqkBRoPeyqZhp0QBLF5oq2PcAYeSNOLnGcX0ursheBaoEsBIrfUUB9eA2XcDFHCZRkAUjMs8beeE78wG/GmtgEd82ChJ/l6MQ7QpJ7NuNPv5cKpKioOMqAnqxHrk8LLOBcS4+57GvGdW0TvcbwN1IqDAt7NsDlMmgiGQ4qwhyK+ILiiQWkr/DJFF2XcDJCykV4ZcjJs5xqAM5gHdsB3Xvayl7mCGm0glpHInCcfb1K5rSvgyM3E4mBf7XTS+TDnI4MpLDiY/H35Wpy87DpwIwoabUFIpWDgIAQo8ylQCEFjTNhEBTUKPd4CMny00CSwDRBDVI3QYeW5PZAMoMedKpwZqAqUjRRZZn/QyUYnssfWR6sAxbGNyyPBskyw6j4T1QDM8ry0wTn08pFiA9rhOkzpnwYBj6XPzrvEXl3er/1LJN3x7W9/G62trdi8eTOOHTuGpqYmbNq0Ca2trVi6NLPe+fyKVIoE16cueSW+mLBbGsEVFcS2wBUdFuNosSh0hYA45dW6QjBMo45KrgpitMNmQHs0v8sUe+pXtfd+5K2oK5XVoP4QOLOhz13sbUNDJWBGDNahPTDbo13tqqAYOzxRojWiNIhgwI9gwA+maCDMSg2WCQWxM+9ls/d+lP7+rav7VRKWbYqp5DqZkqvuQfMffymqRMwoFEpgc7FqrTqWMsSIIEDE4hDzlwC2CWpGQcxYouw+zxbC+orZsM9b7evYm8mjYYDQvPo89gfmE++hJ9bkeGcDwkvXPae55efJ5eY8TUl6dyhTz+ryMeujV/u0r4GkWK3rrm78FK9e/hMheGXFUeJToFECmwv1a5USjCARjAypKFG50CDwhcD8wpvY2r0JbNdaWEf25/pQMoK9/xJovE305I87HsQnSpFTKgccYc+W1fnzecwE6+CnQrBQ1cQxEQptxHhooyZ62+jDa2Dv/wTm4d0AhHMJCZQg+vLjGb1mT0Je3C7shQdJfrNy5Uo8+eSTOPHERMJr2rRp+MUvfoG//vWvGe2zsK9k8hS3p0sdfXzGvZr5THDx7dCH14ArQswHAAgR5daEWfBRcUGtmxHYHKIkU9URUAkokhuXC69ghCsqaOQYrA0rQXxBkV3p2N/EGHikFcyIwT88P1S9Bwp3YcTz13QVgjv0oycHvz0FmF2paRNV6zHjPJgotbOKNliON7WBNh8CbAs2E9kmCoA67RWgKmikUQRUqh88UOr4KiddBBXg/Hax92wEMaNCoJCQFFEytuN9cNsWarj9VIjNF7guPFX18pGiZ5tQqGNP8t5TrzeVc4DZoCXlMD94CQAQuOjmrIzB3roa6szzs7KvgcBdIC0GqqZW4uB//wZw/JRVSqBRIejlV4UAp9J+DLS9KUWLgjALas1EWHW7oFSMzPFRZAYtqwQ/egA02gLWKoT7OurPsFgE3DIRGDWioK2OiGVAq57k2Xh1FO5Kxg2e9aqx4FRF7OChlMfb//hgv8fT/ocHEFh4fb/3kys4z++bBGCMQdM6awtomgbWx0Vdl4IIlPfs2YNrr70WEydORCAQwKRJk3D33XfDMFLLO/ft24cvfOELCIVCqKqqwtKlSzttM9i4KqLFiD68BlbS5FQp8fp8qNEOQxPZFlv1iwtuDuh1mxPPLy+8Ey3zl8Hctx3cMsDamsGNGHznXJWyDWc2WHsYscYWxI615Gikg4M/4Kof+xFvPQZQ1fk79Ysqub+zp55edexJ6R/oQjgsl6Q7FuvA5s4bFhhj7v4VlKlngXAGBlGSqSviQpoSgBMqfFYJAWEWmK8EpPWICKwO7xQLI4WcUW5r9AL9jr3JdPKZYG3NsBsOgkVaczG6rKOXj4Rac4L3tzr6+MSDVhyw4l65OQDwSGvWhY6UqWfB3v5uVveZTfLFEzwbnPHqmxj/wHLENvwDlNsYGVAwIqhCowQ+hXjnbuEjHhXVE+1N4MfqYGxdC3XEGABA23P35vAoMkOfuxiRje+BRVpBAqG0FQ5E1WDs+Bhtew/mYITZw/3uUmpndfoeS9kujWCfr8Mif/DLd/R/QEWysCjJX8455xx85zvfwaFDiYWegwcP4tZbb8W552Zm41gQVzJbt24FYwy/+tWvsHnzZjz22GP45S9/ie9///veNrZtY9GiRYhEInj77bfx/PPP48UXX8R3v/vdfr0227mmv8MvaoYFA6gsCYJz7q1oEdsAFA02TyhoEmbBsDmYL4RoLL/Lr7tDrxoLEgh5arfpLFIIVQBmw2htR9mkMYM/yMGGs5TSVMIsEM6y3nrACyTw6jLQL0C0EeNRXRYS89jJPCmECGVs20hUFBgREM0Hruggmi4WzPLYSqYnSLCs0+c65XFn/pM0llHFhDLxlE4Xt9wyhS1eP3o3uzqvKlM+l/E+JX1HGTEG/mAIlnOuDqgUqlM1Qoyo07NuQQkfBm8+AhoqBS0fCa6HAGZj2BU/zPUhZESkrlFYOlrpEyksEgY3DRjh9LaPxY4y8RQQX+a2d9G//CLt/VkJtiWSbnjiiScQDodRW1uLSZMmYfLkyZg4cSLC4TB+/vOfZ7TP/EvRpGHhwoVYuHCh9/dxxx2Hbdu24cknn8TDDz8MAFi1ahW2bNmC/fv3o6amBgDwyCOP4Oqrr8b999+P0tLSzF68QC7Oc42wknH+YDZAAYWKXmVwpzeGAlbFeDS0W6iOH4VeVpXTMWeKPu8rMN55AbQrhWZKwU0TdsyANrpycAc3iMRbj8FXOlwoZ7Y46sDJ5bc9lN721WdXmXgK0DpwGTzjvRdTes0lqSgEIMwGARJibZwBZgw0HgE34+BtzSDDRwv162OFqwbNY20gVO2y+oGWVMA6uLOoMyT23o+gTJgpMug73gfgCDMCIIoCq243Ms0p54u/9lBHGz9F/OQWgpoKxXZK7B1BJ2JEQWwDLNIK1t4KUjUGRNNAjIgQuipQgiMrQEvKwePpF+1pIATmC8CK5bYiMZeooydm7JfeVTtG05P/irjfl/axfIdDCJlK8ptx48Zh/fr1ePXVV7F161ZwzjFt2jScd955Ge+zYKPAlpYWDB+eMFB/7733MH36dC9IBoALLrgA8Xgc69at63I/8Xgcra2tKbdkilXQI9swLmwlOl44GjYHV3QoTftRqlMokUZU+BXALNysMiCC5e4ukmlJOcL7joDbhdun2RM0nlD01suq4CsdLrKItiHsw8xYt2XIyRfL9u71AzLGnuZ3sm9zT0GyveWtgRhiQTCiNCgWw2wTtL0JNBYGGIMSaRQCULYpxIEUBYg0g0ZbPB/yQsQ8sLPbhR6iajCbmorHOiYdSU1vdPKZoJNOBz3uVCjT5kM/6zIoo8YnFP7TYKx+fsCH2NX8jr7yS/GzD4JE1oaVAzLGfMbcI/qufaES+IjTj27FoR7bA2LFhFqyEQXxBWAd2AlixsFaGmHu2w67pTHHo8+ctoMN4KYBdfbCtI/TUAmMw3XQgr3LqjY+8b1sDi8vIP5gZ0XsflJx408RXNy/Kk+JJB1vvPEGpk2b5p0Dzj//fHz729/G0qVLcdppp+Gkk07C6tWZOS4UZKC8c+dO/PznP8e3vvUt7776+nqMGjUqZbuKigrouo76+vou9/XAAw+grKzMu40bN27Axl3M2JwLhWuqitJrZsNiHCFNfMS4EYMSPgzadhT+cD3UY3tzPOL+09VJlqg6uBGDv7IE5df/ZJBHNXikEwbRh9eI0mNmAZyDGr1T/XbVxrtSvM6UHud3HzKCHQVfhiJuWT0AECsO2t4EYsVg7NoMHo0IT1J/CaxDu3I80v6hTZnTvRc4s6EOGwaiprdSOfp44V8M9sYfnLU2wnjnhbSPdRRBstat8DLT2aKr+R24UFwb9KTAm0xX3+fFDGsPe78TZon2FktYQNF4BMSIAG2NsBvrAKrAbjgAFo2gbeuWFOXzjoSfvWfgB98Phk8/XpRedwE3TXCbQQ2kn98dA+PKJQ9ldXx5AWPgltnl/O5I5Pf3DfCAJJKu+dnPfobrrrsubfVwWVkZbrjhBjz66KMZ7TungfI999wDQki3t7VrU70MDx06hIULF+LLX/4yvvnNb6Y8RpK8XV0452nvd1m2bBlaWlq82/79hWl5kGuqy0QZMmEWYFsgtgE/ddRyYy3g8ZijnhpFvKQ61YqhyHAvuKjeuTDxg/M/P9jDyQl08pnis9AH5WO24/1uBUcyoaf5LYPf3qMRgBjtoJFjoLEwlPYmINIE0nYMNFQKZsSEuBVnUEfX5nq4/UNRuu2xthqdxdcuMi5VSx8ZiFHlFfrcxaJX2+xlr7KjWp/NYLmn+d26vHc9tJla4RQ6yfOUmFHQWCtorAXEjIK1HoOxZyusIwfBWhoRPdwAq+EguBFD6Wnz4O9GvbjkqnsGfvD9IPjlO7oVo2PtrdDLSlA69fhOj224ZEFxBsYdUGcvBA2WgCVbP3ZD6Gt3IfrSY0U8l7ijxZOft6HORx99lNKi25EFCxZ0W13cHTntUV6yZAkuu6x76f3a2lrv90OHDuHzn/885s6di6eeeiplu+rqanzwwQcp9zU1NcE0zU6Z5mR8Ph98vtz2TBjNRwpSAbojCiWAI/BCjCiobQGaXxjcj6oFiYVhNzVAHVu85cgu3DSgaJ2n1xmvvpmD0eQIzsDNOOw9G3uVnRoI8mF+FwuurzKxYuBGDNw0hDcnpWDRCIiqiSxTpEnYKhUwyrgZsLd2XaalVIyEtW+75ys8VCH+EFhr70pw1ZkLYG1YCRoqydrr9zS/S6/pnSpzXzLPxQRLKp8m8QhotAWINIE59mfciAGWAbulEZwxGIfrQDUVvAsRrEKCdZERt9atgD7vKzB/f19aHZLZL60a6KHlDURRPCu43vQq83gMwa8uG/iBSSQdOHz4cFpbKBdVVdHQ0JDRvnOaUa6qqsLUqVO7vfn9okfk4MGDmD9/Pk455RQsX74ctMNK/ty5c7Fp0ybU1dV5961atQo+nw9z5swZ1OPqK4UaJCf7SrZEotC5BWLFREmm0Qal7SiU1jrQeBi0vRnmpx+AjhwPsual3A16kDCbmzH8pIm5HkZucbPJvcwq08lnwlq3wvub7Vrbzdb9p789icljLUaM1c/DbNjn/U3MdhAjCtbSCLvpCKy6PbAO74PdWA8ei8BurActq0T0o3fSWq4UHI7VXTqsAzsAqmQkdFNUMBvEH+p1eaY6e2FRVxMVGsleyEqkUdg/7fgY1uH9MA/sQPzQQZhHD6Nt/2G01x3D0Y93IN4chlW/r5u9FgiWmVadWZ2zCIBQtid65srPhY6ryaGUVYp+5V4gg2RJrhgzZgw++eSTLh//+OOPMXr06Iz2XRA9yocOHcL8+fMxbtw4PPzww2hoaEB9fX1K7/GCBQswbdo0XHnlldiwYQNef/113H777V3WrEuyQFIApDkeysS2RB9jtBW85Qg4VWHv+xQsGoE6eqLISPXDdqBQIJSCmYVrj5MN3GwEMXvXpwwkLlKAgRfS629PYvJYi5XkPnRixoUCbnsYLBL2slFun2PkQB3MPZ9CG1UkOg/dBMqgCmhZ8Sra9xai6X0rv5bkF0kaDTwahh1uBrdtsHATog1NIAoFUSiC1eKzrvh9GDZ5MsI7C19jhNs2eBrlbuO9FwEA7Qfruu3DLna46VQNUGXIV864sDy+DXUuvPBC/PCHP0Qsjf1sNBrF3XffjYsuuiijfReEPdSqVauwY8cO7NixA2PHjk15zK3NVxQFK1aswE033YR58+YhEAjg8ssv9+yjJNmH64myJIWZIuNkxUXWKRqB3XAQWslwkLJKGHu2gqga/AuvR2EXZSYw3nlBqF+ngTMGPsRPLsq0+bA+WgVYpmc1IykcuJ0IFOPhZihWDKy5QVjFtDTCjsfBGuuhOKW0wepKhL52V66Gm3V6Cv5Y05FBGkl+En/jWS/QymY5tWQQSarMs5saYDccRPzoMVBdhRlJXHAarRH4K0sx8vZ/BwD4Lxz0kWYdHouk9fV13Q/MSAz+BdcO9rDyBqLp4NGIWBAsYhs8SXFw11134U9/+hOmTJmCJUuW4IQTTgAhBJ9++il+8YtfwLZt3HnnnRntuyAC5auvvhpXX311j9uNHz8ef/nLXwZ+QBIAgDayNvEHZyC2EG8izAIUBbSkAnbDAXBmQx0xpqjKFNn2d7pUvAVQ1LZQfYG1h0GDJaC2zDgVHMkZVc4SFSRU8S6cCKUwGhvhGz0GoUtuzcEgB5BurFGIpsNsK1wf2azAbIAqol+9m94wSX5y6L4bMeqSLwEAzA9eAjcNr/eY2wzMsGAiBm4zGK3tGD77pFwON/t0UzHS/scHUT5j2iAOJg9x/j/cMkFUDWznGul/LslbRo0ahXfffRc33ngjli1b5iVRCSG44IIL8B//8R/d6lV1R0GUXkvym7b2qPBSZbawhuIMLBoBi7SKHsaGg0UTJMdfWw5AnDy6Oqb4a8vhGzmiqK2heovdWC9sJmJtPW8syStckaa29miqLRSl4JYBZlowmtvA7eKrnmA713jChB0x3nsRUDX4J0wa5FHlF77zroHdWCdE3OIxr2RVUhjU3PWk53XOLWHpyBmDFYuD2wx6aRBayA9mWvBXlhaN4Nmn11wM470Xu1VzJoFQt6rYQwFl+rng7mICswHb9K5/hiRcWMvn600CTJgwAa+88gqOHj2KDz74AO+//z6OHj2KV155JUUYuq/IQFnSb1QCxzeXiV4WkvhYEX8ISmV17gaXZayGgwC6txVibc0pZatDmcBFN3uZue5UhCX5R8DJECuUiPnt+GqCKqChUhDnfTVaI+J9LgKiLz0Gtv0dwDa77EHX5y4GoQp8510zyKPLP2gg5FUY8PjQ7ecseJy57VZCEUVobMSb2mBFDWihQI4HmD1Ka0eDtTR2KzzFo5Fu7a+GCoQq4NGIaCWzTPmdJykIKioqcNppp+H0009HRUVFv/cnA2VJvyFWHMQyRMk1AFhxcCPmCb10V6JcaFjtMU8NsisCl9yK4OLbB2dAhQBjYJHWtMIpkvzF/PBlAAC14iBm3Cm1pSLzFI2AmRa00iCIUkSnEarAaqzvUZm5WCpk+ov/whtBfH4QRele/EyS1/B41BOuopoKMyIEGLWQH1RXe22zVQjUr93Vo0hXut7loYhYGBXf73IhTDJUKaIrHEmuIMwSF0lceKq6/Yss0ioUrrvp9Ss0FL/ebTZZ0hl19kJwywSLyUC5kHAXuIhtitJrZgm7FFUXWWVNRbwpjGGTisgGjSppvVMl3eAsoLjq55LCg1umFwipAR+YaYFQikj9MdixwvdMToYqJNdDKCiILyAXwQBwAIzzvL1JBo7iiWAkucO5iHbFfrhlQimrhDpijDj5FlH/IreZLCHOADqE/SgLFc8+y4yBGO3gZhw0EALx+UHLKqGWlkLRNRgNRaT+bCUEjSS9Q5/3FYAqQ9pzttDhRgxma6v3t14SAlEoVL8OLVRc7+uw0aUyO9pLtDMu8YJkFosgturp3A5IIskBMlCW9B9HEZc4PcqEUvB4DMyIgbe3FpUXoTayBizclOthFBx2N8IpkvyG2Ka4WLIMcMZE31osAm7EPOGfYoEOKwePted6GAUHcdSvJYWJOF9bYKYFKxpHrDmMuCPU17q7LtfDyxpvnToXtmmByc9q72G28FSWWWXJEEUGypJ+4/Un27b4UrVMoZbo/K6fdVmuh5gVDt13I4g/VFQ914OG09cqKTyI2Q5iRoVAnZNtJaoGZlowIzGoRZJxann6LhBfQFwUSvoEZzZ4pLXnDSV5CXMWvaxoHMy0YMcMWDED7Q1NCIzsvxhOvjBh/mQww8awK36Y66EUDNw0AcZgNxwc8othPM9vkoFBBsqS/sO5KK92PJS5aYCoOuiw8qIqx4s2NIE1H0mUpEp6DY9FhDCIpOAglineO8bAbRvcySwrPh+YYRXFRWf42XsQ3ncYdmMdaKg018MpPCwTTM7vgoUZlvBONi1YMQNmJAYrEoWiqdBLgrkeXlZ49cQ52PKHj0Bkj3KfUGcvFF7ppgnqL47PgkTSF2SgLMkuhArxBwjrEHV0bW7Hk0UUvw8kKC+iM8Fuacz1ECQZotTOcqpDDOEt7LRXkFApyqeMy/XwsgIzLVF6Go1IResM4KZRdKJPQxFmioBZ9evwlZegdOJojLz933M9rKywbl8r9GEaSsaPyvVQCg5uxGA0NYPJthTJEETN9QAkRQAh4KoOYhngTJRlQtPEQ1rxlCkHKkuHfOlRprTtPwxfuB3FU18wdGA73gc3TXAjBmaaXn8yj8eEj26R4KsYVlQVMIMJa21E+5EmlOV6IJKM4I7gpm1YsCKJc5waLJ75UO1XhX5KEWkqDBbWod2wDROBi27O9VByCpP1zUMSmVGWZAdCEzZQxLGIUrSislIadcfPxSKApM8Yre2gmlyXK0hcvQEnWHYhPr/oWy4CCKVQ/LpcCMsQ4g/BX16S62FI+gm3GWzTgtkeBVEoKpc8lOshZQ2DcQQq/Bh3n1Ru7jOOJoVEMhSRgbIkOxAKTlWAKuBULcqAMvzsPfAvvD7XwyhI4s1hmJForochyRBmxITqtRFLCSaDi2/P4aiyhxmJwldegtDX7sr1UAqO8LP3wG46AtuUPcqFjhsMKX4fAKDxie/lcjhZ5fRzJmDkDFl2nQlNmz6DGZGLiJKhiQyUJf2Hc3BCRbCsqF42mU46Pdcjyyrq8BG5HkLBopeEiio7MeRgtijPZLZYDLPtoskmA4Ciayklp5LeQxQKQhX4K2XhdaEjBL3Egofi14vqO9uKWjj+yf/J9TAGlOjLjw/IftWADkWXFWGc5+9NMnDIT76k/xACQGSUCRyZelpcazCty3+I0mvuzfUwCpJPvnYhhk8tDtGnoQbbuQagCoiqi/4+qgDMBg2E4L/wxlwPL2toJUFY7TJQzgSzVQj8VNz40xyPRNJXYq88CRaNgDjna7HoQaFoatH18voriqffuivYAFi07VjyFdiGhVGnTs36viWSQqC4ohlJ7iBE9CYDAFXBleIR8QIgg+QM2X37lTDaTNnfVICwnWvEnGa2WPiiSuLB5N+LAKs9hrJr78v1MAqSaGMLiCIvJQqd5PeQKBRj7v5VDkeTfaY/tyLXQyhIFL8PzbubUH79T3I9FIkkJ8iMsiQrcKoKD2WqAoRCGzUx10OS5AlWzCq67MRQgE46Hfbu9SCAyChrutAeYMUVFDU+8b2iKjEdbFS/Lud3oaLqACIik6y4WWXFyzBLCotoQxOy7UNgx+JQ/TJU4AAYZI3zUER+G0qyA6XQRtYmFK8lEgdmM4x/YHlGz617YGjbUeQDnDEQTQPR/SD+EKDqRSVqJ4PkzGl77l5QXUW0sSXXQ5H0wJGHv9PpvuSAWNE0TxFaVggUJgPhZU6LsAxfIukL8ttQ0n84BxiDcewQtFEToY0Yn+sRSfIEKxIFtzNfhR297Bc4+KMbsjgiSV8gXAh4cdsGUTX45l8B/4Jrcz0sSZ7ADAvMsKCFMu//PHD3dVkckaQrRt7+72nvJ0piYfvA3ddh4sP/jZq7nhysYUmyyKg7fp7V/W27/lK07D4KNZB5RvnVE+dkcUQSyeAj6ykk/YczEM7A5bqLJImd37kMkSNh2EbxqCMPOZjl+CgzcCbfR0kqRjgCMxLrVz+rzFYNPA2P3QoAGHHrY50fdCrAmG2DGVJLQpLACMfQfjSK4cdXZLyP8z9dl8UR5RapLj00kZGNpFfYm17vfgMuL3YkqUSPhmEbDMNG9a9rijPmXehJBgbzg5fS3s+NmLCBcoJl450XBndgkrzlwN3XwYzE+l2mO+6+p3HovuJRUM9HjNb2tEEyZwxE1UA1kTOxYvHBHpokT9m4+AJEm2KgOkW8tX+fizdOLi6rUMnQQgbKkh6x1nWvFklkkCxJQ7zVQLw1jrbDkX7tJ1LXKLNOA0xX2WJuGiKbbAlvVaIWl5q9JDO2XX8prJghSq+zoGgve2IHlm7/v6ruzWvOBv97tuXpuwb9NSXds/bCc9F+VLRNWVELVrR/c9yMyUoFSeEiz06SnqGKo47ZGXvvR+IXzhP2UBIJhNr15/7+D5z13jv92s8JT/0JgPCylgwQXQTK6swF4JYBzmxwy4B2xiWDOy5JXrHhkgUAxJy0ItGs7ZcqFEcf/y5anv1x1vYpSdCVyJN/wbVCyR4AVZSclF5LW7b8Ydv1l2Lj4gtgxizYhg2iEJTUDMOpr/RQUdgDVtTCe+ecjQ/O/3yWRpobGM/fm2TgKLjIJh6PY9asWSCEYOPGjSmP7du3D1/4whcQCoVQVVWFpUuXwjCyrwI45OimN1GZMDPxhy1XDSUJznj1zaztyzazk7mSdCa28ilw0+zycW6ZgGV2u41kaNC8twUbF1+ATVcsQqwpgjF3/wpjf/Sf/d5vvKkNhFKUXfWDLIxS0hGrGzVk1tYMO9oOKxbH8U/+zyCOSpJvnPDUn2BETDCDgTMO27Ax68W/9Xu/bfH+Z6UlklxRcIHyHXfcgZqamk7327aNRYsWIRKJ4O2338bzzz+PF198Ed/97ndzMMrioicRH3X08SDMgl41dpBGJMln1n3h/Kzub+d3LgO3GWxDBmoDgX/h9YDV9YW0PncxWDQC3/wrBnFUknzk8xs+wKwX/4bpz62AbWavTJcxNiDWNhIBM00cfTz9tVDg4qWwY0Z6oS/JkOP0lW9g3tur8c8fvIu5b/w9K/u0OcAZz+riuUQyWBRUoPzXv/4Vq1atwsMPP9zpsVWrVmHLli347W9/i9mzZ+O8887DI488gv/8z/9Ea2trl/uMx+NobW1NuUk60Iu+JXX08YMwEEkhMOfPr2Z1f2YkBiPcnpHfrZzfvYPF2rt9XFpCSToy84W/4pOvXdjv/Xz0lX9BvCmMWGPf56ac373DjMS61Xkov/4ngzgaSb7z2kmnZXV/dpHIRXOe3zfJwFAwgfLhw4dx3XXX4b//+78RDAY7Pf7ee+9h+vTpKdnmCy64APF4HOvWdS1P/8ADD6CsrMy7jRs3bkDGX8gQVQP8JbkehmSIMvXXL4FlmE2W87uXdJNRlkgGkpkv/BWcMYx/YHmfnyvnd+9ghg2jtfvFMInEhSokq/u78uinsvRaUrAURKDMOcfVV1+Nb33rWzj11FPTblNfX49Ro0al3FdRUQFd11FfX9/lvpctW4aWlhbvtn///qyOvRjglgmldlauhyEpIN475+ys7GfrNy8BABBFyej5cn73TNtz93peqhJJb3hz9hkA0G+P9LUXnovVc+dl/Hw5v3uHGbP65XUtGVqc8/Ea/G/1SVgx7uSs7O93I6bhnI/XZGVfEslgo+byxe+55x786Ec/6nabDz/8EO+++y5aW1uxbNmybrclpPMqGOc87f0uPp8PPp+vdwMeovTUoyyRdMSKWnhz9hn4/IYP+rUf1a/jsxu/BDUUyOj5cn5LJNkn3mrgH2d8Dv/8wbv92s+wmhL4K/ywoplVjMj53TukvZ6kr9gcaOmnrdNDw6ZgWoUfRpHIMjMUx3FI+kZOA+UlS5bgsssu63ab2tpa3HfffXj//fc7nRBPPfVUXHHFFfjNb36D6upqfPBB6kV5U1MTTNPslGmW9BFmg+1cAzpJmsZLekfL3lZcdOiTfu1j6zcvwdRfv5SdAUm6hNsMgYuX5noYkgJi4c4NWdnPsDEj0LzjEKY/tyIr+5Okx4hIIURJ39jSGseMsv4tQs0YFcrad4VEkityWnpdVVWFqVOndnvz+/14/PHH8dFHH2Hjxo3YuHEjXnnlFQDAH/7wB9x///0AgLlz52LTpk2oq6vz9r9q1Sr4fD7MmTMnJ8dXLHDTlEGypE9cdOgTvPNPZ/VrH6pfx4G7r8vSiCRdQRSK+Gt97w+VDG3c8utM+egr/wIt5JdB8iBAaXZ7TiXFz+G4hW3h/mlXVBxXnrXybYkkV+Q0o9xbxo8fn/L3sGHDAACTJk3C2LHCkmjBggWYNm0arrzySjz00EM4duwYbr/9dlx33XUoLS0d9DEXE9IWRpIJbUciGT9353cuw+QnXsjiaCTd4TvvmlwPQVJgHNjfP4XpmS/8FbtuvTxLo5F0xRsnn46RM0bkehiSAuMXbA9uprX92ofRZmDR/o+zM6AcI5Wlhy4FIebVGxRFwYoVK+D3+zFv3jx85StfwSWXXJLWSkrSN4x3ZMAi6TsXbF+f8XMn/fvz2H/XtQN6Ib3t+ksHbN+FBKEUsVVP53oYkgLjyqOfZvzc/XcJu7F4c1u2htOJv9bOHLB9FxpmxMRnN34p18OQFBi/YHsyet6jJVMAALHmWBZHI5HkhoLIKHektrYWPM3Szvjx4/GXv/wlByMqXoz3XoQ+7yu5HoZkCDLuvoEN3k546k8Duv9CgYZKpU+yZFAJjCzH7tuvxInLXx6w1/iXPR8N2L4LCV+pD7NfWuU5CEgkA81t4e1Ye+G5OP/Trq1ZJZJCoWgyypKBQZ+7ONdDkAxBIr+/L9dDGDJIIS/JYKNoGuLN4VwPY0gw7+3VACCFESWSfsI4z9sbpCL3gCEDZYlEklc0P/V9WO2yZGuwiK18KtdDkAwhGp/4HmLNYRm4SSRFynvnnI2j247lehgSSVYoyNJriURSvFixOJjRP/9GSe/xL7w+10OQDCHizW1Q/XquhyGRSAYIK2pJWyhJ0SADZYlEkldULX0k10OQSCQDRM1dT+Z6CBKJZIB49cQ5RdubbLNcj0CSC2TptUQikUgkEolEIukXxRokS4YuMlCWSCQSiUQikUgkEkkKtbW1IISk3P71X/81ZZt9+/bhC1/4AkKhEKqqqrB06VIYhpGyzSeffIKzzz4bgUAAY8aMwb333pvWwSjfkKXXEolEIpFIJBKJRJIGDjjq0vnJQI/s3nvvxXXXXef9PWzYMO9327axaNEijBgxAm+//TYaGxvx9a9/HZxz/PznPwcAtLa24vzzz8fnP/95fPjhh9i+fTuuvvpqhEIhfPe73x3g0fcPGShLJBKJRCKRSCQSSYFiGAZaW1tT7vP5fPD5fP3ed0lJCaqrq9M+tmrVKmzZsgX79+9HTU0NAOCRRx7B1Vdfjfvvvx+lpaV47rnnEIvF8Mwzz8Dn82H69OnYvn07Hn30Udx2220ghPR7jAOFLL2WSCQSiUQikUgkkgLl2WefRVlZWcrtgQceyMq+/+3f/g2VlZWYNWsW7r///pSy6vfeew/Tp0/3gmQAuOCCCxCPx7Fu3Tpvm7PPPjslaL/gggtw6NAh7NmzJytjHChkRlkikUgkEolEIpFIusDO49JrALjqqqvw2GOPpdyXjWzyd77zHZxyyimoqKjAmjVrsGzZMuzevRu//vWvAQD19fUYNWpUynMqKiqg6zrq6+u9bWpra1O2cZ9TX1+PiRMn9nucA4UMlCUSiUQikUgkEomkQNF1HaWlpb3a9p577sGPfvSjbrf58MMPceqpp+LWW2/17jv55JNRUVGBL33pS16WGUDa0mnOecr9HbdxhbzyuewakIGyRCKRSCQSiUQikQwJlixZgssuu6zbbTpmgF3OPPNMAMCOHTtQWVmJ6upqfPDBBynbNDU1wTRNL2tcXV3tZZddjhw5AgCdstH5hgyUJRKJRCKRSCQSiSQdnOe16nVfqaqqQlVVVUbP3bBhAwBg9OjRAIC5c+fi/vvvR11dnXffqlWr4PP5MGfOHG+b73//+zAMA7que9vU1NR0GZDnC1LMSyKRSCQSiUQikUgkHu+99x4ee+wxbNy4Ebt378YLL7yAG264ARdffDHGjx8PAFiwYAGmTZuGK6+8Ehs2bMDrr7+O22+/Hdddd51XCn755ZfD5/Ph6quvxqZNm/C///u/+MlPfpL3iteAzChLJBKJRCKRSCQSiSQJn8+HP/zhD/jRj36EeDyOCRMm4LrrrsMdd9zhbaMoClasWIGbbroJ8+bNQyAQwOWXX46HH37Y26asrAyvvvoqbr75Zpx66qmoqKjAbbfdhttuuy0Xh9UnZKAskUgkEolEIpFIJGngAGyW61F0zUBVhZ9yyil4//33e9xu/Pjx+Mtf/tLtNjNmzMA//vGPbA1t0JCl1xKJRCKRSCQSiUQikSQhA2WJRCKRSCQSiUQikUiSkKXXEolEIpFIJBKJRNIFxaR6Lek9MqMskUgkEolEIpFIJBJJEjJQlkgkEolEIpFIJBKJJImCCpRXrFiBM844A4FAAFVVVbj00ktTHt+3bx++8IUvIBQKoaqqCkuXLoVhGDkarUQikUgkEolEIilkOACb87y9SQaOgulRfvHFF3HdddfhJz/5Cc455xxwzvHJJ594j9u2jUWLFmHEiBF4++230djYiK9//evgnOPnP/95DkcukUgkEolEIpFIJJJCoiACZcuy8J3vfAcPPfQQrr32Wu/+E044wft91apV2LJlC/bv34+amhoAwCOPPIKrr74a999/P0pLSwd93BKJRCKRSCQSiUQiKTwKIlBev349Dh48CEopZs+ejfr6esyaNQsPP/wwTjrpJADAe++9h+nTp3tBMgBccMEFiMfjWLduHT7/+c+n3Xc8Hkc8Hvf+bmlpAQC0trYO4BFJJJJMcOcl72WpkZzfEknhIOe3RFLc9HWO5xOs8IYsyQIFESjv2rULAHDPPffg0UcfRW1tLR555BGcffbZ2L59O4YPH476+nqMGjUq5XkVFRXQdR319fVd7vuBBx7Aj370o073jxs3LrsHIZFIskY4HEZZWVmP28n5LZEUHnJ+SyTFTW/nuESSa3IaKN9zzz1pT3LJfPjhh2CMAQDuvPNOLF68GACwfPlyjB07Fn/84x9xww03AAAIIZ2ezzlPe7/LsmXLcNttt3l/M8Zw7NgxVFZWdvu8QqC1tRXjxo3D/v37h2zp+VD/HxTb8XPOEQ6HUypHuqOY5zdQfO9vXxnqxw8U1/9Azu9Uium9zZSh/j8otuPv6xyXSHJNTgPlJUuW4LLLLut2m9raWoTDYQDAtGnTvPt9Ph+OO+447Nu3DwBQXV2NDz74IOW5TU1NME2zU6Y5GZ/PB5/Pl3JfeXl5Xw4j7yktLS2KL9j+MNT/B8V0/H1ZhR4K8xsorvc3E4b68QPF8z+Q87szxfLe9oeh/j8opuMvyEwyB+w8rr3O35EVPjkNlKuqqlBVVdXjdnPmzIHP58O2bdvwT//0TwAA0zSxZ88eTJgwAQAwd+5c3H///airq8Po0aMBCIEvn8+HOXPmDNxBSCQSiUQikUgkEomkqCiIHuXS0lJ861vfwt13341x48ZhwoQJeOihhwAAX/7ylwEACxYswLRp03DllVfioYcewrFjx3D77bfjuuuuK5pVOIlEIpFIJBKJRCKRDDwFESgDwEMPPQRVVXHllVciGo3ijDPOwBtvvIGKigoAgKIoWLFiBW666SbMmzcPgUAAl19+OR5++OEcjzx3+Hw+3H333Z1K04YSQ/1/MNSPv9gZ6u/vUD9+QP4Pihn53sr/wVA//nyBA2AFqNQt6T+EF6JGu0QikUgkEolEIpEMIG+88Qau/MZ1+PXKd3M9lC656vOn4OU//Q/mzp2b66EUHTTXA5BIJBKJRCKRSCQSiSSfKJjSa4lEIpFIJBKJRCIZbGxZfzskkRlliUQikUgkEolEIpFIkpCBskQikUgkEolEIpFIJEnI0muJRCKRSCQSiUQi6YJ8Vr3O35EVPjKjLJFIJBKJRCKRSCQSSRIyUJZIJBKJRCKRSCQSiSQJWXotkUgkEolEIpFIJGngAGyWxwXOeVwWXujIjLJEIpFIJBKJRCKRSCRJyEBZIpFIJBKJRCKRSCSSJGTptUQikUgkEolEIpGkhee16rVk4JAZZYlEIpFIJBKJRCKRSJKQgbJEIpFIJBKJRCKRSCRJyEB5CPLWW2+BEILm5uZcD0UikWQZOb8lkuJFzm+JJAdwwM7jm2TgkIFykTN//nzccsstKfd97nOfQ11dHcrKynIzqAwxTRP/9//+X8yYMQOhUAg1NTW46qqrcOjQoZTt4vE4vv3tb6OqqgqhUAgXX3wxDhw44D3uXmiku3344Ycp+3rmmWdw8sknw+/3o7q6GkuWLOlxnH//+98xZ84c+P1+HHfccfjlL3+Z8vjmzZuxePFi1NbWghCCn/3sZ706fs457rnnHtTU1CAQCGD+/PnYvHlzyjZPPfUU5s+fj9LSUnkxNQSQ87vz/AaA7du344tf/CKqqqpQWlqKefPm4c033+z0mnJ+S/IZOb/Tz+/169fj/PPPR3l5OSorK3H99dejra2t02vK+S2RSPqLDJSHILquo7q6GoSQXA+lT7S3t2P9+vX4wQ9+gPXr1+NPf/oTtm/fjosvvjhlu1tuuQX/+7//i+effx5vv/022tracNFFF8G2bQCJC43k2ze/+U3U1tbi1FNP9fbz6KOP4s4778S//uu/YvPmzXj99ddxwQUXdDvG3bt348ILL8RZZ52FDRs24Pvf/z6WLl2KF198MeU4jjvuOPz0pz9FdXV1r4//wQcfxKOPPoonnngCH374Iaqrq3H++ecjHA6n7HvhwoX4/ve/3+v9SoqLoT6/AWDRokWwLAtvvPEG1q1bh1mzZuGiiy5CfX29t42c35JCZKjP70OHDuG8887D5MmT8cEHH2DlypXYvHkzrr766pT9yPktkUiyApcULV//+tc5hE+6d9u9ezd/8803OQDe1NTEOed8+fLlvKysjP/5z3/mU6ZM4YFAgC9evJi3tbXxZ555hk+YMIGXl5fzJUuWcMuyvP3H43H+ve99j9fU1PBgMMhPP/10/uabbw7qMa5Zs4YD4Hv37uWcc97c3Mw1TePPP/+8t83Bgwc5pZSvXLky7T4Mw+AjR47k9957r3ffsWPHeCAQ4K+99lqfxnPHHXfwqVOnptx3ww038DPPPDPt9hMmTOCPPfZYj/tljPHq6mr+05/+1LsvFovxsrIy/stf/rLT9h3fY0nxIee3oOP8bmho4AD4P/7xD2+b1tZWDsCbz3J+S/Kd/5+9M4+Pqjr//+eus2Vmsi9shn11QVAMVHEDFK21aq1itVrqzteFWitqFa2CVetWLJbWH2rr2lqtK4KyiEoVEBQQZEsEAiEhJJlktruc8/vjzNzMJJN9kkyS83697iuZO/eeOTeZc+95zvM8n4ePb0bD8f3Xv/6V5ubmUtM0rWM2bdpEAdBdu3ZRSvn45iSXTz75hOYPGkxf3XwgZbfMvAL6xRdfdPefqlfCPcq9mKeffhpFRUW49tprLc/pwIEDEx4bCATwzDPP4LXXXsOyZcuwevVqXHTRRfjggw/wwQcf4B//+AeWLFmCf//739Y511xzDT7//HO89tpr+Pbbb/Gzn/0M55xzDnbt2tVkn84991ykpaU1u7WFmpoaCIKA9PR0AMDGjRuh6zqmT59uHdOvXz+MGzcOX3zxRcI23nnnHRw5ciRuRXrFihUghKC0tBSjR4/GgAEDcOmll2L//v3N9mfdunVxnw0AM2bMwIYNG6DrepuuLZbi4mKUlZXFtW2z2TB16tQmr4vTu+Hjm9FwfGdlZWH06NF46aWX4Pf7YRgG/vrXvyIvLw8TJkwAwMc3J/Xh45vRcHyHw2GoqgpRrJ++OhwOAMBnn30GgI9vDoeTPHgd5V6M1+uFqqpwOp0thgjpuo7Fixdj6NChAIBLLrkE//jHP3D48GGkpaVhzJgxOOOMM7Bq1Sr8/Oc/x549e/Dqq6/iwIED6NevHwDgjjvuwLJly7B06VIsWLAg4ef8/e9/RzAYTMr1hUIh3HXXXZg1axY8Hg8AoKysDKqqIiMjI+7YvLy8uLDLWJ5//nnMmDEjbhKyd+9eEEKwYMECPP300/B6vbj33nsxbdo0fPvtt1BVNWFbZWVlyMvLa/TZhmHgyJEjKCgoaNe1RvueqO0ffvihXW1yejZ8fNcTO74FQcCKFSvwk5/8BG63G6IoIi8vD8uWLbMm5Hx8c1IdPr7riR3fZ555JubOnYvHHnsMt956K/x+vxWqfOjQIQB8fHM4nOTBDWUOAMDpdFoPWYDdwAsLC+NWiPPy8lBeXg6AiWlQSjFixIi4dsLhMLKyspr8nP79+yelv7qu47LLLgMhBH/5y19aPJ5SmjCn68CBA/joo4/wxhtvxO0nhEDXdTzzzDPWKvCrr76K/Px8rFq1CjNmzIj72/ziF7+wRD8afg6NFKlvbU7Zyy+/jOuvv956/eGHH0KSpCbb7mm5apyupy+Nb0opbrrpJuTm5mLt2rVwOBz4+9//jvPPPx/r169HQUEBH9+cXkVfGt9jx47Fiy++iLlz52LevHmQJAm33HIL8vLyrHHExzenMyCEy0v3RbihzAEAKIoS91oQhIT7CCEA2INIkiRs3LjReghEaS786txzz8XatWub7Usi9cpYdF3HpZdeiuLiYqxcudJajQaA/Px8aJqGqqqquFXp8vJyTJ48uVFbS5cuRVZWViNBkejK8ZgxY6x9OTk5yM7Oxr59+wAAmzdvtt6L9iE/P7+R57q8vByyLDc7AYnlggsuwKRJk6zX/fv3t1bKy8rK4la1y8vLG61SczgN6Uvje+XKlXjvvfdQVVVlnfuXv/wFK1aswIsvvoi77rqLj29Or6IvjW8AmDVrFmbNmoXDhw/D5XJBEAQ88cQTGDx4MAD+/OZwOMmDG8q9HFVV49Rgk8X48eNhmibKy8tx6qmntvq8joZuRR+yu3btwqpVqxo9vCZMmABFUbBixQpceumlAFg41tatW/Hoo4/GHUspxdKlS3HVVVc1mlRMmTIFAPD9999jwIABAICjR4/iyJEjOOaYYwAAw4YNa9S/oqIivPvuu3H7li9fjokTJzb6jKZwu91wu91x+wYPHoz8/HysWLEC48ePBwBomoY1a9bgj3/8Y6va5fQ++PhuPL4DgQAAxOUwRl9HDQU+vjk9AT6+m35+A/WhzP/v//0/2O12TJs2DQAf3xwOJ3lwQ7mXU1hYiC+//BIlJSVIS0tDZmZmUtodMWIErrjiClx11VX405/+hPHjx+PIkSNYuXIljj32WMycOTPheR0J3TIMA5dccgm+/vprvPfeezBN01r9zczMhKqq8Hq9mD17Nn7zm98gKysLmZmZuOOOO3Dsscfi7LPPjmtv5cqVKC4uxuzZsxNe309+8hPceuutWLJkCTweD+bNm4dRo0bhjDPOaLKPN9xwAxYtWoS5c+fi2muvxbp16/D888/j1VdftY7RNA3fffed9XtpaSk2b96MtLS0hA9vgHkDbrvtNixYsADDhw/H8OHDsWDBAjidTsyaNcs6rqysDGVlZdi9ezcAYMuWLXC73Rg0aFDS/vec1IGP78bju6ioCBkZGfjlL3+J++67Dw6HA3/7299QXFyM8847z7o+Pr45qQ4f34mf34sWLcLkyZORlpaGFStW4Le//S0eeeQRS4OAj29OsqEATB553TfpDqltTtfx/fff01NOOYU6HI4Wy0vEcv/999Pjjz8+bt8vf/lL+pOf/MR6rWkave+++2hhYSFVFIXm5+fTn/70p/Tbb7/tlGspLi5uVC4jusWWtQgGg3TOnDk0MzOTOhwOev7559N9+/Y1au/yyy+nkydPbvLzampq6K9+9Suanp5OMzMz6U9/+tOE7TRk9erVdPz48VRVVVpYWEgXL17cquuYOnVqs+0SQuj9999P8/Pzqc1mo6eddhrdsmVL3DH3339/wraXLl3aYr85PQ8+vhOP7/Xr19Pp06fTzMxM6na76SmnnEI/+OCDuGP4+OakOnx8Jx7fV155Jc3MzKSqqtLjjjuOvvTSS40+j49vTrL45JNPaN6gwfSljftTduPloToPgVLK10g4HA6Hw+FwOBwOJ4aVK1di1jW/xmNvfdrdXWmS22aejPfeehNFRUXd3ZVeBw+95nA4HA6Hw+FwOJwmINyv2CcRWz6Ew+FwOBwOh8PhcDicvgM3lDkcDofD4XA4HA6Hw4mBh15zOBwOh8PhcDgcThOYKRx6ncJd6/FwjzKHw+FwOBwOh8PhcDgxcEOZw+FwOBwOh8PhcDicGHjodQMIITh48CDcbjcEQeju7nA4nBgopaitrUW/fv0gim1f5+Pjm8NJXfj45nB6Nx0d490FpQAhPL65L8IN5QYcPHgQAwcO7O5ucDicZti/fz8GDBjQ5vP4+OZwUh8+vjmc3k17xziH09VwQ7kBbrcbABvEHo+nm3vD4XBi8fl8GDhwoDVO2wof3xxO6sLHN4fTu+noGOdwuhpuKDcgGq7l8Xj4g5bDSVHaG1bJxzeHk/rw8c3h9G56YmqEySOv+yQ9J0GAw+FwOBwOh8PhcDicLoAbyhwOh8PhcDgcDofD4cTAQ685HA6Hw+FwOBwOJyEUhKZu7HXq9qznwz3KHA6Hw+FwOBwOh8PhxMANZQ6Hw+FwOBwOh8PhcGLgodccDofD4XA4HA6HkwAKwEzh0GtO58E9yhwOh8PhcDgcDofD4cTADWUOh8PhcDgcDofD4XBi4KHXHA6Hw+FwOBwOh5MICpgklUOvU7lvPZse41E2DAP33nsvBg8eDIfDgSFDhuDBBx8EIcQ6hlKK+fPno1+/fnA4HDj99NOxbdu2buw1h8PhcDgcDofD4XB6Gj3GUP7jH/+I5557DosWLcL27dvx6KOP4rHHHsOf//xn65hHH30UTzzxBBYtWoT169cjPz8f06ZNQ21tbTf2nMPhcDgcDofD4XA4PYkeE3q9bt06/OQnP8F5550HACgsLMSrr76KDRs2AGDe5Keeegr33HMPLrroIgDAiy++iLy8PLzyyiu4/vrru63vHA6Hw+FwOBwOp+dBkdqh11yQu/PoMR7lH/3oR/jkk0+wc+dOAMA333yDzz77DDNnzgQAFBcXo6ysDNOnT7fOsdlsmDp1Kr744osm2w2Hw/D5fHEbh8PpHfDxzeH0Xvj45nA4HE5n0mMM5d/97ne4/PLLMWrUKCiKgvHjx+O2227D5ZdfDgAoKysDAOTl5cWdl5eXZ72XiIULF8Lr9VrbwIEDO+8iOBxOl8LHN4fTe+Hjm8PhcDidSY8xlF9//XX885//xCuvvIKvv/4aL774Ih5//HG8+OKLcccJghD3mlLaaF8s8+bNQ01NjbXt37+/U/rP4XC6Hj6+OZzeCx/fHA6nqzAJTdmN03n0mBzl3/72t7jrrrtw2WWXAQCOPfZY/PDDD1i4cCF++ctfIj8/HwDzLBcUFFjnlZeXN/Iyx2Kz2WCz2Tq38xwOp1vg45vD6b3w8c3hcDiczqTHeJQDgQBEMb67kiRZ5aEGDx6M/Px8rFixwnpf0zSsWbMGkydP7tK+cjgcDofD4XA4HA6n59JjPMo//vGP8fDDD2PQoEEYO3YsNm3ahCeeeAK/+tWvALCQ69tuuw0LFizA8OHDMXz4cCxYsABOpxOzZs3q5t5zOBwOh8PhcDicnkaqq15zOo8eYyj/+c9/xu9//3vcdNNNKC8vR79+/XD99dfjvvvus4658847EQwGcdNNN6GqqgqTJk3C8uXL4Xa7u7HnHA6Hw+FwOBwOh8PpSfQYQ9ntduOpp57CU0891eQxgiBg/vz5mD9/fpf1i8PhcDgcDofD4XA4vYseYyhzOBwOh8PhcDgcTpdCUzv0OnV71vPpMWJeHA6Hw+FwOBwOh8PhdAXcUOZwOBwOh8PhcDgcDicGHnrN4XA4HA6Hw+FwOAmhKR16zWOvOw/uUeZwOBwOh8PhcDgcThwPP/wwJk+eDKfTifT09ITH7Nu3Dz/+8Y/hcrmQnZ2NW265BZqmxR2zZcsWTJ06FQ6HA/3798eDDz4ISuMt/DVr1mDChAmw2+0YMmQInnvuuc66rFbDPcocDofD4XA4HA6Hw4lD0zT87Gc/Q1FREZ5//vlG75umifPOOw85OTn47LPPUFlZiV/+8peglOLPf/4zAMDn82HatGk444wzsH79euzcuRNXX301XC4XfvOb3wAAiouLMXPmTFx77bX45z//ic8//xw33XQTcnJycPHFF3fpNcfCDWUOh8PhcDgcDofDSQBFaqteA8yg9fl8cftsNhtsNluH2n3ggQcAAC+88ELC95cvX47vvvsO+/fvR79+/QAAf/rTn3D11Vfj4Ycfhsfjwcsvv4xQKIQXXngBNpsN48aNw86dO/HEE09g7ty5EAQBzz33HAYNGmSVAR49ejQ2bNiAxx9/vFsNZR56zeFwOBwOh8PhcDg9lJdeeglerzduW7hwYad/7rp16zBu3DjLSAaAGTNmIBwOY+PGjdYxU6dOjTPaZ8yYgYMHD6KkpMQ6Zvr06XFtz5gxAxs2bICu651+HU3BDWUOh8PhcDgcDofD6aFcddVVqKmpidvmzZvX6Z9bVlaGvLy8uH0ZGRlQVRVlZWVNHhN93dIxhmHgyJEjndX9FuGGMofD4XA4HA6Hw+EkgrLQ61TdKABVVeHxeOK2psKu58+fD0EQmt02bNjQ6j+PIAiN/2SUxu1veExUyKutx3Q1PEeZw+FwOBwOh8PhcPoAc+bMwWWXXdbsMYWFha1qKz8/H19++WXcvqqqKui6bnmI8/PzLc9xlPLycgBo8RhZlpGVldWqvnQG3FDmcDgcDofD4XA4nD5AdnY2srOzk9JWUVERHn74YRw6dAgFBQUAmMCXzWbDhAkTrGPuvvtuaJoGVVWtY/r162cZ5EVFRXj33Xfj2l6+fDkmTpwIRVGS0tf2wEOvORwOh8PhcDgcDicBUdXrVN06k3379mHz5s3Yt28fTNPE5s2bsXnzZtTV1QEApk+fjjFjxuDKK6/Epk2b8Mknn+COO+7AtddeC4/HAwCYNWsWbDYbrr76amzduhVvvfUWFixYYCleA8ANN9yAH374AXPnzsX27dvx//7f/8Pzzz+PO+64o1OvryW4R5nD4XA4HA6Hw+FwOHHcd999ePHFF63X48ePBwCsWrUKp59+OiRJwvvvv4+bbroJU6ZMgcPhwKxZs/D4449b53i9XqxYsQI333wzJk6ciIyMDMydOxdz5861jhk8eDA++OAD3H777Xj22WfRr18/PPPMM91aGgrghjKHw+FwOBwOh8PhcBrwwgsvNFlDOcqgQYPw3nvvNXvMsccei08//bTZY6ZOnYqvv/66rV3sVLihzOFwOBwOh8PhcDhN0Nkhzh0jlfvWs+E5yhwOh8PhcDgcDofD4cTADWUOh8PhcDgcDofD4XBi4KHXHA6Hw+FwOBwOh5MACsBI4dBrmrpd6/FwjzKHw+FwOBwOh8PhcDgxcEOZw+FwOL2GrVec191d4HA43cTzmaO6uwscDqcXwUOvOX2KXTdeguGL/93d3eBwOJ3EuJff7+4ucDicbmL20R3d3QVOb4Smuuo1p7PoUR7l0tJS/OIXv0BWVhacTidOOOEEbNy40XqfUor58+ejX79+cDgcOP3007Ft27Zu7DEn1eBGMofD4XA4PY/H0kZ0dxc4HE4fo8cYylVVVZgyZQoURcGHH36I7777Dn/605+Qnp5uHfPoo4/iiSeewKJFi7B+/Xrk5+dj2rRpqK2t7b6OczgcDofD4XA6hN8k3d0FDofTx+gxodd//OMfMXDgQCxdutTaV1hYaP1OKcVTTz2Fe+65BxdddBEA4MUXX0ReXh5eeeUVXH/99QnbDYfDCIfD1mufz9cp/Q++/SQcF97eKW1zWs/3112EkUv+093d4HQRXTW+OanBRyNOxIydX3d3NzhdBB/ffYv5wd3Nvr84fRRurOah15zkQ0F56HUfpcd4lN955x1MnDgRP/vZz5Cbm4vx48fjb3/7m/V+cXExysrKMH36dGufzWbD1KlT8cUXXzTZ7sKFC+H1eq1t4MCBSe977Uvz4bjwdoRXvpT0tjltwwzp1u87fn1hu9v56pwzk9AbTmfTFeObkzqEa7W411sun9lNPeF0BXx8921eyBqN9/oda71uzkj+aMSJXdElDofTy+gxhvLevXuxePFiDB8+HB999BFuuOEG3HLLLXjpJWZ8lpWVAQDy8vLizsvLy7PeS8S8efNQU1Njbfv37096391XzQcA2M68Kultc9qGHjKs34lmYsevL8SeWy9r9pzVE4vw6aTJWFs0BasnFuHzH50KURQAABtmnoWNP57WqX3mtJ+uGN+c7mHF6AmN9tUZ8aGZ4Zowvr/uIhTfcWWT43zlcSdjbdEUfHXOmdgw8ywA9crZ3193UZJ7zUkmfHz3PW4WC63fj2omQibBW/lj8Vb+2ITHP+gYhsXpo1BdHbKOi713fDH1tM7uMofD6cH0GEOZEIITTzwRCxYswPjx43H99dfj2muvxeLFi+OOEwQh7jWltNG+WGw2GzweT9zG6b34D/ut38e89C7CvjB0fwjbr7kg4fErjzsZkiJCcSlQ01TYPCpkhwxBErHxx9MgSCImvLui2c/kD+Lug4/v3su07Rsb7ZtV8V3c60BlEKHqIMLVtQhX+ePG4sdjT8LK406G7JBh89qguhTIDhnfXHouJFXC9msuANGNJu8NUTZfPCM5F8RpM909vksfSJzSxWk/NwiFcT8b8iwpAQD83j4Uc2t3oixkIGhS1OiN85fvtg2FJAhQRUAVBSiiCLtdhqRI+HTSZHw6aTKo2Xw47bKh4ztyOZxehElpym48KLzz6DGGckFBAcaMGRO3b/To0di3bx8AID8/HwAaeY/Ly8sbeZm7gsCbj3f5Z3JaZvKaTy2vEQCEfWEQzYQR42mOsvK4k6FEJs+KXYZsZz8lRYQoNb340pCWHsQcDid5LPKOxDsF4wAAxKQwggaMoI6wL4zJaz61jgv7wjjz268g22WoLgWSKkFSJWtsU5OCmhSjl77T7Oc1HN8dSengpA6tiRTqf/9fu6AnfYvnaEncz0TcIBTiD6E9AIAancCkFMEEz9kF4T2QBGYkA4CkihBVCUIbnt/n7NkU93rV+EmtPpfD4fR8eoyhPGXKFHz//fdx+3bu3IljjjkGADB48GDk5+djxYp6756maVizZg0mT57cpX0FALnf4C7/TE48TYViTfzgEwDAujOnAgBM3YQRbGwo2zw2nLruc6gu5kWOep6UNBWiKrGHbiseuFM+W9uBq2ieffOu6bS2OZyeyJya73HBoa34d95YnL5hHUJVIeh+HcGqUNxx0bFr89iYkaywTbaziJHWMv7t5XGvR/397Q5fA6f7KL7jSgBoMVKI031EjehbpME4HGYe5TqDxHmhbxAK8Xv7UDgiY1kSBMgOtigmR7zKgii0+fl8xqYvk3UZ+HRS189NORxO2+gxhvLtt9+O//3vf1iwYAF2796NV155BUuWLMHNN98MgIVc33bbbViwYAHeeustbN26FVdffTWcTidmzZrVpX0Nr3wJatHFrT5+2dDxXGiiE2jOkfvppMkgGsHJy1bCCBpxucsA8yYLkoANM8+CpLJhIkoCBFGAYk8dsXhCeLmMrqapkEBO6nC3bSi0iEKp5tcQrApB8+txx8gOGevOnGqNb2ISCJIAQRJBI2VoTN3s2o5zup3Bj/+jxXB7Tvdzg1CIZ8xiACxX2W+SRl5oRRAQXcs2KQWJTAoooSAmAe1mFWNT4/eXngIFYBKashun8+gxhvJJJ52Et956C6+++irGjRuHP/zhD3jqqadwxRVXWMfceeeduO2223DTTTdh4sSJKC0txfLly+F2u7u0r20V7Tpnz6ZGaq2cjnPJ4W1NvmdqpjUJDhwJInAkGLdYQUwK2SFj4gefWCGZACBKIohJmNEsiW0K4Uo23193EYimt3wgJ6k0FxLYFDcIhXEiNA3ZdOH0Jt/jJOZ36pAm39MIy9sCAP/hAGp+qEHdwbq4Y+zpdigx3mNKKEzNBNFMUJPC1E0Qk/Ic5D5C7PhsKdy+IYvTR+EJ94gk96hv0lKOcsNjNUJREtBRliB9ShIEzKn5HiZl9wS9ToepERhBA6ZOQEzarV7dsI/P+zicVCd1XGOt4Pzzz8f555/f5PuCIGD+/PmYP39+13UqSVxwaGt3d6HX8V6/Y3H+wS0J3zM1Yk2QNb/WKJxKlARICjOOJUWyVp9JxNMkiAIQyWHsLkYu+U+Lit2c1OA5WtLsxK9h+C6nZRzNhEdLAhA0KR52DsdglwLVJI0WztQ01VoAA9jiGEwKSigEUQAxKYhm8v9NHyEqEtUeeO3e5BG9V8b+bO15sTRcwzYpEDIJJL8WEeRki93d6dXlHmUOJ/XpMR5lDqcl1hZNAcAM5JXHndykkQwAlBBQk+DDwuPjjOR/57G8ZtkhWyGZgiRAUlk+UyyiJECMmWh3B0Offq1bP5/TNnjYdseJeufnB3c3ecwftb2oCJsIEYJZFd9ZRvKSjFEA6tXsoxEhUaOYaGYk2oTdHxpOZPta/fS1RVOseyKneeY7huF2mWuTJIu23CtjjeQbhELcIBRCFQXcE9gFgHmTgyZB0CTQw0yThEbGfDJzjtvKefu/7bbP5rQRmuKh1zz6utPghnKK8Vha8+FbJb/7ZRf1pGfxxdTTcOq6z7F6YhHOP7jFykd8JWdMwuOJSaH5dZxb8o1V/uHfeWMhCaw+q2yXccKbHwFgYXiCJEKMbAALwRZEAce/8WEXXF1qUvfygwDqxW84zfMcLWmVd2Tv7V2rqdBTiJ04P0tK8KBjWLPh7DqlyLPJ1j31ac9ISAJbSGPKt6Klch01ikkkSiSao9yQvuQB2vjjaTh13efd3Y0eg0YonjRYzuzDzuHd3JueR8OQ6/amuESRYsqCRoJFYFIWvUdMlq/cMHUqutjeF9j442nWwl9T8yQOh8MN5ZTi+cxRlgBNUxT+8cUu6k3PQnbI+PxHpyLsCwNged8fjTixUfgVUP9QECWBHRPxHLu9Nvy0bBumbd8YV0YGYEq2YlyYZt8W0Qr861GkXXEfAEC2qwBYzjSn4xDd4GrmDYh66mJDMQ+GjCYF+24WCyGCifxES8Pk2CTk2GTYvGqkHBRb7BJEwUqhoCaBHjKg+XVofh0TP/gkzotctHJNp11ja+mq8lNR1WeXQ8Y/skfj+cxRXfK5PZWjkUWUG4RCy5PZnayeWNTdXWgzsUZyc7nKDfdFvchRJAF4XN9rvb6xegeuq9qBqyu3A2Ce3LO3rW/kTe5LC0MT3l2Bk5etBABkemz4sPD4bu4Rh5OacEM5hZh9dAfuCexq0avcUbZfcwG+u+rHzR5zaOHNndqHZMO8QcSa8H489iSIktAoj3GRd6Q1cRZEEYpdhuJiht6MnV83+xmj/v42xrz0LgBg3MvvJ/sSkkJXGFiBfz0K58/utF5LdhXFd1xpeds5iWmtSM2wRW/A1A3suvGSdn9WbxMHi3rqojQsA9PwPUkQrC063lVRgGKTMG37RpZKESPiBQCEUJCIoJepmdYkMvozVWjK251MYlWfzy35Bl5FajYnvKfQmakPzekQJFswqjVGTVd8TzqLpv6ODQ3iRDxHSzqUb97ddHV6xxdTT8M5ezZBVCWsGD2hSz+7p9Hd4dXNbTzyuvPoUWJefYXf1u1stG/ThdM7JCoTnXQTk0BUZIh2EduvuaBJdU+iGSh//Fbk3vF0uz+zqzF1YtVDPnvbeqw87mSoTgX/zhtr5ShmqpLlZRYlAWd++1WbPyc6sU5FY3nQwqWd/hlmMGD9Xr3kbvS7dzH2zbsGYd3Alstngpi0T4ekN0VbRGoGP/6PNnnov7vqx3HlTkRVwqYLp0MPGQkNvd1zLoXscvSYCJVEk2NJaFwCLvY4nVLYRcESWooV85q0YlXceRtmnsVyFk0CopFOrX3eUdqqyNwWvrn0XIiSADmmBN7aoilWXeolGaNQETZTwmPaHtoTztuez2g4vk/78osOt7tq/CSm2BwyIEgiPiw8Hv6gkbC6w2NpIzD+GG+HP7M7iP7dGi6GtfS/k4SOCbKlCp25MPfppMmQFAn2DLsVMaK6FOunETLwTsE4Li7L4cTQ85eI+wjJUF5lOXkyZIcKya5aIbOxbL/mAuyecykTuyIE5Y/f2uHP7SqoSXD+wS14PXcMVh53MgBAtsuWYbwkYxQ8imTlLrW3tNOxr36QlP72RCoX/RZEry/DkX7dApQ/fqtVe9bUTOh1vORFMhi55D8tHrPxx9MAxKcCCKIASRFbFJqjJulxmgexk+VkC85HI1JS2UjuTDZfPCOhFzI2UsSk6LFGclcQ/X4mMurWnTk1KZ/B1JqZkGSiR9iSjFHIt0ughHRr6aOO0HBhrDULHKrYfaUak83WK87rlHajkXdRIxlg88INM88CAEzbvtEqq8fhcBjcUE5R7rYNTWp7wxf/2/pdEEWIqgJRleO8Vjt+fSFERYZktwEATM2AqRs9wlguWrnGyjf6efl3qKsIwNRZrWRJEPCP7NHwKiKUNAWKTbJKP0VpbahqX8/DNUMaiGagavFd1j7dH4JW60eoKoQT3vwIEz/4pBt7mNo0N5FuD9EJj6kzT5MRNGCEjHrPcszkccPMs7Dxx9Ow5fKZoCYB0XVQk/SIfOiWhNAahmR6FRGKIOAuPzPq3h94XFyd9Fi+ufRcTPzgExCtscp1X8LUSGQz4/4OxCRYMXoCLjm8jZdBagMNjb2O5rebGlu8BurLF6oNnmMvZI2GQxKQJosgJksjWD2xqEcYzK0Z402d19BIfsTVs8XUOitajUbK3226cDo2XTgd31x6LqhJMPGDT6z500/LGkcocDh9GW4opygaoXjCndxc5WGL3oh7LYhMxXnXjZdg95xLISkyJFWGpMgQxEj+nskezqUPXI/9987G7jmXJrVPncET7hGoMwi0Oh0zdn6NCw5thSoKSLPJVk6ypIpWjiLAVulbytvu65Q+cD1M3YARCsPUmar4oYU3Q6sNYOjTryFYFermHvYcmsq1i67st5Xj3/gQJ7z5kSVCZWomM4YJjfNkNfQYUrN3GYZeRUSmKkERmLGwJGMU3sofC1ESoETCidedOdVaGNt88Qzr3CmfrYWp99y8zo5i6mYkKoTA1In1NzJ1gmnbN3Zz73oH31x6brvPPXvbekuVnT27BYiSYJXveit/LFSR6XIokfcBZlS3JvS7Nfm/3UFLNeijpaAckojf24fi9/bkOhl6CyuPO9lS+9b8OgSJVe2Y+MEn+PxHp3Z391IeCsAkJGU3Xh+q8+CGcopiUoq5tTvxQtboTvsMQZIiP0WWt6zKEBUZghRvRAKs7vDAh54HNYn1sF81fhIApJwAhEMSYVIaV6MwzSbDme2AElG7VV0qFLuML6aeBgBWKajm2D3nUkhq303rJ7oBohkwQhrMEAuv1n0BGP4gADRSCuc0TdR70nAC2FFvvFanwQgazPtkUhhBA0Qj+HLaGXHHRUPlAYBEvFT7752N0geuBwBr0WjzxTOw+eIZVoh3KhDNV4zdABZ66ZJEuCQxrjQMwASp9JCBz390aiQXmWLDzLNgan3XMG6IqZkghJXGiq0hHdV9iJKKxlSq0vBv1VHtBhJZAAPqU4ckAXinYBwUUYQqMvG6aCUHU2O6HVEF7I9GnIh/ZI/GLVK9inx0a+qe1B00HNst8bi+Fxqh+ENoj7WPl+iKh5iUpdRFxrbm17Fh5llYWzSlz1fx4HCagxvKKcqTRrGl0Lw4fVQjlcvohLatMCNYghjxGBOT1O9TFBaSHTGWAeaBYgI3BvbePgthXxBhXxgrjzsZZ2z6EqsnFlnehlXjJ+GLqad1u+F8Y/UOXHlkO/6dNxYfjTgRH489Ce5+aXBmO2Hz2mDz2GDzqBAkAZIqWUbEmJfexe45l2LPrZcBYIZx7N85Niy9L2KENBDdgBnSoPtDKL7jSgQraxCqZuJeSzJY+ZjF6byMTGu4QShEmiziBqEwKV4QVh5Ng+bXYURKHIV9YQSrQmwMR8KxhZgwRbb4oVu5ymZIw/fXXWSpu1OT4oQ3P7JCvHfdeAm2XnFeuz3fySBW7CfWC5Ym1xvIabIIhyTAIQlWLvOMnV+DmASqS2Ghq6oEUzdBYsKMxXbqFvQGiFZfNcAIGtBDzMAyQsxQnu8Y1p3d63HEGp7R8mZAx2v1CpJY//3VCI5qJkSB5S3bJRGKTWJ1wq1nPAXRTHxYeDwqq0LY49fxjBmvIt9QQCsVjGWg9V7u2HrqLql+weBB/p21iEYkRBdR9TodwaoQdL/ep8picThthRvKKcycmu9RGjSQJgs4t+SbuPf63//XdrUpKgqkiPcYYJ5iojEVTUmJhF1LoiXgYq1A6gYzknQCURTgynNh1fhJOH3DOqtt2S5DaKCY2l0sTh+FSw5vg6RIsHlUnPblF7B5mBdZdsiNQiyjIZiyy2HtEyTR8pwCgGy3JRRA6ysQXWffA82wclzNkG6Jmx2MTKh5HmPreI6WoM5g38NYTwiAdpWGIiaxDD/mVTZhagSBo0GWmxYxgkydWF7DaGoF0Vi+cri6FqFqFiGw5fKZcSKC26+5AJJdhc3jaBRx0tU0VMF9jpbAJTHjOJqvGGvzvtfvWACsTmps38UGuY1CLxIEaisk4mkihFp/IxKTrxyMeJ26Qjm6txA18oIxynOyo2PPR5Y2xOp/h0yC2Ud3NHivPiwbgKXVoYdN1OgE84O7rb7Fem1TxTiO0pb+SIJg1U1WRQFza3dCEnqXwFcyaPidMEJsQYzTCmj3l4BqbuN0HtxQTnGOaAa8DQQ7Dtx/bbvbkxQZRigMI2IA2tLdbIIUCoMQ0iBvV7RWpWORHTKISSzxBwBYNnQ8Tl33OUJVIWh+He8UjGt3H5NBnUFYzlaaAjWt3rglJkWoKoRgVaiRaA0AFP7xRQx9+jUAwNCnX4NW67feG7RwKQY+9HzXXEAKQjTmfTR1A1qtH7o/FJeXHJ2AcVpPdJJ6hzLE2rfxx9PixPdaixEyQDQTdRUB1JX74TtQi1BVCJIsovZQHbQ6DaZOQDQTuj8cyTdn0QFRQTYjpMHmsWHL5TNRe7Aurv3RS99BoLwGdYd8CPvCHbruZBCdSMdOhjVCYVK21RkUNTrzuPl007onTXh3Bca/vdwyCmMnin3Zs0IJhSAJoCaNLLiwhRdNjxrKfDLWVhItKqgutd16GKIqwQgaCFWFEPZpkATg9dwx8Bum9X7sQrWkiqAmhVanI2gSlAQ0POgYFueBTUXaqnqtEWpd09zandZPryJZkU59nWVDx1u57dG5TzQ0H0DSNXE4nN4CN5RTnGxVhmKTsGzoeGsfNQn23zu7Xe0JkgjdH4p4k9jDVXao9V7CiHc5KvQVm69MI2GLkipBdcV7VuvqNDzhHoHqQ3UI+MI42s3qsWkyEzQRRMGqmUpNykR9IqGXoWpm1E9asQonvPlRnLBPLO39W/c2iEkw5MlXQHQdRlCD7tcaGUyp5pXoCTxHS5AdU8pJbKewnBEyrFDM2powgn4NOiEwDQK9Tofu162QWj1kwAjqlnFNdAPDFr0BUzNhBJkYWDTkNlpq7fnMUShdfwjVP9QgcCSYnItvJ7ETZ0kAfm8fapU1CREKn0FQpZsImhTXVe2AJABig7zlaD445QYgALaIKEW+h6bGPE7EpPhp2TY8ljaiUbgup31MeHcFNH/bS+hFlav1sIlQyEDYF4YksAgKk8Z/j6OiTUbIiDzr2XvRkGRHKyJCuvNe3tAwbqkvz9GShNekisB1VTzCCWDzt2g0QjTCyNRNmJGopugCA4fDiYcbyinOb+t2Iq0gDefs2WTt0/3Bdnk2Dy28mYn4EGYkiyoLwyaRMlBmKGyF1kaN46jojyCJEFUZissO2S7D5lGtB/eyoeNxyeFtmFu7Ex8d9uOnZdugdXMoyI3VO6ATAt2vY+OPp2HThdPrJw9BA6d9+QWmbd9ohY5/dc6ZsGc44trYfs0FGLboDej+7jUKUgVKCPbcelnESA5Dq9MTeha5sdw27lCGWGWMAFYzvT0K4lqdDp0Q1BkENboJkzJPS51B4NNNBCORFKGqkFVGytRMZjSHDEvlOOzTrDECAGd++xUAYPbRHZix82tUH6pDbWUgCVfeMaKT6WhesiQIkAQm6DU/uBvzg7vx27qd1ns6aSxYc/KylV3W356AKAogJrFC96P52/4YsR8+vttOvl22BLUAtGuhiSnZU2iE4qhmQlIl2Nwq7BEPshAJt2bq5TTiOYwI9lGKoxpBtipDIxSOBrn4DcOwge4PsW/p8xsKfjW8JoBFQURVwTnR9LhI6bBIms4Fh7bGHcPHd2KY6nX3h1g3tfHy150HN5R7AA1zmoY8+Uq72omqZSoueyNBL2qSiFgTK/sTG3YdPU+y25g6thJ5MIuCpXwdJfrQSoVV3Gg9QCZIRq1JRKLwSlEUICnxf+fRS98B0P6/d28j+j0wQ8wTaYQMhH1t94xw4nFIQlzESHvRdDNugSr6+1HNRJ1BUBdmIZtanc48CZG6udRkpdQAlr9s6kwR9aMRJ+K9fsfi9dwxcZ/z07JtKV1rM9aoA1hIYdAkTS7eRSNOOIxorVUAlqFlxszCutuA6on0a6DbUfNDTZvbOGPTl2ysEgqvIkUWrG1MX0SIjP863QqlZaWk2CJ3nUFgUoo0mXmUo9oIicSy2qI23ZXE2sGJ+hc0KR5Liw8fNilwyeHUvVd1NaJUXzYsKuwFAL9ThzR3GofTp+GGcg9AdanYcvlM63VTIcKtgZoEitMR5zGWHSpERWYhmJphCXhRQmBGSgFRk0AURaaKLYkI+zTIDhmqS0VNbffnKzaHHjLgL/fH5SJuuXwmvph6GjZdOB3fXHouBEmEEdIs9V+gY3/n3giNTLw0v4ZgVQiBIwHU1WmNHrJtDZvr62SrciMBvKjKdFuIeo9NyiaNQZOgRieRvF2gRifYWRtG4GjQynMMVYXgPxyAv9yPkC8MvU5DuCaMmh9qUF0dgqSKPSY3VacUfpOJFf1OHYLf24fibttQVlM98rf5aMSJ3d3NlCWqpBwtK2aEDITMxGJznNYjCWyLFb4UVamZM5rG1JjBq4pC/XPaJJGSiECxL2zllEdTJypqQlYqVNCkVkpCTyD2WdKwy7Gq99FnTEOn8q2+7xst9PVVxIjKvxD57hhBw8pt/6O21zouFRdJOJzuhBvKPYC0AjdIzFOivbU/hQY5x9GwamoSttKoSjBCWn0ZoEjeMgDL20o0Hf7yWkx4dwV0P/NM/bz8uw5eYecRnZBodTrCNWEr5I2YFFkjszH+7eU4/o0PrXI6RNPb/BlfTD2twyU/Up0NM8+KeCFZHmzYpyHs0xA0SdxDNhH8wds8qijAkWFv8v3WlmJiodbM+6cRiqDJxKyCkXDNOoNAEpg3iYnuadYWTUkIVAbhO1CLg74wTAqEQgb2tCOfsqth18lCzgEgQ5GQrcpYEN6D+4K7sdUXRjBSEiWW1ROLrBSS5khG+a5U5uOxJwFg98Upn62FHjJY5AGlcSV2Gi568UWwljFpY/VlpYOVITTCvIFRYzgaMZGpSmws+DWYmgl/0LAiKSRBsBbMGtKT7tGxtZ5j+60Rdp9rWJ4wlecnXYkoCZAiwrDEpNaCSsMSWnxMN41BaMpunM6DG8o9AN0fxvFvfGi9bo+3KRZTZw9XahLogSAzlCPlolhemg7/oUoEyirjziOEoLa0Cie8+RHWFk2BqZlWHmOqQiJ5XZIqghKKsC+Mt/LH4uBXB7Fv7Q9xx/oP++HbV2kJKZ3w5kdNthtrvAiSAN2vW/WYY3naMzJJV9J9fDH1NACRUK2QzjzKRwKoqQ2jNNi4tESq1eJMdbyKCM9Ad5PvS630PkWN4aDJftYZBIfDBqp0EyalljfpqGaioqwOhw7UQvPrVj5j2KfhUHE1Nh4JWG38tGxbynsTVVGwJslRT1lJQMf22rBVvzZoMi+cIAlxNelP37CuVfewirDZJ2qyTnh3BdYWTUG4VkNd2ECdQXBfAzX7WIX2nmRgdReqKDSqXEHa6dGN5tlrhEIL6AjXaNDDJhySaI3/aA7zd1Uh7AvocEgi8u0yMlUR2yPRX6mUi9xWYp8rsbnVWkTEr84gjYzl1rTZm59Xy4aOh2yXoaQxMVYjaFgLqQ3Hdyy9+W/C4bQWbij3AFo7UW6J2NqpZigMIxRmJX8iatdEM2HzOEB0wyoZAzDPs2RXEaqssQx234HauPJQqUy0DIJsZ+HlNTqx6lJHFX2jeYphn9YqRdKoYi4AFK1cA1M3Yc+wY+sV53XCFXQvUcVUUWJCP2GfZnkqYkWoYuEP2NbjkAQorqbrc8fWMm6OaLi13yTQKUXIMpxZOLbfJFZu4tFIVEqsUm7YF0ZZyMR9wd04qpnYWVc/DlL9/6mKgmUkx3qbgia1JtNbfWEENROiKrU5BNshCbgvuBvvDzwu2V3vdqL58VFvk6kTK4S/zog36PrZZRQ6lZT/PqQSkoBG+fFnb1vfrraiaRRsUYjAb5hWObT6qBHELWCmySIcqmSNj1Q2khN9rxJodAGo73vsOSalkfrJbfvc52gJvErvnQ4LkhCX3qPpJoIxz4OGRBcOUu37weF0Bx2L/+F0OhtmngUlrelJdFsgOlO3jpb3ESUxUkNZB+wKBEmAIInwl9daYTqmbkBx2kF0A6P+/rbV1nn7v01Kn5LJjl9fiLAvjLAvjKq91Qj4wnBnOUEJBSUEk9d8Gnf8tO0bAQDvDzwO5+3/Fkd2HkVGobdRvmhrmLZ9Iz4eexLO3rYeX047A85sB4599YOkXFd3Q6IiXhHvfKgqhBrdtIytKLdIg+Ne84ds60jLsEO2d3yMR41kk8LKYwRgvY4KMh3RzMjEWoZXMwGXAlMzUebXcKvvewBo5GVIhf9lU8ZZ1JucKDc+NkzzGbMYt0iDcUG2E1IbZ9JPGsVWe+8UjGukFNuTMTUTNo8KQRKwYeZZrBa3QaCKgvV9iCIJQreX/utpqKKA7IGepLQVNbhZhAjbJ8WUPYvqExwOG3BIIrJVCSalEE2K0qCR0kby/EjExpKMUdjqC1vXmqlK1neuqT7HjvV+dgFpctuN3pZSiHoq7w88Ds5sB2SHDFFkpaFqdKZfURKIT0W5QSi0InQ48VDKVK9TldTtWc+n9y6h9RLqygNw5TYdltkWmNdYZyrQOvMk6/4wKxOgM/EWzcdyeO3pTigum3WuEUr9PEWimXDluuHMcsAzwI28kVlwZNhx2pdfIFwT3/8PC4+3vMk2D7vOCw5thb880OZJdJSzt63Hp5MmY9KKVZaR3HCi2dNYNX4SxEhOu6kRhHxh1NSGMfvoDqv0TpTYh2uqTcJSGUEUMWzRGx1uxxfxAgL1nqcosb9rhMIjS0iTBWg6Kw8VqgqhLNQzDKAcm2R9v1RRwON64gluou+gRigOlNUh1I7yW8/REjziGt6rjGSARSxJqsRSSCL1ea+r2oGrK7fHHfeP7NFQRQH5dpmP7zZgUiB4JDnl1OoMGlkYql/8Cpr1USMaYUaQKgoodCpwRBSv/YaJ/cG26290JfODu5Fvl5Emi3jGLIZXEeFVRNhFIeH3LVGe8nO0BHUGaXde8g1CIZZktC1suycgSCJESYTskKH5NZiUhaknqo0eXXTkY5zDYfRYQ3nhwoUQBAG33XabtY9Sivnz56Nfv35wOBw4/fTTsW1bzy4NcPqGdfCX13a4neI7roQeCEKrDUDzBWGEDOj+MDOO63SWm2xSaH4NqkuxcpapSaDVBlBTXI7Pf3Rqh/vR2ahuF8a9/D6KVq7B5DWfYspnawGgkfF7bsk3Vn3Y2FrA5+zZhKq91S1+zrozp+L5zMYPVEEUsHpiUaOyWT0VI2RYHmVREuA7UNvkJEQSuIHcHoyQge+vu6hDbdxtG2qVgQrGeJWjMOVdAQ5JgF0UkKmKlrBXbU0YO4+GcERrnG+eangV0cqZfo6WJJzoNSTWu/QcLcEev2alXrSHF7JGt/vcVOOdgnGQVBGyXY6UjhGb/NtceWQ7flu3MyVK//UkgiZBKNTxsfWwcziORlKHomMcgKVsH8s4j82KKKkzKL6pSe3KFFEGOmTMqmDPlz9qe/FHba8V3dLw2RJrzMW+d09gV4eUrnvj91uUmD6DETRwxqYvMfvoDsxvIjeZP8M5nHh6pKG8fv16LFmyBMcdF58v9uijj+KJJ57AokWLsH79euTn52PatGmore24odmd6HUaiu+4skNtEF0H0QwYQR16yICpmTBChlXyh/3O8nhZqaio4JeJUGUN/IcDlsGUqkh2xRIqa0hzE+OGYeS0CaGVqKjVitETULRyDWYf3YG7bfVquHcoQ6wazT0lf7slosqqpk5Qd9iPgK/pCVc/uwKAP2jbihbQLa99e7jbNjQutNqk8Xl90d9VUYAiCMixyXFh2Uc1EyUBrVH5lVQjv5mUiOa+cw09zh0RJxvkVBp5WnsyUQNLiHxJhKYSQgHcLBa2WSSJw1BEscMLzTqlVgm06FhlY73+f8aEw0RrccikLAy7p4TLN0znaS/tDR12NPP974m8kjMG1KSWeFystkpDbhAKm8wH5zBMQlN243QePc5QrqurwxVXXIG//e1vyMjIsPZTSvHUU0/hnnvuwUUXXYRx48bhxRdfRCAQwCuvvNKNPU4OQgcm0rFQwsrAmBqBqRFmNPL6xu4AAMOQSURBVOskogxdLxoWW0YqcCSIKZ+ttYzAVGbw4//ocBtN1biUVAlri6bAM6A+36zQqWCRdyQWp4+yJuSx9TJ7Mh8WHh/zXTEhO2RUhJuecPGHbPvQCEU4kvKQiI0/ntbs+QvCexJOmAH2P3FIzHvsivyM7lNFAaoooCSgw6RolXe2O5kf3N3txnzU29Vb0Ej9JFp1KTi6q6rJY58lJUiT+SBvKyaFlSOaiH/njW1VO4ogWKJdsQJh0WApVYyOdwGSwMZ2mixaJdN6wgJmsp4hxf72hZk/aaT2PbCtBE1iKaWLotBsKbznaAkcSZpncji9iR43Km6++Wacd955OPvss+P2FxcXo6ysDNOnT7f22Ww2TJ06FV980XT5j3A4DJ/PF7elEtE82vbU942FeY01ZvjoJkzdhObXoNfpMIKshnC4JgxTZ3nL1CQQJBFabaDD5ai6CkeWNynt+A/7E+63eVScuu5zSyEbYGFac2q+x43VvS9c69ySb+DTTYSqQjBCBo7uqmo2LC1TlaxyPKlCqo9vIOLpjdEDaIipN+8Netg5HEDjSWbUeJaE+nxGh1SvDu2QBGt/qhvJALDIOxJ5tuToTz6WNiIp7fR0NEIRrtVANBYxcs6eTU0eu2L0BGQ6lC7sXcv0hPGdqUrIGpXV5HNlX6DlZ/uDjmGN1LOjwl0szYLtY8rX1BrX0WN6gpEMIGmGWuyiYV+mzmClwnS/hrBPQ/W+5seHpx0iaBxOb6dHjYrXXnsNX3/9NRYuXNjovbKyMgBAXl5e3P68vDzrvUQsXLgQXq/X2gYOHJjcTneQaB6tZ3BBh9oxQho0v255D6hJQSyPsomwLww9xEpEUUKZOrZmQG9FqaRUQfE4k9JOU4rezXn1m1up7am8klOf52VqZotK5w5JQIaSnFJmySLVxzcAODMdSOufg9IHrk/4/snLVjZ7/j2BXZbyc5T60Exq1RfVSL0SdpSjGukxaq91BmkkINdeDodTPx+7s1mcPgpBk+KCQ1sjIl7N3+unbd/YpFe0u+gJ4/uUTAdIM6HPc2tb/k5LgoBQpE54VG8AqB/f0Zq4UsTrzOqgUxwMpbaAV0OSteDc8D7XVwlaFSsIglWhFoUI+d+taSh46HVfpccYyvv378ett96Kf/7zn7Db7U0eJzRYSaSUNtoXy7x581BTU2Nt+/fvT1qfk0Xu8YOQfcufcPChG9t1/vfXXQTdr4FoJsSI28nUmFdZ92vQIl5l3c9EvQCmIO07UIODG5teZOhMal+a3+ZznLkZLR/UAaI1pBNhamavM5ZNSjGr4jucf3ALTI3grfzmQwQzVLlRWaHupieM7/RjPOh//19hdlBZPjYsmU2mYXmb6gxWOipaa7nOICgNGt0aLt/WWrxN1exuD00pZfc1ooYJu/83//1bMXoCjGBqLTD0hPF9waGtqNpbDXuGHevOnNquNryKiKBJLCOZqdozj3GNTnBEM+Az6svDHdVMVOkmjmpmj/EmJ5NkLaj1dO7y78LsoztaNb45HE5ieoyhvHHjRpSXl2PChAmQZRmyLGPNmjV45plnIMuy5Ulu6D0uLy9v5GWOxWazwePxxG2phuxiCwPtzVMeueQ/ICZNKNRCTMqMaJNCq9Mtr3PU0zxj59cd6nt7oe0QDvPOfqgTetI6ztj0ZcpNIjvKlUeYaNE7BeNACYEiNv/9a29Zrc6kJ4zvqMBKU0J0bSHWIxD1OkU9yRphQkChSAmZ6HvdRV+cwKcSsd67libRn06aDMXV8VrfyaYnjG+APWdtHhu8A9rXP6ZYL8KrSNakLTq+Q6Tek1wXYywD6Pac/p5GNI2lNxCbXqITAmLSZtXAuVAfh5OY1JvZNsFZZ52FLVu2YPPmzdY2ceJEXHHFFdi8eTOGDBmC/Px8rFhRn0+raRrWrFmDyZN7tqev372LATDj8cD917a7nWitTFEUIKkSiElBTWoZ4JIqwojU0dTrtG41/DzXPAgACC1/vtv60FbO/PYrLPKO7O5uJIX3B9Yryl9waCtMjSCtX1rCY6O1J5MlONdXGfz4P5oMv26JqIgPwMohRUtBRQ3n6M+osE9UIbs1YZ+c3knsverckm8gO+QmhaVO+5LpfLSUfsFJzNnb1mPCuys6VDkiQ5HgksTI+K7XGNAIhYj6BbGgSeAzWKk4Ttu4J5C8qJXuJhjzXasIm9B0s9mF0aDZuMwYJ5buD69ubqP8X9dp9JiZrdvtxrhx4+I2l8uFrKwsjBs3zqqpvGDBArz11lvYunUrrr76ajidTsyaNau7u58U+t272Crb1Ba2XnEeJEUEMSlMjYDE3AyFSH09oL4sUjhSc9FMgZIS9umzu7sLFg3Le6wtmtKolvKcmu+7skudQjSEPHZ1nZrECttvyHO0BDk2CVorRGk4zROtX95WosrWsaq4sYI2LFQzKvZDuKepD/N85ig84R4RZ0jdIBSy50OC2dbqiUVYedzJTY5/TusZ9/L77TpPFZlhHM1HjqZURMe0TqN5ymYkP5kbPX2ZqDc5mt5yXdUOmLRpsbQlGaOQJos4kgJzPg4n1egxhnJruPPOO3HbbbfhpptuwsSJE1FaWorly5fD7XZ3d9c6zOFH/w8A4B3Wv83nyhGlUmoSmLoJarISUQ3Dmy2hL8K8zHo7Syz0VqZ8tjbu9anrPsfso71L7frDwuOh1emoCxtxq+vRElGJWD2xCHa7jAoukNRuNl88AwBQMO/Zdp3viXiZojWUo3nJUcMnahSZFFZZKD6R7ns84hqOOoP932Nzvp+jJSCamXAiLUoCbB4bglWhLusnJx6vIiFoUoRIfcpERdiwdAcqwqa1GAbAWjTj9D0edAxjZd8Qn94SXUCN8jt1CABgvmMYVFHA/qDeI6ofcDhdTWpJWLaR1atXx70WBAHz58/H/Pnzu6U/nYmosH9Ve/JwR/39bWy94jwrNFaQBBAzUjtZkUBJ4xAtUzctw5nTdxAkMeH3gUQmXUsyRjUqEaXYZSDbiYqKQJf0sTdywpsfdeh8VgYqNic5OjESANR7k/vZZYQIbTRp4vQNWOQBUKUnGOMJ7vcfjTgRziwHiEkQ8IW7ooucBNSXeAN0SqEIAvxNhMoyA1ngUSN9FJ2yKgcNBQsbVkaIVjvwyCJUUcBRzcQNQiHXjmgCSsHVpfsoPdpQ7kvk3P5kh84XI0ay6lKs3GNRZcIgRDMhSAKoSWFqJiRVQuBIkIfa9VG0Oh0/L/8ufh+hCBwJWkbyKzlj4LXLMA0CURBwMKijhIdedxuqKMAuCvAqLAQ7Gl6dJguo0esf7g5JRFrkrs9rjfY9VJHV1Z7fQJ3+BqEQZ+Q4rYn0+wOPgzPbAcUuw1/OFsD2BXjESHfBykKx8nsOScARjeUgJxrD0agSTt/jbtvQJsPugybF/mD9M/ph53CkySI0QlHs1/EsKenCnnI4PYdeFXrNaRpRZfVtmaCXCEmVICn1HubYnyQSms09yn2L9wceBxqJNGhI0CQoi1HGVUUBmm4iaBLsrA1jj1/jK9HdiDcyluvzk5moV3TSLAlAP7sMVRSs8FpeM7Nv8YR7hBWOm6g011GNWEr3kipZwo51dRqKK4O41dfz9Rd6KrMqvoMqCjiiGZEcZWqViWpIbFoFvyf3HX5vH9rIaxzlBqEQB0M6jkbSp24QCuE3CUoCGqp0E/uDepvL9XE4fQXuUe4jCKJo5SpH0fwajFAI1KQI+8KweWwQJAFG0IARMnDOnk3d1FtOV/NW/lgooggCtmDyTsE4XHBoq/X+55VBPEdL8LRnpKWmnOdWEfTrXDk5BVBFAZmqBK/CFsTsIgutZaVjRCsM0yEJEXVsMa48EKd384hreMSbzBZHxnlsce/HGlSv545Bmk2GbJfhCzSOLuF0D5IA5NnYYpffFJAmi5bhEyWqiF2jk0ZGMg+r7b3cLg9uNi/9OVrS6P8f9TwHTcq/F62EpnTodSr3rWfDDeVezqGFN8MMaSz0OuJJIooJSTUBf/1x0fzlqNHMy4D0Xh50DINDEvHbOmbgLskYhRwbM7BESwE93tsYLT0UNAkGOVUETYqS6jAXjEkBPh57kmUARw0hSYiGa4qwiyxv0atIVkgmN5J7L1HPUHTye4NQiIExi6QNFdFjecQ1HOO8dgBA9ZEAN5JTjOhiR1OhgFEhv0RwY6j30HCMR3UpWhMEGD1XI9xA5nBaAzeUezkF855F+eO3QveHQHQdgiiCmARCyLDylk3dhOpiEynNr3MjuRezyDsSOTYZabKAR1zDMcipwKuwPKVI9C4ESYQgxT9xnzSYGqZJgbQMO0oP1vWKUlg9nXVnToUoCXC4VHipZoVTp8mi5TGo0QnSZAkqT7Tp9dyhMCXbNFm0JsT5dhkhQqCKUou5qyZlwn0X7N/SyT3ltJU0WYzUukWjca6KArJVCQRAWcjgBlAvpWF49A1CobVAGqt6Hn0v9nsQ9SpzOJy2wadOfQBKCGS7ClFRIEgSREmEKAmQFBGCJMblIkeFvji9j8Xpo7A/qKMkoGGPX8ewNDUudC+qbC1IQpNCbvcEdiFYHeZGcgqhuBTIdhkOVYLqVKA6FdglEV5FjPE0IzKZgpWHyuldzHcMQzBS8i+2RjLQuDSMJDDvcUPuCeziUSIpitcuR9Tt60u8RSN90mQRabLIJ3S9mKaM3KBJGxnJTdHQcOa0DUJoym6czoPfV/sAstMOya5CkESYoTB0f5iJdUUGl+pSIKoSFJcCJU1poTVOTyVTFeGQWCkIRRCw1RdG0GQ5SgBQo5tM6E2RQEyKF7JGJ2xnd52WcD+n6ylauQbObCdceU54Brgh21luqeyQ4XCpyFBl5NtlZKpSJIeZ3/J7K/ODu5FnaxwkVhE24JJEq0RYfXh+4sWwmgSlozjdjyPDDockWPdsn0Gse3e0dFSOTeYGEKdF+HeEw2k9fNbUR5DtKgDA1AyrRrIRNCBKAmS7DElhStgzdn7dzT3lJJtHXMPxQtZolIVYSRFFYJ4Ie6RUjEZopGyQaCmfy46mszKiqsmc1EB2yLB7bFDTVMgOGZIqWqkUgiTA5ZDhcshQnYrlgeL0Lm4WCwEABIjzNAL14zWatx6rinu7PLhRW3wxJTWxeWzWYodOKYImiYsciNZa5vRNWntr50Yyh9M2+BOxDyA7bBBVGdQkILoBUzNBTQJBEqC4FIiRclECn0T3Su7y78LVlduxvTZslRWJ5jRV6SZMCoiCADWimGzqJqTI74loSgjqoxEndkr/Oc1DNJMZyIpoLXjJDhmCJMDmsUF2yBBVCapLgcOldnd3OUmgYRjms4TlHx7VTKiiEBeGGTWeouG50RIyklCvPRALrwqYmihpSpwxHBtOH62pzEu+cWJJFK7N85TbD6U0ZTdO58EN5T6AFPEmE1231K01v47KHUdRtHINpny2FpPXfApHhh2bLpzenV3ltMC6M6e26ri7bUMBsNqKsZgUVs5qmizCFfk+hEzCDCpJgGKPeCUTTLre63dsk5/JoxG6B0e2E6rbDkESoaapsGcw1WKbx4azt63HtO0bYfPYYPPY4Mp1dnNvOckgUekfgHmDmaFcP3GSBAEEiIg+xZYIS8wlh7d1Qo85yUASBEvAy6RsgeQ5WgJJEFBnEGSqTS9wclKDzjJUW7vAxT3KHE7b4IZyH0CUFVCTQFQUjPr72zjhzY8gqRKkBjK4sl2GrUF9TU5qMXTmCfh47EktHhcV6fpDaE/cflZnU7ByFaPiMBqhECUB9nQ7BEmwFlQacv5BroabaqT1z7EU7CetWIWTl62EpEhQ7PXh86dvWAfZIUNN4x7lVGeRd2SjfYnUbmOJ2r12UYS9gUeZhVyzfFavIsEhiVa97YasLZrSka5zOhEjaOCSw9swp+Z7ZCjxCubPmMW4J7ALDm4o9whaYyxHj+mIYc2NYg6n43BDuS8QMZQHP/4Pa9ekFatwbsk3cYeJkgjJzsW8Uhn3qBE4/tc/worRE5o85m7bUOTbZStvEQCecI/AUJcKuyggTRbgVURkqmyLqqjaPDbYvGyhxAgaqAibjdpu7nM53YMjJx2CJGLCuyusfVM+W4spn62NO27SilVW7jIndfnp3NNxg1AYN0GOnfDeIBRiqEtNOIE+HDbgMwgcEgvDzbFJ0AiFSxIx2KVAFQXkF6TB3sRCGF9ISV0mr/nU+v2ewC48S0oaHaOmKfh00uQu7BWnrfz2llMANG8ANzX2W0IS0GJUAQ+9bicUoISm7sajrzsNbij3EXLveLrFY4hJIKm8tHYqI8gK0gYPwrDzxuDgQzcm9C6fPTILs38zFZIgWCHYGqFQRcHyKEe9StEyI95MOyRFQrgmDJvHBt2v4VZf4xJQ07Zv7PRr5LSNrDmPQXY5WnWsyD1OKY8gibj16uPwyzOOSVjCSRUFjMtm/+/opDeaJhE1kKP5yNH30mQRXrsMm1tFXUUA+wM65tbubNS2qTVeHOP0HIhJIfA85ZRnzqyxyLFJCcf3DUIhJAH49blDrQWz1hi30Wf50RbGMPcyczhtg1tFfQDB1rpJNAAr5Hb7NRdg9NJ3OqtLnHZiP+c6BN9+EgVnMq/B0Oo6rJ5YhM+/O4ITshz4riqEX9wzDdU79yPPJlvheYNdCirCJtJkEZmqBEkWITtk5ETUzyVFgj3DjsCRAAAkDL1eWzQFp677vMuuldN6Cv/4YquOkxQR++Zdg0ELl3ZyjzjtRZBE5IwfjoIiGwZMPozH0kZgj7++JNspmQ4MmT4UJ/37O6yvClkT63y7DI1QeCKLYZLA8pI9qgRJYBEjapoC1aWgsCqU8LNjvZacnonEF8NSHke2G9fcOAnh6rpGRnCOTcLUoZn4+4d7cOGQDLy9t6pVbTKhN6ZTUKMTbhBzOEmCG8q9iP33zsbAh55vtN9x/s2tOn/cy+9j95xLAQDpIwYmtW+cJCJKbCMm8k4aA09hPsYRAklRMNXjRKiyBt++vxsnH+NBcZkfi7wjccqUAcCGQwiaFJLMlJElRYIJM64UlKRKCBwJQrY3vjXwCVjvQFRlVC76LY58uwcjl/ynu7vDaYAoiVBcDihpLjjzdVw0+0To/hAEUYQtww1RFLF3xQ6c8csTsecvX8KkFAMdSqS+rmGpH0e9zFHvsigJ8O2vhSvPySMLUpRV4yfhjE1ftvt8vU63fv9y2hmYtGJVMrrFSTKS3QZJkSFIEn41Ywj8h/2gEWEBe4YdvgO1GO22IRizQNYSDonpExwOG53V7T4NBUAIj2/ui/DQ615E9sRxHW5DsrMc1YJ5z3a4LU7y0Na9af0UPVkQ7C5AViHY7HDkZMKe5UWgvAolH3wJzRdATn4anFlOlpNol2Hz2hCMPIg1nZUHi9bbVV0KRFWCzaNaRvPZ29Y36kPU27T9mgu66Ko5DXnCPSLhft/S+1p1vj3DBdXtRNacx7iRnEIcfOhG7Jt3DQBAdbsgO+0QHC4oLgfS+ufAPTAPlBAc/nofAKCkuBqCJOHMYZmo0ZnasUMS4JKY7kCazLQIAOZlqtGZqr0z24FQVYjnqqco2/ZWd+j88w9ugc1jw0cjToTNw/PNU4mS3/0SAGBLd0O2q5BddkiKjIzBmcgelQV7hh1hXxhGyMDbe6twRDPiap43hyqysZ9jk3l5Nw4nyXBDuRch9x+KPbdeFrcvamC1FtXNysdULvotyh+/NWl947Qfbe1rAAD9y7chiBJElxuCzQ5BjWwOF0TVDj0QQun6Q/jiz5/i+OumYuSlJ6Mgy4HcQi+qS2rgVSI5ixHFW0mVQE1q1dgVJRF6nQ5XXvMlhHhIfvfhaEKEyXPNg606f9iiN6B6XACAQwtbF2nC6XwUlx2iKqP88Vshu+wQZBWCrEB2OqC6XbBlpCHsC2PrxkMo/XIvVJEp039ZXI1TMh1QRSFS9k1A/wwHHJIIkwIj0+2WeJ89w24thNk8Nnz+o1Pb3M9vLj032ZfOiWF4nqvDbahpCmbs/BonvPlREnrESQYVT94OahIcfOhGKC47JLsKSZEh2VXILgccWWmweWz47w81WP1tOQBg6tBMDBiRlbC9HJtkRYxE06vUGG/yien2zr8oDqePwEOvexHKSRdA+8vf4/bRcAjGxvchTzivVW04czMAAKIkIasVAmCcziXw+kLI/QZDtLtAtRAgMkOJhlmOIdVCEJweCKodeUUnIGPEQJSu+QaiJEF02NBvQj5MzUTYpyEtw44MlwpfaS08A7yQHTIkRYLskCHbZYiqBGISePLcAIBdN16C4Yv/3W3XzmnMjGtO7ND5VYvvQsaNj6D4jiuT1CNOR9hy+UxkjOhvLVBSQmCGNIiKDMgqiKFD8TihiiIGnXE8jjl7PA6s+QbnXzmVKZ0XfMvGriQgeLAW/R2sBvoxI7Og+TUYIQPZkoCsUVlwZNih2GV4Brhxwpsf4Q5lCKYAOHD/tRjwwN9a1d/j3/iwE/8anLNe/UOHzn+v37FxJfx4+HX3El2MDFfXgZomZLuKcHUddH8QAODIzQA1TTjzsyAqMm6/1o3q4irs2XwYzmwH/vPFASv3OBaNUIzz2FBnEGiE4mDIgEkpRqSpGO1W8fPy77DIOxJzapgg58rjTsaZ337VpdfeG6Gku3vA6Q64R7mX0TC32Hb6FRBsrV9dzLjxEQBMUObwo/+X1L5x2kZ49csQ3ekQ7E4IisK8x6LEfkoSaMAHyCrzMMsKILNQu8CRABSPE7b+g6C62f/ee4wXsl1G3cE6ZI/IhBEyoNhliKoIQRIgO2TYs7xQ01Qc++oHAMCN5BTEVZDYw9BaouN78OP/wODH/4GKJ29PRrc47cSRlQZRkUEJYV5lRa4X0iMmiGZAcrkhujxQPE4obidqfvBBVGXI6Znof3IBqo8EkNYvDV5FYqr2EWE+UyPQ6nQoLhWqS4EgCghWhaxcyDqDzfpaayQDwI5fX5jsPwEnBqIlFllrLQ3r3E9asQqbLpzeoTY57cc7ZACcuRmgJoGoKhAkEdRk4071uFCzpxSqxwXV44z8dOHorqMYc9pAOLMdyFAkeCM1s9UYNfOoJkGOTUKIUJyS6UB/hwyTUhzVWPtbfWEAwOqJRdxI5nA6APco9zIkpfG/1KytRlulW9KvW5CcDnHajWCzMyNYtTMjOBwCRAk0FIBZUwnt8CHYjxkK0ekBIQQCIZCddti8NigFhTj00SfIPm4ojm4rRqDSj8qDdbBLIvzlfuQemwuimXAP8EKrDcGe7kTg0FFkDmOG2O45l2LYoje6+S/AaYg9y5vU9hKpm3O6hvDKl9D/nKnw790LohmghDCj2SQIVlRBqKyBIycToieyOEJMUF2H74APACB6spDWPwujzhZQ8d0RpA/y4FBxNcK+MBwZdthOyAUA1B6qgz3DgbAvjLwT+mHo069hy+UzccNFI9vc51F/fztZl89JgFp0cVLb23PrZRj/9vKktslpPbaxJwORkoqiyIxkUzcQqqxF1e4K2Dwq7Fke2LO87B5gEhyp0zAs1w1BEjFxgBu7DvthFwUcDNWLdEXro6uigJOynZBUCUIkBvvKnV/H9eH0Deu67oI5nF4InyX1MjzjxlqiEVFITWWrzq148nZUPHk7qpfcbe2rXPTbpPaP0wFECVQLQd+3E6S2CorHA9GdAUFRAJmJ80hZBcg+bjAEhytyigRBYoq3mXkuOLMdcOW64Mp1w55hByUEQiTf0ZGbbnmRW1uXl9O1eGc/hO+vuyhun7Hx/Vade+D+a3H40f/DkWd+Y+3LvuVPSe0fpw0QE2JaOmS7DaIqQ3W7IKkKwtW1cOZlQ1IVpkVgs1tK94LDxXKNc/rjwFvvgug6wj4N9gw7BFFA3iAvHNlOEJMwBfvKIOweprCr2GWICrtPHPvqBzi6q3VlZzhdS9Xiu9p13ndX/RjfXHouvrvqx9a+QLkP+++dnayucdqAsfF9NmYVBYrLDltGGkSVOTJUjwPObAfSBmRDttsgiCIESYRkVzFgoAcA4C+vhepSIAkCMiMq9Sdl2HFiuh2SICA7TYUkCKgI6NACOowgixLjdBKUgqbwxuk8uKHcy7Cfcx2yxg62Xh986EaYVeUtnle95G4WHqTI0P1BS0U3a85jndZXTtOEPlgMEBMAIKalQ5AVmFXloMSEUjgKyqARkLLyAQBUj5QEMTTA0OAddgwAIPfkYwFEVHTtMgadVoixv5iEjCHpoCYL9bRneSFKIkRFxuDH/2F9fmvr8nK6nvxJY+Jet2Z87793NgY88DeIioy60iNxxjKn6wm8vpAtUikK7IMK4Ro0AMQ0YYTCLF/RmwV74VAIdheESEoFRAmi3QlXnguiOx3Zxw2D6nbBe0wG8o7vj4GnDUPhWSMw4JSB8AzKheKyI3NYNmweGyS7ijEvvRs3xnk4Zj1fTjuju7tgYR84EF+dc6b12tz6SdzidVNIdgWuXDcku2KJrh376geQ7Fz9uqsJ/OtRGIf3geoaIErILjoJAFC9cz8ESYSnsADpIwbCkeWB6nVDrw1AkET0u3cx8o7NxZHvK3DM2eNx6EAtRg32QiMUJ2XYYVJg9KgsuL02trgdMaArwgbO2/9t3Jj+6fDMbrl2Dqe30WMM5YULF+Kkk06C2+1Gbm4uLrzwQnz//fdxx1BKMX/+fPTr1w8OhwOnn346tm3b1k097j7EmPDrjBPGgehN19UL/OtRACzU2p7lhepxwZbuBiXxqgXB93i5qK6EaiHQoB+kphI0WAsQk3mXRAmI/G+ooYMaGqgWAqkqh33mjYCs4vCXWyCqdsDQYcv0wpGbDtXjhCCJCFb6YM/ywtU/B46cDCtUf8iTr3Tn5XLagBEMx+8QW06sGPjQ86hafBd0fwjewgIIoogD919rvd+aiTgnicgKaIiNb+JnodSUEDhyMqDkD4QgKxBEEdTQIcgKiK8SjvNvhmBzIHt0PqjfB83nBwAYIQ2KywHDH0TV94fgHdof/rJKOHIyYEt3w5Gbzsd3C0xasSp1qjwQE4NnHG+9DEdCdxNR9/KDllE8csl/EKysw8gl/0FagdcqN9bv3sWd219OI8xgANTQQQK1EOwuGJVlMIIa0kcMhOJkqteq2wlbuhuCwwX/oUoruseW4UL2yBwAgEMSsKO4BpmqBJMC447LhZqmQq/TYfOoUNMU5DgVzD66o1EfZjQIweZwOO2jxxjKa9aswc0334z//e9/WLFiBQzDwPTp0+H3+61jHn30UTzxxBNYtGgR1q9fj/z8fEybNg21tbVd0sfA6wu75HNaQhAl1L40HwDgOL/5EjCiy2397rnmQbivmg/PNQ9CVGT4X30IABB855kW2+EkFxL0s0myzQHB6bVCLykxmREdDkFQWQimMulCZiSD/T+paYJoIeh1fmZcSyIL7RJF2NLTYEtPgzM3A/3v/ysGPvQ8xrz0bsI+pMzEkROHEQjFhWeaFaVNHhtbHi7jxkfQ797FlqCXK79eGIxrEnQTsgopIxeQVbgGDYDkzYKg2q2FSsmbBXnCeXBccAsAQD31MmQfNwyCzYHSz75jC2CiCN0fhCMnA7njB0OQRGSNHYz+9/8Vssse50XmNE1uqlR5ECXYs7zYe/ssAEDdD6UwNT3hoUpBIfr/qD7CJCrEGDzSNXMeTmLcV81HqPSgtditDhmLjDFDIYgiFJcdRDeguBxQszIhyAr63/9X61xHTkZkUbsGGqEY5FaR41SQY5NQ80MNZLsMm1fFGZu+hOJScd7+b7vxSvsWhNCU3TidR48xlJctW4arr74aY8eOxfHHH4+lS5di37592LiRrbZSSvHUU0/hnnvuwUUXXYRx48bhxRdfRCAQwCuvNL2aHg6H4fP54rb24vz5vHafm0yqdpQgWF6ff1a2bmuTx0pZBQn3u6+aD0FWUfHk7dYkjdN1uC6/F/ZzroNZeQik6jBoyM8Ur0UJ1DQhKCpoiBnTsahTLkXBGacAABMH0XU4+xcgrT9boTb8ITiyvK0yjFyRc3oyyRzfALD9mguS1LP2U75pDw6tq4+UWfO715rMa5Tzjkm4P2vOY5Bddhx86MZO6SOneZwX3wHHBbcgvL8YpK4aNOivF+0zNABA6Ic9EOyNa5rbjhnGfnpssGd5kTVuMGzpbsgOFWZIg6QoltEn9nKxtmSP71QgfLAUh7/6zlosyb3jaav2eUOUY0bBWZDXaP+4l9/HoIVLO7WfnObJuPERmFXl0KqqEdrxDcxgALYMJtJlhDRWIsrQWdnHGJy5GfAUFkBSZKSn26GmKcgelQVVkbCnKoSwL4xpkSgDRwavl8zpfB5++GFMnjwZTqcT6enpCY8RBKHR9txzz8Uds2XLFkydOhUOhwP9+/fHgw8+2Ci/es2aNZgwYQLsdjuGDBnSqI3uoMc+RWtqagAAmZksD6O4uBhlZWWYPr2+FILNZsPUqVPxxRdfNNnOwoUL4fV6rW3gwIFNHtsavph6WofOTwaugiwc+XYvvr/uImy6cDpK15c2OSEOfb+50b6oNxqiCGfE66StfQ3a51wFucsRJRZiHambDFG0JtKiOx2ktrrRKXLeIAiyAjU9jZWVUlSoHhccuRlQPU7Lo3jkmd80ayi5Lr836ZfT1SR7fAeOBJPUs/Yz4vorMOald/HVOWfirfyxOLfkG+xb9U3CY6nYtLhL1fYfIEfyF6uX3F0/7jldhhEMW2kVkFXmTTZ0iA4XjGAYNBRIeB4NBzHgjBNBNAOy3QZXQRZMzUC4uhZqepp1nO7vWLmhVCfZ4zsVcAwZDgAo21iKRV6mTP7BHYmfvVSU4fzZnQnf2zfvGpQ+cH3ndJLTKvTqaiamGRHxElW7pXBdu78c/oPlcFwYX6Kvctte7F/zHRSXA0OnD0PmsEyYmom8Y3Mwsl8a0o+pr3wQ9oXxem68ZgWHk2w0TcPPfvYz3Hhj8wvrS5cuxaFDh6ztl7+sFxb2+XyYNm0a+vXrh/Xr1+PPf/4zHn/8cTzxxBPWMcXFxZg5cyZOPfVUbNq0CXfffTduueUWvPnmm4k+rsvokRJ5lFLMnTsXP/rRjzBu3DgAQFlZGQAgLy9+dTUvLw8//PBDk23NmzcPc+fOtV77fL4OPWzH3/7Tdp+bLNw/mo4RM68A+WEbPp/zJ7gLWKhtLHp5CZTcQrivmt/4/Mg+58V3WPvUUy9DePXLndltTgJoOAQaMYypoUG0uwBZhVG2D3K/QiiTLmx8ksjWv6SsAhgVpZDc6VAz0lGxaSfyi8ZZh1Xv3N/rS0Ale3wboabz/bsK41Ax6PLnkTUyF/7DfjzoYB7G42OOCddWQwz5IGn+xI0AcR6nutIKbHnxK0wxCTzXPNhZXec0wJ7lBQn64yJ7BNUOs6aShWaeelmjc2xnXoXw6pchudIQqqyBa0ABgocrYPhD8B2owUAvW9w8tPBmCGKPXQtvFcke36mA7exrUJhVgMHpuThFVvBC1mhcXbkdwfeebZQCJehNL9wl8igHXl+YMpFvfYFwVS10fwiewQWQbDYINjtkmx3O3BCClTXIuf3JRucMffo17L19FgSJOSoEScSR7w6j9lAd9h32Y0hGfXRB7cE6/Lz8u668pD4NTeUQ507s2gMPPAAAeOGFF5o9Lj09Hfn5+Qnfe/nllxEKhfDCCy/AZrNh3Lhx2LlzJ5544gnMnTvX8kAPGjQITz31FABg9OjR2LBhAx5//HFcfHFyS+e1hR75FJ0zZw6+/fZbvPrqq43eEwQh7jWltNG+WGw2GzweT9zWERquDnYH0pjToa17H8LQCRh6zhiMuWYG1KxMVDzJ+mYc2AYqqyB7vrLykJtDW/saAMB2+hUAALLz887rPCcOwWYH1XWQoJ+JeIkSJG8WpJz+LFQzAVQLQRAlhPcXQ7Q7WQ4kgLyTx6B6537ruL5QAirZ43vSilVJ6ln7cV1+L2jAh4EPLsKoSyfizv/OgyoKVsSHduQAiGKHoDUOzU9E5aLfIn3EQAyZPrSzu85pQKCsEoLM0igEWYHocAHEhHG0AvYR45o8j/gqoQ4ZB9lug5SVD8XlQO6pJ2P01TMscTfDH4Liajo0szconyd7fKcK1NCAsB/E5sYvvv0PAJavDgD64WKEgsHIcS2P71ihPm4kdy2UENgy0hCurgWJRoaJEmy52fAO7d/kee5BedD9QRDdgKewAAUTC5E5PBOnX3kCVHe9oezMbvoZvunC6U2+1xp6w/2hr6FpWqNUlHA43PKJSWLOnDnIzs7GSSedhOeeew4kRhR43bp1mDp1Kmw2m7VvxowZOHjwIEpKSqxjYqOCo8ds2LABut7yva6zaJeh/Ktf/SqhQJbf78evfvWrDneqOf7v//4P77zzDlatWoUBAwZY+6OrGFHPcpTy8vJGXua+gPNnd+Lw4keQN+NsAMC+Dz+De+QIGBvfB5XtzOiipNnw2qjSdSOvhmxLcDSnMzBrq5l4lxaKGMsmBEWBnNsfykmJ82XVKZcCsgL7MUMhujMAWYGU0x/OE3+EvHNnILzyJQAtl4Diobipi+PC2yEd3Yf0Y8eAVJXjjMkDINpdMHesBXFmgFIAgoijH/23yTZiS8ClXXEfRi75j+VN9r/6EILvPNMVl9KnsaVHxBQjNdIpMSFlFUDOzGHjuCmIyeowqzKkrHyoeQWQcvrDNnK8dcjAh55vVqDKDGnJugxOklFOugBG/2NR9+ZzEKoOAgCM8gPQ178D4sqEToGwv9YqIZiI6MJ4Ij2K6DOA07nk3flnBMurIdtt0H0BUEODIIqo3r4Hem3itAoAqNlTCtXjgj3Lg7rSI7BneaDYZbgH5uHgl3ut487Y9GWTbRzcWNbke60hqsLN6Tm89NJLcakoXq8XCxd2jcjwH/7wB/zrX//Cxx9/jMsuuwy/+c1vsGBB/b2nrKwsYcRv9L3mjjEMA0eOHOnkK2iadhnKL774IoLBxiE/wWAQL73UOTdgSinmzJmD//znP1i5ciUGDx4c9/7gwYORn5+PFStWWPs0TcOaNWswefLkTulTqtPvytnwbdqAna99ggPrSgFRAgn5IRghCCYTkah7uekwy6aUrsUhE63fyR5ei7MzIZrBjONoCGXEW0SDTYfURpEyckFDfuaJMDSILg/kvEEgddWt+uzYMmOc1EMafCK2/eU/2PyXDy1PN6mtgnpwCwQBEEwNRjPGUHMh1q7L7+Uifl2AqMps8iwrbJzLCgBAGTi82fOkvEGAKEHNK4CgqKzGsssDyGpC3YJEEJO0fBCn27C50+E67kTUfbkKr+eOwZcP/Yv9bze8B0UAhHDzytaJwnqtts+8Ksm95TSHqMiQXXYWBSZKyJw4vllBzWGL3oCSng5nQR4yRgxEqNIH79B+kOwqBp05plUijEHNtJTTOR2HgoVep+oGUFx11VWoqamJ2+bNSxxFMn/+/IQCXLHbhg0bWv33uffee1FUVIQTTjgBv/nNb/Dggw/iscceizsmUcRvw/2tOaaradNM2OfzgVIKSilqa2tht9eHdZmmiQ8++AC5ublJ7yQA3HzzzXjllVfw3//+F26321qB8Hq9cDgcEAQBt912GxYsWIDhw4dj+PDhWLBgAZxOJ2bN6ps3C3HYKXDkLsfYu25Gyf97CaI7HaLTg8CK1+E495cIbFgN91XzoX/5duJc19Z8xtCTk9tpThySXY14DRRWW1VRIDjckMad1eK58oTzQEJvsDqtsgoIIiCIENPSW/XZza14c1KDiR98ArP4azyfOQoXP3IRKrftxa73vsdZ//sv6JFS6L6O/w8D/3q0ScEgTseQvFmg4SAzkp0epmyvKC2Ob1ZP3YRaOAqCaoc64kTACINqIUhZ+QgtWwL7Odc12wbRuj/fntM86pRLAVHC2feF4SspA0QJcnY+tBV/Az3rGlY6kJPSSHamRm/LzoRgcwCiZC2INUX1krthy88H1TUYoTCcBZlQ3S7o/iBUtxNHvt3T4ud+XO7H0OLu88Jxuh5VVVudfjJnzhxcdlljDYxYCgsL292XU045BT6fD4cPH0ZeXh7y8/MTRvwC9Z7lpo6RZRlZWVnoLtpkKKenp1srDSNGjGj0viAIVtJ3slm8eDEA4PTTT4/bv3TpUlx99dUAgDvvvBPBYBA33XQTqqqqMGnSJCxfvhxutxt9lbQr7oO27k3ofpanoJfuQbi6Fg4AzlNZ6G6iEiSc1EBQ7ax8hKwyj5EotW5xIpIbYlaUQhk8Foo3iykgCyKoocO39L5mPYrBd55BuJrX4uwJSINPxOlXngBbbg4Gn30RjrnLCwqW356MEjGxtdY5SYaYQCTPVFAUUGIyI7gFKDGhTLgQxqZlEJwyqGKDQAkgMx0D/+5daKlwzKEvd6PpLMmWqX1pfkIxSE5yUYsuhnfQGPxtxAWY+5PzgLQs2EZNgE5JXHRXe0kkEsZJHuHqOiamKoqgfh9Ep7tFj75kV0H8PgiqHRWbdqHfj46D7g9CdrC0t13v7YJ44yUYvvjfTbZxxSn9Mf7t5Um9Fk7vITs7G9nZ2Z3W/qZNm2C3261yUkVFRbj77ruhaRpUlVXbWL58Ofr162cZ5EVFRXj33Xfj2lm+fDkmTpwIRWl+cakzaZOhvGrVKlBKceaZZ+LNN9+0SjMBbCXjmGOOQb9+/ZLeSQCNam0lQhAEzJ8/H/Pnz++UPvRU1KKLMaaoXjHu+4tnoOyr/8OYRxai9qX5kDNZvVz5+I6JP3CSj5w7APqB3XBdeDubFDch4NXovPHnAAAEpwdiWjposBZQXaCqA6SmEkpGRrPn1+0pRt6df+5w/zldw9CnX7N+3/nrC/H1f3fiZ9s+ACkvAd2zkQnAjTm9XW2HD5W2aHRx2ofjglvYotXP5yG8+mWITk+r/k9q5H5O6qohZNSrjAqiCMmdDkoIwqtftgQYE5F7/KAO9Z0byV2H3H807vLvAsByk29NOxZPr3oYhjcL8vhzEHz7SUhZBQlV0luCG8mdTzTMOrRsSavC3qNjq+7lB5E7YSRsBf0h11SC6AYkmw3H/XIitNrm06+GXXBCR7vNiYUCpBV2SHfRmT3bt28fjh49in379sE0TWzevBkAMGzYMKSlpeHdd99FWVkZioqK4HA4sGrVKtxzzz247rrrLPGuWbNm4YEHHsDVV1+Nu+++G7t27cKCBQtw3333WWHVN9xwAxYtWoS5c+fi2muvxbp16/D8888nFG7uStqUozx16lScfvrpKC4uxk9+8hNMnTrV2oqKijrNSOYklwFTx2HYz6eh9qPXYR95AiRvFgSpZS9GU5g71iaxd5xY4iY+ogg0Uxc3EXIeK5VCzYjoCyVQhx2H6u27mz0vbehghJY/36bP4qQGhc+8DK9dRuDdv8Pc/AkzqkQJ5ner29Wed3bLyvic9kMj0R+206+A0MZVc8HuhEAMFkFiMs80NXQ4cjKseutNEatIyuk52CIRHoLNjvAOlkOojhjPI8NSlFjlecHuaubIxqRdcR/sWV6WOoV63RDP4AJU761s8XN33XhJG3tbDxfz5ES57777MH78eNx///2oq6vD+PHjMX78eCuHWVEU/OUvf0FRURGOO+44PP3003jwwQfxpz/VC8J5vV6sWLECBw4cwMSJE3HTTTdh7ty5ceX9Bg8ejA8++ACrV6/GCSecgD/84Q945plnurU0FNDOOsrHHHMMACAQCGDfvn3QtPgH8nHHHdfxnnE6Dc/4kwBZgXvEePjWLINz9LFtvoHH0cKErDMwSreDKg5QWxrbYWpQM3vnQo0RCAFgZZ+o0Db9PVJXDTEtnXmVBQGgBKI7HZ7CAoQ/Xgrb2dckPM9xwS0ILVuC0AeLYZ/ZsnBIQ5prm9O52J0uTP/6PYiVP6Bk8bMYOn02aDgIIb3nqP+TvRtgurJAHF7osgOq7ofq7bwwse4kXMVSHELLlkDOa9nLG5s2IcgquyeIopWiAVGElFVgGeBN4R6Yi9qX5kOQRKRdcV+Hr4PTdSwq/Qja5/+1qlaYlWWQshLXL011AsEQRGpCDNX0yme4e1Ae9t87GwMfeh404Gvz+aI7A4JqhxEIQc3KYgr5R2tQe6iu2fN8xYfgzG9/XiePGOFEeeGFF5qtoXzOOefgnHPOabGdY489Fp9++mmzx0ydOhVff/11W7vYqbRL9bqiogLnn38+3G43xo4da60uRDdOaqOeehnzMhETGTc+wna20QCLhbRCgTnZCHoYQtSDIsqgihN6eQmMA9tg7t8C49CuLutLePXLndq+IIoIvv0kzKoK5j1qK5RENgpRC4JqIcg5zWcnBt9+stnSIy3BjeTuRckZhPCWdej/CMtRFmwOSMcc3829ahuCEYJghGBSgKguaEcOsPH9wzcwSzbD3L+lS/qhf/l2p7bvHlYIAEzRuBVjLlZbgBoauyeYJgSHG6S2CiAEgiiCVJW32BY1CS8T1QOR+42EUjjKeh3cuRWCrWd5lPXyEoT9tQgZBFUaQFUX9PIS6GV7YBzaBePAti7pB9nbemXf9uCd/RBClTWoXPTbVinSf3/dRXGvwwdLAWLCVtAf1DRBdQ2SXcWIC09oth17lheCJLZKIZvTOrpb2bp51WtOZ9Eu6+i2225DVVUV/ve//8HhcGDZsmV48cUXMXz4cLzzzjvJ7iOnk5DGnQWtqgyCJIF2oDZyU/V8O5VANcRgDWBqCAqqZUAKlACmCZgajNLt0A8XA2APZbP4axgb30/qxNfc+gm0fbtw+NH/S1qbDbENHAzIKstPbuOChuj0IPTNZ6AhPwTND1ACqrOJMQk1rYjsuPB2UEO3ylFxeh7On90Ju8MBAKDe9nub/K92feg1qT0K0X8UYtgPSikMivoxbups4YcQmCWb2fG7/wdj0zKEV76E0LIlSeuHXrEPWxf+BfvvnZ20NhNRuei3gChCdKe36bzwzs0gvqNAoBrGQVZflRITVAtBcDWvfkoJgeeaB3lofQ8l9rnrnf0QqKR2Y2/ajqD5AVOHRigIBTRRBVUiYcrEgEBJnBFr7t8C45vlCH2wmC3kJgGt5gi0nV93+j0uUOkH0Q2I3pY9vKIU/4wPVtaAGjrCh0pZKTiwsXt0x/4W2+p372Konp61gMLhpBrtMpRXrlyJJ598EieddBJEUcQxxxyDX/ziF3j00Ue7rLg1JzmoGfkQBx/b3d1oMzQcAg3VQQzVwi5SCOE6NoE2TQimBsGMeF4psYxlgOXvUWLC2LSsxc9o6eFplmxmtal1A+6hx3Tkcpr/nKoKJtLjzWIGQgsEXo8Zg8SE8+I7II07C0ZFqZXH2FIt5dAHi60yFtrnb3Sk+5wUgLYxtz3u3G7KZSX+WghhPxxUgyywibVACWCEmdEcEVYhe75inlix/nEWXvlSi+37lrYcbixW/gDNr6N4xfb2X0gLlH68DqIkAYSwxak2oBQUgtRVQxpzOgS7EzQUAIgJ/969LZagUVxsEaXm+Xvb3XdOamB8s7xVz4ZUQtSCELQA0hQRRsRYRqQyg2BoVpqRuZWVwItNO6K6juB7zzbbfmtybAUtgKMbNqGyFeWWOgI1CRSXo1Ue5Yb1zdP658A+fTbUnFzQcAiCJEEQRez77EDz7egGiu+4EorLwcc4h9MB2mUo+/1+q15yZmYmKioqALD481SLLee0jmgYc09BcLhg1lSC/LAV8vbVzPsUrAHqKkF8R5nhbGgQKGGGc3SSLYrMyNZCbHLRAOOb5dDWvQlt7WsQ5OZX6GlVGWo/W47yDTvg31faWZcKKac/m0AT0zJ0m8L/6kNw/ry+wHzsxFuQVVBCIEgSwuUVzaqdUkOH4/ybQUKBFv8OHSX4zjOd2n5fxzj4PaSag+0+vzvyV+Xjp4PUVcPcvwPijk8hV+6FYOhAbSXMqgrQYG1kQUyzDATB5oBgqxfOSZQSEf54KULLn0d49ctQcprP2SZ7vkL5W0xNvLykJolXF8+wRW+w+qhDxlrRHq2FBGotoT4aiRARVDvSRo1pViHf/+pD8M5+CP5XH4IRDLe/85yUQEjPazYtpytTkdqCdKQY9u0rka8acOi1ELQARK2OPadlO6iksFrRsgKIMiuRGH0eGRpb0G1AePXLCK98CXJmDovUaALt8zeAvV+jdt9h1JV2br1hz6AsmJreqjzyo7vjRbqiqRGOC26B7vNBsLsgezzwDGi+bN+AB/6GjBED4Z39EDRf16THNff37g10d3h1s6HXPPq602iXoTxy5Eh8//33AIATTjgBf/3rX1FaWornnnsOBQUFSe0gp/MRKGlWJKop76u27s24n12JcWA3YOgwDhbDrK0G/FUgtUdB/LUwKw/VG5aR/FzB0JknSlYBQ2PCN4YO45vlIHu+Atm7AWT3/wCA1TEVxYRhUlElaH39OyABH+pKK5AzfgTC1c0La7SHupdZLqLt9CsgZeQyEY8WPE5RcZcoVAvV/25oTHhNlGDLb/6B7bjgFvbz/JvZeZ1I9LNiSTQB4rQPud9IGNmDm3w//HHHay13FsbBYhiHSiAGqoFANUhtNcyqcqaLEM29F0TL6y1E6o1TQwfVQtDWvgbt8zdgfLMc+pdvM2NatUNQFIhp6U1/7sb3Qaor4B6UB98BH76v7dwx4OrPSvShjd57UltlVSxQT70MJOhn9zhRils0aHSezowqM6TBnuXl462nI4oQh56c8C3tyAHIBcMTvtfZ+hrNYRzaC7OqHOGdmyDoAWs8U1G2aotTWQVVImlhggiqsPELYsLw1QCyivDql2FsWgay+38gOz+HoCgQFJaq5MjLaboDhMCsKsfGt3bAluFC6QPXJ/0av5h6GgAg/5Rj4RoyJO553BRFK9fEvQ5X11q/y047G9uKijFXTG62nQP3X4vDG3Z0etpILFlzHuuyz+Jwuop25ygfOnQIAHD//fdj2bJlGDhwIJ5++mksWLAgqR3kdAH+apC0phVljcP7Eu4XnW7oX74N2g1iXrazr2Hqrhm5MA4VM+9yXTXMGrYaS8Mh5kGOIBihuBBSM0bohviOAsSoF9IRRQiRnGDt8zegr6/PuxdkxQrrpOEQbOlpOPhZ54gKxXryBLuzVQbr7jmXxr2O/j0AxIV9SRm5zbYTfOcZa2vr5D0ZtEdpm9MMTeQv6oeLUfr+iiZPMzYt67YyYeqpl4ESE3rlEZBaZiQTv48ZwRFDmMrxefuC3cnGb2QyDVEEDfpB6qpBI68FSQJECaLLDWPj+3Fls8ytn1i/1238HKVrNqO0PICiYc3XHe8oct4gmLXVbV6U0qrr4kvIxZzv2/hlk+dFDWU5LQ2hypq4+wSn50HKiq18/Yao2QNQ8eTtTZ7bXYsk6pRL2XNaViH5KyHoIWtxm7gyQWUbiMPLFvENHVRSQBU7pIwcCA4XBElkxxMTZlU5ux8YurUAJqh2iC53XOqQvv4dhFe+ZC0QrL39rxh8bA6qdlV0SorJ5DURhV9RAiWkVYZyQ4SYlBJLeE+UmjVKDy28GY6cdGSNGwx7lgc5tycnp5vD6Yu0y1C+4oorcPXVVwMAxo8fj5KSEmzYsAEHDhzAz3/+82T2j9MFSKNOBfnmkybft59zHQAWlqyvfwfmjrXM41JXDUG1w3bmVV3V1TjUKZciVLyT9e1gCczKMuZN1kIgIX/E+DUgGBqIn5VlEBwuCA4X9EoWaiXYWJ4eiGmFJUc9yiCmNUHX1r6G8MdL2YOOmBAdLlR+sQ5Hvt2DnPHD4moldgZmZVm9l7wZhi1qnE8c9Uzbz7mOTcaD/vjJdQN8S++D44JbmKdXlJo9ltNzSBT5Qe1u5Dz8PML+2gRnAKI3G2qMum5XI4gS1IIBMA7vg1l5CMRXCRr0g4ZDTGguGnYtihAUG8S0dMj5haABFqJIw2yBTHR6IMgKM6BlBYIoQXS4QCLjOeqNsuqNixKq95TCDOk49RfHw5Ht6NzrdLgAQ2uzMKKoyqhafJf1OvjDD6CGBtuZVyH7lj81eV5UwEv3+eAoyIM6jJd07MmILg/C6xunEkXHdfVOJvx04P5rYX63GqEPFlsLwGILi6adiVl5COqIEyCE/RD0IEQ9AMHQmVc5IuxFnBmgig2CEQaxu4FcFh0TqqxhBmjID7nfYHZPANjCrqwwz7LKPLDGpmUwv1sNQVZhO/MqFm0hihh+wTh8/0059n9dBntW8+J3HcH5szuhVxxuc2oFANgy6kOsPdc8CBhas2lTAFAw71lkzXkMuj8ER25Gi/ncnNZAQUjqbpzOo9WGcrQwdKLt3nvvxT//+U8sWLAgrng0p+cgDz/RytkNvPl4XEiW+d1qaNXlOPjaqxAKhgIODwSHC6LdBYgizB1ru6vbsPUfBEoIzGAARvVREN2wVm2poUPUgkDtEbbaHPV8EwI5LS3yMLVBSM+1VpOpadZ7qyI/LaEgWWX1pmUVNByC4rIja+xg+MuOQhBF7Lm18wxKMaJga03kWwsx41ak1aKLIU84r9lTJHu997G58FROz0H1ZmPLgucAAMH3nsWRZ35j7RcAEIkJP2nV8SWFqCh3q/K5EQiCGjr0I4cRPlQKGg4x4zaaRhD2g4bq2IKW7yjzLps6BLsLosMFyZsFOW9gZOGLsPzmcAjU0GDWVMKsKAUJ+q17hiBJTBWfmNB9fngG50PzBVC54ygOP/p/+Hfe2M65UGICotTmNBbv7IeQNrE+BDPjxkdaTM+IDcWkJoHz4jtAmlgo4fQMpDGn49BnX1ve02hJIEEPAgAGPc7SKzJGHQOSXQhl7GTL49qdmP46lgJ1eB/Ivu8gBH1AqBZiuBZCiH0nxbCflYPUQxAiERNU1xA4dBSiyw1lyDjAlQ5BUUB1DSTgAwwdxF/LIkmCfrYPgKAobIwRE8Ed32L765tRETahKhJchcfgac/ITrvW6GJF4M3H23Semhefzthar/SB+69FwbxnIdqdOPK/rtMO6u15ypy+R6sN5U2bNrVq27x5cyd2l9NZSMccDxKoReD1hZBzBwCGBrNkM7SqMtSt+xigBAOu+TVTkxZF5p1xeVgukNiuwISkIKh2iLICohsw/CEIksiM3aCf5TLWHoV+sMTKXSY1laCmCSmnPwRJgrZrMxD2s7zloJ89YGurYFaWQSv9AcTvY9ep2iF5syB5syA6XDBrq2HP8iJQUQ0AcBZkwZ7p7bTrpKbJal+3URVXLiiME+NqSTgr+PaTcXnOghRZjf/hm7Z1mJNyjH/qYey68RL49+6FIycDZOfn0MtLIAoCRD2EG4RCCFoAYd9R6IeLYe7fwvIDBbFVCtGdgeeaB5niu8MJzecHJSZEWWGLY7XVoH4fS7sI1DKvc8UBkKAfUkYuRHd6XIkkEvRDUO2gAR+MA3tgHCyBUX20fjEMiCyGOZkyfkjD3mXbULb5MIbOGIyj23/AJYc7p7arOoWlTKhFF8elerSEsfF9mBXxQoJq0cXNnjPwofpQ+vTrFqD88Vsh5zZfV52T+hT86EQcfOd9HLj/WrgKshB8+0kIYT9q/EGIgSrcIBTCfspMlusryRBsDogOF1sUasN3Lpm4r5oPs6qcPW/3bmPP6ppKoGwvxIq9EANVEGrKQKvLQasPQ6ouhWCEIOcPQr9LLoHUbxgAgChOJvJl6BBklWmXVB6CbyfLgxZklY1xWYXkTgcIgeLxIGtUFqZMyIfNY8PXj/4Lt/q+77RrNUJhOC++o03h13tvn9VIlO/oNzuaPSe6YD/ggb8BYIvseefOaGNv2w/PU+b0NlpdM2TVqlWd2Q9OCsAmWG9CLboYoeXPg9aUQ3Cmg5oEfyiYgge2vhzjXbUxETA9DEoIyJ6vmhQT6VSICcHhgmTooCYBNYlVZkUAU4KlIT8EWQEJBaz8RkFW2IpzbTVIbRVIbTULyxYlUC0Es7YaRDeYd5WYEFS3JRBCaipBQ34Ey6sgKTKoSRA4VAlRbX8JnpawnX4FAFYjtS2ILk9cWGUi4az4E+K9h1TXENzyPzhPu7BNn8tJPcShJ2PgT6ZbqRRm8dcApRBBIR/9Ac9uewFUD1oLK1RSLYEd16Qzu63flBCAmFBcDpaTm55mpUVQ1Q7iq2Tj0u8Dqa2GMmgEKDEhezJZeojNYRmTVGOK95SY0GtqIdlVVn5NtUOys/EPYoIEalH407Pxw6dLMezc4QhV+aG42l9rvjWYlWWsjy0shvmW3sdCMAEWHZJAvb+1VC2+C2nH9G+xlFQyqVp8FzJufKTLPq+v4PzZncgVH4cgSTiyYSvEAxUoGHMQjp1fYvf/ewXjPDamFK8HAVGGoNgA1QGyb2er6vt2FiQUYJFatdVsnGbkMNE9YgLBPSy319CsiJBoSLXgcEXUsD1Mj4SYVioFZAWBfeUQFRla5VHI+RpbBBNFQLWzyCxiIlQVQuBIENkjM6GkdW51h2g5trbkQg958pVGOeT97/9rs+cMffo16/d9865BzpSJCO3cai3GxVL38oPdUtWgJ0IpQCkPce6LdJ8rkJOSHPnkYwBsQhn85guI5XvgumA2Htj2Klvp9Vcxr2vNEdBwwApnpuFAt/TXdvY1LMxStUN22ZmhHMkvNitKYVYeYiHZkdxGUhPJcQz5YdZUwn/gEOo2fMHqChOTTbaDfpghDdQkEESJKek6XBDsaSB2NwQbm5SrHhdklx3uQXlQPS4UzOuCPCBC2qRUKo05vcW85rjmI7ncAKtFa1aUwjX5HBglneNJ43QtB977GPvmXQMAIEcOQF/9GgRi4ObCnwCuDAg1hyH5yiFWHYC540uQfd9ZSrNRVfguh5gIVhyFmpEOYpqWMUu1EGjAB+L3Ma+Uvw5mMMCEqQwdpLoCgicbR955Awff+xB1Wzezc8IhaNV1CFfXwvBHUjKiQjuiDMGexsSDdA05Y7JRd6gGFd8dQfmWw516mc6f3ckut4Vaq1EjOYqgtH+Cb8vNhpSV36r6rsmCG8mdxzfPvos9//oYAx96HpnHj8JfT56Nys/W4ukXvsWN37wOo6KUlVEURIASmJUHrRzlblPAJibrl6yg7odSq+QZ8dfCOLwfRkUp0x+pqWTjvbYaxF8LGg4h/MV7qH73nwivfp0tnIVD7P1QAEZIg+4PQbKroHpk8UlSQFWmB2AEgghWhWDzqLB5bajc0bmCdtFIjiNtrNlMtRD8rz7Urs909c+G4/ybIXsS51+Ldmez58dGErWlD90VgcThdAbcUObE0e9etnrpOP9mVO/cj4OvvYIfHprHjGIrPFEBjYYqExOwuQCwuqPdgqExgS1ZgSBFVG0japhW7rGuW3mAICZoOAS9bD8ESYQt04vAvv3sQauFQKL1SCWRXavGBIFYvqZshXgZoTAcWV5IdhVpE6Z0yaXSyLU2R+1L8+NeEy3U6kmQ6PJYOVRUC7GazKIMubBxbmZ3hetx2s+wRW9g0EKWryiodtz3i79ZeYyglEVPmBq03d9CsNkhZ+UzMR1JbdOCSzJxXHCL5Y2RVOb5pIYOQRRh1lTCCIRgBEIwQxobs4YGGg7CrCrHzgfnwwhqcOaks/P8PhiBIEydna/72bWToB9U10AFkW3hIEx/HbzHZMCR5YJsl+Hul9Yl1+vf2XxoZUNoOARj4/utOjZW+Kv2pfksFNTQEfi2aYXs9sIny11P0co1GPcy+y7oVVWQBCDnypvqD4iMYX39h9D37QSpqbQWg9ujyJwMHBfcAsMfghkOw57lhVZRDhryR4ziKrbA7We/A+wZFa1woY4YD9eQIZAyclHz5Vp2XsgPojFVd2oSplsS8oOGg2yBQGJlFkOVNXAXpCFzeCYObizDlk6slR7Ltlc2tel4x4W3Wyr1bcUIhLD39lnQq6sTvu+8+I5mz49dlGtYerK5XOSGi3kcTk+GG8qcJnHmZyLr2GGoPVANqmssJFNWAX81yj943zKcjeKtEGzNr0x2JvaZN7JcRFGC5HBGlG1ViJ4s0KAfsscL58/uhPPn8+rDtQCUfPgVVLcLJBLqGDWUgUi9QqA+Z7miFLSmHGKoFjQchOBwwZmXDdXrhiCJ8G9e1yXXqk65tEWVcfdV8+NeS+70VrVd9/KDEFR7/cMzEoYd2rQaUuEJjY5vq0JvIlK5hm9vh9RVw6QUe27/ddx+052Lfe98AsmbxRaJdv4PVHUAooSa5+9torXOJVoWRbKrbLxGyq0Iqh1Kejq8sx9C+nULILncoIYOUleNPS/9B4U/PRveYf0hSCLMkAa9zg+iG0wlW2KPP62KhXyaFaVA0AfBZJ9VV1oBV/8ciJKI/qccgxPe/Cjp11W95O5G+xw5mW1rJOKRaw2rH3gXhxYyxVzJwe7ZpKayUya2fLLcvfjLKnHuzVNA7BHtDEGAIKsgDi8OfvIFvn7oedCIkJZxqBiiwxVXSqkrSb9uATNoCYEginHPYq2qGkYgBNfl97KFbL/PMvgPvvG6JbwJAEZlGUx/LSghkBSWCqX5/NDLDzLhvtqjEPQwABYKnX/iADizXEjLdeH0c4Z0ybVOvntmm8+RPV6rekVz1L4031ooP/LMb5B3558x5MlXoDThUe4IrclFTnR/68lEMpFScuN0HtxQ5jRJ+tkXQB4wFH/9706muhx5OJkVpcgYVQgaCkDfv5OFSokyIIggezfA/OEbaGtfa6H15ELDEa+YKAKiFCkXo0J0p8NxYX0NSUG1M2XbOj/cg3JghjQQzYAoSSBaCFTXIKp2EN2AGHnQUi3EjOWqCpDao0wwxO5iYkEOF0RFtsqtpAqxBqg07iyYh/c18jQ3xDbiBACwvFP26Uwdt6VV545gO/uaTmub0zykphJBk+LpF77F7deeCFDChPBsaUjrnwMAMMr2oerztah950UAQNqUGTBLNrP85i4k48ZH2Pg0IxEi4aAlIhj3/RQlJtgVDoGYhNVdNgl0fwi2DDdLp5BEyzMNMJEd3cdEwYzyUiv9IK1/DlS3E7LLAd3fOd626PXE4vz5vDa1EVWxDy1b0uKxJ9/4I2SMP559TiTUO/ozGQT+9WjS2uJ0DFd+Fp7+4yr4XonU0I3WFRdleIf2R92hOlAthD2vfwSqswVhEAJj4/swNi3rlj4bwTC0Wj8b6+EQK+MW83x1XHg7WyQL+qGX7oGoylYlCGdeNsJVLJ0iiiCJILoBzcdqqZsVpaCBGqZ54HEia9wQeAYXIHtMDo5/48MuucZ2pR6IUn0N5WbY/Z8vrN/j7i3dFA2Uft2CbvlcDieZcEOZ0ySbf/sgpIxcnJRhZ6FLxISg2FD7zUaow46DlNMfoieLGZEHd4MKIqtdLIqQBnZt7VXnxXcww1VRYT/nOtjOvgbE77OEiywiypdKejqyxg6G7LJHwrXFGCEwDZIrjZWQAmD6a2FUVcCsKIVRugdmbTWkjBzYZ94IxwW3sJzJFIMSEpdTKjhcUAfUr5gnKlGh793GjAxiIrT8+Ubvc3oXgt2F52gJAGDY7x9gQj+KCunoPuTNvgWC0wvB4ULGqafDPnAgOycq+iRKMLc2XXu9MwgcqgQlBGlX3AfnxXfAqKpotIgTK1aXNY4pvlOTwJHFvGqazw9BFGGEwtZEMlxVB/+hSmiVR6GX7oFxeD9IKADZ40XWnMcw+PF/YOSS/3TdhbaS2MVI0eWBWVXezNGA9vkbcA/KAw35Oy0yIJlGN6djiKqM3z36E9x765t48q1bIehBdn+3u0E0AxNvmQZBVjD4/CKYwQATwTNNkBArp9TV3mXv7IdACYHmC7Ax/vN5qNtf1igygdRWgRg6qnfuh3tQHkR3BkhtFfwHyxGuroMRCluh1wCg+0MIVlQjcOAgwvuLoZXsAKmthuRmkSh5d/65067pwP3XtvvcLZfPrF+wICYC5VXNHh94fSEGTB1rlaHKuf1J6722Lr5xOJx6uKHMaR5i4opX5lqruwDgKMhD5SfLoO/dCgDMaI4IgrBz2ASU7Py8S7tqP+e6uIlyIyMZYArYIstjFiOK1YY/BFGRmQc54qUSJAmCjRmNhj8E3RdgIWBVFaBaCEK/4fWNpqChbJ8+O24VWYjkWkdpaGDo69+BGWYhaYIoWd5kTu9FcLhws1jIftfDETErCQIxQFUXDvztWYh2F0hVOZTxZ4I4vGzBTLGBKsxr25Xk3vF0fUoE0KRaqyArcP58HrzDjoFRx0S7FI8TRjAMya5Cq/VDUhQoLgcESYRWG4BWG0CgvAq1+w6zawz64yJROouOCFuVf/xJvWdfFFtcsDPK9kGyM+X+VIuA4SQfahLU7GEh+bYxJ7Pnls0BEAPZP70Ch9Ztw8e//gukjFwouf1AosKcug7R6akXwOpCNF/A0kkB2JhvhKFj/8cb4CksgOy0g0TKP4mKzDzImoFQNavBHI0mCVfXIlTpQ7CiCnW7dgMARGd9DenOWghLFDHSWgaffwpIKPI/MU3Y05uveS3Y2L0x57TJCd8/8sxv2t0XDoMQmrIb1+PuPLihzGmSMddfiCMfvA3Rm8W8yTY7QAmUKT+F7g+BBP2Q8wcBg44FzegPgRLoB5iio2BqIP7abr6CxjguvB32mTcicOBgxHtK2Aq0bkCvDVhGPjVNyxCI5jICQLC8ihnbkTwnIHW9KOGdm+u9yrLKwuebIPq/kjJyrVBOTu+G1FTiiY8fxGMvXg1QwmqjRzzGdNdXyJl0HASbHcLUX4C4slhqhb8Wgh6GEPa3uVRZMmgoKJMIK5yfmKjddxhGSEPgULyiLTFNmDorKSfbVYgiiyghmoHAvv0wgwEEXl/YGZeQNLInnVgvxAZY6sWJCH+8FFrlUUhZBbDPvLErusfpZuTMHDz+LBPYJEE/K4+kOiCG/TDduRh55204a8kNkHP6Qx1xolWvN1pCDUCj0kSdTayR3BTOn8/D6KXvsBrrsopgxVHU/VCKUKWPLXqrsuVRjj67iWaA6AaMoAZfySEYgWBcjfVUJO2K+3Dw7XegrX0NzovvgC3TG/d+VGsgiuGrYaKHCe7LFU/ebgkicjictsENZU5CKhf9FtTvw6a/fgZRtTNvhSix8immhryb7kblpu0QbE4IRghCqBZUEFkZpXAdSHWF5Z1NRewxoZjRXGTZVe+tiipnC5F8Z2KaVrgmDYeAQHV3dLtNyDn9YRzex37Pyrf2B997FsG368OyonmFksPJVLVTiK6eqPUl9r7yLqgWQsmHX7HybpHxDQDikPFQBo4A8ddCDFRBCNVC0EOQMljuMlVsVr3llEVWoNUyBXszIhRkveVoXBPZDGkIV9dClP5/e3ce31Z15o//c89dtHmN92xkYw8lEIZMgJSlbYCyDDOUpfCFwpdCgaaUJcOUlu8QGCAMBGiBlkDLMKWlhXZo+TEF2lD2rSlLgEACISGOE8eOl9iWLOnqLuf8/jjStRTLjnctft6vl16JpSv5XNtHuuec5zyPKiNNYvF+x+QT/9evgPXFJ+Cb3pS5F5Lvt6lstOmJdLgZw+6NjTnLbEwmnpqsjbzq1/8XSCbJAiC3SCkMSrAc1q4WmdySO/IYn1/+LaXKBuVhtFS6zg8/k6UcOc8YFDNDg2v3DZaZocExLZi7e2BHZRUL3jO+5aCAvpJQo5Hagx1v351xf3o5ytjv70TPlmY4ZiJrTXQ9FKAoEkJGKH9HMiSnyhcfh2vPfQjH3PLPXkZJMFWuPFlx8PWvYMrBs+G0NkJJDa40Hay0AsIywcqrvNXZfBT65o1QVBX+qvKMxD5gcrAPJEOZkiWnUrOxsfZuCMcCj3TDevupXDR9yNyuNpnUaPPfoC08BcK2EHlsBQKnfjcjrFSbOkv+Jxm+OVC9xPifJqBO9B5o9Wt8WK8/gdYPduHqk2/HrJOPlKWRnL5QS6WrGYrPD7ezBWzX52CJXgjdDx6sgGJFvVBte+3TuTuJvVBUFSXTqr1VY9e0oBo6NL8PWtAPozQEX2UpjLIg9LKgXImyHdjROLjtINE9/hEx6eWahmvXnd+T77Oaz9v6suvO7/U7LvHSYxDxKHwVpYBjYfuNtK1iMmh97i84d2EDjJn7eZmhhcKgCA64NnjXLrSu3QDe2+1FgrFgKYQZBRwbLFQ6aBRSPjDKgjK0uqsXrmmB6XKAHKgqh6pr0EN+GTGi615YduPL22RyrwmsHT4SW5dfgPJZDfL3s/ZphObMyRrlYq55BE5vLyr2k3kkBpsMo74/OoKLvL1R7PX4KcqB8s9+9jPMnj0bfr8fCxcuxOuvv57rJhUcxefH/DIftJpp4PEoeHJvr0jEZFIQXwAsVCZnn+04FO4Ariu/DpTC7WyFoutwP83vn31qNVlRWbIOs+qVlwJToaiy5BQzNKi6Dm7ZcgY7mZUzn/lPugzavocBTAPf/Dew0oqM0lHeIIfJ/dja1NkAU/uFtyZeemziGr2HgQbtubBnqFshYyUVeO3z3bjrlxchcPA/yEzuuk/WmVDkx0LXS8+BVdbKpF52HMyM9G05YCoUfxAsNPi+uVzq3doEbjvQQ37YUROqX+5j1EJ+KJoBLRjw7kvt/zNKQ7JmustHtb9wqNK3dQxX3fX3w1h8JnhPB4RjQ62sRfmCBV7ZlorLbvcm89SqelQeMAvQDNQcs2gsmk7y3OZnP8HGzTIBFI90gUfDULgjo0MEh9PZillnnyY/q31+gDHY2z8HC5VBODbcrnZvNTNfxdq6AQA8OSkvJ7X9YLoGPRTwPt/9VWVywGxomLJvJbjtgFtmXtf6nr3qVzKHgWNBOJacNN5jhd9c84jM4F1ZiY6PtiDR1evtNU+Xyj49Fivcw0V7o0mhK7qB8pNPPomrr74aP/rRj7Bu3TosWbIEJ598MpqamnLdtILhfvo6Wn7/BC5efQEUwy9nlksqIPSAt4+p843XodXNlKuvyT0xihWFUA1AcKg10+Wg2cjvfTGK4fcultM/hJRkmSl5Y2CGH3pZEPX/eIj8kI2GAcfK6SByb+J/+inUGYdAMA3CscFKK5F45XHvccXww3nvWShMhdvZKu9kDPY7z3jPB2Q5MABg/omvlT2UPakTJT3UrdApuo72hCMzoTMVrLRClocyAhC6Dzt/8yuEZk6HWlkLYcUhND/AHbkalewnLBCSE0p5KlhfBYXJaBDhcq92MtN0GT3h84NpOowyGUHiqyiBazuItXXDtW1sf3XDuNcBHYvyKd4KkqZ778/dD/8QXQ/+QE7mMRWJbZvBKmtlbexk5ECqLmtqlWk0q9skv9jvPIPfrW/DRb+WEQZqVQPU8iq4oSoIfykUM4JfnHUn3M5WqJW1siRieDfUqnr5ua3p0KfP9RJE5aOO+67zwqoBub1CTU5oA7LmumroMEqDMhxb16AHAwhUyokzOxxDtLUTzTd/J5enMajmm78DfcZ+sg+/9Jh8n04jYrKmtEiYcM0EepvbwUorAQAvH7ao3+RutoiT8VZ91d0T/j0JGUtFN1C+5557cMkll+Db3/42DjzwQPz4xz/GjBkz8OCDtNdxOMJbW6FPnycvJgMhLxwZ3IVwbDk7W14FaIbc++fagOaTq1HclStTqp7XldBFwvSyX6dmnsFUuaKUmqHWdJkpNLX/b/1muJbdl/AkR/UJhyJwqvyQVFzL27ek6Glh5tyVF9eaDlZS4Z2L/g+ne3vUI4+t8EpL8Fj+JWcjw2e9/gQSG9/DPS/dBrWyFkogBKi6nOTiHHBs1Bx1BNSaad6+RsWKyr6f3MOsOAnZv/OY4BxGWci7mNZDATnJ5diAY3urZelRJU40Dicah2taaFg0D3Y0jp23jl/4/1iUaXLam2U0AOfeCn/FZbfDVz3Fe+/WSkpk5nvX9d4LOj7agvZ7r4EdlXuxmaHl9QobGbpU/gDF8IMFS2Fv3wRhhKC4VrKEo4oL7jkLxrwvAZoOwV2wsine3wa3TLg9nXlZ+jBFDwXgq5AlHFVdgx70e/lEBOfgtgPhcjkRbmjQkhnvXcuVA+Xk3/1Q6hPnSmr7BzP8GRP5jf/2LQCAWjdTTo4xFfGOCGae/hXvd9iyQ2b6XnfGUu956VUDyDCJPA+9JuOmqAbKlmXhvffew9KlSzPuX7p0Kd56662sz0kkEgiHwxm3Sc9fig1/+QKspEKuQFTUA5qvbzWJu6g65RtyhYbJgbGwTAizF4h1ywFkMmFIPlOr6qH4Q1A0WTJF0fXMkkrJVWV5jnLgXDItmcwoYRZEYhzr9SfAe7tlEjbG4Oxs7HuQqVB0Q4bV6zqYP+Q9FJw+FcFzbsgI1VYMP8w/PzxhbR8L1L/7Y8FSbHvuDWjV9XLFyBcC95dCGMkJIYXB2O8waDXTAMh+wONR+ffiWt5EmGBa1sQxufbSl44EADBNh14qoyD0kF9eLCcvFAV3ZZ9myYmy5KrU9jdlCSU3mTU30rQLbeu+GLe2jjbBTsd918E45BgAchKs+42XvceCZ10PMAbhWHDjMbn3lLvwn3QZeh+/BbP+85eoueZezLn3NwAAJ57oV7M231H/zk7Rddz/9/ug1UwDq6iBccgxso+rhvxcjodRuuRkmbxL0wHOwWMRCDMmo6W4C+YPeVFH+UrVNQRrK+HaDowy2ddTyfhSmKrCX1EKRWXY8bftMEIGXDMBO2qibd0XaP94R66av1dz7v0N3J5O8OS1hpL8jJ71n7+UB3AXSiCEns3bMOf0Y+RkWDJi5Lz2DZi96lc47Ok13utVLbsLbau+P6HnMJ4TjYRMhPweyQxTR0cHXNdFXV1dxv11dXVobW3N+pyVK1eivLzcu82YMWMimppzH5x54oCP8WAFKqqDMjFXRQOEr1TWUNXlirESKJUDZs0HaD4I2+rbF8NUOYiM9cjVJ4WBb/l7X73PPNHzyI1QAvJCQPH5M/YmK5ret5Km6fI+XUf3pu2ItnbCiZlweuVeoHwvMQHGgOoZEKoOaD74Dj7Se0g4ctDjdrXLFYjkwBmQtTQTLz2WkXVaOLZXmzr21CoAE7N/OfW9RmKy9u/XFmWvpQkAqJ+DJ5/YAJRWQ1ROg1sxFTxUJcOrkxdZQjUgAmUQRig5OcblQMtNRlP4QoDCIFQDfPPf+sqQ5YETPpIlcQSXK0t6RYXcr2jIvcksNbhnTIZgawbMzh6Et7Zg9tL9YUdNOFETwuWItfWg6sDpOTybwVVfdTfUfQ5NRvQYmHLyv/Q/iHNoZeVQgmXeqpSaDOFMX9FORdF03HcdWlZ+F86Ha/q9VL6ZrP17MJ0P/KvML1BaCVZeDad8KtwpM+VEWDIKRJRWQwTKoATLwQIh+VmW3GYE7iY/D5gXgZTajpNP7GgcoWk1MGpqUTF3GvRQwEu6mR4loqjMq1ix3xkLEOuIwQrHYe7uQXh7GL6y/N0+AgC+Ey6UvxOfH77jzs98kKngkW6UzWqQ1zNp2y8G4toOuh/+4YQl9hpKyS9C8llRDZRTFEXJ+FoI0e++lBtuuAE9PT3ebfv27RPRxJxb8NRfBnyMBytxzF3/F0IPJG9+CM3nDXxTF8hCYbLUBCAvpFN1h0NlQEjuk0k9R8mzEOzyS26FiEchLFPO0qb2I6ckQ7ABuaKmBMvgqyiBURqEa/VlxjUWn5mjMxgaEY9Cm3YghGZAMA3qQcf1PZYcFOkNs/pWBpMr6nY4DLe92dvvBMhQ7sRLjyHx0mPQaqej9/Fb5If4OAueuXzEz52s/fvLa7NH0AAAFIYV8c3yb0LVZR/XfHJ/sr8UUFUZjqka8v/chXAsCFsOkqEZUOJhQFEyIkfyMXGfcLkc2LvcS1gEQA4K0rJ8M12Doqr47I8fgyUvrF3TwvzHn81JApzh4tEIkKW0m8Lk75JV1AKOJcveAejdshU9j9yYEYqZGmQojKFsVgM23vHjCWn7aEzW/v2Tsv0HfKxq2V0omTcPfMoMcCMA4SsBN0IQerDv81phEJpfTqAmk1Z6USOhsr4a6anPRc7zbrCsMAaruxduMnu16jeghWTOkVSSPOFyb7CsqAzR5nZwLsBdDtXvQ0ldCPMfz98Vc0DmG4h+9D4UTYe99ml8cc15mQdwV5YCS056pw+msy2INNzwUy+pIQBEHlvR75hUibmxUgwJvQQALkTe3ijt9fgpqoFydXU1VFXtt3rc1tbWb5U5xefzoaysLOM22QnVAI9H5QBZTQ6OXRtgmkwMpeqy9qK379WQqzeOBZGecVFRAFX19jXyLX/PxekMSFiml5QLQMZgMTWITA2W3c4W9Gxp9kK8VEMHT9ZpzGe+r14MABA7PoPQdLjbPvQeMxafKfdpJveoCcuEOv8rAAD/PnPhX3g8eDyK+NP3IvHXR/te84QLwUoqYMzcD4AcIPFNb/b73vlQA5n6d39CD3j/Cq9PG7J/KwxcD8qLaD2QORHmWDJaJBGHCJTJsF5Nh9B8Xv3l0az+jzUnJifuos3t8o7kgCD1vpUKv1Z03cuOPWXfSjBDg6+i1AvHzncd910Ht7MluX3El1HGjZtp78dMhbHkXAAy0VnJouMR+uaN2HnrFeh68AdeGLgViUEx/Nj3gtMAyKgR683feS8zHpnoR5pIbLL27++HPxv0cSVYBmHIfgymwhHwJoLloDk5OaZqcnKUMZldOVXJgbvJ3ByqXFVObj/Kp3Jw0eYO6GVBtK/7HK5lw4maXj4CRWUQLpf7lV0Objnobe7A+09tQKDSj1DDFNjhaEZYcr7q3tKMsiVfk1VGNB3TTvma95izcysUfwjCscHjUZk3BjIbdu/jt2DBU3/BjpsuzQi33nXn91B28S2oPOxQbL/xEigq6xcZlsqcP1YJ/iihFylkRTVQNgwDCxcuxAsvvJBx/wsvvICjjhokFJFkUFxL1uVMXSSnJ+ZSZXiWSF5UA0ju41X76iY7FhRbJsoQe+xTtl5/YqJOY0hYaSV4NCIHAMn2C87lxYNjefUnWahMhnmVBr2smqPdXzjhFBlqmn7R2/eQLPeTkti+FcIy4V96CQJnXOMNuFMryIreN1GCZF3pfisOY5gIxlyT/6t6hUKoGh6ZcgAghAyvFBwKd2RfTf7O5OC5b6CopA0uhRmDYsX7+juTkSUKY/Afegxiv79zws8pG245spQb53DMRDJ5XV+YJbcdOL29EK4L1W8g3taF8pkV3uPTb/55Dlo9fL3NHdBn7uclU1QrZR6Frgd/ALcrOUnAXYCp3kBH0QzYyXwFU2980FtdApL7Ps9c7u2HFI4N3tPplZpKz0SfSv6VyqA9UpVX3DGq55NMIpacAGYqIDhYKqKOMa+vpybBhdu3Xx/cBe/phGL4IRLyMxyaAYWpya0Mbt6E5M9c+SjscAx6yI9Edy+sSLRvWwUA17ZlHzcTMDvDMEqDaIrJyW1V17Dvg/+Tq6YPy6z//CXU+V+BsOXvUwmk5RI5c7mc1GeqDJdPTvqzUKlcZYZ8H6td/hPvOXXX3y//w1S4tgN92ly4XW0ZFTFSUv1yovc1E5JPimqgDADXXnstfvGLX+C//uu/sHHjRlxzzTVoamrC5ZdfnuumFQzzybugHrBIrhxzLhP3pEKuk6tPMiyz76JTSa5K8lhYrkanBpsKkyvLSdrUOXC3vg936/vgX7ybi9Pz8HgUPNLlfZ3alwzHgrCToabxZLbfeBTNr38KJ2Z6s9Tp0ldc84299mmoNdPlKiHT4Ha1e+3lvd1yX7KmQ5gx7zklS74OxV/ifW3++WEk/vqot5rkdLTKkhQbXpH73CpqIBwbzro/ex+4qf3M6eJP3zuic/AvnZj9VJOBMWUqanya3LOYlNoiIZgmM2DrPrkalTYZJhy7L9mPa0Nx7b7nMFWuVDMN/oUngG/5e9Yog4lUecUdYLpcHQYAp3u3t39PcNfLdqvoBnwVpYi2ReR2imQt5ZRUhtl8Nes/fwm239FeXggWLEP3wz9E5RV3INbYKPdmB0JQVBX6ojMAyAtpEetLfJVK2rfrzu8hUCu3W6QuyEUsDFZZC6dpU8ZqNQAv+RfLw6Ruk9kdZ94NESiXXygMXAhv0lpoBqBqfZ/fnMt+kRZJJUP5bbmy7H0u2jL7smPD/fjFvAjF7vzkC/iryrx+qwRC3t+ia1pwTAsKYwg2TIEdM3Hhv58Iza/BTYsGe/OYJQCyhyDnix03XQoe3p1c3Vex/cZLvLJW/qWXgPmDyclr+TtNbNkArWYa4s/c571Gy8rvYvOyszPCoCvmToOi6/AfegyEZSL25EqYzz2ILd8/N+P71y7/yZiHYxeiXGe2pqzXuVF0A+VzzjkHP/7xj3HLLbdgwYIFeO211/Dcc89hn332yXXTCoYTT4CZEfmBCngrken7m7zVwrQLaQByYJ0aJKdJhXimnqsIDjbniAk4m4EFz1wuLwaSFwKyHEbfufG0rNbcscG5kCGZqtovLDP9wnowo115GQl90Rlgc46QydiYhsCp3/VWiI2jz4Z60HHQDl3qlZYBALtxo8xinsQj3QBTvdUkrX6mjBzQdMBJwN76iazFmcysO5DAGdeMz0mSYTnlxQfkZBcArurgUJIJ+gy50pTKjou0v23uQiTifQMorz9rUFxbDq5TNzsBtt/ROTm3dJGmXVD9hryIVllyQCDLvzFdg15ZCcUfQqI7guiuGCItvdBC/r7BAYDSGbU5PIOhc1qb5KQkY1595qpld4FbJozFZ/YlXASgNcz2ymOlq7v+fm9LidvejJ5HbkR40xdw25tllQDGEHtqFdrvzezHwXNuoNJSeaTVdBAXqve56wpAMDWjEkV6tJdIRVskEzx69yUjEQAkk10mJ0Q0WUou16vLgZpKL8LLikST72E6hMuhBf3y34APwuVwzQTa1m2BHvJD8/dN8tcvlNn90ys85BsvuiW5uj/j1kcw7aaHvMd9X71YRgEkr1nUUAmclq0ZUV2J7l6UzWqA5vcB6IsSav3T8/j8zju9EqDmju2Y+5P+kX+pcGxCJpuiGygDwJVXXonGxkYkEgm89957+PKXv5zrJhWUqmV3gfuSyT98Jd7FsNB8fXubUgPfFMZkeJbr9iUCAbw6yoprydUn3QehGeCR3RN8VgPQdPkBwRi4GesXLqz4/N5AYeqiuXDMhEwWwjK7zt4yTaZwK3f7mtVIe+bvbM/Hk/uTAUCtmZax3zx41vUZibvUA5bIwXYym3bs88/AYxGo5VVQK2uzXkBNVJbNkZhsoWXW5o9gawFwfzkSDofNBVymJ5N6heS+41SyLsfyst8KzpPZcZP9RHAIVYcbqoLQg+BGCdySGihpq9W5lOiOINbaKeuqWk4yHJXJFRiVQSRMsFApSubNw/5nH4my6WXwV5RCC/RdSFctuysv9tvvjeILQBhBL3N9SirhYHpUht28BYm2jqz7jVNbSszmnTBqalF91sVQK2vR+be/y+zIqoqyQw/r9zxjGk1G54vja4IIKC6EEUSCA5Yr4HCR/ByX+QdSn+vZeFUgkoNrkZxQVnQDrKIG8IWgLzoD2qFLsz5/oky76SHE2rpglAZRus9UiOTfpxqQ24hCDVVQ/QZCU2tRMq0GDYsPRMV+MzK2Gsz9yRPDqmf++RXfGPPzGApjybne+1c2/q9fgcCp3wUgFwECZ1wDZ3e79/is//wlapf/BBWX3Y7OB/4VvhMuRMVlt2P6Jd/Bvsuvwwe3PQxt5n4wqqYg9uTKfq8/FjXfCSlERTlQJqPHg5XJC+U9MogzrS90i6mAqkLRfWCp0gQ+vwzPArwPWcVJQNgJb9AMpoGVVEzsCQ3ACYflSrJPlo8RlinDzVRZP1nYfTPsvc3t3mxsuvjT9/Yv2zCAXNYpVfc5tO93kEX6PmDe2+1lEx0Mm3skhBVH+VdOg9W0CXbTJhn+lraPCpCh6VWHzBtx28db+h6uyUCrmwmVKUgIBi4Al8vMmamtFVzVvf+nssIrhl9GHaQyR/O+SR/FtaA4ZnLgbMANVg70rSfUnHt/Ay0oM+EyQ/NCE51wWK4wh8ogbFuuxrgclfvNkAmB9D0GEFp+l5AB5IW0/d6aodW2dixUXnEH7EhswEMqr7gDgdOvgrP1YwjbQt03zoMb7YXiD0Etr4Kz7s8A+rZTuJ0tY3IeZPS+8crP5H9UHS4XEEKGZqa2SUBhXi10WSJNfnYrwTI5GWb45YRLanXZsSAcW26xMgJ9K8t5QvUbiLfv9t6bUtFg3HJk5nvuwgrHIFyeLCPlz4iKiDTtGvL3CtZXjW3jh6F37ctyonKIrHA06/1M7XsNNu8fYTV+isP+42q89u07kGjrgOBuxmC59/Fb+r8nTjYi9+HVFHqdGzRQJlm98KWl8kNSCEBwKLYsCwM9mQ1XkxmxheaXH5xMlR+0ydUmxReU5Wc0P4SdgIjK/XByf7MONvfIvbRgYpRdfAsUzYDb0ynDyxMmhOvCjUbkBYMqz4cZfpTPnYZEdwTM0DJCrYVtD/Id+nQ//MPxOo0hG6xMV/qKk4hHs5abSbHfecZLzKYesEQm/jroSOizDoSzY7Pcr7zzM1hv/g7W20+h99MNCJ5zw9idSI7k86r4cOiLzoDyymPyIhqysITDBWwwmK6Q9zMVUBQ5WNZ0WYM4OUiSJeJ08EA5eKACbkmNF8qtuBb0+rk5Pb89uaYFJ2rKPfm+AJihyURfyRJxPBYBAERbOmFH42C6hp23XgFAZpUulD3yanmVVysXGHirhxPukf+aCe++9BWj9JXmVB1Xu2kT/PsvQHTz5+CWCVZagcQrj0O4LuLP3JeR5IvklnrQcQg//O9wmfxbUJki+7TmA9d84MmyUBAcim7ISKDSCig+P/Rpc+VqcqAMKKmC0HxykixVRhEAN0oG+/YTTnCOeHs3uBmD1dkJQGa9tyJRKCoDtx0EaisQbmxB58dfQPP7YHbKa5INF56GygOGHg2RHvI80covuTUzYm8ATTfIrVXx9m60rPxuv8crr7gD7fde400W+JdeAqelEUfdcg4+fux1cNuBWiND0nfd+T3Y4RicqJx82LzsbO91aJWZTAY0UCZZlU4tkeHSgnu31CBXqEbfSnMy0ZfwhaD4Q8mZ6NQxDIodkxejji1XoLgjkwDlEeFYSHRFvK8VVc1ITqMwJkOwXY54ZxjcchBrk0nA2lZ9H6y0YkhZmVP7BnNJa9gXVscOODs+GfQ431cv9vYxZ6P/w+mZIWDeHnVZVsTtbIXzwUswjj4bcGyE9jtgLJqfc4VQU3eotJpp0FUFAY1BYwpUpsB0BGwuB80AkpmxVUDVvUznPBqBYBq4v6wvTBvJFea0usr5gtsOzM4eMF3zMvmq5VWyX+u6jCJhKhSVIdzUKS8SDd3bx6jqOsw/P7zX75MPkyjGknMB1/YSJZacn33fcGo/ZnrZlvQs/nsOepWQLLvEo2EEGuoQfuct+XlgmWCllYg19dUv3nXn98bkXMjo/PGW5+WWdQVQFUBjCmwhw7Bl2VUBhTtyUKzqUPwhsGAphGVCqaiVddU1XeYmsEzZT5LJ+/S62bk+PU9q0jre1gVuOVD9BlzTAtM1MF1OiKk+H3wVpQjWV4EZcg+zFZGrrVbUkhmjC0TXqy+Cb3pz0MSYM1fKZJ3Tb/45Gm74adZjaq7J/vwjV14JRWVo+cuL6HnkRtRdfz9Uv+FlwE7VqAYKsPIHISOQX1c0JG/UHlILxTbBEr2yFEzy4pdrPiS4/BeqIfc6pbJgI5kQK1AKCC7rNRohCMeS2aUFB1QDPFnH1W38IFenl8GJmV4oErdMWUsyVSbHdeF0tcsJAJWh9vADkOiOIFAlM4qGG5P1S4e4RzlfsFg3nHV/hr32abk6/ObvhjTYT6+jmX5xoWjJWpvJZCrqjAOgVjUAkBfv6Sty+ZwhfLLx9+6C6iagKkDc5kg4HHGHw+YyHBssWQ5O80EJlMrV2FCpXEkuqUYcOsIWh6sHvQtoo6J/8iv309dzcHaScDlcy0G0tRMsEJJ1oBNxCM5hdXbCbt8lk5Qxhnn/crQXWmmUhdDzyI19paX2Im8mUZgKcAeJvz6KxF8fRfxPP0Xs93cOKeP8QAm5jMVneiHd+sz9UPqlw2H+7Tn4l14C/9JLMhL9lM6eQStNeeCCX14J344P5GqyAFwB2K5AwuGwXFkOSjBZRzmVf4QFQnJArOlQHAs8JKNHeDQiq1loPmjTDsz1qWWYfvPP0dvcAdd2oJWUwE1mupYTZGGYnT0AU6FVTEG0ud1LzpfKhr/vN5ZkJLIcyKffPmM8T2PI/FXlcDpbsevtD9D98A/Rcd91Xibr1GTdzluv8LJiZ5O1PnLymsdtbwa3HJTPavAGwulbxub+5Ikxq69caDgXeXsDRV+PGxook6wS4QQUq29/i1AYFNeCSM5Iy9BMuWfFKy3jk3tTheaTe5iSK44sEAIrrYTwhZK1WpN/dmak3/fNBeFycNf1kuDYvVFwy4TCmNyTlxwAuqYFJRBCyb7zvBVlozQky8sMcY9yPmB2HE57M0RaaLVx9NnwL70EiZce8+7LNqDVF50B571nvf/3vajq/fy02hmyVucAodu+r17cr8wMyYGp+4GHqrx+rDEFiqLA4UL2cQEI3e/lJeC+kCyd5iuB8JdCseNQlNRKNJd5DQYySBj/eLMicm+icHlfZthkGRzhctjROBRVheAc7977PBLdESS6I7DCUbS8/bEcOBfQihOb948QZhTcjKHlhVcAx0LwrOu9jPMDhWP3PHLjgDkUrLef8vq4cGwZpjvAXsngWddDC/qzJgTam2ie1OAuBn+76XHwUBUMLvueqgB+TX722hxe+LXQAxCqBu4rgdX4KRR/EOAcbmkNhB4AD00BK62APnXW4H08h7hlI7orCiUQ8vblcpdDURmcuIVEx24omg7HtBBubJWTZrqG9nuvkSUfh5CP44BfPD2+JzFEZRffArW8CtVfmoutz70LozTkRYbMuPUR7Lz1Cky98cF+lTmAvqSVPJnxPn1VWWFMbjUDYNQ1ILTgH/plt0+pvOKOSTtYJpMPDZRJVof+7nmIli1yFVhRZFilY8HmMntmwhVyj6KvBEL3gftC4EaJt+rAjZLkirMfKK+VdXyZrN1qTJkKQO5tzQcVl90OJ2bC6d4N5pfZMtVQqUxQpjKwUBmc9mZUHrAPhG0h8ukm6CE/ti6/APWnngyRiI+4PnAuaA37wjj6bOj/cLrcnxmNoPnm78B6+6mMzNa+r14Me+3TXi1Ge+3TcNb92SsPlI5Hw3IfqxGAUA2wOUdAa5A1s7NyrCGFs5LxE33ul1DiPVB726ElL6INVYHNBRIuh5Pc0yiMkLyYNpJ7FLnr1VIPOFFYrpAX4EyF3daY/ZsNIwHNWJt+88/lJJfKoNZMgx2JgTs29JKQl6CGVdRCuBzzLzwKPVua4asohR4KoHzuNGh1M/tluc936vyvIHDqd1H9pbkAU9Fx33XeRXL7us+943oeuRHdD/8Q3Q//EOWX3IrIYysQyzJYdXc1eRl3RcKEtvAU+A49Bu6GVwZsQ/CcG7Jm1R5M6Kzrh3U8GdiTH+yC0tkkQ6wBaOBQFIBDTnYnHC4nwnwhCF8phBGANv8Yuc897e+d+0qgzPsH8NAU6DUzc3Y+g9FDAbi2LGeV6O6FHY0jWFsJf5VMThaYPQcda98Ht1xM++fTUPUPC6AaGt6+8wUYNbV5l5xsb9SDjkPJ+f+Ow55eg+5N29F0w8X44przAMjQ6J23XuGFXO+46dJ+z9+z1FP3wz8Ej0bkXvTSCvi/fgWMxWdi7V1/HbANisqyvjYhxaawPv3JhFKn1ENx+laWFe5ATyYFcbkAV2SiK6H5ZZkJpkKpmibrsKZClzU/uFECHiiX4dmDlCfKJddywHTNy3ad2m8NAG6kGz2bm8FCZVAra2FHTQiXo2drGyLr3gHv7QYry10mzNEwlpwL33Hno/akkyGiYUR/e6sM2XzpMcR+f6fck3j6VTCfe1CWAznsJKgHHdfvdbRDl3o1HFP717kvBOGXIW2JVx7POF7YNvwnXeYNwofKeut/hn+SJKt/+/av5e9HYVC4A5XLVVbHBVwO2MmoEaEwCCMIYQTBp8yAIjgUOybzDygMigJEbS6TBAUqsn+zIYQuj7dgbSVYqAyuZYMZfiihMjBDgxbwIbH1M/iryhGaMwelM+pgVE2Ba9uoO/O8vv2ZBajk/H9H4PSroOo6SmbUo+eRG1H9pbmIPbnSSy5YcdntEK7c51l64QoEswxWA2dc4+UsSJUKUw9YIpMgZpHa40wJvnJntWiU24JcC7oqJ7sV7sJxZRZsV0BOfiX7txucAresHjw0RX5uByqhWFFwIwintHbQ1WTrzd9N4Jn1N+PWRxColFug9JAfqqFDL5ETukzXwMqrYEdNNCw+2JvsK509A/O+Nltm9ecDJ7nMdzNXPoqZKx9FybQaLz+AcDk2XHgavrjmPEy/+efYvOxsNN1w8YDVHSouux3Bs64Hj0YyJjUPPm/BgN832tKJQE3FpMpJIITI31uufzhFjAbKZECxv/1Z7jPWg1CcBCAELJdDURRwJC+kk0m7hOaDUDW45fXyyckEYLbqSw6Sk2Feav8QxlTimVxzYiZ4PApuOzL5mOEH03ToDbNQOrMOiqbD7WyFURbEzrc/Rai2VO5tTn7wFjJ90RnwffViaDXTZCKvEy70aidbb/4O/q9fsdfXUOd/Rf6eUwSHkgyv9x13fsYe6OBZ18N87kEETr9qWO00jspNDctitFo0Qm/dKL/gcjWGJSvC2cnwa66oEIFyKLYJofnkhbQvJLPZ++QkCINM/uVwAa5n36vP49nLlEyUYMMUqH4Dwox6+QgUTYfCGIy6BvRsaYYaKoGzux3R1t3Y9qfXsO2Fj2DvbAQfYDBYSCqvuAPBc26AwpgcDJ9zAyouux3ll9yK2JMroZcFh/xaLFjm/d9tb/b6deSxFf2OLaS9ysNd/S4EgssknIZwZB9XmFxRTk12qzrckhpwIwTmJORkV0kNhOaD2tsOqAZiNke36cpB9UByGDGSouqq7N+6JvMSJBKyf5cF4e5qQtuHOxCYPQc9f3sD0cZtePnaX2P2v5wAt7MFTm/voK+dq9rJw1G7/Ceou/5+CJdj2k0P4aDH/hdz7v0NADlZkErwNahkqbCU6eecBb7pzawVO6bd9BCsSAzhrVQWjhQ3GiiTAZWc/+9gVhSsc5vMVm3HYKgMCZcnM2cK2ALgqX2MvlI4/grwUJXMiKsHYLkCceZHoqQOwlcCX2lFv++TMbjKEeFyWOEo4u1dcC1bhlpqBpRACIltm6GVlUE4NqyubpQfsQgHXHom/FXlch8QdzPKRRWy1KpR+gqBWj701XJ1n0MhdssPTm36wYCmw3r9CSReeqxfiR3/16/wwkFJbrglNQAANdwCJdELVQHc5IQYAIQtF7YiM1zbzIDJFfSW7wPFMWW0iWvBpzHYySzZAX//gbK77UOZJT2Hqq+6G9HmdiQ2vgfXtqHoOtTKWqhVDVAMP2qOWQRFN+BETdQfczgaFs+HcDnMLXIiIdcD/bGS2oOcPiiMt+8eMDv2noyjz4a1+SPva7VmGsIffYTY7+/0Mmmni7V1ZR1A55NUVEsxrn6rBywB3nkGrLcDLN4DxUlAZ3J7hStkAj9L9UEoCuLQkXA4uhEA95XAKa2F6ytJZsIX8A2S8MpYfOYEnlV2zFDRvvYj+CpKZaRIWTlC8/ZFybx5MFt2IVQbBLiLQG0ljNIQjv/xhYhsboQTM6H6B89BsO+DhRPJNPXGB7Hrzu95e4ibb/6ON2Dem+CZy+E74UJsXX4BAFndoufF/x2wYkfDDT8tqJ8NISNBA2UyKNbbIVearDgUx4aSLDPB0JdFM1VzVTANDALcVyrLTTgJGfKlKNAUAG72hD7qPodO6DllE2uVZWHsqJlZIzlhomdLMxRfAHZnB3z19RCui8jGjSidWddXVmoYK8r5UE95b9TyKrgfvwj309ehzv/KsJ6rHXZS3+vMOARqZY2X6GtPtct/AvO5B0fVVjJyn3z3SrBYF5RIBxQnAY3JclF+jcl+LQBdOOC6X64wJ7PnQmEyJFsPQFWAcp8Kf7Q96/dQnETW+ydatKUTVle3zHabzOYNACIWlqHV3IVvSrkMxQRw8JX/IifQemQfL4R+O1Tpg8I99yvuTXpotrH4TJQvWDDgilzDDT9FPJn4EMjPVVune3eumzCu2l99HaxzGxTHBARPfn4riDvcKwmXcORnnuUK9CQ4FO6AuTYUISfA1FQ5yDzW9UUXmKEh0rQL3HLASipk8j7Hhuo3YHaZsHa1QKusgeAcalUDrEgMHR9thmtaiD21KtenMGbqrr/fK+eULanXYGJPrsTsVb/yvq684g7suvN7Xl35PaXvUy6m98hsBBd5eyPjhwbKZFDtTz+BxGfrIGI9ch+jGUZIl+FbqYz0CVeGXZqugFAUeWHMXfBkqBZTIOstZwndcrevn9DzGQgzNERbOuFPlowQnEPEwgB34a8qQ2JnM7jtgEfDMLdshL+qHK5lI1BbOeyMuPlQT3lv1PlfkbcsCdfstkbY7U3Dei1jybkDJu9KD+seSokqMnYO+M7ZsDeuBQAwMwIj0QO/qsDlgMPlpFirKTNhx53kzeawfOVysKwaYIoCnSkQA/QDNvfIiTylAUVbu+XeY9OSezeT7eXxaEboKO/phK++HswfhF4ahK++Hmp5lbePdzLgm//m/X/PPALOh2syvvZ99WKUXXzLgCvH6fsi83HVNttKeDGp/epXZH37nl3QeppRprpQGWA6AoYqB8xhi6MnwdGVcOEKgYhaAlvRELFldEnMHvhvP1UFIde4JdvoqyyBFvKDlVd5E2CRpl3Y/9wlEJyDR7qhV1Tg85//BgpjqDp4DrSysgEncwvdQHWUB/q9scr+5f3qrr8fU2/MPqE9/eafe/8vhGsbQoaLBspkUDf92/+i7e/r+0IPuQNDlbPLCYd7exltVw6UexIubC0g96c6CSiQs9HMjkNx7X6vL5T8+BO0wjEYZSFooWToKHchHBtOLA7N7/PKyMhV5zjCW1vQ/fl2aBVToBh+2G07+71mMc1QjwX/SZft/Zg9wrPJ+PIvvQTgLtz2ZpnZHoBPYwjoCqK2i4jlwnJl1lymAJbLEdCZXFUWHBxKKncbFNtEJBbPeH2+5e8Te0KDMEr9YIEQVL/hJepjqez2yRJwgrtI7O6BsC3wmMwCq/hD4LGIt0JT7NxPX/dySbjbPszYsziY0gtX9Cs9RVlxc6/try8i9v7rcNqaAc4hFAafytBt2tgdd5FwBAIag6oArRELiiJrqKcmwAXkdoy4mT2hnbbwlIk9oQEEqwOwoyb0UKAvm31pBYRtI9RQBdXnAwAkdvdArWrA3LO+ivJ50+Crr5fl4RLy/NZ/8+s5O4eJYL39FABAJEvk7RnRNViG/5aV3x2/hhGSp/JjlELy1mrRiP/vwb/he0delRz8WjCcOEI6Q28yyYfpcPQkXMRsDpfLUE0oDIodgy5kNl2h+YDkhXg6bfrBOTir/kpn1sExLXDbgb+qHMK2IBImFJV5iW70UADC5ahY8jUkuiOoOngOzGY5QNam1HivldobFDxzeV6GGo5WKhOy1bGjXzkgu70JTsvn2Z9I8hI76kw8+c83Q8R6ANdBuYjBYAp2hBPY3pNAQJMryqbD0dJroSchtxkIPQAAUM2wt0e5X/h1lsmxXPj4/FNQMW8awFTo1XVQy6tkmTPOYex3GABAxKNQDD9C8xfAjfaClVTA6twtB9VM9SIiOh/411yeyvgLVQCa7iVZVNKSdwHwaq1ms+de5/TVpr2hi/DxcestL0Cvn4HYxvUAd6H2tiOgKfCpKj7rjCFqu+iMO+hJcOiqgu09CViugJpM6lfuk79vZvcfKPNNb0706Qyod1cUesgPpmvQGmaDhcogEiZ8hyyGf9ZcryQcIMudqVUN6Nq4TX4djcCNxwAAh/z2uYzXbb75OxN7IuPMWHwmrLefgnAs2O88A7ZHDpJs5R9TBlqd3lMxvkcKAXAu8vZGxg8NlMlefT/8Gb5cHQTv7YZiRaG4FjTWt5LkCkBlMlzTFQJRniwb5SuFYsflc+I9uT2JvRAuh+Y34MQTYJruXQzq1XVQSyuglwXhWjbi7V0AY6j+0jzsfGM9fLXVsr5omvSVJ7WqYULPY0Komkx0JjiwR0SASO5dJYXDqKjFm51xRN95FVq4FYoVg6YqmBLQwBQFLb02bC63WNiu8GqpO0KuMENwCCGguDYUO3NFObVqkWvzH38WVjgm26MZXqi1WlUPBMqgBMug+PzgZgw8HoWiMig+PxSVyT3MibiXh6Bq2V0FkQV3NNL7sO+48yfkew71IpwMz2rRiKtP/A/4qqdAdLeBJSLwJ/MQ+DWGHtNJZrrniCRcRBIOLG+rBUcJc6EoAyTdzINs1ym+ch8CNRXJmukqFE2XiShDFdCq6qGGSiG4i46PNgNMBY90oXtLC0TCBPMPnPVdD2XP5F+o+KY3oWg6hG1DYaoXXTOWhpv3gJB8Rle0Q1CMq4LDdV77BjT+/BfgW9dDsU34GFCiqzBUBTGbQ1XkwLkn4cIVgAkNcaHC9ZcBrgOoGpQ9BpTutg9zdDb9CZdDYQzcdgBNh3BdKLoOVl4FVlYFtbwKqqFDC/rBw7thR+OYduyhsLu7vVJS2fCutgk+k/GX2msujGD/famMyQF0AYk9uTLXTci51aIR1//fx+C27wAEh8EUTAnoqArqiNkudCZzEpiOzHgfT+5ZjDsCzIyg5LOXoZgRcH9mZtxsNbdzYd0ZSwEAIhqGMKMQjgU4cq8yD1ZCLa2AcF3E27qgT58LNSQTfvkapgEAWCCUkYsglek19tSqgiqBNBTcKAEgI0cgREYG/PjT9w47JwPJvdWiEdee/TO0Pfv/AdFuqG4CQV1BqU+DKwS29yQQ0lVwIVDu12Bzgd1xF62Rvs9sf7D/SiOb948TeRqDClT6YUVicC05OSccG8qUBrglNVCqpoGVVcHq7sXULy8At0zYHbtQud80RLZuBzdjWXMQxH5/J3qbsycpLDSprWAiUAZFM6D4/ICmy/e2dKOc/PjimvNG9XxC8g0NlIcglYBkz6Qmk828B36HjldflXuNBYehKuDJzNeGKhP6MChpYVuAIgREoNzbs5whj2oPp8KrHVNeGKQSexhHnw2tdhoUTQfTNQRnzoDb0wmmqvDNmA29JATFH5JJQ7L47LcvT8wJjDN711YAQGckBhMauBGSNba1PSYIkjW1C0nwnBvQcd91uW5Gzq0WjfjFiT8AFAaWzG4vhAy//LTThM4U6KrMiq0oCnptDtPhUBJRKIGQjB5xsme2zzXbdGCUBRHb1QFhW3Kvpm1DqAaELwQwFSwQQsnsmXBamwDNAPPLvs1KKwGmZt271/rG+zk4m7HnfLgG7oZX5BeCQ+hBcH8phC/kJT0DgMAZ1wDcReKVx3PT0CHa/VDm5EX86Xtz1JL8sVo04pb/9zxafvsYFNeGyuRndsLhMuEmgNqQDz2mA78q8xSYDkeHxbzw63wWqCoBtxxYkZjMaM9dGdmmByB8IbDSCqh+A1rdTGiVNdjx8vtQGEP5/IOgllZACwb6vSYf4HO9ELHSSgAyWkSpqIVaWgFWUtFvYKwwFfE/jTy6g9v9t9gVBwHB3by9ydS6ZDzQQHkYAqdflesm5NyONz6DUHWwWBcCmryQ7rUcfNoRR2O3iYjlQAgZmplwZFimkogATMu6RzlfaH6jr4yCY0PYlrwoRN+qWOCgw8FKKsAjXTC7IxCxMFh5FXikK+tFdOKlx1A+u3qiTmHcmLEouvy12LG7Fx1xB3GHI+IoiDoCXM8yUFbYiPcpt997zRi0ePiqr7o7J98331zR/SnUnp1QmYISg0FTga/uW4OmHhPdpoPWSAI9posSg6G110bMFtg9ZT84rU3g8ShYIpLrU8jqyD+/hEBN8kLRMqEvOgPaYSdBnX04jIpasFApFMMPtSa5j3naXOz83ZMAAKdth1yFzlIrfcqBs2CFC7/GMp92EJyZh8GMx8GDleChKeDBSgjNB33RGRnHKr6gXI3KY1O+kxkFlnovJ4AdlYO/MoPBpyo4+YA6TC31wXQ51rX0IG7LzNcb2mNo7I7D4QLVsf7JKvPNvAd+h2k3PYSGG34K4+izZdWGfQ6Fr6QcXA9AYSrKLr4F1o4vYOx3GEqm1aBsdgN4pBuJ1tasr8n8QXRtLvwVZaflc7AjTkYivBs8VAUeKIeomimjafaI+lH8QbDgwDWz92beA7/b+0GEFBAaKJNhCVYFwDe8CTXeBQ0cHAI+jUFPZsLmQiCgM5iugMUFFMGhWHFou5v6rT7mU4huzTX3QvMb3n6k4JnLMx73n3QZ9EVnwHfChdBn7oeqY5ZAJExYLTuAAfZhyj2O+T8TvzcmV2BzyNIhHEgk625arsx4nk4wbVShmZOpBE8+ulyZBQAw3ISsp6zKjwjH5djQ3ouDaktQ7lfRFnXgcqClN4FyEZPJsVQVXB94r1+ulV18C4INdVlLFLH9jgY3Y2AlFdCq66FU1KJivxlwu9pkH9aMflEj8afvhWMm0PHRlok6hXFhtzdB+EogVANRR0BoPvhKygEAQs2swRp/5r5RR4zsuvN7o3o+GbnVohFVB88Gf/P3CAgLIV327wPqyrCpI4qo7WLfqhBaey1MCWjoillY3xaF1rBvjls+Okb1dC87d+mFK8Dm/SOqDt0fwuXY8Mu/Dvi5o6gqag+dOZFNHReKFQM4B1RdJmFUGISqQzAN7tbMqBjFF8iraD9Cco0GymRY5j/+LDpefU3WT01EMK1EBxcCFX6516nE0NARd+C4Amoy2xdL9GZNBCKY1u++XKq55l4EG+oQPOeGQY8zjj4bxpJzYffKlaQ9V1fiz9yHxCuPg0cjMDvzO4nZUBgqg6EqOKShHAfVl2GfqhJMn1ICRZElg8xY2opaMtRNcUYWspZeczWbztU/HNHrkqFZLRrx/lU/guJa8MNBiSE/Is47bDrKfBp2hBPJfi7vn1vpB2wTSiAEXjMHrDu/V56CZ10/4GOBU78LUb8vrHlHQ519OMouvgVqVQNYSQUUTUfg1L6szPE//RSK4cfnT7+LAx99ZiKaPn4EhxpugT8QQFVp0NuL6iubAigMzs7PvEONw46H0P0Q0bB333BzeATrq/Z+EBk31//fx8DKq6D2tqPC7ft8srnAIXWl+LQjio6YjS2745g1JYgFdQNnQS5kwbOuR6RpF/Y9czFUv5ERghx5bAXM5x6E1dkJt8BDid2PX4TY3QKWiMjtb8mQdAiR/LzOnPhSNH1USRj3tke5+fbCnSjLdXj1oKHXFHk9bmigPI5S9eqKTaJbJu1RrDjijkBDiYFt3SaCugotue+pxGCo8KsyeypjQKSj/wul0mbnkcEupPcUOuLL0Gvq5Apq2ioqC5ZCWCaEZcKK5kfW39EIBvyoKeu/Usgg96craSH1gmngqi5nr0dooAvv9nuvgZJHGbVjv78z100YF794fgu0ts8B7sKn9vVRmwuUGip6Exw+VcHMcgMqU+Rqq21BjXYOWoOzECg7P4O2fo33tYiFM7Jke/fHowBT4S/zFXQplFQJqH65BpKMyno5WN7xCezWLbI0HNMySshkW6EfjBoYOOqg/b6hv/+SkVktGnHVMddDMSPe+/QTHzYj4XD0Wi4qAzr2qwpiVkUADSU+7DZdWD1ZPr+LwJTDDoZeJsufpX/2M10Dj0fxzj1/gWsmBnp6QVD8Ibm1hDtI6CEoruVltddrZkIRHO6GV8A3/y35BAZF09G26vsj+n6+isHDthPdvSN6XUJypbCvavJcql5dsZlz729gTJkKANAZELE4yv0aQoYKv6bAYAoURUEg3gmuqOBGCZRAKVi8J7PuoijcKbD4n34KHotAYQwiEYd/6SXeY8Iy4bQ3o3v9BpQ0lOewleOrtjwEvyaTpqQupBww+Wvd43frvPes93/r9ScGfV21PPuKk+b39dt7mEvBs65H+NF/3/uBBWa1aATb72jo7Zuhpc1llfs01IQMlPgYVKagXMSgMwWOr0zu3feXQjg23O3rc9f4UVIqaqFOqYe99mm4H78IrW4mFJ8/o3/Hn7kPdjgMs6kRekgv6FIobM4R0GtnQa+bPeAxWsO+UOwE9Pq5ckCdvMge6WfbQJORXQ/+ADVXFefkUz764Kp/gxrvwictYZT7NPg0hkq/juqgjqqAhoNqAphV4QcXAtwozlXlRGsrwF2UXXxLxv3R5nbAsVE5pwJzfzL451W+Y/P+UYZcKwylwQCMynoo3Onr89Fu8Eg33K42uJ++DggOMBW73svMM7J1+QVD+n7TbnpowMc2Xnw65tz56IjPhZBcKIiBcmNjIy655BLMnj0bgUAAc+fOxU033QTLysyw2tTUhNNOOw2hUAjV1dW46qqr+h0z0dxdTTn9/uNJr5uNipIggjrDjDIf/CqDwRRwAH444MFKuWisKIBrA2YE1uaPvOersxbkqumj51heCNOe+5mFZcLs7IETNdHbUvih14PhQniZrs14HKkty3uGc6X2hwGAseTcQV8zW9IkAOCui/Cvbxtdg8dY2cW3eGU3ig2bcwT8gb5MsCfuX4sSg0FVZGb7CAvCUBVo0Q65yhhuQ3zda3A+X5fDVo+OOvtwODu/gPnZB+DRCMBUGIvPzDgmldSxa9N2uPbk2FOvzj4cQLJfMxUiYULRstTVHYXe5nZ0/eKmMX1Nkt1q0YiF//sCdv/PfwEAGkp9qA0ZKPWpKPNp6Iw7iNociiK33iSK9M/cP30GnFi83/2+ylK0vPUhmt9twY6bLs1By8YWm3sktOkHe1/rtbO8/6sHLIGi6TK7ffK6hoc7UTItc8J69qpfjbodiXAhr87ne9ZrMl4KYqD86aefgnOOhx56CJ988gnuvfderF69Gj/8Yd9+Rdd1ccoppyAajeKNN97AE088gaeeegrXXTe6si+jrZE5GbJtzqspRcRyEdQZgjpDmcHAVR0JweBwId94oxGI8voBB0GFRjH8cDtbEd2cJbszU+GaFnZv2onqgws/EchgSoIBOQPNXQhFAVMAJuSb9kgzX6fvBU2nhwIo+z8/GnFbx8ueEyXFLKQzWQZOAUKaLA8nAuUyNNkXgv+4s7zSaoXKWHIujOlz5F69AcrDOPEEujfvQqwjNsGtyy1jylToNfI9baCfzVBkm1yacesjqPz2zSN+TTJ8Ndfci4MbysAUBSfMq0FAl/koAKDSr6LbdKEyIBTeAb7l7zlu7dhzezr7rSYDQO+OdkR2dKHHdjH95p/noGUTi5tRmWuFqV6/Fu7IB1/bb7wk6/0LnvrLiF+TkFwpiIHySSedhEcffRRLly7FnDlzcPrpp2P58uX4wx/+4B2zZs0abNiwAb/+9a9x2GGH4atf/Sruvvtu/PznP0c4HB7k1QdHWXiHJqAxBDQFhqrArypQuAufwmG4CbmHlTFAcPj2WwCrK3sphkLi9nQCwIBhl3bUhN1reVm0i5mvbIosAyZkAjdmx73wzMGYf354WN8n2wXNWNpbEhIiayurqRrLigIhBBQnIWsocwfo2A51+n5wt30I+53CTXLldrWBxyL9SiOlBBrqYEVtMLUgPkLHnO+ECxH75IMRP38yTS4Vgi9NlVuEdJaqXiHzT/g0BWWGCsWKgXcXfpmkPTmx7JM9JdNrEKgKodcp3O1hw2EcfTbczlY5UHZddG/cjKr5c9D98MiSZ8649ZGs96/92vH47IpzRtNUQiZcwX7K9/T0YMqUKd7Xb7/9NubPn4+pU6d695144olIJBJ47733BnydRCKBcDiccUtXcdntY9/4IrRPVQlcAahMgeJaULgDZkXlaqPgcNubAcFlNkXXgdO8MddNHhV95n79Evx4uAujNIhIS2/RrKDvja9sCvyBABgElEQvwB0oicHry/pPusz7/3AHzUO1t/6dbs69vxmz7xv/00/H7LXyiRACFX7Vu6AuZzZgm/IiS2FgoTKIsNyvLszCXW2NNjUP+jgLlWHj+60I1eZvOazx5p81d9B+G3lsxYCP9T4+NpNee+vfNPk1PDYXYAowtURDwhXwqwyKAgjNgLOrCXZ7cW0lK78ke84LX8M0xNp64Q4xj8qvqg8cy2blhLHkXKgHLAEcGw03/BSq3wDTx7YyyaIXXsb+Dz45pq85YYRcZc/XG6W9Hj8FOVDesmUL7r//flx++eXefa2trairq8s4rrKyEoZhoHWAYvIAsHLlSpSXl3u3GTNmjFu7i52qAMy1weI9UFwbQjWg9spZaLerHbxpA6zNH0HZ8i7cz97JcWtHR9j2gCHC0Ay4tgPNr6Hu+vsntmE55g8E5H5VOwGoKtwNrwzteclBc+KvY5voY2/9e6Qz5nsz4N9GgfOrCnThQOU2FO5C7ZEDSqe9GUJh4NEwWEkF4m/8f3vdi57PKo45ftDHhWVi3wOrUTazNuvjbx6zZDyalVcUxhDd/PmAe/RLL1yR8XX40X9H/Jn7AAAl549NEry99e+xnPyaDOI2BxdAgJuYojkoNRgqVQcsuhtOVzvYrs8Rf/reXDdz3PF4FL27ophdlr1m+CtHLM74+oKOwp74T5fKJ2KHYwg3tqDx3741pOd9fsU3xrNZhORMTgfKK1asgKIog97efffdjOfs3LkTJ510Es466yx8+9vfznhMyVJuSAiR9f6UG264AT09Pd5t+/btY3NykxBTACXeAxbrgmLFoCR6oSSiYPEeOL2yJIDiD4GVVkCb86Uct3b0zOcezHp/4NTvTtqQTAAwqqdD6D5ZJ5upXgmavTGfexC+r148pm3ZW/+miJHhYWaqf0dlOaje3WCmTFgndrfA3voJnJ1fwLffgtw2dAwIe+BEkInWVnCXy/qrWRz9xuvj1ay8ofgCYOoAUTVZaMGAlwhtrNDn99hSk+UdUyX/ShK7oUba4PZ0glsOEp+tg0iMfG96oQieuRzVB1ShfkFdv8f+PPcwHPfu2zlo1cSqvOIO6CE/encMrTTYvg/+DwCg+ebvjGezCJlwYxtXMUzLli3DuecOvuowa9Ys7/87d+7E8ccfj8WLF+PhhzNDvurr67F27dqM+7q6umDbdr+V5nQ+nw8+X/ZZw4lirnkko/xIofJpTIZbA2C9HVBsmU1SWCYCBx0OHumC3bod2sFHQZtW+KFKPD5waLEVjiFYPXnDMgFAcSyIeHTo2XEHCmUfhXzo38VEcSyw3g7wQDnUaCcEd6HYCajlVeCxCETClGFgo0j0lA/0fzh9wIkwAPDV18MoMSbN1opseKQLvuop6Nm0FUN5pwuecwN6HrkRRlXVmCW5pP49tuqCGioQh2JGoXU2QiTk9gnri0+w+9NtMEqD0EP+If2+C10inEDd4bP63X/SlsLN6j9cRqksC9Z0w8WYuXLv0V5fXHNe0UZxCICyS09SOV32qq6uxgEHHDDoze+XyZCam5tx3HHH4fDDD8ejjz4KxjKbvnjxYnz88cdoaWnx7luzZg18Ph8WLlw4oec1XMUwSAYAZsUA7gDxsFxd2tkoQzJtGzwehbltC4zpc+B88laumzpqvuPOBxx7wMcT3ZGsH7KThTb9YCiuDUXX5b70IfCfdNmY7V0k40MoDIodB7NjsLd+Ivcmx8OwmjYhtvEjNL2wFp1vvCFzEhQ4/9evGPAxq70N4R3hSZERdyCpn4/mNwbdj5xOuHxSVIIoVBpTwL54F2pvO6wt62F++AaszR+h69NGNL64CW3rvkCwPnud+2IT7zJhlE6GKYGBubaNQHXpgJEzeyrWQTKZ3AoiPnTnzp047rjjMGPGDKxatQrt7e1obW3N2Hu8dOlSHHTQQbjggguwbt06vPjii1i+fDkuvfRSlJWV5bD1kwdL9EIJt4P3dMJq3IjE1s8gbBvR99+AiIXha5gGRTdGVVYkn2Srv+g9ZlpD/nApVsLsBY9HwSNdQ37OWO1dJKO35+AnEY2AmT2wmzZBtDUhvP4j8HgUiY3vgmk61j/6KrjlQg/5i34w1LujHfNOOSjXzcg9xmCUheBEh/aeTlsd8luJ2wswBmvLerSseQVmZw+s9jYYZUGoOsPuz7vgmgNvSSgmPdvCsIf4d12sXNMC03X0NhdfxnNChiqnoddDtWbNGmzevBmbN2/G9OnTMx4TyayEqqri2WefxZVXXomjjz4agUAA5513Hlatyp5oZKJ03Hcdqq+6O6dtmCiKHYdImHB7OuFGe7H7022or2uAUVUFu2MXepvb0XBD8WQDHuyCQWFs0pcW49EwFM2AcCzwLX8Hm3tkrptEhqG3uR2laV8rVhRKdyt4bze4GUP7us0ITa2F4vMj0bkbtYfUYf+H/zDg6xUToyyIWGtnrpuRe8loEb1scq+8FQvW2w63sxVuZwvMzh5ofgNayI9oczuC1UEYs/RxL9OXLz5o7cVJNz2U62bkVG9zO/RgYFLnXOkj8jr0eogJ2skIFMRf/0UXXQQhRNZbupkzZ+JPf/oTYrEYOjs7cf/99+d8/9JkGSQnwruhJKLyIjrSBSdqwldRgp6PNyDR1g7V5yuqQXLs93cO+ji3HXDbmaDW5Cce6Ybb1QZhmd5eN1I49pwIYrEuOK1N4PEorF0tMMoC6P68CVt+/1c4ZqLoBsmxJ1cO+njPtqFHShSr4Dk3wOzsGfKKMslvfPuncLvaEG/vQve2Hux6vxFt677Arg9aMH3JATjkt8/luoljZuvyCwZ9/NxlR01QS/JXeNtu9DZ3QAsF0Lbq+7luDiE5URADZZL/FO5A4Q54pAuKqoIZGuxwDK3vbobqN+AmErlu4phy4zG4dva9t22rvo+yWQ2TfkVZmFEIMwpFM+D20OpbNp0P/GuumzCgPfffsuREmBMzsXvjNvS29GDHG58h1DClOMMxB0kup/l9kzoHQbq66++HYyYQfpS2TRQ6HumGE5Yhx0bIQKSlF9te346Zx+1XdKUOZe3ZgSW6IhPUkvx12NNrYJsOuG0j0d1LdcnJpFQQodckvyWiESiOBbg2wFQohl/ubYpEEaothRWOomrZXblu5pgqvXBFRlhqukR3L1S/gRk3PTKhbco7mgGkhSrZa5+GvuiM3LUnDxVKv7Dbm6BEdiPR1g7XsmGUBmFFbZhdJv7+2Hs4p21Drps4Jt48ZgkO/4GsxBA86/oBj9NCfsy4dZL37zTccmBFBq4CQAqD29mCcKNMiCpcDitqw1dqoHtLC2bs5bmF4t2vfwVHPPfiXhNPFVuEzEiFt4dhhGTlirk/eSLHrckhke9Zryn2erzQQJmMnuBQXNvLbiwsE4muXljhOHyVoeJcbRoEXUAnpT5UGAMsEwJDy35N8o9ixyHMGKxwFFYkhmhLJ4QroId0WLx4PqBt00H0iy/2umWm9MIVE9OgAsEMbdJH0BQyZ+dnwK6tcE0LjmnBNRPgXICpCgAUVcj1h39rxhG5bkQBUQ0VwhVIdNFEGJmcKPSajJ4QUOwYhG2BlVYAAFzbQawjBqbrYAbNx0xKyegCYcbAo+FhZb8m+cOMRWX+gUgXQtNqoDAGszuOeJeJzk9340snzMp1E8fMce++DX9Vea6bUXC45XgrkaTwsFgX7OYt4LaDQFUZwtt2AwC2tkbR2l5c+SVURUHXgz/IdTMKxlGvvgYraqG3jQbKZHKigTIZNcW1wBJRLwNqoq0dUw7cB5X71kBR2aQvsTBZ+ZdeAkU3oBh+KIY/180paK8csThn35uZPRDdbXB7OsFtB8zQEKotRbA6AC2goWdbT87aNh6oRNnwCc6h+nObOJMMT8vK73r/5z2diH7xBaxwFImuXgSqg2BMwdSAjrkH1+SwlWOvRGO0TWCYFJUh1hHHB2eemOum5JDMep2vNzJ+aKBMRk2xYuDh3eBmFCIeBdM19O5ohx01sfNvW2GHi2tGmgydcF0Ix4LvhAvlnmUyIse9+3bOvjeLdcFpb4bVuRtWOAqzM4zdmztgdpno7bUQ3UUXnZOdE7cQb6OIkUKSXoXCbmlEpKkNZmcY0dZO9GzrQefmLnQkHPz+ze05bOXYCxgqoi2UXHI4nLgD4XJofooOJJMPDZTJqClOAsKxIGwbPBaBHY3DisTALReKqhRd6HX6TDwZnO+48wHOYT73IDhlvi5ILCGzl6f6tWsmoOoqEuEE4i5HoLq4auhSGZThc00L7Rs6ct0MMkJuTyfMzh7EO3uQCCfgxB1EehLY1Gsh7hZPDgIAaI/Z6NlKf6vDIVyOWEccjjm5S16Syam4RjAkJxTbBHfsZL1cE9x2oOoamKGCW7xfmZlC9f/8c/Ef5hYkuntz3ZSCImwLwrGhBEK5bgoZARGPQCRMCJfDiZpwTAtW1IITlxdNqYQ/ZHLacdOlsGNxqPrA5bRIfrPDMTimAx61Ze6BLV1oT7io1FUcu09x7dmfNbsChz29JtfNKCi26WBrOIF5VZP7M5xCnCcnGiiTUVOcBMBdCMuEG5dh1q7toHzutKJKjPMf5ha8deyXcdSrr+W6KQVFODZiTdsRaKjLdVPICKjzvwJ88ne4tgPHtMAtebFQe0gtysOJouoPrxyxOKdh7oWIWw7iHRFK9lPA7GgcAGB2mTC7TBhBHdMA6D4VJ256P7eNG0OXK7Nw4Zdn5roZBceO2uiwXJjd8Vw3hZAJRwNlMnrJ+sngLrgtV5mM0iCYyqD5i2tfqmrQqslwiVgYsdbdcGImiitId/JIzaRz24Zru2Aqg3A5ApXFlaStpJb+QofLjsURaelFZxclbSxUrt0XUutaHKrB4FONoowWUYrwnMbT64uPxief7YbFBQ793fO5bg4hE44GymTUhGX21cyFzJDIbQdKyF80Ydcpqk7b+ofLbNkFs7MHapFNmkwW5ppHILiskcsteUHtxB0oqg6tyC46eRHVhJ4okR1d0P0aKkN6rptCRsg1LShMAXc57KiFrqiNgKrgn1s/yXXTxtQUQ8Xil17NdTMKSldjD2ZV+NBjT/KwYyHA8zr0mj67xgtd9ZNRE7YNJC+kAUBhcrVJUYvrz+vZGV/CEc+9mOtmFJyOjzbDtR0v2oAUGO56A+RUn+au7O8LnvpLzpo1HkpqJ/cevJFoeqsZ8S4TdiKfLyLJYLjlgKkM3OLQAnLSY7fl4vlZh+a6aWPq8IriioCZCK2mg+09CXRN9oEymbRoRZmMHnchXBeKpkP1G1AYg6+yBDXX3Jvrlo2Zt479MuoOKa56khNFURl41C266ILJQiTrozOVQVEZVF2FFtDAWPGsJq87Yylcy6WJsGF65YjFYIoCx3RQMbMs180hI+SYCQAAMxi4K8BdgfqQgZMbP8xxy8bWN3YV1wr5RGhPuKj3qzTJQCat4lryIxPO/VheWCqq3LurMHkxbZQW18pM44YOuogeoZ5tXQjUVuS6GWQEzD8/3O8+1a8jUOkvqv4QaelF5b40ETZciXACXAiYXSbVWC1A3Q//EB33XQdFVeHaLpy442Uvt2gFkQDosBxsjFioqS/JdVNySkDm6sjX23hFXjc2NuKSSy7B7NmzEQgEMHfuXNx0002wLCvjuKamJpx22mkIhUKorq7GVVdd1e+Y9evX49hjj0UgEMC0adNwyy23QIjMhr/66qtYuHAh/H4/5syZg9WrV4/PiQ0DfbKREbPXPg3F8MtOyhjAVChMBdMBLVRcs4/ntW/IdRMKVtcX3SjfpzLXzSDDZK55RP4nPf8Ak3Or/spALpo0br689q1cN6EgnbjpfTxQvj/mBfWiyn4+WQiXg1sOuG2DuwKuLfcoq4aKf97+Ua6bR/KAqijodThO+OjvuW4KyYFPP/0UnHM89NBDmDdvHj7++GNceumliEajWLVqFQDAdV2ccsopqKmpwRtvvIHOzk5861vfghAC999/PwAgHA7ja1/7Go4//ni888472LRpEy666CKEQiFcd911AICtW7fi61//Oi699FL8+te/xptvvokrr7wSNTU1OPPMM3P2M6CBMhkxfdEZcN57Vn6RzHqdGiyXfvPG3DZujCzX52CV/UWum1HQEuEEtFBxDawmA0XTISxXbq3gHK6VqpvMgCLJP3BHaF/8IPp5rptR0AKqAoMSeRWcnkduBHdduLYD4XKIZCIvmfU6160j+SKgKuil9CKT1kknnYSTTjrJ+3rOnDn47LPP8OCDD3oD5TVr1mDDhg3Yvn07pk6dCgC4++67cdFFF+G2225DWVkZHn/8cZimif/+7/+Gz+fD/PnzsWnTJtxzzz249tproSgKVq9ejZkzZ+LHP/4xAODAAw/Eu+++i1WrVuV0oFwcVzskZwR3Ac7B/CH4v34FlEAISqB4wq5pkDx6p2z/CLP+85cjeu7Lhy0a49aQofKdcCEAyPwDqS0VZSHoZSHs++D/5Lh1Y4MGyaOnKgpaW3pz3QwyTOWX3ApAZrwGZOnDr218D4qqwLX4YE8lk8T/88/NdRPyiMh5ePWgodcALMtCOBzOuCUSiTH/SfT09GDKlCne12+//Tbmz5/vDZIB4MQTT0QikcB7773nHXPsscfC5/NlHLNz5040NjZ6xyxdujTje5144ol49913Ydv2mJ/HUNFAmYyKcOzkYNmF9foTCJz6XQRO/W6um0XyyB/rDx7xc49ft5YGy7mUnAgDAFXXMP3mn4940oMUn+dnHQqLC5SPYn/y/9SN/P2BjA63HXDLgWs54K7AK0csxinbP8KpO9fnumkkT+y2RrdX/Yc+GmxPlMceewzl5eUZt5UrV47p99iyZQvuv/9+XH755d59ra2tqKuryziusrIShmGgtbV1wGNSX+/tGMdx0NHRMabnMRw0UCajYiw+EyIehRvphrCtvT+BTCq/qj4Q7aMsGyNcqg+YC+ZzD8qM18nZambQTh2SaVfEwm7LxSmj2M/a69DqZa5Y4RjsWByuacPutWBH6TOc9GlPuDCYgrmhkcfi357YMoYtIoO58MIL0dPTk3G74YYbsh67YsUKKIoy6O3dd9/NeM7OnTtx0kkn4ayzzsK3v/3tjMcUpX8VDCFExv17HpNK5DXcYyYaDZTJqAnHhrDMjKQ/hABA3BVQR/n+pqgKXjli8dg0iAyZ/+tXZEx+KYyhZSVFixDpv6sORK/DYfHRTWTFXYEnaw8ao1aRbJ5pmJ/1fm9F2Xbh2pxCronncmUWANk/d5qjC3tdEZg3Bi3KMSG3IeXrDRAwDANlZWUZt/RQ53TLli3Dxo0bB73Nn9/3vrFz504cf/zxWLx4MR5+OLMaRn19vbcqnNLV1QXbtr0V4mzHtLW1AcBej9E0DVVVVcP/nY0RWiIgoybMqPyPUVyZrsno/Kr6QPTYHMYo6+22NUcw48DqMWoVGZbU1ookViRJvMjo3FWynzdA7hhlaOYV3Z8OOJAjY8MIZk+25piWvMUdWL0WrNjE7wP8oW8urTrmidTgOEVVAFfIwfJojHYyjYy96upqVFcP7bqqubkZxx9/PBYuXIhHH30UjGVeByxevBi33XYbWlpa0NDQAEAm+PL5fFi4cKF3zA9/+ENYlgXDMLxjpk6dilmzZnnH/O///m/Ga69ZswZHHHEEdD13CSPpqoeMmkiYEPEorSiTDM1xB//auwk9o6zHeU7bBiiqgo0Xnz5GLSND5SYSEJxDJPcp111/f45bRHLpydqD8N9VByKgKphiqDCY/He0dJ+Klw9bhPfPPG0MWkn2NNAAePaqX8GK2nAtuaKciwENDZLzV2p8vFo0jup1Un9XPynbf5QtIhNt586dOO644zBjxgysWrUK7e3taG1tzVj5Xbp0KQ466CBccMEFWLduHV588UUsX74cl156KcrKygAA5513Hnw+Hy666CJ8/PHH+OMf/4jbb7/dy3gNAJdffjm2bduGa6+9Fhs3bsR//dd/4ZFHHsHy5ctzcu4pBTdQTiQSWLBgARRFwQcffJDx2FAKXpPha/y3b2HXnd8b8PHgWdcDmu5dTBMC9GUU/vf45lG/Frc4EuGxz95IgLdPOBYbLsw+QCm9cIWss2o54DbVCJnsPuxJIO4K9DocH4dN/GvvJqwYg/69M5yAcAUOf+p/934wGTa2l/19rs3BLRff2PXJBLWI5KNsA+LRDpIBmYfgjtC+iLuFfY2Y68zWg97G6ZzXrFmDzZs346WXXsL06dPR0NDg3VJUVcWzzz4Lv9+Po48+GmeffTbOOOMMr3wUAJSXl+OFF17Ajh07cMQRR+DKK6/Etddei2uvvdY7Zvbs2XjuuefwyiuvYMGCBfiP//gP3HfffTktDQUUYOj19ddfj6lTp+LDDz/MuH8oBa/JyHDLBt/bGxznlO2ajItnZ3wJZdNLc92MorX4pVcHHCgDQNnFt6D93mtQc829E9gqko/SV//2DNMcDYsDVjR35T8ms0N/9zzeOvbLOOGjv+e6KSQPjMXAOJsu28V/Wl8gHA6Py+uT8XHRRRfhoosu2utxM2fOxJ/+9KdBjznkkEPw2muvDXrMsccei/fff384TRx3BTVQfv7557FmzRo89dRTeP755zMeG0rB62wSiURGnTHqxP1x29nr3sTgWddPUGvIZNObcDBzVjkO+e1zw+6f1L+HxjYHXy2mQTLZ01hdUF+uzMKsoA4xgtUm6t9DE7ZdvPSlIwccDB/16uAXr4SMFu1TJoWqYEKvd+3ahUsvvRS/+tWvEAwG+z0+lILX2axcuTKj5tiMGTPGpf2FTLgcRmko180gk9Q5bRvQ+sGuET2X+vfQCJdjy/fPzXUzSIEZi1Xl1aIRYYfj5MYP937wHqh/D43FxV4nwwhJGctoEWD8Vqknlsh9ePUgt3GLvSaFMVAWQuCiiy7C5ZdfjiOOOCLrMUMpeJ3NDTfckFFzbPv27WPa9mJgRxNwbQqLI0M3Vh+0f6w/eFTPp/69dy8ftgjCFVBYQXwckDyQ6t+jvQC+XJmFy5VZ2D3CzNnUv4fGFQJGKHdZY0lhGY+B7WgzZxOSKzkNvV6xYgVuvvnmQY9555138NZbbyEcDg9YODtlKAWv9+Tz+QasM0akeJeJ6qvuznUzSIG5XJk1Jtky7yndD/NKjBE9n/r33qX2hs659zc5bgkpJGPRv8t1hh575Al+qH8PTa8jcPy6tbluBikgYzEZlj5hXhyrymQyyulAedmyZTj33MHD/WbNmoVbb70Vf/vb3/p9IB5xxBE4//zz8ctf/hL19fVYuzbzg2DPgtdkZKyohZaV30XDDT/NdVNIARntB+MD5ftjWc9nuCUwD6e3fDw2jSL9OHEHhz29JtfNIAVkrC56U6tMdBE9vgo92zApXEXTt4XMep2/aMV+vOR0oDzUgtf33Xcfbr31Vu/rnTt34sQTT8STTz6JRYsWARhawWsyMmaXSYNkMiyrReOoZ6Rnl/nw7IwvjUl5KTKwuOXigzNPxIKn/pLrppACMtoV5cuVWTixLoR/bqWSROMtSgNlkiNjEXlCSC4VRNbrmTNnZnxdUlICAJg7dy6mT58OILPg9V133YXdu3f3K3hNRsahJCBkhEbzAXnK9o/GriFkUIL2j5ERGM1F8GrRiOX6HPzz2DaJ7OFyZRam+gviUo8UkbHKY0BIrhVN9pahFLwmhEyc0X5AvnzYIjxYccDYNCaL8XztQuOOMJkSmbxWi8YR9/EHyvcHAPQ647fSOdaZewuZLQSeaZif62aQAjKa/l2cq8gCgvO8vZHxU5DTjLNmzYIQ/VdAhlLwmgyfv8Kf6yaQSabphotx/Lq1OH4cv8eWqDWOr144/CrDEc+9mOtmkEkidRG9XJ8zrhfTxXehPnL/YW7B/9SNroIAIUO1WjTiu6wYB8tkMiqaFWUyfpa8/Waum0DImFtlf5HrJuSFU3euz3UTyCSyWjTi+VmHjutqMumTGqx8YxftBSeEkOEqyBVlQkjxavy3b2HWf/4y180ghIyTLV1mrptACBknKwLzUGxpLwTyPes1GS+0okwIySuRpnb8/aQTct0MQsg4+H/+uYi7gsIyCSlSraZD/ZsUDRooE0LyCncFjvzzS7luBiFkHKiKgn/t3ZTrZkwatwX3zXUTyCRDg2RSTCj0mhCSVw793fO5bgIhZJysoLroE+pHsc9z3QRCikJeh15nSXBMxgatKBNC8saHZ5+c6yYQQgghhBBCA2VCSP6g1WRCCCGEEJIPKPSaEEIIIYQQQrIRAjyfQ6/JuKEVZUIIIYQQQgghJA0NlAkhhBBCCCGEkDQUek0IIYQQQgghAxAuhV5PRrSiTAghhBBCCCGEpKGBMiGEEEIIIYQQkoZCrwkhhBBCCCEkGyEg8jjrtYDIdROKFq0oE0IIIYQQQgghaWigTAghhBBCCCGEpKHQa0IIIYQQQggZQD6HXlPk9fihFWVCCCGEEEIIISQNDZQJIYQQQgghhJA0FHpNCCGEEEIIIVkI5HfWazJ+aEWZEEIIIYQQQghJU1AD5WeffRaLFi1CIBBAdXU1/uVf/iXj8aamJpx22mkIhUKorq7GVVddBcuyctRaQgghhBBCCCGFqGBCr5966ilceumluP3223HCCSdACIH169d7j7uui1NOOQU1NTV444030NnZiW9961sQQuD+++/PYcsJIYQQQgghhSq/Q68p7fV4KYiBsuM4+P73v4+77roLl1xyiXf//vvv7/1/zZo12LBhA7Zv346pU6cCAO6++25cdNFFuO2221BWVjbh7SaEEEIIIYQQUngKYqD8/vvvo7m5GYwxHHbYYWhtbcWCBQuwatUqHHzwwQCAt99+G/Pnz/cGyQBw4oknIpFI4L333sPxxx+f9bUTiQQSiYT3dU9PDwAgHA6P4xkRQkYi1S+FGNrsKfVvQgoH9W9Cittw+3g+CAQCgNUL+9M/5ropA7Pjsp1kzBXEQPmLL74AAKxYsQL33HMPZs2ahbvvvhvHHnssNm3ahClTpqC1tRV1dXUZz6usrIRhGGhtbR3wtVeuXImbb7653/0zZswY25MghIyZSCSC8vLyvR5H/ZuQwkP9m5DiNtQ+ng8WL16M1197FdFoNNdNGVBpaSkWLFiQ62YUJUXkcFpnxYoVWT/k0r3zzjvYtGkTzj//fDz00EO47LLLAMiZ5OnTp+PWW2/Fd77zHVx22WXYtm0b/vKXv2Q83zAMPPbYYzj33HOzvv6eM9Kcc+zevRtVVVVQFGWUZ5hb4XAYM2bMwPbt2ydt6Plk/xkU2/kLIRCJRDB16lQwtvdchMXcv4Hi+/0O12Q/f6C4fgbUvzMV0+92pCb7z6DYzn+4fZyQXMvpivKyZcsGHMCmzJo1C5FIBABw0EEHeff7fD7MmTMHTU1NAID6+nqsXbs247ldXV2wbbvfSnM6n88Hn8+XcV9FRcVwTiPvlZWVFcUb7GhM9p9BMZ3/cGahJ0P/Borr9zsSk/38geL5GVD/7q9YfrejMdl/BsV0/oWykkwIkOOBcnV1Naqrq/d63MKFC+Hz+fDZZ5/hmGOOAQDYto3Gxkbss88+AGRoxG233YaWlhY0NDQAkAm+fD4fFi5cOH4nQQghhBBCCCGkqBTEHuWysjJcfvnluOmmmzBjxgzss88+uOuuuwAAZ511FgBg6dKlOOigg3DBBRfgrrvuwu7du7F8+XJceumlRTMLRwghhBBCCCFk/BXEQBkA7rrrLmiahgsuuADxeByLFi3CSy+9hMrKSgCAqqp49tlnceWVV+Loo49GIBDAeeedh1WrVuW45bnj8/lw00039QtNm0wm+89gsp9/sZvsv9/Jfv4A/QyKGf1u6Wcw2c+fkFzLaTIvQgghhBBCCCEk31DKOUIIIYQQQgghJA0NlAkhhBBCCCGEkDQ0UCaEEEIIIYQQQtLQQJkQQgghhBBCCElDA+Uicdttt+Goo45CMBhERUVF1mOamppw2mmnIRQKobq6GldddRUsy8o4Zv369Tj22GMRCAQwbdo03HLLLSjUfG8/+9nPMHv2bPj9fixcuBCvv/56rps0Zl577TWcdtppmDp1KhRFwdNPP53xuBACK1aswNSpUxEIBHDcccfhk08+yTgmkUjge9/7HqqrqxEKhXD66adjx44dE3gWZKiof2dXrH2c+vfkQv07O+rf1L8JyTUaKBcJy7Jw1lln4Yorrsj6uOu6OOWUUxCNRvHGG2/giSeewFNPPYXrrrvOOyYcDuNrX/sapk6dinfeeQf3338/Vq1ahXvuuWeiTmPMPPnkk7j66qvxox/9COvWrcOSJUtw8skno6mpKddNGxPRaBSHHnooHnjggayP33nnnbjnnnvwwAMP4J133kF9fT2+9rWvIRKJeMdcffXV+OMf/4gnnngCb7zxBnp7e3HqqafCdd2JOg0yRNS/+yvmPk79e3Kh/t0f9W/q34TkBUGKyqOPPirKy8v73f/cc88Jxphobm727vvtb38rfD6f6OnpEUII8bOf/UyUl5cL0zS9Y1auXCmmTp0qOOfj3vaxdOSRR4rLL788474DDjhA/OAHP8hRi8YPAPHHP/7R+5pzLurr68Udd9zh3WeapigvLxerV68WQgjR3d0tdF0XTzzxhHdMc3OzYIyJP//5zxPWdjI81L/7TJY+Tv178qD+3Yf6N/VvQvIBrShPEm+//Tbmz5+PqVOnevedeOKJSCQSeO+997xjjj322IzC9ieeeCJ27tyJxsbGiW7yiFmWhffeew9Lly7NuH/p0qV46623ctSqibN161a0trZmnL/P58Oxxx7rnf97770H27Yzjpk6dSrmz58/KX5GxWYy9W9gcvdx6t+TD/Vvifo39W9CJhoNlCeJ1tZW1NXVZdxXWVkJwzDQ2to64DGpr1PHFIKOjg64rpv1XArpPEYqdY6DnX9raysMw0BlZeWAx5DCMZn6NzC5+zj178mH+rc0Gf5+qX8Tkl9ooJzHVqxYAUVRBr29++67Q349RVH63SeEyLh/z2NEMhFItufmu2znUojnMVIjOf/J9jPKJerfozeZ+zj17/xG/Xv0qH/3of5NSG5ouW4AGdiyZctw7rnnDnrMrFmzhvRa9fX1WLt2bcZ9XV1dsG3bm7msr6/vNxvZ1tYGoP/sZj6rrq6GqqpZz6WQzmOk6uvrAchZ54aGBu/+9POvr6+HZVno6urKmJVua2vDUUcdNbENnqSof4/cZO7j1L8LA/XvkaP+Tf2bkHxBK8p5rLq6GgcccMCgN7/fP6TXWrx4MT7++GO0tLR4961ZswY+nw8LFy70jnnttdcySk6sWbMGU6dOHfIHej4wDAMLFy7ECy+8kHH/Cy+8MCk+RGbPno36+vqM87csC6+++qp3/gsXLoSu6xnHtLS04OOPP54UP6N8QP175CZzH6f+XRiof48c9W/q34TkjRwkECPjYNu2bWLdunXi5ptvFiUlJWLdunVi3bp1IhKJCCGEcBxHzJ8/X3zlK18R77//vvjrX/8qpk+fLpYtW+a9Rnd3t6irqxPf/OY3xfr168Uf/vAHUVZWJlatWpWr0xqxJ554Qui6Lh555BGxYcMGcfXVV4tQKCQaGxtz3bQxEYlEvN8xAHHPPfeIdevWiW3btgkhhLjjjjtEeXm5+MMf/iDWr18vvvnNb4qGhgYRDoe917j88svF9OnTxV//+lfx/vvvixNOOEEceuihwnGcXJ0WGQD17/6KuY9T/55cqH/3R/2b+jch+YAGykXiW9/6lgDQ7/byyy97x2zbtk2ccsopIhAIiClTpohly5ZllJIQQoiPPvpILFmyRPh8PlFfXy9WrFhRkKUlhBDipz/9qdhnn32EYRji8MMPF6+++mqumzRmXn755ay/729961tCCFli4qabbhL19fXC5/OJL3/5y2L9+vUZrxGPx8WyZcvElClTRCAQEKeeeqpoamrKwdmQvaH+nV2x9nHq35ML9e/sqH9T/yYk1xQhktkeCCGEEEIIIYQQQnuUCSGEEEIIIYSQdDRQJoQQQgghhBBC0tBAmRBCCCGEEEIISUMDZUIIIYQQQgghJA0NlAkhhBBCCCGEkDQ0UCaEEEIIIYQQQtLQQJkQQgghhBBCCElDA2VCCCGEEEIIISQNDZRJQTvuuONw9dVX57oZhJBxQP2bkOJF/ZsQku9ooEwIIYQQQgghhKShgTIhhBBCCCGEEJKGBsqkaHR1deHCCy9EZWUlgsEgTj75ZHz++efe4//93/+NiooK/OUvf8GBBx6IkpISnHTSSWhpaclhqwkhQ0H9m5DiRf2bEJKPaKBMisZFF12Ed999F8888wzefvttCCHw9a9/HbZte8fEYjGsWrUKv/rVr/Daa6+hqakJy5cvz2GrCSFDQf2bkOJF/ZsQko+0XDeAkLHw+eef45lnnsGbb76Jo446CgDw+OOPY8aMGXj66adx1llnAQBs28bq1asxd+5cAMCyZctwyy235KzdhJC9o/5NSPGi/k0IyVe0okyKwsaNG6FpGhYtWuTdV1VVhf333x8bN2707gsGg96HLAA0NDSgra1tQttKCBke6t+EFC/q34SQfEUDZVIUhBAD3q8oive1rusZjyuKMuBzCSH5gfo3IcWL+jchJF/RQJkUhYMOOgiO42Dt2rXefZ2dndi0aRMOPPDAHLaMEDJa1L8JKV7Uvwkh+YoGyqQo7Lvvvvinf/onXHrppXjjjTfw4Ycf4v/8n/+DadOm4Z/+6Z9y3TxCyChQ/yakeFH/JoTkKxook6Lx6KOPYuHChTj11FOxePFiCCHw3HPP9QvXIoQUHurfhBQv6t+EkHykCNrgQQghhBBCCCGEeGhFmRBCCCGEEEIISUMDZUIIIYQQQgghJA0NlAkhhBBCCCGEkDQ0UCaEEEIIIYQQQtLQQJkQQgghhBBCCElDA2VCCCGEEEIIISQNDZQJIYQQQgghhJA0NFAmhBBCCCGEEELS0ECZEEIIIYQQQghJQwNlQgghhBBCCCEkDQ2UCSGEEEIIIYSQNP8/YhtahVFOcn4AAAAASUVORK5CYII=", | |
"text/plain": [ | |
"<Figure size 1000x900 with 10 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Convert the longitude coordinates from 0-360 to -180-180\n", | |
"ds['lon'] = (ds['lon'] + 180) % 360 - 180\n", | |
"ds = ds.sortby(ds.lon)\n", | |
"\n", | |
"\n", | |
"# select the data every 10th time step starting from the first time step for the variable \"CornPossible\", \n", | |
"# and then subtracts the value of \"CornPossible\" at the 0th time step from it\n", | |
"dset = ds.isel(time=slice(1, None, 10)).CornPossible - ds.isel(time=0).CornPossible\n", | |
"\n", | |
"\n", | |
"# Create a plot of the new dataset \"dset\", with each subplot corresponding to a different time step\n", | |
"# The argument \"col='time'\" specifies that the subplots should be arranged in columns based on time, \n", | |
"# with three columns per row. The \"robust=True\" argument sets the scaling of the color axis to account for outliers in the data.\n", | |
"dset.plot(col='time', robust=True, col_wrap=3);" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.15" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment