Created
September 18, 2019 09:25
-
-
Save ankitshekhawat/69c6759b6ac3347c5be5b2360e9efa6d to your computer and use it in GitHub Desktop.
train val split
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 62, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from glob import glob\n", | |
| "import os\n", | |
| "import shutil\n", | |
| "import random\n", | |
| "random.seed(42)\n", | |
| "from tqdm.auto import tqdm" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 64, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "dataset_dir = './combined/'\n", | |
| "ext = '*'\n", | |
| "minimum = 15000\n", | |
| "split = 0.8\n", | |
| "destination_dir = './bottom_type_dataset/'\n", | |
| "train_dir = 'train'\n", | |
| "val_dir = 'val'\n", | |
| "delete_old = True\n", | |
| "\n", | |
| "if delete_old:\n", | |
| " shutil.rmtree(os.path.join(destination_dir, train_dir), ignore_errors=True)\n", | |
| " shutil.rmtree(os.path.join(destination_dir, val_dir), ignore_errors=True)\n", | |
| " \n", | |
| "os.makedirs(os.path.join(destination_dir, train_dir), exist_ok=True)\n", | |
| "os.makedirs(os.path.join(destination_dir, val_dir), exist_ok=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 65, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "classes = [os.path.dirname(d).split('/')[-1] for d in sorted(glob(dataset_dir+ '*/'))]\n", | |
| "if minimum == -1:\n", | |
| " minimum = min([len(glob(os.path.join(dataset_dir, c)+ \"/*.\"+ ext)) for c in classes])\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 66, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "f36bf2b1c6824d919ce97d6b11ad7f11", | |
| "version_major": 2, | |
| "version_minor": 0 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(IntProgress(value=0, description='Pants', max=15000, style=ProgressStyle(description_width='ini…" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "57f9461942b14e10805435d6cb9a9688", | |
| "version_major": 2, | |
| "version_minor": 0 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(IntProgress(value=0, description='Shorts', max=13264, style=ProgressStyle(description_width='in…" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "bd83bfcebd8a477d8d43c7ccccec701c", | |
| "version_major": 2, | |
| "version_minor": 0 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(IntProgress(value=0, description='Skirt', max=15000, style=ProgressStyle(description_width='ini…" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "dff6b7f77c824af887b55e85a49578af", | |
| "version_major": 2, | |
| "version_minor": 0 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(IntProgress(value=0, description='Swimwear', max=8046, style=ProgressStyle(description_width='i…" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "\n", | |
| "for cls in classes:\n", | |
| " files = glob(os.path.join(dataset_dir, cls)+ \"/*.\"+ ext)\n", | |
| " random.shuffle(files)\n", | |
| " end_point = minimum if len(files)> minimum else len(files)\n", | |
| " split_point = int(end_point * split)\n", | |
| " \n", | |
| " train_files = files[:split_point]\n", | |
| " val_files = files[split_point:end_point]\n", | |
| " os.makedirs(os.path.join(destination_dir, train_dir, cls), exist_ok=True)\n", | |
| " with tqdm(total=end_point, desc=cls) as pbar:\n", | |
| " for train_file in train_files:\n", | |
| " shutil.copyfile(train_file, os.path.join(destination_dir, train_dir, cls, os.path.basename(train_file)))\n", | |
| " pbar.update()\n", | |
| "\n", | |
| " os.makedirs(os.path.join(destination_dir, val_dir, cls), exist_ok=True) \n", | |
| " for val_file in val_files:\n", | |
| " shutil.copyfile(val_file, os.path.join(destination_dir,val_dir, cls, os.path.basename(val_file)))\n", | |
| " pbar.update()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "python 3 tf2", | |
| "language": "python", | |
| "name": "venv" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.8" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment