Created
May 11, 2021 05:05
-
-
Save anujonthemove/8352ba8f4749c62458043450fbdaf59b to your computer and use it in GitHub Desktop.
Highlights in Pandas
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "https://stackoverflow.com/questions/41203959/conditionally-format-python-pandas-cell" | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "9fc8ba0c", | |
"cell_type": "code", | |
"source": "import numpy as np\nimport pandas as pd", | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "8b6e1a9a", | |
"cell_type": "code", | |
"source": "df = pd.DataFrame(np.random.rand(4,3))\ndf.style.applymap(lambda x: 'background-color : yellow' if x>df.iloc[0,0] else '')", | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": "<style type=\"text/css\" >\n#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col1,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col2,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col0,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col1,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col2,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col0,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col1,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col2,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row3_col0,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row3_col1,#T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row3_col2{\n background-color : yellow;\n }</style><table id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >0</th> <th class=\"col_heading level0 col1\" >1</th> <th class=\"col_heading level0 col2\" >2</th> </tr></thead><tbody>\n <tr>\n <th id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row0\" class=\"row_heading level0 row0\" >0</th>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col0\" class=\"data row0 col0\" >0.080455</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col1\" class=\"data row0 col1\" >0.378008</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col2\" class=\"data row0 col2\" >0.861308</td>\n </tr>\n <tr>\n <th id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row1\" class=\"row_heading level0 row1\" >1</th>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col0\" class=\"data row1 col0\" >0.571776</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col1\" class=\"data row1 col1\" >0.195861</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col2\" class=\"data row1 col2\" >0.586259</td>\n </tr>\n <tr>\n <th id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row2\" class=\"row_heading level0 row2\" >2</th>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col0\" class=\"data row2 col0\" >0.664640</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col1\" class=\"data row2 col1\" >0.767051</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col2\" class=\"data row2 col2\" >0.291405</td>\n </tr>\n <tr>\n <th id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row3\" class=\"row_heading level0 row3\" >3</th>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row3_col0\" class=\"data row3 col0\" >0.831663</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row3_col1\" class=\"data row3 col1\" >0.289736</td>\n <td id=\"T_422815f2_afa0_11eb_9cdc_a4c3f0a9e9a8row3_col2\" class=\"data row3 col2\" >0.856822</td>\n </tr>\n </tbody></table>", | |
"text/plain": "<pandas.io.formats.style.Styler at 0x7f816f0d3ac8>" | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": {}, | |
"cell_type": "markdown", | |
"source": "https://towardsdatascience.com/10-python-pandas-tricks-to-make-data-analysis-more-enjoyable-cb8f55af8c30" | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "f191d8c7", | |
"cell_type": "code", | |
"source": "def color_negative_red(val):\n color = 'red' if val < 0 else 'black'\n return 'color: %s' % color", | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "cf3792da", | |
"cell_type": "code", | |
"source": "df = pd.DataFrame(dict(col_1=[1.53,-2.5,3.53], col_2=[-4.1,5.9,0]))\ndf.style.applymap(color_negative_red)", | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": "<style type=\"text/css\" >\n#T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col0,#T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col1,#T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col0,#T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col1{\n color: black;\n }#T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col1,#T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col0{\n color: red;\n }</style><table id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >col_1</th> <th class=\"col_heading level0 col1\" >col_2</th> </tr></thead><tbody>\n <tr>\n <th id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row0\" class=\"row_heading level0 row0\" >0</th>\n <td id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col0\" class=\"data row0 col0\" >1.530000</td>\n <td id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row0_col1\" class=\"data row0 col1\" >-4.100000</td>\n </tr>\n <tr>\n <th id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row1\" class=\"row_heading level0 row1\" >1</th>\n <td id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col0\" class=\"data row1 col0\" >-2.500000</td>\n <td id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row1_col1\" class=\"data row1 col1\" >5.900000</td>\n </tr>\n <tr>\n <th id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8level0_row2\" class=\"row_heading level0 row2\" >2</th>\n <td id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col0\" class=\"data row2 col0\" >3.530000</td>\n <td id=\"T_606d8c0e_afa0_11eb_9cdc_a4c3f0a9e9a8row2_col1\" class=\"data row2 col1\" >0.000000</td>\n </tr>\n </tbody></table>", | |
"text/plain": "<pandas.io.formats.style.Styler at 0x7f816bcf5710>" | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
] | |
}, | |
{ | |
"metadata": { | |
"trusted": false | |
}, | |
"id": "7b422f3c", | |
"cell_type": "code", | |
"source": "", | |
"execution_count": null, | |
"outputs": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3", | |
"language": "python" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.6.9", | |
"mimetype": "text/x-python", | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"pygments_lexer": "ipython3", | |
"nbconvert_exporter": "python", | |
"file_extension": ".py" | |
}, | |
"varInspector": { | |
"window_display": false, | |
"cols": { | |
"lenName": 16, | |
"lenType": 16, | |
"lenVar": 40 | |
}, | |
"kernels_config": { | |
"python": { | |
"library": "var_list.py", | |
"delete_cmd_prefix": "del ", | |
"delete_cmd_postfix": "", | |
"varRefreshCmd": "print(var_dic_list())" | |
}, | |
"r": { | |
"library": "var_list.r", | |
"delete_cmd_prefix": "rm(", | |
"delete_cmd_postfix": ") ", | |
"varRefreshCmd": "cat(var_dic_list()) " | |
} | |
}, | |
"types_to_exclude": [ | |
"module", | |
"function", | |
"builtin_function_or_method", | |
"instance", | |
"_Feature" | |
] | |
}, | |
"gist": { | |
"id": "", | |
"data": { | |
"description": "Highlights in Pandas", | |
"public": true | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment