Skip to content

Instantly share code, notes, and snippets.

@annanay25
annanay25 / learn.py
Last active October 22, 2019 14:45
Backpropagation implementation in Python.
#Backpropagation algorithm written in Python by annanay25.
import string
import math
import random
class Neural:
def __init__(self, pattern):
#
# Lets take 2 input nodes, 3 hidden nodes and 1 output node.
# Hence, Number of nodes in input(ni)=2, hidden(nh)=3, output(no)=1.
import numpy as np
import pandas as pd
from sklearn import preprocessing
class decisionnode:
def __init__(self,col=-1,value=None,results=None,tb=None,fb=None):
self.col=col
self.value=value
self.results=results
self.tb=tb
p=3
m=1000
def stringHash(txt):
# print len(txt)
txtHashList = [0L] * (len(txt) - 100)
for i in xrange(0, 100):
# print i
txtHashList[0] += ord(txt[i])*(p**i)
package main
import (
"fmt"
"net"
"os"
"time"
"strconv"
)
package main
import (
"fmt"
"net"
"os"
)
func sendResponse(conn *net.UDPConn, addr *net.UDPAddr){
_,err := conn.WriteToUDP([]byte("Hello from Server. Message received. "), addr)
@annanay25
annanay25 / tensorflow-local-llvm
Last active April 2, 2017 07:27
Changes made to compiler TensorFlow using a local LLVM repository
diff --git a/tensorflow/core/platform/default/build_config.bzl b/tensorflow/core/platform/default/build_config.bzl
index 48ef8df..717bfba 100644
--- a/tensorflow/core/platform/default/build_config.bzl
+++ b/tensorflow/core/platform/default/build_config.bzl
@@ -7,7 +7,7 @@ load("//tensorflow:tensorflow.bzl", "if_not_mobile")
# configure may change the following lines
WITH_GCP_SUPPORT = False
WITH_HDFS_SUPPORT = False
-WITH_XLA_SUPPORT = False
+WITH_XLA_SUPPORT = True
@annanay25
annanay25 / icmp-causes-issues.ll
Last active April 2, 2017 22:36
Error free. Run using - "opt -polly-codegen my-expect-causes-issues.ll -polly-process-unprofitable".
; ModuleID = 'test.ll'
source_filename = "bugpoint-output-b434f38.bc"
target datalayout = "e-p:64:64:64-S128-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f16:16:16-f32:32:32-f64:64:64-f128:128:128-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-unknown-linux-gnu"
module asm "\09.ident\09\22GCC: (GNU) 4.6.4 LLVM: 3.3.1\22"
; Function Attrs: nounwind uwtable
define void @quux() unnamed_addr #0 {
bb:
void BlockGenerator::copyInstruction(...){
.
.
.
// Skip some special intrinsics for which we do not adjust the semantics to
// the new schedule. All others are handled like every other instruction.
if (isIgnoredIntrinsic(Inst)){
IntrinsicInst *IT = dyn_cast<IntrinsicInst>(Inst);
if(IT->getIntrinsicID() == llvm::Intrinsic::expect){
from __future__ import print_function
import tensorflow as tf
import numpy
import time
import os
from random import randint
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
@0 = private constant [1 x [28 x [28 x [1 x float]]]] [[28 x [28 x [1 x float]]] [[28 x [1 x float]] zeroinitializer, [28 x [1 x float]] zeroinitializer, [28 x [1 x float]] zeroinitializer, [28 x [1 x float]] zeroinitializer, [28 x [1 x float]] zeroinitializer, [28 x [1 x float]] zeroinitializer, [28 x [1 x float]] zeroinitializer, [28 x [1 x float]] [[1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] [float 0x3FD8585880000000], [1 x float] [float 0x3FD8181840000000], [1 x float] [float 0x3FD3535360000000], [1 x float] [float 0x3FDD9D9DC0000000], [1 x float] [float 0x3FCE9E9EC0000000], [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x float] zeroinitializer, [1 x