Skip to content

Instantly share code, notes, and snippets.

View aniruddha27's full-sized avatar

Aniruddha Bhandari aniruddha27

View GitHub Profile
df_center = pd.read_csv('C:\\Users\Dell\\Desktop\\train_food\\fulfilment_center_info.csv')
df_center.head()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn')
df_meal = pd.read_csv('C:\\Users\Dell\\Desktop\\train_food\\meal_info.csv')
df_meal.head()
df_center = pd.read_csv('C:\\Users\Dell\\Desktop\\train_food\\fulfilment_center_info.csv')
df_center.head()
df_food = pd.read_csv('C:\\Users\Dell\\Desktop\\train_food\\train_food.csv')
df_food.head()
df = pd.merge(df_food,df_center,on='center_id')
df = pd.merge(df,df_meal,on='meal_id')
table = pd.pivot_table(data=df,index='category',values='num_orders',aggfunc=np.sum)
table
#bar graph
plt.bar(table.index,table['num_orders'])
#xticks
plt.xticks(rotation=70) 
#x-axis labels
plt.xlabel('Food item') 
#y-axis labels
#dictionary for meals per food item
item_count = {}
for i in range(table.index.nunique()):
item_count[table.index[i]] = table.num_orders[i]/df_meal[df_meal['category']==table.index[i]].shape[0]
#bar plot
plt.bar([x for x in item_count.keys()],[x for x in item_count.values()],color='orange')
#adjust xticks
#dictionary for cuisine and its total orders
d_cuisine = {}
#total number of order
total = df['num_orders'].sum()
#find ratio of orders per cuisine
for i in range(df['cuisine'].nunique()):
#cuisine