Last active
July 30, 2020 21:05
-
-
Save ankostis/c5db9e5f5b3317511fa742ad73246486 to your computer and use it in GitHub Desktop.
Compare List-comprehensions with Nested-loops
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Compare one-liner comprehension summing numbers with a nested loop version" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Build the sample *dataset*:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false, | |
"jupyter": { | |
"outputs_hidden": false | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from math import sqrt\n", | |
"from random import sample\n", | |
"\n", | |
"population_size = int(10e10)\n", | |
"population = range(population_size)\n", | |
"def square_lists(size):\n", | |
" return [list(sample(population, k=size)) for i in range(size)]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Define the test functions:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false, | |
"jupyter": { | |
"outputs_hidden": false | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def sum_items_loops(items):\n", | |
" size = len(items)\n", | |
" s = 0\n", | |
" for i in range(size):\n", | |
" for j in range(size):\n", | |
" s += items[i][j]\n", | |
" return s\n", | |
"\n", | |
"def sum_items_comprehension(items):\n", | |
" return sum(ii for i in items for ii in i)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## With a small dataset the one-liner is x2 faster:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false, | |
"jupyter": { | |
"outputs_hidden": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"3.11 µs ± 62.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"items = square_lists(6) # 36 integers\n", | |
"\n", | |
"%timeit sum_items_loops(items)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false, | |
"jupyter": { | |
"outputs_hidden": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.73 µs ± 7.94 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit sum_items_comprehension(items)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## ... and remains the same with a bigger dataset:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": false, | |
"jupyter": { | |
"outputs_hidden": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1.12 s ± 13.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"items = square_lists(2<<11) # 16_777_216, 16Mi integers\n", | |
"\n", | |
"%timeit sum_items_loops(items)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false, | |
"jupyter": { | |
"outputs_hidden": false | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"551 ms ± 2.99 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit sum_items_comprehension(items)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## It's interesting that numpy is *x90* faster:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"items = np.array(items)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"12.4 ms ± 130 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit np.sum(items)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## To Panos: would be nice to compare with a GPU version..." | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment