You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The following are examples of the four types rate limiters discussed in the accompanying blog post. In the examples below I've used pseudocode-like Ruby, so if you're unfamiliar with Ruby you should be able to easily translate this approach to other languages. Complete examples in Ruby are also provided later in this gist.
In most cases you'll want all these examples to be classes, but I've used simple functions here to keep the code samples brief.
Request rate limiter
This uses a basic token bucket algorithm and relies on the fact that Redis scripts execute atomically. No other operations can run between fetching the count and writing the new count.
Ruby on Rails development with docker-compose, spring and PostgreSQL
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
If you want a run-down of the 1.3 changes and the design decisions behidn those changes, check out the LonestarElixir Phoenix 1.3 keynote: https://www.youtube.com/watch?v=tMO28ar0lW8
To use the new phx.new project generator, you can install the archive with the following command:
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
AWS, JQ and bash command cheat sheet. How to query, cut and munge things in JSON generally.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
A composable pattern for pure state machines with effects (draft v3)
A composable pattern for pure state machines with effects
State machines are everywhere in interactive systems, but they're rarely defined clearly and explicitly. Given some big blob of code including implicit state machines, which transitions are possible and under what conditions? What effects take place on what transitions?
There are existing design patterns for state machines, but all the patterns I've seen complect side effects with the structure of the state machine itself. Instances of these patterns are difficult to test without mocking, and they end up with more dependencies. Worse, the classic patterns compose poorly: hierarchical state machines are typically not straightforward extensions. The functional programming world has solutions, but they don't transpose neatly enough to be broadly usable in mainstream languages.
Here I present a composable pattern for pure state machiness with effects,