Skip to content

Instantly share code, notes, and snippets.

Using JSDOC-Based TypeScript

Get Started

Choose your editor

  • WebStorm, Rider
    • Partial support, not enough intelli hints
    • Toggle on TypeScript language service
  • VSCode
@aniketbiprojit
aniketbiprojit / create_model.py
Last active November 15, 2020 08:09
Create Simple Keras Model
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import tensorflow.keras as keras
model = keras.models.Sequential([
keras.layers.Dense(10, tf.nn.softmax, input_shape=(784,),kernel_initializer='zeros')
])
@aniketbiprojit
aniketbiprojit / to_h5.sh
Last active November 15, 2020 14:21
TFJS model.json to h5
tensorflowjs_converter --input_format tfjs_layers_model tfjs/model.json here.h5 --output_format keras_saved_model
@aniketbiprojit
aniketbiprojit / to_tfjs.sh
Created November 15, 2020 14:20
H5 model to TFJS
tensorflowjs_converter --input_format keras model.h5 tfjs
@aniketbiprojit
aniketbiprojit / data_loader.js
Last active November 15, 2020 15:33
Load MNIST Data
// Code from https://stackoverflow.com/questions/25024179/reading-mnist-dataset-with-javascript-node-js
// Author https://stackoverflow.com/users/254532/lilleman
// Download files from http://yann.lecun.com/exdb/mnist/
const fs = require('fs')
const dataFileBuffer = fs.readFileSync(__dirname + '/train-images-idx3-ubyte')
const labelFileBuffer = fs.readFileSync(__dirname + '/train-labels-idx1-ubyte')
const load = () => {
let pixelValues = []
@aniketbiprojit
aniketbiprojit / load_model_tfjs.js
Created November 15, 2020 14:31
Load Model in TFJS
const tf = require('@tensorflow/tfjs-node')
const load_model = async () => {
const model = await tf.loadLayersModel(
'file:///path/to/directory/tfjs/model.json'
)
model.weights.forEach((w) => {
console.log(w.name, w.shape)
})
@aniketbiprojit
aniketbiprojit / load_mnist_data_tfjs.js
Last active November 15, 2020 14:39
Load MNIST data and convert to tfjs tensors
const load_data = require('./data_loader')
const data = load_data()
const X = data.map((elem) => {
const key = Object.keys(elem)[0]
return elem[key].map((val) => val / 255)
})
console.log(X[0])
const arr = Array.apply(null, Array(10)).map(() => 0)
@aniketbiprojit
aniketbiprojit / train_model.js
Last active November 15, 2020 15:32
Training model
const run = async (X_tensor,y_tensor,revision) => {
const model = await load_model()
model.fit(X_tensor, y_tensor, {
epochs: 10,
batchSize: 32,
callbacks: { onBatchEnd },
})
.then((info) => {
console.log('Final accuracy', info.history.acc)
})
@aniketbiprojit
aniketbiprojit / training_loop.js
Last active November 15, 2020 15:33
Training Loop
const cluster = require('cluster')
const os = require('os')
const numCPUs = os.cpus().length
const tf = require('@tensorflow/tfjs-node')
if (cluster.isMaster) {
console.log(X[0])
console.log(y[0], y[1])
@aniketbiprojit
aniketbiprojit / convert_tfjs_to_keras.js
Created November 15, 2020 15:42
Convert all tfjs-models to Keras h5
const { exec } = require('child_process')
const fs = require('fs')
model_dirs = fs.readdirSync(`${__dirname}/tfjs-models`)
if (!fs.existsSync('keras_models')) fs.mkdirSync('keras_models')
model_dirs.forEach((dir) => {
exec(
`tensorflowjs_converter --input_format tfjs_layers_model tfjs-models/${dir}/model.json keras_models/${dir}.h5 --output_format keras_saved_model`