Skip to content

Instantly share code, notes, and snippets.

View anna-geller's full-sized avatar
🎯
Focusing

Anna Geller anna-geller

🎯
Focusing
View GitHub Profile
if __name__ == "__main__":
raw_data_jaffle_shop(start_date=date(2022, 11, 11), end_date=date.today())
if __name__ == "__main__":
raw_data_jaffle_shop(dataset_size=100_000)
from datetime import date, timedelta
from faker import Faker
import pandas as pd
from prefect import flow, task
import random
from dataplatform.blocks.snowflake_pandas import SnowflakePandas
fake = Faker()
from prefect import task, flow, get_run_logger
from prefect.task_runners import SequentialTaskRunner
import random
from typing import List
@task
def ingest():
if random.random() > 0.5:
raise ValueError("Non-deterministic error has occured.")
import random
from typing import List
def ingest():
if random.random() > 0.5:
raise ValueError("Non-deterministic error has occured.")
else:
return 42
from prefect import task, flow, get_run_logger, allow_failure
from prefect.task_runners import SequentialTaskRunner
import random
from typing import List
@task
def ingest():
raise ValueError("Non-deterministic error has occured.")
return 42
from prefect import task, flow, get_run_logger, allow_failure
import random
@task
def ingest():
return 42
@task
from prefect import task, flow, get_run_logger, allow_failure
import random
@task
def ingest_data():
return 42
@task
from prefect import task, flow, get_run_logger, allow_failure
import random
@task
def ingest_data():
return 42
@task
from prefect import task, flow, get_run_logger
@task
def get_training_set():
return dict(data=21)
@task
def apply_ml_model(training_set):