Created
July 19, 2016 16:14
-
-
Save anirudhjayaraman/62da0748d6ade2aae37e59bdfd2d3b51 to your computer and use it in GitHub Desktop.
Linear Regression in scikit learn
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Linear Regression in scikit learn" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
":0: FutureWarning: IPython widgets are experimental and may change in the future.\n" | |
] | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"%matplotlib inline\n", | |
"\n", | |
"# use seaborn for plot defaults\n", | |
"# this can be safely commented out\n", | |
"import seaborn; seaborn.set()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Every (scikit-learn) algorithm is imported into Python as an 'Estimator' Object. Linear Regression is implemented thusly:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.linear_model import LinearRegression" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[0 1 2 3 4 5 6 7 8 9]\n", | |
"[[0]\n", | |
" [1]\n", | |
" [2]\n", | |
" [3]\n", | |
" [4]\n", | |
" [5]\n", | |
" [6]\n", | |
" [7]\n", | |
" [8]\n", | |
" [9]]\n", | |
"[0 1 2 3 4 5 6 7 8 9]\n", | |
"[ -0.48357077 5.69132151 4.76155731 3.38485072 15.17076687\n", | |
" 18.17068478 12.10393592 19.16282635 28.34737193 26.28719978]\n" | |
] | |
} | |
], | |
"source": [ | |
"# create / get data\n", | |
"x = np.array(range(10))\n", | |
"print x\n", | |
"X = x.reshape(10,1)\n", | |
"print X\n", | |
"print X.squeeze()\n", | |
"np.random.seed(42)\n", | |
"y = 3*X.squeeze() +2 - 5*np.random.randn(10)\n", | |
"print y" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7fb7fe3cc850>]" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFXCAYAAAB6G51YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGVtJREFUeJzt3X1Mlff9//EXOwoGetQDHsH5czTtz6px5VuaGaM4UeJq\nNI1fHW2BUnV+NXEWCotQ6x1al2gm09mqpNVZ92tmk2MKda2Js2rTLM5J1Yhz3rBVG9TUG248OKaI\nUc73j/4kda7cHDi+ORfPx189Vw8970+0PLmuc50PEYFAICAAAPBIfc96AAAAeiICDACAAQIMAIAB\nAgwAgAECDACAAQIMAICBXq39y8bGRi1evFjXr19XU1OTXn31VQ0bNkyLFi1Sc3OzvF6viouLFRkZ\n+ajmBQDAESJa+xzwnj17dOXKFc2dO1eXL1/WnDlz9Oyzz2rChAmaPHmyNmzYoISEBGVlZT3KmQEA\nCHutXoKeOnWq5s6dK0m6fPmyEhISdOTIEaWlpUmSJk6cqMOHD4d+SgAAHKbVS9D3ZWZmqrq6Wu+8\n847mzJmj3r17S5JiY2NVXV0d0gEBAHCidgXY5/OpsrJShYWFDxxnF0sAAILT6iXoU6dO6cqVK5Kk\n4cOH6969e4qJiVFTU5Mk6dq1axo4cGCbL0KoAQB4UKtnwMeOHdPly5e1dOlS1dbWqrGxUT/+8Y/1\n6aefatq0adq3b5/Gjx/f5otERESopqahy4a24PW6w34NEuvoTpywBskZ63DCGiTW0Z14ve42n9Nq\ngLOysrR06VJlZ2fr9u3bWrlypUaOHKk33nhDO3fu1ODBgzVjxowuGxgAgJ6i1QBHRUVp/fr1Dx3f\nvn17yAYCAKAnYCcsAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMtGsvaAAAQm2dr0Jn\nq/xShDQi0aPCzGTrkUKKM2AAgLl1vgqdqfIrICkQkM5U+VVQckgXrob3lpStIcAAAHNnq/wPHfM3\nNGlj2UmDaR4NAgwAgAECDAAwN+Jxz0PHPO4o5aUnGUzzaBBgAIC5wsxkedxRLY897iitz0lRYkLb\nv9YvXBFgAEC3kJeeJI87SnH9+jj6zPc+PoYEAOgWEhPcWp+TIq/XrZoa5979fB9nwAAAGCDAAAAY\nIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGGArSgAAusg6X8U3v9s4Qvpk\n3X+3+lwCDABAF1jnq9CZKv83DwJtP59L0AAAdIGz9+PbTgQYAAADBBgAgC4w4nFPh55PgAEA6AKF\nmcnyuKPa/XwCDABAF8lLT5LHHaW4fn3afC53QQMA0EUSE9xan5Mir9fd5nM5AwYAwAABBgDAQLsu\nQRcXF+v48eO6e/eu5s+fr88++0ynT59W//79JUnz5s1TampqSAcFAMBJ2gxweXm5zp07J5/Pp/r6\nek2fPl1jxoxRYWEh0QUAIEhtBnjUqFFKSkqSJLndbjU2NurevXsKBNqxzxYAAPiP2nwP2OVyKTo6\nWpJUWlqq1NRUuVwu7dixQ7Nnz9bChQvl93ds+y0AAHq6dn8M6cCBAyorK9P27dv1t7/9TR6PR8OH\nD9fWrVu1efNmFRUVhXJOAAAcJSLQjmvJBw8e1KZNm7Rt2zb17dv3gX937tw5rVq1Sr///e9DNiQA\nAE7T5hlwQ0ODiouL9f7777fENy8vTzk5ORo2bJiOHj2qp556qs0Xqqlp6Py0hrxed9ivQWId3YkT\n1iA5Yx1OWIPEOrqT9mzE0WaA9+zZo/r6euXn57ccS09P15IlSxQTE6OYmBitWbOmc5MCANDDtBng\njIwMZWRkPHR8+vTpIRkIAICegJ2wAAAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIAB\nADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAw\nQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECAAQAwQIABADBAgAEAMECA\nAQAwQIABADBAgAEAMECAAQAwQIABADDQqz1PKi4u1vHjx3X37l3Nnz9fP/zhD7Vo0SI1NzfL6/Wq\nuLhYkZGRoZ4VAADHaDPA5eXlOnfunHw+n+rr6zV9+nSNGTNGr7zyiiZPnqwNGzaorKxMWVlZj2Je\nAAAcoc1L0KNGjdJbb70lSXK73WpsbNTRo0eVlpYmSZo4caIOHz4c2ikBAHCYNgPscrkUHR0tSSot\nLVVqaqpu3bql3r17S5JiY2NVXV0d2ikBAHCYdt+EdeDAAX300UdasWLFA8cDgUCXDwUAgNO16yas\ngwcPasuWLXrvvff02GOPKTo6Wnfu3FFkZKSuXbumgQMHtvnf8HrdnR7WmhPWILGO7sQJa5CcsQ4n\nrEFiHeGkzQA3NDSouLhY77//vvr27StJGjt2rPbu3atp06Zp3759Gj9+fJsvVFPT0PlpDXm97rBf\ng8Q6uhMnrEFyxjqcsAaJdXQn7fkBos0A79mzR/X19crPz5ckRURE6Fe/+pWWL1+unTt3avDgwZox\nY0bnpwUAoAdpM8AZGRnKyMh46Pj27dtDMhAAAD1Bu94DBgB0X+t8FTpb5ZcipBGJHhVmJluPhHZg\nK0oACGPrfBU6U+VXQFIgIJ2p8qug5JAuXA3v91B7AgIMAGHsbJX/oWP+hiZtLDtpMA06ggADAGCA\nAANAGBvxuOehYx53lPLSkwymQUcQYAAIY4WZyfK4o1oee9xRWp+TosQE529kEe4IMACEubz0JHnc\nUYrr14cz3zDCx5AAIMwlJri1PifFETtI9SScAQMAYIAzYABBYfMHoHM4AwbQYWz+AHQeAQbQYWz+\nAHQeAQYAwAABBtBhbP4AdB4BBtBhbP4AdB4BBhAUNn8AOoePIQEICps/AJ3DGTAAAAYIMAAABggw\nAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAA\nBggwAAAGCDAAAAYIMAAABggwAAAGerXnSZWVlcrNzdWcOXOUnZ2txYsX6/Tp0+rfv78kad68eUpN\nTQ3poIBTrPNV6GyVX4qQRiR6VJiZbD0SAANtBrixsVFr167VuHHjWo5FRESosLCQ6AIdtM5XoTNV\n/m8eBKQzVX4VlBxSXnqSEhPctsMBeKTavAQdGRmpLVu2aMCAAQ8cDwQCIRsKcKqz9+P7Lf6GJm0s\nO2kwDQBLbQbY5XIpMjLyoeM7duzQ7NmztXDhQvn9D39TAQAA361d7wH/u2nTpsnj8Wj48OHaunWr\nNm/erKKiola/xusN/8trTliDxDos/ddQr058WfPAsbh+fbT8f0aH5XruC+fZ73PCGiTWEU6CCvCY\nMWNa/jktLU2rVq1q82tqahqCealuw+t1h/0aJNZhLS/9aRWUHJK/oUmS5HFH6dcLxkoK3/9HwvXP\n4tucsAaJdXQn7fkBot0fQ/r2e755eXn6+9//Lkk6evSonnrqqSDGA3qmvPQkedxRiuvXR3npSdbj\nADDS5hnwiRMnVFRUpLq6OrlcLvl8Pr322mtasmSJYmJiFBMTozVr1jyKWQFHSExwa31OiiN+ygcQ\nvDYD/Mwzz2j37t0PHX/uuedCMhAAAD0BO2EBAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAAD\nAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBggAADAGCAAAMAYIAAAwBg\noJf1AABgZZ2vQmer/FKENCLRo8LMZOuR0INwBgygR1rnq9CZKr8CkgIB6UyVXwUlh3ThaoP1aOgh\nCDCAHulslf+hY/6GJm0sO2kwDXoiAgwAgAECDKBHGvG456FjHneU8tKTDKZBT0SAAfRIhZnJ8rij\nWh573FFan5OixAS34VToSQgwgB4rLz1JHneU4vr14cwXjxwfQwLQYyUmuLU+J0Ver1s1Ndz9jEeL\nM2AAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMtCvAlZWVmjRpkj74\n4ANJ0pUrVzRz5kxlZ2frF7/4he7cuRPSIQEAcJo2A9zY2Ki1a9dq3LhxLcc2btyoV155RR988IES\nExNVVlYW0iEBAHCaNgMcGRmpLVu2aMCAAS3Hjhw5orS0NEnSxIkTdfjw4dBNCACAA7X5yxhcLpdc\nLtcDxxobG9W7d29JUmxsrKqrq0MzHQAADtXp34YUCATa9TyvN/x/x6YT1iCxju7ECWuQnLEOJ6xB\nYh3hJKgAR0dH686dO4qMjNS1a9c0cODANr8m3H/Vl1N+XRnr6D6csAbJGetwwhok1tGdtOcHiHZ/\nDOnbZ7pjx47V3r17JUn79u3T+PHjgxgPAICeq80z4BMnTqioqEh1dXVyuVzy+Xzatm2blixZop07\nd2rw4MGaMWPGo5gVAADHaDPAzzzzjHbv3v3Q8e3bt4dkIAAAegJ2wgIAwAABBgDAAAEGAMAAAQYA\nwAABBgDAAAEGAMAAAQYAwAABBgDAAAEGAMAAAQYAwAABBgDAAAEGAMAAAQYAwAABBgDAAAEGAMAA\nAQYAwAABBgDAAAEGAMAAAQYAwAABBgDAAAEGAMAAAQYAwAABBgDAAAEGAMAAAQYAwAABBgDAAAEG\nAMAAAQYAwAABBgDAAAEGAMBAL+sBurt1vgqdrfJLEdKIRI8KM5OtRwIAOABnwK1Y56vQmSq/ApIC\nAelMlV8FJYd04WqD9WgAgDBHgFtxtsr/0DF/Q5M2lp00mAYA4CQEGAAAA0G9B/zFF18oPz9fQ4cO\nlSQNGzZMy5cv79LBuoMRj3t05t/Ogj3uKOWlJxlNBABwiqBvwho9erTefvvtrpyl2ynMTFZBySH5\nG5okfRPf9TkpxlMBAJwg6EvQgUCgK+fotvLSk+RxRymuXx/OfAEAXSaoM+CIiAidP39eCxYs0I0b\nN5Sbm6uxY8d29WzdQmKCW+tzUuT1ulVTw93PAICuEVSAExMTlZubqylTpujSpUuaNWuW9u/fr169\n+Fhxd8XnmQGge4kIdMG15BdffFFvvfWWBg8e3BUzoYsVvfsXnfiy5oFjcf36aPn/jNb//T/9jaYC\ngJ4tqFPW3bt368KFC8rNzVVdXZ3q6uoUHx/f6teE++XbcL4E/dd/i68k1d24rV9uKw/bm8rC+c/j\nPiesQXLGOpywBol1dCder7vN5wQV4LS0NBUUFCgrK0vNzc168803ufwMAEAHBFXNmJgYvfvuu109\nC0KEzzMDQPfDTlg9QGFmsjzuqJbH9z/PnJjQ9iUSAEBoEOAegs8zA0D3whu3PQSfZwaA7oUzYAAA\nDBBgAAAMEGAAAAwQYAAADHATFsIKe1oDcArOgBE21vkqdKbKr4CkQEA6U+VXQckhXbjKXd0Awg8B\nRtg4+2+7eUmSv6FJG8tOGkwDAJ1DgAEAMECAETZGPO556Bh7WgMIVwQYYYM9rQE4CQFGWGFPawBO\nwceQEFbY0xqAU3AGDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAEC\nDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAIABAgwAgAECDACAAQIMAICBXsF+\n4Zo1a3Ty5ElJ0rJly/T000932VAAADhdUGfAR44c0cWLF+Xz+bR69WqtXr26q+cCAMDRggpweXm5\nJk2aJEl68skndePGDd28ebNLBwMAwMmCCnBtba08Hk/L49jYWNXU1HTZUAAAOF2X3IQVCAQUERHR\nFf8pAAB6hKBuwho4cKBqa2tbHldXV8vr9bb6NV6vO5iX6lacsAaJdXQnTliD5Ix1OGENEusIJ0EF\nOCUlRZs2bVJGRoZOnz6t+Ph4RUdHf+fzpxV+rBGJHhVmJgc9qDWv162amgbrMTqNdXQfTliD5Ix1\nOGENEuvoTtrzA0RQAU5OTtbIkSOVmZkpl8ulFStWtPr8QEA6U+VXQckh5aUnKTHB+T/ZAADQmqA/\nB1xQUNDhr/E3NGlj2Umtz0kJ9mUBAHAEdsICAMDAIw2wxx2lvPSkR/mSAAB0S0Ffgu4ojzuKS88A\nAPx/jyTAcf36KHcGe0UDAHDfIwnw/1sxOexvKQcAoCtxExYAAAYIMAAABggwAAAGCDAAAAYIMAAA\nBggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYI\nMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAA\nAAYIMAAABggwAAAGenX0Cz766CNt3LhRQ4YMkSSlpKTo5z//eZcPBgCAk3U4wBEREZo6daoWLVoU\ninkAAOgRgroEHQgEunoOAAB6lA4HOBAI6OjRo5o3b55+9rOf6ezZs6GYCwAAR2v1EvSHH36o0tLS\nB449//zzeu2115SamqoTJ05o0aJF2r17d0iHBADAaSICnbyePG7cOB08eFARERFdNRMAAI7X4UvQ\n27Zt04cffihJOnfunGJjY4kvAAAd1OEz4GvXrqmwsFCBQEDNzc1asmSJnn766VDNBwCAI3X6EjQA\nAOg4dsICAMAAAQYAwAABBgDAQIe3ouyINWvW6OTJk5KkZcuWhe3NWpWVlcrNzdWcOXOUnZ1tPU7Q\niouLdfz4cd29e1fz58/XT37yE+uROqSxsVGLFy/W9evX1dTUpFdffVUTJkywHitot2/f1vPPP6+c\nnBzNmDHDepwO+eKLL5Sfn6+hQ4dKkoYNG6bly5cbTxWcTz75RO+9955cLpfy8/OVmppqPVKHlZaW\n6uOPP255fOrUKVVUVBhO1HE3b97UG2+8oX/+85+6c+eOcnNzNW7cOOuxOqy5uVkrV67Ul19+qd69\ne2vVqlV64okn/uNzQxbgI0eO6OLFi/L5fDp//ryWLVsmn88XqpcLmcbGRq1duzYs/yJ8W3l5uc6d\nOyefz6f6+nrNmDEj7AL8+eefKykpSXPnztXly5c1Z86csA7wO++8o/79+4ftx/hGjx6tt99+23qM\nTvH7/SopKdGuXbt08+ZNbdq0KSwD/MILL+iFF16QJB09elR79+41nqjjdu3apSeeeEILFy5UdXW1\nZs+erT/+8Y/WY3XYZ599pn/961/y+Xy6ePGiVq9erS1btvzH54YswOXl5Zo0aZIk6cknn9SNGzd0\n8+ZNxcTEhOolQyIyMlJbtmzR1q1brUfplFGjRikpKUmS5Ha7devWLQUCgbD65j916tSWf758+bIG\nDRpkOE3nnD9/Xl999ZUmTJgQtnurh+vc33b48GGNHTtW0dHRio6O1i9/+UvrkTqtpKRE69evtx6j\nw+Li4vSPf/xDknTjxg3FxsYaTxScCxcutHyv/cEPfqBLly595/fakL0HXFtbK4/H0/I4NjZWNTU1\noXq5kHG5XIqMjLQeo9NcLpeio6MlfXO5asKECWEV32/LzMzU66+/riVLlliPErRf//rXYT1/RESE\nzp8/rwULFujll1/WX/7yF+uRgvL111/r9u3bWrBggbKzs3X48GHrkTrl5MmTGjRokOLi4qxH6bAp\nU6boypUreu655zRz5kwtXrzYeqSgDB06VH/+85/V3Nysr776SleuXJHf7/+Pzw3pe8DfFm5nW051\n4MABlZWVafv27dajBM3n86myslKvv/66PvnkE+txOuwPf/iDfvSjH+n73/9+2J5FJiYmKjc3V1Om\nTNGlS5c0a9Ys7d+/X716PbJvKV0iEAiovr5eJSUl+vrrrzVr1ix9/vnn1mMFrbS0VD/96U+txwjK\nxx9/rEGDBum3v/2tKisrVVRU1LLrYjhJTU3VsWPH9PLLL+vZZ5+V1+v9zv/PQ/Z/y8CBA1VbW9vy\nuLq6Wl6vN1Qvh3Y4ePCgtm7dqm3btumxxx6zHqfDTp06pbi4OA0aNEjDhw/XvXv3dP369bC7VPWn\nP/1Jly5d0v79+3X16lVFRkYqISFBY8aMsR6t3eLj4zVlyhRJ0pAhQzRgwABdu3ZNgwcPNp6sYwYM\nGKDk5GR973vf05AhQxQTExOWf6fuO3LkiFasWGE9RlAqKipa7rUZPny4rl69GrYnbgUFBZKku3fv\nateuXd95RSJkl6BTUlL06aefSpJOnz6t+Pj4lkug4Shcz1Tua2hoUHFxsd5991317dvXepygHDt2\nTL/73e8kffMWx61bt8LyG+WGDRtUWlqqnTt36sUXX1ROTk5YxVeSdu/erc2bN0uS6urqVFdXp/j4\neOOpOi4lJUXl5eUKBALy+/1h+3dK+mab4Ojo6LC7CnFfYmKi/vrXv0r65q2B6OjosIxvZWVlyycC\n9u7dq9GjR3/nc0P2J5WcnKyRI0cqMzNTLpcrbH8qO3HihIqKilRXVyeXyyWfz6cdO3aoX79+1qN1\nyJ49e1RfX6/8/PyWY8XFxWF1I1NWVpaWLl2q7Oxs3b59WytXrrQeqcdKS0tTQUGBsrKy1NzcrDff\nfDMsv/HHx8dr8uTJeumllyRJRUVFxhMFr7a2VgMGDLAeI2gZGRlaunSpZs6cqbt374btDXHDhg3T\nvXv39NJLL6l37976zW9+853PZS9oAAAMsBMWAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggw\nAAAGCDAAAAb+FzHX2NLdRtokAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fb834342450>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Plot the data\n", | |
"plt.plot(X.squeeze(),y,'o')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# Create a linear model (OLS Model)\n", | |
"linear_model = LinearRegression(normalize=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=True)" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"# Fit the OLS model to the data\n", | |
"linear_model.fit(X,y)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"-0.395563921381\n", | |
"[ 3.03450186]\n", | |
"117.518530099\n" | |
] | |
} | |
], | |
"source": [ | |
"# print out the parameters of the fit model\n", | |
"print linear_model.intercept_\n", | |
"print linear_model.coef_\n", | |
"print linear_model.residues_" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(-5, 10)" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAFXCAYAAACGDraSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VHWe//tXZV8IkEAW1kCAVJBFEFEBRUAERYEsYBKX\nflwffefOb0Yf9MzVa3fb6vjo30NvN6PXuXh5dDtj85ie+WkSIWGTHVQQBFFEUSQJCdlIQvaE7ElV\nnfsHkMaFJaEqp1L1fv5FjlXnfL6G8E6detc5FsMwDERERMTt+Jg9gIiIiPw8hbSIiIibUkiLiIi4\nKYW0iIiIm1JIi4iIuCmFtIiIiJvy68uT2tvb+c1vfkN9fT2dnZ384z/+I1arlRdeeAGHw0FkZCRr\n164lICDA2fOKiIh4DUtfPie9c+dOKisr+eUvf0lFRQVPP/00d9xxBwsWLGDp0qW89dZbxMTEkJ6e\n7oqZRUREvEKfTncvW7aMX/7ylwBUVFQQExPD8ePHWbRoEQALFy7k6NGjzptSRETEC/XpdPcVaWlp\nVFdX86c//Ymnn34af39/ACIiIqiurnbKgCIiIt7qlkI6MzOT3Nxcnn/++R9s15VGRUREbl2fTnd/\n9913VFZWApCQkIDdbic0NJTOzk4AqqqqiIqKuu4+bDZ7Xw4tIiIyYDgMB3sLDvG/5fyfPJb1D71+\nfp9eSX/55ZdUVFTw4osvUltbS3t7O/fddx979uxhxYoV7N27l/nz5193Hw0NbX059C2LjAyjpqbZ\nlGObwZvW601rBe9arzetFbxrvZ681vKWSjJycyi6WEKQbxCp8Ym93kefQjo9PZ0XX3yRJ554go6O\nDv7lX/6FKVOm8Otf/5qsrCxGjRpFUlJSX3YtIiIyoHXZu9hVfID9pQdxGA5mRk1n1aTlDA0c0ut9\n9SmkAwMDefPNN3+yfcOGDX3ZnYiIiEf4vi6PzLzN1HXUExEUTmp8IlOHT+7z/m6pOCYiIiLQ1NlM\nTsF2vqz6Gh+LDw+Mnc8j45cQ6HtrF/VSSIuIiPSRw3DwWcVxthTuot3WTuzgMaRbUxgTNtIp+1dI\ni4iI9EFFywUy8rI511RCkG8gj8Unct+oe/CxOO+2GAppERHpd29knuRMcQNYYHJsOM+nzTR7pJvW\nZe9md/EB9pV+gsNwMCNyGqvjV/SpGHYjCmkREelXb2Se5PvihktfGPB9cQPPrT/CmpTpxMaEmTvc\nDZypzyczN4fajnrCA4eSak1k2vDbXHY8hbSIiPSrM1cC+ioNzZ2syz7Fm8/MM2GiG2vuamHT2W18\nWfU1Fiw8MGY+y8Y/SJBfoEuPq5AWERG5Bofh4GjlF2wp2EmbrZ2xYaN5PCGFMWGj+uX4CmkREelX\nk8eF/+1092XhYYGsSZlu0kQ/r7K1iozcbAqbign0DWD1pJXMHz3HqcWwG1FIi4hIv3o+bSbPrT9C\nQ/Ol+z2EhwW61WnuLns3e0o+Yl/JJ9gNO7dHTmX1pBWEBw3t91kU0iIi0u/WpExnXfYpfHwsPJs0\nzexxeuTWnyUzL4ea9jqGBg7hsfhEbo+cYto8CmkREel3sTFhvPnMPLe5wUZzVwvZZz/ki6qvsGBh\n0Zj7eGT8gwT5BZk6l0JaRES8lmEYHK38ki0FO2i1tTEmbBSPW1MYO3i02aMBCmkREfFSF1qryMjL\noaCxiEDfAFZNWsH8UXPw9fE1e7QeCmkREfEq3ZeLYXuvFMOGT2F1/EpTimE3opAWERGvkVdfQGZe\nDtXttZeLYSu5PXKq2WNdk0JaREQ8XnNXC5sLdvD5hRNYsLBw9L08GrfE9GLYjSikRUTEYxmGwbEL\nJ9hc8CGt3W0EdIfTnJ/AruODKB53xu1v7NF/l00RERHpR1Wt1fy/J9/hf535gG6HjYjmmTSdnI2j\ndQgGf7uxR8kF8z8Cdi0KaRER8SjdDhs7zu3l9eNvcbbxHNOGT+blu5+j4kw0P469Kzf2cFc63S0i\nIh4jv6GQjLxsqtsuFcNWx6/k9uFTsFgsZo/WJwppEREZ8Fq6WtlcsINjF77EgoUFo+fxaNxSgq8q\nhg2UG3tcTSEtIiIDlmEYfH7hBDmXi2GjB43k8YQUYgeP+clj3f3GHj9HIS0iIgNSVVsNmbk55DcW\nEuDjT/LER1kwet51rxh25cYeV/7s7hTSIiIyoHQ7bOwr+Zg9xR9hM+xMHTaZx+ITGRYcfsPnXrmx\nx0ChkBYRkQHjbMM5MvJyqGqrZkhAGKvjE5kROXXAFsNuRCEtIiJur6W7lS0FOzla+QUWLNw/ei7L\n45YS7Bds9mgupZAWERG3ZRgGxy98RU7Bh7R0tzJq0AjSrSmMHzLW7NH6hUJaRETcUnVbDRl5m8lv\nKCDAx5+kiY+wcPS9bnUrSVdTSIuIiFvpdtjYX/IJu0s+wuawMWVYAqnxiQwLjjB7tH6nkBYREbdR\n0FhERm42F9qqGRwQxur4lcyMnOaxxbAbUUiLiIjpWrvb2FKwg88uF8Pmj5rDigkPeXwx7EYU0iIi\nYporxbDss9tp6W5lZGgMjyekMH5IrNmjuQWFtIiImKK6rZY/H9zAt1W5+Pv4kzhhGYvG3OdVxbAb\nUUiLiEi/sjls7C89yK7iA9gcNm6LsJJqTWK4FxbDbkQhLSIi/aagsYiMvBwutFYRFjCIX85KZWJQ\nvNcWw25EIS0iIi7X1t3GlsKdHKk4DsC9o+5hZdzDxI6Moqam2eTp3JdCWkREXMYwDE5Ufc2ms9tp\n7m5hZGgM6QnJxA0ZZ/ZoA4JCWkREXKKmrY6s/M2cqc/H38ePlXEP88DY+SqG9YJCWkREnMrmsHGg\n9BC7ivfT7bAxOSKeNGsSw4OHmT3agKOQFhERpznXVExGbg4VrRcI8x/Ek5NXMCvqdhXD+kghLSIi\nt6ytu42thbs4XPE5APNG3k3ihIcJ8Q8xebKBTSEtIiJ9ZhgGJ6q/YdPZbTR3tRATGs3j1hQmDB1n\n9mgeQSEtIiJ9UtteT1beZr6vz8Pfx48VcQ/xwNj5+PkoWpxF/ydFRKRX7A47B8oOsbNoP92ObhLC\nJ5FmTSYyRMUwZ1NIi4jITTvXVEJGbnZPMeyJhFXcGT1DxTAXUUiLiMgNtXW3s+3cbg6XH8PAYN7I\nu1g5YRmhKoa5lEJaRESuyTAMvqo+xaaz27jY1UxMaDTp1mQmDh1v9mheQSEtIiI/q669nqz8LZyu\ny8XPx4/lcUtZPPZ+FcP6kf5Pi4jID9gddj4q+5QdRfvodnRjDZ9ImjWZqJDhZo/mdRTSIiLSo6ip\nlIy8bMpbKhnkH8rjCSnMjp6pYphJFNIiIkK7rZ1thXv4tPwoBgZzR8xm5cRlDPIPNXs0r6aQFhHx\nYoZhcLLmWzblb6Wpq5nokCjSrclMCo8zezRBIS0i4rXq2hv4IH8z310uhj06fgmLYxfgr2KY2+jz\nd2Lt2rV89dVX2Gw2/v7v/56pU6fywgsv4HA4iIyMZO3atQQEBDhzVhERcQK7w87H5w+z49xeuhzd\nxIdPJM2aRHRIpNmjyY/0KaSPHTtGQUEBmZmZNDY2kpiYyJw5c3jyySdZunQpb731FtnZ2aSnpzt7\nXhERuQXFF0vJyM3hfEsFof4hpFmTuSvmDhXD3FSfQnr27NlMnz4dgLCwMNrb2/niiy/4/e9/D8DC\nhQvZsGGDQlpExE202zrYfm4Ph85/hoHBPSPuJGnCIwwKUDHMnfUppH19fQkJuXQpuE2bNnH//fdz\n+PBh/P39AYiIiKC6utp5U4qISJ8YhsE3Nd/xQf5WmrouEh0SSZo1mfjwCWaPJjfhltoB+/fvJycn\nh7/85S8sWbKkZ7thGDd8bnh4CH5+vrdy+D6LjAwz5bhm8ab1etNawbvW601rBeest7a1ng1fZXKi\n4lv8fPxYPeUREicvxd/X3wkTOo+3fW97o88h/emnn/LOO+/wl7/8hUGDBhESEkJXVxcBAQFUVVUR\nFRV13ec3NLT19dC3JDIyjJqaZlOObQZvWq83rRW8a73etFa49fXaHXY+OX+ED4v20mXvYtLQONKt\nyUSHRtFY3wF0OG/YW+SN39ve6FNINzc3s3btWv76178yePBgAObOncvu3btZsWIFe/fuZf78+X3Z\ntYiI3IKSi2Vk5GZTdrkYlhqfyN0xs65ZDHsj8yRnihsAmDwunOfTZvbnuHIDfQrpnTt30tjYyK9+\n9SsALBYLf/jDH3jppZfIyspi1KhRJCUlOXVQERG5tnZbBx+e28PBy8Wwu2NmkTzx0esWw97IPMn3\nlwMa4PviBp5bf4Q1KdOJjdEpaHfQp5BOTU0lNTX1J9s3bNhwywOJiEjvfF3zHRvzt9LY2URU8HDS\nE5KJD594w+eduSqgr2ho7mRd9inefGaeK0aVXtJlZUREBqiGjkY+yN/KqdrT+Fp8eXjcYpbGLnS7\nYpj0nUJaRGSAsTvsHCz/jO3n9tBl72Li0PGkW1OICb1+YffHJo8L/8HpboDwsEDWpEx35rhyCxTS\nIiIDSOnF87yfl01ZczmhfiE8lrCSe0bc2acrhj2fNpPn1h+hobkTuBTQOs3tXhTSIiIDQIetgw+L\n9vJJ2REMDO6KuYPkiY8SFjDolva7JmU667JP9fxZ3ItCWkTkR9ztY0nf1Jzmg/wtNHY2ERk8jDRr\nMgkRk5yy79iYML16dmMKaRGRq7jTx5IaOhrZmL+Vb3qKYQ+wNHaRimFeRCEtInIVd/hYksPh4OOy\nw2w/t5tOexcThowjPSGFEaHR/XJ8cR8KaRERN1LafJ7/5+RWChtKCPEL5omEVdwz4k58LD5mjyYm\nUEiLiFzFrI8lddg62VG0l4/LDmNgMDt6JimTlt9yMUwGNoW0iMhVzPhY0re135OVt4WGzkaGBw/j\nf9z1BCN8R7v0mDIwKKRFRH6kvz6W1NjZxMb8rXxd8x2+Fl8eil3E0nEPMComwqvuDCXXppAWEfkR\nV38syWE4OFR+lO2Fu+mwdxI3ZBzp1mRGDopx2TFlYFJIi4j0o7LmCjJysylpLiPYL5jHE1KYM2K2\nimHysxTSIiL9oNPexY5ze/n4/GEchoM7o2eQMmk5gwN0S0i5NoW0iIiLfVd7hsy8zZeKYUERpFmT\nmTws3uyxZABQSIuIuEhjZxOb8rdxsuZbfCw+LIldyMPjFhOgK4bJTVJIi4g4mcNwcLj8GFsLd9Nh\n7yBuSCzp1hQVw6TXFNIiIk50vrmCjLwcii+WEuwXRLo1mbkj71IxTPpEIS0i4gSd9i52Fu3jo7JP\ncRgOZkXdTsqkFQwJVDFM+k4hLSJyi07X5ZKVt5m6jgaGBUWQak1iyjCr2WOJB1BIi4j0UVPnRTad\n3cZX1aeuKoY9QIBvgNmjiYdQSIuI9NKlYtjnbC3cRYe9g/GDx5KekMKoQSPMHk08jEJaRNzWG5kn\nL93f2QKTY8N5Pm2m2SNR3lJJRm42RZeLYWnWJOaNvFvFMHEJhbSIuKU3Mk/+7ZaRBnxf3MBz64+w\nJmU6sTH9X8bqsnexs2g/B8oO4TAc3BE1nVWTVjAkcHC/zyLeQyEtIm7pzI/u6QzQ0NzJuuxTLr91\n5I+drsu7XAyrJyIonNT4RKYOn9yvM4h3UkiLiFxDU2cz2We3caL6G3wsPjw4dgEPj19MoIph0k8U\n0iLiliaPC//b6e7LwsMCXXp/5yschoMjFcfZWriTdlsH4waPJd2azOiwkS4/tsjVFNIi4paeT5vJ\nc+uP0NDcCVwK6P44zV3RcoH3c7MpulhCkG8QqfGJ3DvqHhXDxBQKaRFxW2tSprMu+xQ+PhaeTZrm\n0mN12bvYVXyA/aUHcRgOZkZNZ9Wk5QwNHOLS44pcj0JaRNxWbEwYbz4zj8jIMGpqml12nO8vF8Nq\nO+oJDxxKqjWRacNvc9nxRG6WQlpEvNbFrmayz27ny6qv8bH48MDY+TwyfomKYeI2FNIi4nUchoOj\nFV+wuXAn7bZ2YsPGkJ6QwhgVw8TNKKRFxKtUtFwgIy+Hc03FBPkGsjp+JfNHzVExTNySQlpEvEKX\nvZvdxQfYV/oJDsPBjMhprI5foWKYuDWFtIh4vDP1+WTmbaa2vU7FMBlQFNIi4rGau1rIPrudL6pO\nYsHCojH38cj4JQT5BZo9mshNUUiLiMdxGA6OVn7BloKdtNnaGRs2mvSEZMaGjTZ7NJFeUUiLiEep\nbK0iIzeHwqYiAn0DWDVpBfePnqtimAxICmkR8Qjd9m52l3zEvpJPsBt2bo+cyupJKwgPGmr2aCJ9\nppAWkQEvt/4smXk51LTXMTRwCI/FJ3J75BSzxxK5ZQppERmwmrtayCn4kOMXvrqqGPYgQX5BZo8m\n4hQKaREZcAzD4Gjll2wp2EGrrY0xYaN43JrC2MEDuxj2RuZJzhQ3gAUmx4bzfNpMs0cSkymkRWRA\nudBaTUZeNgWNfyuGzR81B18fX7NHuyVvZJ782/2zDfi+uIHn1h9hTcp0YmPCzB1OTKOQFpEBodve\nzZ6Sj9lb8jF2w8704VN4LH6lxxTDzlwJ6Ks0NHeyLvtUv9xHW9yTQlpE3N53VXn8+Yv/RXVb7eVi\n2Epuj5xq9lgiLqeQFhG31dLVSk7Bh3x+4QQWLCwcfS+Pxi3xyGLY5HHhfzvdfVl4WCBrUqabNJG4\nA4W0iLgdwzA4duEEmws+pLW7jfFDx7B6YiKxg8eYPZrLPJ82k+fWH6GhuRO4FNA6zS0KaRFxK1Wt\n1WTk5XC28RwBvgGkTHyUVTMfor6uzezRXG5NynTWZZ/Cx8fCs0nTzB5H3IBCWkTcQrfDxt6Sj9lb\n/BE2w8604ZN5LD6RiKDwAd/cvlmxMWG8+cw8IiPDqKlpNnsccQMKaRExXX5DIZl5OVS11TAkYHBP\nMcxisZg9moipFNIiYpqW7lY2F+zgWOWXWLBw/+h5LI9bSrAHFsNE+kIhLSL9zjAMjl/4ipyCD2np\nbmX0oJGkJyQzbvBYs0cTcSt9Dunc3FyeffZZnn76aZ544gkqKyt54YUXcDgcREZGsnbtWgICApw5\nq4h4gKq2GjLzNpPfUECAjz9JEx9h4eh7veZ9Z5He6NMNVtvb2/njH//Ivffe27Nt3bp1PPnkk7z3\n3nvExsaSnZ3ttCFFZODrdtjYVbSf14+/RX5DAVOHJfDS3c+zeOz9CmiRa+hTSAcEBPDOO+8wfPjw\nnm3Hjx9n0aJFACxcuJCjR486Z0IRGfDONpzj/z7+b3xYtJdQv2D+96lP8T+mP82w4HCzRxNxa306\n3e3r64uv7w9/821vb8ff3x+AiIgIqqurb306ERnQWrvb2FKwg88qv8CChfmj5rJiwlKC/YLNHk1k\nQHBJccwwDFfsVkQGCMMw+KLqJNlnt9PS3cqoQSNIt6YwfoiKYSK94bSQDgkJoauri4CAAKqqqoiK\nirru48PDQ/DzM+d9qMhI77rtmzet15vWCu653srmat498T7fVuUR4OvPk7cnsSz+Afxu8X1nd1yr\nK3nTer1prb11SyF99SvmuXPnsnv3blasWMHevXuZP3/+dZ/b0GDOJf687Uo+3rReb1oruN96bQ4b\n+0oOsrvkADaHjduGWUmLT2JYcAQNt3hJT3dbq6t503q9aa3Q+19I+hTSX3/9NS+//DJ1dXX4+vqS\nmZnJu+++y29/+1uysrIYNWoUSUlJfdm1iAxABY1FZORmc6GtmsEBYayOX8nMyGm6YpjILepTSM+Y\nMYPt27f/ZPuGDRtueSARGTguFcN28lnlcSxYuG/UHFbEPUSIv4phIs6gK46JSK/9uBg2MjSG9IQU\n4obEmj2aiEdRSItIr9S01ZGZl0Nuw1n8ffxZOeFhHhgzXxckEXEBhbSI3BSbw8b+0kPsLt5Pt8PG\n5Ih40qxJDA8eZvZoIh5LIS0iN1TQWERGXg4XWqsICxjEU5NWcEfU7SqGibiYQlpErqmtu40thbs4\nUvE5APeOvJuVE5apGCbSTxTSIvIThmFwouprNp3dTnN3CyNCo3k8IYW4IePMHk3EqyikReQHatvr\nyMzbzJn6fPx9/FgZ9zCLxt6Hn4/+uRDpb/qpExEA7A47B0oPsbN4n4phIm5CIS0inGsqJiM3h4rW\nC4T5D+LJySuYpWKYiOkU0iJerK27na3ndnG4/BgA80beTeKEhwnxDzF5MhEBhbSIVzIMg6+qv2Hj\n2W00d7UQExrN49YUJgwdZ/ZoInIVhbSIl6ltrycrbzPf1+fh7+PH8riHWDx2vophIm5IP5UiXsLu\nsPNR2afsKNpHt6ObhPBJpFqTiAoZbvZoInINCmkRL1DUVML7udlUtF5gkH8oTySs4s7oGSqGibg5\nhbSIB2u3tbO1cDeHy49hYDB3xF0kTlxGqIphIgOCQlrEAxmGwcmab9mYv5WLXc3EhESRnpDCxKHj\nzR5NRHpBIS3iYera68nK38Lpulz8fPx4dPxSHoy9X8UwkQFIP7UiHsLusPPx+cPsOLeXLkc31vCJ\npFmTiAqJNHs0EekjhbSIByhqKiUjL5vylkoG+YeSnpDC7OiZKoaJDHAKaZE+eiPzJGeKGwCYPC6c\n59Nm9vsM7bZ2thXu4dPyoxgYzBkxm8SJyxjkH9rvs4iI8ymkRfrgjcyTfH85oAG+L27gufVHWJMy\nndiYMJcf3zAMjpV9xV++zKKp6yLRIVGkW5OYFD7B5ccWkf6jkBbpgzNXBfQVDc2drMs+xZvPzHPp\nsevaG/ggfwvf1Z3Bz+LLo+OXsDh2Af4qhol4HP1UiwwQPy6GTYmKJyVuJdEqhol4LIW0SB9MHhf+\ng9PdAOFhgaxJme6S45VcLOP93GzOt1QQ6h9CmjWZR6bdT21ti0uOJyLuQSEt0gfPp83kufVHaGju\nBC4FtCtOc7fbOth+bg+Hzn+GgcE9MXeSNPERBgWEqrkt4gUU0iJ9tCZlOuuyT/X82ZkMw+Cb2tNs\nzN9KY2cTUSHDSbemEB8+4W+tcgtMjjWnVS4i/UMhLdJHsTFhLnn1XN/RwAf5W/m29nv8LL4sG/8g\nS2IX4u/j98NWudH/rXIR6V8KaRE3YXfYOXj+CNuL9tJl72LS0DjSrMnEhEb1PMbMVrmI9D+FtIgb\nKLlYRkZuNmUtFYT6hfDY5ETuiZml951FvJxCWsREHZeLYQcvF8PujplF0sRHCAsY9LOP7+9WuYiY\nSyEtYpJvar7jgyvFsODhpFmTsUZMvO5z+qtVLiLuQSEt0s8aOhr5IH8rp2pP42vx5eFxi1kauxB/\nX/+bev6VVrmPj4Vnk6a5eFoRMZNCWqSfOAwHB89/xvZzu+m0dzFx6HjSrcnEhEb3aj9XWuWRkWHU\n1DS7aFoRcQcKaZF+UHrxPBl52ZQ2lxPiF8wTCau5Z8QsfCw+Zo92U9zhjl8i3kghLeJCHbZOPiza\nwydlRzAwuCvmDpInPnrNYpg7MvuOXyLeTCEt4iKnak7zQf5WGjobiQweRpo1mYSISWaP1Wv6bLaI\neRTSIk7W0NHIxrPb+KbmO3wtvjw07gGWxi4i4CaLYSIiVyikRZzkx8WwCUPGkZ6QwoheFsPcjT6b\nLWIehbSIE5Q1l/N+bjalzecvF8NWcc+IOwdMMex69NlsEfMopEVuQYetkx1Fe/m47DAGBrOjZ5Iy\nafmAKobdDFfe8UtErk0hLdJH39Z+T1beFho6GxkePIw0axKTI+LNHsslXHXHLxG5PoW0SC81djax\nMX8bX9d8i4/Fh4diF7F03AMqhomI0ymkRW6Sw3BwqPwo2wt302HvJG7IONKtyYwcFGP2aCLioRTS\nIjehrLmCjLxsSi6WEewXzOPWFOaMnO0RxTARcV8KaZHr6LR39RTDHIaDO6NnkDJpOYMDdKUtEXE9\nhbTINXxXe4as/C3UdzQwLCiCNGsStw2zmj2WiHgRhbTIjzR2NrHp7HZOVp/Cx+LDktiFPDzuAQJ8\nA8weTUS8jEJa5DKH4eBw+TG2Fu6mw95B3JBY0q0pKoaJiGkU0iJAeUsl7+dmU3yxlGC/INKsycwb\neZeKYSJiKoW0eLVOexe7ivZzoOwQDsPBrKjbSZm0giGBKoaJiPkU0uK1TtflkpW3mbqOBoYFhZNq\nTWLKsASzxxIR6aGQFq/T1HmR7LPbOVH9DT4WHx4cu4Bl4xerGCYibsfpIf36669z6tSlC/H/7ne/\nY9q0ac4+hEifOAwHRyo+Z2vhLtptHYwfPJb0hBRGDRph9mgiIj/LqSF9/PhxSktLyczMpLCwkN/9\n7ndkZmY68xAifVLeUklGbg5FF0sI8g0iNT6Je0fdrWKYiLg1p4b0sWPHWLx4MQATJkygqamJ1tZW\nQkNDnXkYkZvWZe9iV/EB9pcexGE4uCNqOqsmrWBI4GCzRxMRuSGnhnRtbS1Tpkzp+ToiIoKamhqF\ntJji+7o8MvM2U9dRT0RQOKnxiUwdPtnssUREbppLi2OGYWCxWFx5CJGfaOpsJqdgO19WfY2PxYfF\nY+9n2fgHCVQxTEQGGKeGdFRUFLW1tT1fV1dXExkZ+bOPDQ8Pwc/P15mHv2mRkd71GVhPX+/Lf/6M\nbwpqAIPY2xppGXqK1u52JkaM4/+48wnGhY82e0SX8fTv7dW8aa3gXev1prX2llNDet68ebz99tuk\npqZy+vRpoqOjCQkJ+dnHNjS0OfPQNy0yMoyammZTjm0GT1/vG5kn+b64AUtwM/7jTlMV2ggdfiwe\n9RArJy/Ax+bjsev39O/t1bxpreBd6/WmtULvfyFxakjPnDmTKVOmkJaWhq+vL6+88oozdy/yE2dK\navEbXYhfTBEWHwN7fTRdJZM5nB9I0m1qbovIwOb096Sfe+45Z+9S5GedqcsnYNphfILacXQG0VVy\nG47GqEv/Mcjc2UREnEFXHJMB52JXM9lnLxfDAi10V47DVj4RHJf+OoeHBbImZbrJU4qI3DqFtAwY\nDsPB0Yov2Fy4k3ZbO7FhY0hPSObf/quYBkcncCmg33xmnsmTiog4h0JaBoTK1ioycrMpbComyDeQ\n1ZNWMn/0HHwsPqxJGcy67FP4+Fh4NkmXoRURz6GQFrfWZe9mT/EB9pUexG7YmRE5lVWTVhAeNLTn\nMbExYbwo8UelAAATDUlEQVT5zDyva4mKiOdTSIvbyq0/S0ZeDrXtdYQHDuWx+JVMj5xy4yeKiHgI\nhbS4neauFrLPfsgXVV9hwcKiMffxyPglBPkFmj2aiEi/UkiL23AYDo5Vfsnmgh202doZGzaa9IRk\nxoZ57hXDRESuRyEtbuFCaxXv5+ZQ2FREoG8Aqyat4P7Rc3UrSRHxagppMVW3vZs9JR+xt+QT7Iad\n2yOnsvpHxTAREW+lkBbT5NafJStvM9XttQwNHMJj8YncrmKYiEgPhbT0u+auFjYX7ODzCyewYGHh\nmHt5dPwSgvx0LU8RkasppKXfGIbRUwxrtbUxJmwUj1tTGDtYxTARkZ+jkJZ+caG1msy8HM42niPA\nN4CUScu5f9RcfH3Muae4iMhAoJAWl+q2d7O35GP2lnyMzbAzbfhtpMYnqhgmInITFNLiMvkNBWTk\n5VDddqUYtpLbI6eaPZaIyIChkBana+lqJafgw55i2ILR83g0binBKoaJiPSKQlqcxjAMPr9wgpyC\nD2ntbmPMoJGkJ6QQO3iM2aOJiAxICmlxiqrWajKuFMN8/Eme+CgLRs9TMUxE5BYopOWWdDts7Cv5\nmD3FH2Ez7EwdNpnH4hMZFhxu9mgiIgOeQlr67GxDIRl5OVS11TAkYHBPMcxisZg9moiIR1BIS6+1\ndLeyuWAHxyq/xIKF+0fPZXncQyqGiYg4mUJabpphGBy/8BU5BR/S0t3KqEEjeDwhhXGDx5o9moiI\nR1JIy02pbqshI28z+Q0FBPj4kzTxERaOvlfFMBERF1JIy3V1O2zsL/mE3SUfYXPYmDIsgdT4RIYF\nR5g9moiIx1NIyzUVNBaRkZvNhbZqhgSEsSp+JTMjp6kYJiLSTxTS8hOt3W1sKdjBZ5VfYMHC/FFz\nWDHhIYL9gs0eTUTEqyikpYdhGHxRdZLss9t7imHp1mTGD4k1ezQREa+kkBbgUjEsM28zeQ0F+Pv4\nkzhhGYvG3KdimIiIiRTSXs7msLG/9CC7ig9gc9i4LcJKqjWJ4SqGiYiYTiHtxa4uhg0OCGPVpBXc\nETVdxTARETehkPZCl4phO/ms8jgWLNw3ag4r4h4ixF/FMBERd6KQ9iKGYfBl1ddkn91Oc3cLI0Nj\nSE9IIU7FMBERt6SQ9hI1bXVk5uWQ23AWfx9/Vk54mAfGzFcxTETEjSmkPZzNbmNP8UfsKt5Pt8PG\n5Ih40qxJDA8eZvZoIiJyAwppD1bYWMzGLzdTdrGSsIBBPDVpBXdE3a5imIjIAKGQ9kBt3W1sKdzF\nkYrPAbh35N2snLBMxTARkQFGIe1BDMPgRPU3bDq7jeauFkaERvOP9zxFhBFl9mgiItIHCmkPUdte\nR2beZs7U5+Pv48fKuIdZNPY+RgwPp6am2ezxRESkDxTSA5zdYedA6SF2Fu/rKYalxicRGaJimIjI\nQKeQHsDONZWQkZtNResFwvwH8WTCcmZFz1AxTETEQyikB6C27na2ntvFkfLPMTCYN/IuEicsI8Q/\nxOzRRETEiRTSA4hhGHxVfYpNZ7dxsauZmNBo0q3JTBw63uzRRETEBRTSA0Rtez1Z+Zv5vi4PPx8/\nlsc9xOKx8/Hz0bdQRMRT6V94N2d32Pmo7FN2FO2j29FNQvgkUq1JRIUMN3s0ERFxMYW0GytqKiEj\nL4fylkoG+YfyeEIKs6NnqhgmIuIlFNJuqN3WzrbC3XxafgwDg7kj7iJx4jJCVQwTEfEqCmk3YhgG\nJ2u+ZVP+Vpq6mokOiSLdmsyk8DizRxMRERMopN1EXXs9H+Rv4bu6XPx8/Hh0/FIWx96Pv4phIiJe\nSwlgMrvDzsfnD7Pj3F66HN3Eh08k3ZpEVEik2aOJiIjJFNImKr5Yyvu52T3FsDRrMnfF3KFimIiI\nAAppU7TbOth+bjeHzh/FwGDOiNkkTlzGIP9Qs0cTERE3opDuR4Zh8HXNd2zM30pT10WiQyIvF8Mm\nmD2aiIi4IYV0P6nvaOCD/C18W3sGP4svj4x/kAdjF6oYJiIi1+TTlyd9/vnnzJ07l08++aRnW25u\nLmlpaaSnp/Pqq686abyB78qtJP/n52/ybe0Z4odO4MW7/pll4x9UQIuIyHX1OiVKS0v57//+b+68\n884fbH/ttdd46aWXmDp1Ks899xyHDh1i/vz5Tht0ICq5WEZGbjZlLRWE+oeQGp/I3TGzVAwTEZGb\n0utX0tHR0bz99tuEhv6t5NTV1UV5eTlTp04FYNGiRRw9etR5Uw4w7bYONuZv5V+//P8oa6ngnpg7\neeXu/4t7RtypgBYRkZvW61fSgYGBP9nW0NDAkCFDer6OiIigurr61iYboK4Uwxo7m4gKGU66NZn4\n8IlmjyUiIgPQdUN648aNbNq06Qfb1qxZw7x58667U8Mwbnjg8PAQ/Px8b2JE54uMDHP6Pmtb69nw\nVRZfVpzCz8ePVVMeIXHyUgJ8/Z1+rN5yxXrdlTetFbxrvd60VvCu9XrTWnvruiG9evVqVq9efc3/\nfuXUbUREBI2NjT3bq6qqiIqKuu6BGxraejOn00RGhlFT0+y0/dkddg6eP8L2or102buYNDSONGsy\nMaFRNNV3AB1OO1ZfOHu97syb1gretV5vWit413q9aa3Q+19I+lwvNgyj5xWzv78/cXFxnDhxglmz\nZrFv3z6eeuqpvu56wCi9eJ7387Ipay4n1C+ExxJW6n1nERFxml6H9L59+1i3bh1VVVUcP36ct99+\nm+zsbF588UVeeeUVHA4HM2bMYM6cOa6Y1y102Dr48NxePjl/BAODu2NmkTTxEcICBpk9moiIeJBe\nh/SDDz7Igw8++JPtEyZM4L333nPKUO7sm5rTfJC/5VIxLHg4adZkrBEqhomIiPPpaho3qaGjkY35\nW/mm9jS+Fl8eHreYpbEL8XeDYpiIiHgmhfQNOAwHB89/xvZzu+m0dzFx6HjSrcnEhEabPZqIiHg4\nhfR1lDafJyM3m9LmckL8gnkiYTX3jJiFj6VPV1MVERHpFYX0z+iwdbKjaC8flx3GwOCumDtInvio\nimEiItKvFNI/cqrmNB/kb6Whs5HI4GGkWZNJiJhk9lgiIuKFFNKXNXY2sTF/K1/XfIevxZeHxj3A\n0thFbnHFMBER8U5eH9IOw8Gh80fZfm43HfZOJgwZR3pCCiNUDBMREZN5dUiXNVeQkZtNSXMZwX7B\nPJ6QwpwRs1UMExERt+CVId1h62Rn0T4+Pn8Yh+FgdvRMkic9yuAAXeRdRETch9eF9ImKb/n34+/T\n0NnI8OBhpFmTmBwRb/ZYIiIiP+E1Id3Y2cSm/G2crPkWH4sPS2MX8dC4B1QMExERt+XxIe0wHHxa\nfoxthbvosHdiHRbHqgmJjBwUY/ZoIiIi1+XRIX2+uYL387IpuXipGJZuTWbl7Q9QV9tq9mgiIiI3\n5JEh3WnvYmfRPj4q+xSH4eDO6BkkT1zOkMAwNbdFRGTA8LiQ/q72DFn5W6jvaGBYUARp1iRuG2Y1\neywREZFe85iQbuq8yMaz2zhZfQofiw9LYhfy8LgHCPANMHs0ERGRPhnwIe0wHBwu/5ythbvosHcw\nfnAs6QnJjBo0wuzRREREbsmADunylkoycrMpulhKsF8QadYk5o28W+87i4iIRxiQId1l72Jn0X4O\nlB3CYTiYFXU7KZOWMyRwsNmjiYiIOM2AC+nTdXlk5eVQ19HAsKBwUq1JTBmWYPZYIiIiTjdgQrqp\ns5nss9s4Uf0NPhYfHhy7gGXjF6sYJiIiHsvtQ9phODhScZythTtpt3UwbvBYHk9IUTFMREQ8nluH\ndEXLBd7PzaboYglBvkGkxidx7ygVw0RExDu4ZUh32bvYVXyA/aUHcRgOZkZNZ9Wk5QwNHGL2aCIi\nIv3G7UL6+7o8svI2U9tRT0RQOKnxiUwdPtnssURERPqd24T0xa5mss9u58uqr/Gx+PDA2Pk8Mn4J\ngSqGiYiIlzI9pB2Gg88qjrOlcBfttnZiB48h3ZrCmLCRZo8mIiJiKlNDuqLlAhl52ZxrKiHIN5DH\n4hO5b9Q9KoaJiIhgYkhvK9zNvtJPcBgOZkROY3X8ChXDRERErmJaSO8p+YjwwKGkWhOZNvw2s8YQ\nERFxW6aF9JMJq5kZNZ0gv0CzRhAREXFrpoX0nJGzzTq0iIjIgKCGloiIiJtSSIuIiLgphbSIiIib\nUkiLiIi4KYW0iIiIm1JIi4iIuCmFtIiIiJtSSIuIiLgphbSIiIibUkiLiIi4KYW0iIiIm1JIi4iI\nuCmFtIiIiJtSSIuIiLgphbSIiIibUkiLiIi4KYW0iIiIm1JIi4iIuCmFtIiIiJtSSIuIiLgpv94+\nwWaz8bvf/Y6ysjLsdjsvvPACs2bNIjc3l1dffRWLxYLVauXVV191wbgiIiLeo9evpLdt20ZwcDDv\nv/8+r732Gn/4wx8AeO2113jppZfIyMigubmZQ4cOOX1YERERb9LrkF6+fDm/+c1vAAgPD6exsZHu\n7m7Ky8uZOnUqAIsWLeLo0aPOnVRERMTL9Pp0t7+/P/7+/gD89a9/Zfny5TQ0NDBkyJCex0RERFBd\nXe28KUVERLzQdUN648aNbNq06Qfb1qxZw7x583jvvfc4c+YMf/7zn6mtrf3BYwzDcP6kIiIiXsZi\n9CFRN27cyN69e1m/fj0BAQF0d3ezZMkSPv74YwA2b95Mfn4+v/71r50+sIiIiLfo9XvSZWVlZGVl\n8fbbbxMQEABcOgUeFxfHiRMnANi3bx/z58937qQiIiJeptevpN966y127NjBiBEjerZt2LCB0tJS\nXnnlFRwOBzNmzNCraBERkVvUp9PdIiIi4nq64piIiIibUkiLiIi4KYW0iIiIm/LakK6trWX27Nl8\n8cUXZo/iMjabjV//+tc8/vjjpKam9rTvPdHrr79OWloaaWlpfPvtt2aP41Jr164lLS2NVatWsW/f\nPrPH6RcdHR0sXryYzZs3mz2KS23bto2VK1eSnJzMwYMHzR7HpVpbW3n22Wf5xS9+QVpaGocPHzZ7\nJJfIzc1l8eLFvPfeewBUVlby1FNP8cQTT/BP//RPdHV1Xff5XhvSa9euZezYsWaP4VLXus66pzl+\n/DilpaVkZmby2muv8dprr5k9ksscO3aMgoICMjMzeffdd3n99dfNHqlf/OlPf2Lo0KFYLBazR3GZ\nhoYG1q9fT0ZGBu+88w4HDhwweySX2rx5M3FxcfzXf/0X69at88if2/b2dv74xz9y77339mxbt24d\nTz75JO+99x6xsbFkZ2dfdx9eGdJHjx4lLCyM+Ph4j7462s9dZ90THTt2jMWLFwMwYcIEmpqaaG1t\nNXkq15g9ezb/9m//BkBYWBhtbW0e/XcYoLCwkHPnzrFgwQKPXuvRo0eZO3cuISEhREZG8vvf/97s\nkVxq2LBhPf8mNTU1ERERYfJEzhcQEMA777zD8OHDe7YdP36cRYsWAbBw4cIb3ufC60K6q6uLP/3p\nT/zzP/8zgEf/Zu7v709QUBDwt+use6La2lrCw8N7vo6IiKCmpsbEiVzH19eXkJAQADZt2sSCBQs8\n+u8wwL/+67/y29/+1uwxXK68vJyOjg7+4R/+gSeeeMLjb1L08MMPU1lZyZIlS3jqqad6XlB4El9f\n356Lfl3R3t7ec/+Lm7nPRa9vsDGQ/Ny1x++77z7S09MZNGgQ4DnXGb/Z66x7A8MwPD649u/fT3Z2\nNhs2bDB7FJfasmULd955JyNHjvSYn9VrMQyDxsZG1q9fT3l5Ob/4xS96LrXsibZu3cqIESP4j//4\nD3Jzc3n55ZfZuHGj2WP1q5v5O+3RIb169WpWr179g23p6el8+umn/Od//ielpaWcOnWKdevWMWHC\nBJOmdI6fWytcCu9PPvmE9evX4+vra8JkrhcVFfWDm7xUV1cTGRlp4kSu9emnn/Lv//7vvPvuuz2/\nbHqqgwcPUlZWxr59+7hw4QIBAQHExMQwZ84cs0dzuuHDhzNz5kx8fHwYM2YMoaGh1NfXe+RpYICT\nJ0/2vFebkJDAhQsXvOIX7JCQELq6uggICKCqqoqoqKjrPt7rTndnZGSQlZVFVlYWCxYs4NVXXx3w\nAX0tP3eddU80b9489uzZA8Dp06eJjo7uOSXsaZqbm1m7di1//vOfGTx4sNnjuNxbb73Fpk2byMrK\nYvXq1TzzzDMeGdBw6e/xsWPHMAyDhoYG2traPDagAWJjY/nmm2+AS6f6Q0JCPDagr37FPHfuXHbv\n3g3A3r17b3ifC49+Je3tNm3aRGNjI3/3d3/Xs23Dhg0974d4ipkzZzJlyhTS0tLw9fXllVdeMXsk\nl9m5cyeNjY386le/6tm2du3aH1xLXwam6Oholi5dymOPPQbAyy+/bPJErpWamsqLL77IU089hc1m\n88ii3Ndff83LL79MXV0dvr6+PZ/K+O1vf0tWVhajRo0iKSnpuvvQtbtFRETclNed7hYRERkoFNIi\nIiJuSiEtIiLiphTSIiIibkohLSIi4qYU0iIiIm5KIS0iIuKmFNIiIiJu6v8HCsyQydTejOQAAAAA\nSUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fb81c0b5d10>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# Data used for predictions\n", | |
"x_fit = np.linspace(-5,10,500)[:,np.newaxis]\n", | |
"y_fit = linear_model.predict(x_fit)\n", | |
"plt.plot(X,y,'o')\n", | |
"plt.plot(x_fit,y_fit)\n", | |
"plt.xlim(-5,10)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment