Skip to content

Instantly share code, notes, and snippets.

@aplavin
Last active August 29, 2015 14:04
Show Gist options
  • Save aplavin/51405dc4b90b3f59314c to your computer and use it in GitHub Desktop.
Save aplavin/51405dc4b90b3f59314c to your computer and use it in GitHub Desktop.
Статистика набора 2011, МФТИ, ФУПМ
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:e2bf6f96bacb69efa975d094c1e3816e9739fdf7081fc0005b8c0326f76ff37a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"plot = (iggplot(data=df) +\n",
" gg.aes_string(x='factor(\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435, levels=c(%s))' % ', '.join('\"%s\"' % s for s in data['\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435'][data['\u041f\u043e\u0441\u0442\u0443\u043f\u0438\u043b\u0438'].argsort()][::-1]),\n",
" y='\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e', \n",
" fill='factor(\u0422\u0438\u043f, level=c(\"\u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b\", \"\u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\"))') +\n",
" gg.scale_x_discrete('\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435') +\n",
" gg.scale_fill_discrete('\u0422\u0438\u043f') +\n",
" gg.geom_bar(stat='identity', color='black', size=0.5, alpha=0.8))\n",
"plot"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAIAAABQO2mIAAAgAElEQVR4nO3de3wU5aH/8eeZ3c1l\ncyEEQkIEIYlcBIQqQY3FUzwJFWq4iVqkyk0RrXIVezj2tOTV82q1+lKCePnVVrTUqhXDRa4qilSF\negigxISQBhKuCoYEXCDZZHfn98fYbUy4PBszmdnwef+1O5md/e6zs7vfzM7OSF3XBQAAwMVoVgcA\nAADhgdIAAACUUBoAAIASSgMAAFBCaQAAAEooDQAAQAmlAQAAKKE0AAAAJZQGAACghNIAAACUUBoA\nAIASSgMAAFBCaQAAAEqcVgf4Vm1tbV1dndUpWsLpdDqdzjANb62YmJizZ89yntVQRURECCHq6+ut\nDhJmpJRut/vMmTNWBwk/kZGRgUCgoaHB6iAt1LFjR6sjtB92KQ0+n6+2ttbqFC3hdrtdLleYhrdW\nhw4dvF6v3++3OkiYcTqdmqaxyoVKSpmQkFBVVWV1kPBjlIbwXeUoDa2IrycAAIASSgMAAFBCaQAA\nAEooDQAAQAmlAQAAKKE0AAAAJZQGAACghNIAAACUUBoAAIASSgMAAFBCaQAAAEooDQAAQAmlAQAA\nKKE0AAAAJZQGAACghNIAAACUUBoAAIASSgMAAFDitDpASxQWFi5cuDAQCFgdRAghNE2TUvr9fquD\nfGv06NEPPPCA1SkAAO1QWJaGffv2RZ+s+eXN2VYHEUIIKaWU0iYN5r29ZTt27LA6BQCgfQrL0iCE\nSIqNualXhtUphLDZlobDJ0+WfVNrdQoAQPvEPg0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAa\nAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkA\nAABKKA0AAECJsxWXtX79+vj4+KFDhwYCgQ0bNhQVFXXt2nX8+PFut7vx1djY2Fa8UwAA0DZaZ0vD\nqVOnXnzxxe3btxtXS0pKDh8+PHPmzKSkpM2bNze52ir3CAAA2ljrlAa3252bm5uenm5cLS8vT0tL\ni4mJ6dWrV3l5eZOrrXKPAACgjbXO1xMulys1NTU6Otq4eubMmeTkZCFEfHz86dOnm1wN3mrjxo3H\njx83Lvfv33/AgAGKdxcbGys1zelsze9Wvg8ppZTS6hRCCKFpjoiIiE6dOlkdRImmaR07dtR13eog\nYcbhcEgp7bP+h5dweXXYitPpjIiIiIyMtDpIS9TV1VkdoV0x5X3H7XYb5cDj8cTExDS5GpytT58+\n3bt3Ny7HxcWdPXtWcfler1fX9UAg0NrBW8KoCzYJo+u63+9XH0lrRURE1NbW2mTowkhUVJSmaeHy\nLNuHlDIyMpJxawG32x0IBML009fn81kdoV0xpTRkZGRs377d5/NVVFRkZGSkpaU1vhqcLS0tLXjZ\n4/F4PB7F5Tc0NAjblAZN04SNSkPA7/fX1tZaHURJhw4d6urq/H6/1UHCjNPp1DQtXJ5l+5BSJiQk\nMG4tEBkZ6fP5GDoIk35yOWDAgOTk5KeeeurIkSPZ2dlNrppxjwAAwGytuaXhtttuMy5ompabm5ub\nmxv8U5OrAAAg7HBwJwAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWU\nBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAa\nAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkA\nAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEA\nACihNAAAACWUBgAAoITSAAAAlFAaAACAEqfVAf7N5XIpzulwOISUUkpT86iTNgojpZTqI2ktI6qm\n0VxDo2mapmnh8izbh/EiZdxaQNM0h8MRpkMXCASsjtCu2Kg0+Hw+xTkDgYDQdV3XTc2jSEqp2yaM\nELqu6+ojaS0jqt/vtzpImDHeBMPlWbYPozQwbi0QCAT8fn+YDp1t3pzbCRuVBvWnlpXgwsJofOzU\nt8IM49YyjFuLMXQQ7NMAAAAUURoAAIASSgMAAFBCaQAAAEooDQAAQAmlAQAAKKE0AAAAJZQGAACg\nhNIAAACUUBoAAIASSgMAAFBCaQAAAEooDQAAQAmlAQAAKLHRqbHVnTlzZt/XVUve32x1ECGEkFIT\nQuh6wOogQghRePjoN/EdrU4BAGifwrI01NTU7Dl56lc7iqwOYjuButorL2frEQDAFGFZGrp16xZ3\nfVaPx5+0OogQQmiaJqX0+/1WBxFCiOq1a7rv3G51CgBA+8R/pQAAQAmlAQAAKKE0AAAAJZQGAACg\nhNIAAACUUBoAAIASSgMAAFBCaQAAAEooDQAAQAmlAQAAKKE0AAAAJZQGAACghNIAAACUUBoAAIAS\nSgMAAFBCaQAAAEooDQAAQAmlAQAAKKE0AAAAJZQGAACghNIAAACUUBoAAIASSgMAAFBCaQAAAEoo\nDQAAQInTjIW+9tprZWVlwat33XXXq6++alzu3bv3xIkTzbhTAABgKlNKw9ixY30+nxBix44dhw4d\n8vl8qampEyZMEEI4nabcIwAAMJspX0+43e74+HiHw7Fz587c3Nzq6urq6urnn3/+tddeO3XqlBn3\nCAAAzGbi//0ffPDBkCFDEhMTo6KisrKyMjMzt27dumLFigcffNCYYfPmzVVVVcblXr169enTR3HJ\nbrdbSulwOEzJHSIppRDCJmE0TXO5XB07drQ6iBIpZYcOHXRdtzpImHE6nVLKcHmW7YZxawHXv1gd\npCW8Xq/VEdoVs0qD1+vdvXv3rFmzhBCXX355bGxsVFTUoEGDtm7d6vf7jY/Y1NTU+Ph4Y/4OHTqo\nP7U+n08Xwj4fNlJK24TRA4FAuLxIoqKi6uvrA4GA1UHCjJRSShkuz7J9SCmjo6MZtxZwOBx+vz9M\nh874rhytxazSsHfv3qSkpLi4OCHEtm3bvF7vyJEji4uLU1NTg/+UN9604PF4PB6P4sLr6+uFrtvk\nw0bTNCGETcIEArrf7z979qzVQZTEx8fX1tb6/X6rg4QZh8OhaVq4PMv2YWzZYtxaICIiwufzMXQQ\n5v3ksri4ONgJsrOzz549m5+fv3///nHjxpl0jwAAwFRmbWm48847g5fdbvekSZNMuiMAANA2OLgT\nAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0A\nAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAA\nACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAA\nlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQ\nQmkAAABKKA0AAECJ0+oA/+ZyuRTndDgcQkoppal51EnbhJFSSCnVR9JaRlRNo7mGRtM0TdPC5Vm2\nD+NFyri1gKZpDocjTIfO7/dbHaFdsVFpUH9qA4GA0HVd103No0hKqdsmjK4LXdfD5UViRA2XtPZh\nrG+MW6iM0sC4tYCu64FAIEyHziZvzu2GjUpDIBBQnJOV4MLUR9JygUAgjNLahFEaGLdQGaWBcWsB\nVjkEsWUYAAAooTQAAAAlIZSG6urqKVOmdOnSpXPnzpMnT66pqTEvFgAAsJsQSsPs2bMjIiKKiopK\nSkpcLtfcuXPNiwUAAOwmhB0h33vvvcrKyqioKCHEkiVL0tPTTUsFAABsh30aAACAkhBKw/Dhw2fO\nnHn8+PHjx4/PmjVr+PDh5sUCAAB2E0JpWLx4sdfr7devX79+/erq6vLz882LBQAA7CaEfRoSExOX\nLVtmXhQAAGBnIWxpePjhh1NSUl577bWMjIzu3bs/9thj5sUCAAB2E8KWhr/85S+rVq364Q9/uG3b\ntoSEhGuvvfa///u/zUsGAABsJYTSIKXMysoSQlx//fVCCLfbbVYoAABgPyF8PXH8+HHjLMbGmaCP\nHTtmWioAANpUVVWV/K7S0lKrQ9lOCFsaOLckAKC96tChw/bt24UQQ4YMWb58ec+ePXv06GF1KNvh\n4E4AAAiXy5WZmZmZmSmEGDBgQGZmZnR0dGlpqXFS9RkzZhgXjClBFoducyGUhilTppgWAwAAmyor\nK1u6dGnjKV9//fXWrVutymOhEErDxo0bzcsBAIA9/fKXvxw3blzjKZ07d+7YsaNVeSwUQmk4duxY\nk51EzIsFAIBNbNmyZf78+VansIUQSkNycrL+XebFAgDAJh599NH4+HirU9hCCL+eGDFihHk5AACw\ng8b/Evft2zd41bgQnNL4T5eOELY0zJ49u2fPnlVVVTt27Bg4cOAXX3xhXiwAAGA3IZSGRx55ZMyY\nMQkJCQMGDMjOzp49e7Z5sQAAgN2E8PXE559/vmrVKqfT6XQ6//d///fyyy83LxYAAG3po48+evXV\nV0O6ydGjR++///5bbrnFpEg2FEJpiIyMNA4jbYiOjjYhDwAAFnj//fcHnay6uttlivN/tG//snfe\nSUhIoDSc2+jRox988MHHH3/c4XD84he/uKSGCQDQ7vVK6nx1t1SVOf+287PfvfP+k2Nzj3TrZnYq\nWwlhn4YnnngiKipq0KBBxi6jTz75pHmxAACwp7/t/Gz2W6sL7p086DKlhtGehLClITY29oUXXnjh\nhRfMSwMAgJ29ufNzozH8ML3n9oOHrI7T1kI7IuSIESM6d+584MCBSZMmVVVVmRcLAAC7eXPn57Pe\nWmU0BquzWCOE0nDvvffOmDHjxIkTqampnTt3njp1qnmxAACwlQs0Bl3Xly5det1111133XXXX3/9\nn//85/Z63KcQvp749NNPV6xYIYRwuVy//e1vL7tMdRdTAADC2vJdF9rGsHTp0mXLlm3YsCExMfHE\niRPG2a0mT57c1inNF8KWhri4uC+//NK4vHfv3uTkZHMiAQBgI28XFc/6134M55xh0aJF+fn5iYmJ\nQohOnTotWrTo6aef3rRpU05OjpQyJydn06ZNQgjjRI/B0z0aF5577jkp5b59+0aOHPmf//mfgwcP\nfvPNN42/5uTkGEtoaGiYMmXKDTfckJ2dXV5e3nwhjU8haerpJEPY0rBgwYKbb75ZCDFlypR3332X\nPSIBAO3e20XFM94oeOueSRfYj6GioqJPnz7Bq3379t23b1/wI99oDEKIqKio06dPN76hz+fbsmWL\nEGLatGkPP/zw6NGjDx069Ktf/er2228XQgSrxquvvnrllVe+8sor//jHP+655x7jJpYIYUvD9OnT\nX3rppccee+z666/ftm3bmDFjzIsFAIDl1hSVXLQxCCHS0tJKS0uDV0tLS/v27dt8trvvvjsuLq7x\nlIKCgttuu00IUVhYmJOTI4To3r37K6+8UlNTk5KSEpxt165dCxYskFJmZWXt3r3bmCilbLKBISIi\n4tFHH23Bw1QXQmkQQtxwww0LFiy4//77e/ToYVIgAADsYE1RyX1vvHXRxiCEmDdv3ty5c6urq4UQ\n1dXVc+fOnTNnTvPZXnzxxSY7SBYUFNx6661CiKuuuurDDz8UQnz55Zc5OTllZWX9+/cPzta9e/c/\n/OEPuq7v37//mWeeMSbqut54abquFxYWBv9qkhC+nmj+NUl73TsUAHCJU28MQgjj54QjRowQQvh8\nvhkzZtx1110q9/KjH/3I6XQKIV5++eWZM2c++eSTNTU1jz766NKlSx955JHgbPfff//kyZP/9re/\nRUREPPzww+dcVE5OjsfjmTVr1mOPPaZy1y0TQmkIVgQpJXUBANBehdQYhBBSymnTpk2bNq35n5p/\nXAanNLkQ3PVBCHHHHXc0md/49eL5FtL4Xn73u9+pZG6Z0L6eEELs27cvMjLSjCgAAFhuzRclM/52\n8f0YLk0hfz0RGxu7cOFC0/IAAGCZNV+UzHijYPm0u2kM59SSrycAAGh/tlUcyP/wIxrDBYRQGgAA\naK/q6+sPdkh89MEHDsXGvOGpVbnJVzIiISHB7GC2wq8nAAAQPp/vnbr6D2sbRO1Jlfn9Z05/vfzN\n0cOHmx3MVkIoDTNnzvzggw+eeOKJn/zkJ+YFAgCg7bnd7o4/vjnmmsEqM9cfPVL+wH0dR/6kT0a6\n2cFsJYTS8Mwzz5SUlMydO3fJkiVPP/30lVdeeb45q6qqnn32WeNy7969J0yYsGHDhqKioq5du44f\nPz42Nvb7pgYAwCJGY+h82x2x1wwWZXusjtOmQtunoV+/fhs3bly3bt3tt9+enZ29ePHic85mnD57\nwoQJQgin01lSUnL48OGZM2du2bJl8+bNo0aNaoXgAAC0uWBj6HL35LPFX1gdp621fJ+G4uLiC5SG\n6urq559/PiEhYcyYMeXl5WlpaTExMb169Vq7du33ygsAgEXqjxwp//m3jcHqLNYw5SeXUVFRWVlZ\nmZmZW7duXbFiRUJCgnEe7fj4+MYn+Prkk0+MI3ULIdLS0tLTVb8ZcrvdUkqHw6Ee3jxGl7JJGE3T\nXC5XuOzNK6WMj49nd9pQuVwuKWW4PMv2YbxUGbcWiIiIcLlcxtGOw47X622tRV2gMei6/vLLL//h\nD38QQkgpH3jggUmTJpl6imqrmLISXH755bGxsVFRUYMGDdq6dWtKSorRFTweT0xMTHC2uLi44AdG\nZGSkz+dTXL7f79ft9NsNOx1XW9d1XX0kLef3+wOBgNUpwozD4ZBShtGzbBPGOzjj1gIul8vv94fp\n0LXWO8yFtzEsXbp02bJlGzZsSExMPHHixLhx44QQkye3w60Rpvzkctu2bV6vd+TIkcXFxampqb16\n9dq+fbvP56uoqMjIyAjONnDgwOBlj8fj8XgUk3i9XqHrNvmw0TRNtN56+T0FArrP52tyvnbbio2N\nPXPmjN/vtzpImJFSapoWLs+yfUgp4+LiGLcWcDqdYfTGYoaLfiuxaNGiv/zlL4mJiUKITp06LVq0\naNq0aUOHDn3ooYe8Xu+pU6f+67/+KzEx8fHHH3///fezs7MXLFiQk5Pz9NNPv/LKK3FxcUOGDMnP\nz5dSZmdnCyHef/99XdeNf0efe+65hx56qLy8vPGi7rjjDqv+WQ3h3BPJycn6d51vzuzs7LNnz+bn\n5+/fv3/cuHEDBgxITk5+6qmnjhw5YowIAABhQWU/hoqKij59+gSv9u3bd9++fdOmTXvggQc++OCD\nVatWrV+/Picnxzgl1aZNm3JycoQQHo9n+fLlK1eufOaZZ4LnrGp82iqfz7dlyxYhRJNFmfdgL8qU\nryfcbvekSZMaT8nNzc3NzTXjvgAAMInino9paWmlpaXXXHONcbW0tLRv376FhYVGOejevfsrr7zS\n/FZXXHHFwoULu3Tpout6TU1NSkpKkxkKCgpuu+225cuXn3NRUkqXyzV//nxTT2vZRAhbGo4dOyal\ndDqdKSkp48ePLykpMS8WAADW+rYx3P7Ti/5WYt68eXPnzjV27a+urp47d+6cOXOuuuqqDz/8UAjx\n5ZdfGh/5TTz44INPPfXUggULhBB79+7t379/kxkKCgpuvfVWIcQ5F6XremFh4TPPPPP9HmVoQv71\nRF1d3cGDB7ds2TJ9+vRPPvnEtGAAAFjm343hrkkXnXnq1KlCiBEjRgghfD7fjBkz7rrrrsGDB8+c\nOfPJJ5+sqal59NFHm9/qvvvumzp1ampq6pAhQ2644YaNGzc2meFHP/qR8aOVl19+ufmicnJyPB7P\nrFmzvucjDUnIX09ERUX17t27d+/e06dPNyMQAADWCqkxCCGklNOmTZs2bVrjiVdeeWXjHRQMjXcH\nfOKJJ865NGOe4JzB3R3Ot5y2FMLXEwAAtHuhNoZLSgilobq6esqUKV26dOncufPkyZNramrMiwUA\nQNujMVxYCKVh9uzZERERRUVFJSUlLpdr7ty55sUCAKCNNVR9TWO4sBD2aXjvvfcqKyujoqKEEEuW\nLFE/6jMAADZXU1Nz+NVXk392t/p5JaRohweKvrCwPJY4AACtKy0tLa1Tpx57isWjv1C8SSchrrz7\nblNT2U0IpWH48OEzZ8787W9/K4T45S9/OXz4cNNSAQDQpubMmTNnzhyrU9hdCPs0LF682Ov19uvX\nr1+/fnV1dfn5+ebFAgAAdhPClobExMRly5YFr545c8aEPAAAwKYuvqXhueeeaz7x5MmTP/7xj03I\nAwAAbOripeHFF19sctSq48eP33TTTY1Pcg0AANq9i5eGzZs3FxQU/PrXvzYOWnnw4MEbb7zxxhtv\nPOc5uwAAQHt18dKQmJi4adOmv//97/PmzSsrK7vxxhvvvPPOxYsXaxqHoAYA4BKi9MEfFxe3fv36\n0tLSQYMGzZs3Ly8vT8pL7ogWAABc4i5eGqSUUsqYmJiNGzfW1dXNmTNH/ksb5AMAADZx8Z9cWnX+\nTQAAYCvslwAAAJRQGgAAgBJKAwAAUEJpAAAASigNAABACaUBAAAooTQAAAAllAYAAKCE0gAAAJRQ\nGgAAgBJKAwAAUEJpAAAASigNAABACaUBAAAooTQAAAAllAYAAKCE0gAAAJRQGgAAgBJKAwAAUEJp\nAAAASigNAABACaUBAAAooTQAAAAllAYAAKCE0gAAAJQ4rQ7wb06nahhN04SUUkpT86iTtgkjpZBS\nqo+ktYyoNhm6MKJpWhg9y/ZhrGmMWwtIKTVNC9OhCwQCVkdoV9jSAAAAlNioOfp8PsU5A4GA0HVd\n103No0hKqdsmjK4LXdfVR9JaRlS/3291kDATCAQ0TQuXZ9k+jC0NjFsL6LoeCAQYOgi2NAAAAEWU\nBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAa\nAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkA\nAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEA\nACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAA\noITSAAAAlDjNWGhDQ8Pq1avLyso6duw4atSoqKioZ5991vhT7969J06caMadAgAAU5lSGgoLC6ur\nq3/+858XFxcXFBSMGDEiNTV1woQJQgin05R7BAAAZjPlIzwqKmro0KEJCQndunXbtm1bVVVVdXX1\n888/n5CQMGbMGLfbbcy2e/fub775xricnJycnJysuPzIyEghpabZ4rsVKaW0TRhNk06nMzY21uog\nSqSUMTExgUDA6iBhJiIiQkoZLs+yfUgphRCMWwu4XC5N08J06BoaGqyO0K6YUhquvvpqXde/+OKL\nd95556abbpJSZmVlZWZmbt26dcWKFQ8++KAxW319fV1dnXHZ7/erf+5qmib/9RZgOSOGTcIIIYUQ\nNmkwKsIoqn3YqqeGEeNFyri1TPiucrZ5c24nzNqn4c033/R4POPHj+/Zs2dVVVVsbGxUVNSgQYO2\nbt3q9/sdDocQIjMzM3gTj8cT3OpwUbW1tbqu+/1+M8KHStM0KaVNwgQCAZ/Ppz6S1nK73R6PxyZD\nF0bi4uI0TQuXZ9k+jC1bjFsLJCQk+Hy+06dPWx0E1jOlNHz88cc+n+/OO+90OBynT5/etm2b1+sd\nOXJkcXFxamqq0RgAAEB4MaU0VFRUHDx4cNGiRUIITdPmz5//1ltv5efnp6SkjBs3zox7BAAAZjOl\nNEybNq3JlEmTJplxRwAAoM2E5Y4tAACg7VEaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAA\nACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAA\nlFAaAACAEkoDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQ\nQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0AAEAJ\npQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEqfVAf5N01QbjJTS1CThTn0kLadpmq7rVqcIM1JK\nKWUYPcs2YbxvMG4tENarHO8wrctGpcHhcCjOqWmasRabmkedtE0YKYWUUn0krRVGUW3FWN8YulAZ\nL1LGrQWMxhCmQ+f3+62O0K7YqDQ0NDQozun3+4Wu26Q/Sil124TRdaHruvpIWsuIyks6VIFAQITy\neoHBKA2MWwsEAgG/38/QQbBPAwAAUERpAAAASigNAABACaUBAAAooTQAAAAllAYAAKCE0gAAAJTY\n6DgNaAMTJ06srKy0OsW3HA6HfQ7SEB0dvXLlyvj4eKuDAIB9URouLbt27XrptjFd4+OsDiKEEE6n\n0+fzWZ3iWyNeeOnUqVOUBgC4AErDJad/SnKPxI5WpxBCCJfLZZ9jzDk0WxwIHADsjH0aAACAEkoD\nAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlHBwJ+DiysrK3njjDV3XrQ4ihBAu\nl0vTNK/Xa3WQb40dO3bQoEFWpwDQFigNwMUtWbJk5dq1WlSU1UEMxsErbdFgdK+3rKzsr3/9q9VB\nALQFSgNwcenp6Z3G3po692GrgwghhKZpUkqbnOvr2NI/ZQTscgIRAGZjnwYAAKCE0gAAAJRQGgAA\ngBJKAwAAUEJpAAAASvj1xKXF6/Xe/9qb0Y1Nx/MAAA7KSURBVE5bPO9SSpsc+UAIccZbX1dXZ3WK\n9sbv9//P//xPdXW11UGEEEJKGRUVVVtba3WQbyUnJ//mN7+xOgUQGlt8eKDNaJr2WY90R1S01UGE\nEELTtEAgYHWKb/kPHHK5XFanaG9qa2uXLVu2ePwYTUqrswghhEML+KNs8aZX5/M98tJLCxcudDgc\nVmcBQmCL1w/ajMvlSp09L6JrV6uDCCGEy+VqaGiwOsW3vvnkY96+TTL1ukyHZotvQu2zyp32eh9Z\ntdbqFEDIbPFKBgAA9seWBgBmMb5+uu6JfHt8O2Ej/sBF9uZ59dVX7XNwbofDoeu6Tb5MlFL+4he/\nGDZsmNVBLlGUBgBm0TRNCFFzx53SHq1BczgC9jj8dqChQbz4/y4ww+eff57pjrx10FVtFukCNE3T\ndd0muy0/s+Xj0tJSSoNVKA0AzJX0s7sl+zR8V+Ds2WMXLA1CiCs6d7qpV0bb5LkwW21peOuz3VZH\nuKTZ4pUMAADsjy0NAGA7e/bsKdi9+7F3P7A6iO14/b6xPdKtTnHpojQAgO1cccUVB3umJ+T82Oog\nQgghHZrQdf1iO2+2ja//uuyKK66wOsWli9IAALbjcrkikpNirrnG6iBC2Gyfhpp3NnBIFQuxTwMA\nAFBCaQAAAEooDQAAQAmlAQAAKKE0AAAAJZQGAACgpC1+chkIBDZs2FBUVNS1a9fx48fHxsa2wZ0C\nAIDW1RZbGkpKSg4fPjxz5sykpKTNmze3wT0CAIBW1xZbGsrLy9PS0mJiYnr16rV27drg9L17954+\nfdq4nJiY2LFjR8UFRkRE1H/5Zc3bq1o/a0tIKYVNzv92dvfnDofD7XafbwYp5alN7zo7dGjLVOej\nSS2g2+JwMUII3dcQHR19vqFzuVx1+/exyjVXV1rq7Nf3fONmHA6o5u1VNjlhlX1WuYC3XgjhdrvP\nd5wip9NZW1Jsk1VOSqnrQghbrHLeA5WuzGsu8C7XhM/nMzXPpaYtSsOZM2eSk5OFEPHx8cGWIIQ4\nevRoVVWVcdnhcKSkpCgu8Oqrrx45oL/Yu6fVo7aAlFJKaZNjpYnIiJtuuikyMvJ8f584ceKxr46K\nr462ZajzcTgcfnucp1gIkTV6dNeuXc83dFlZWXv37mWVO4ekTv/xH/9xvnFzOp0TJ06s++feNg51\nPrZa5WInTYqOjj7fScOHDRt2eu1am6xytjo1tshIv/baay/wLgdTyTZYD1auXBkbGzt8+PDy8vK3\n33573rx5zefxeDwej8fsJGZwu91RUVHV1dVWBwk/KSkpX3/9tX3exMNFXFycpmmnTp2yOkiYkVJ2\n7dr16FFbNObwkpCQ4PP5Gv/LF15SU1OtjtB+tMU2w4yMjIMHD/p8voqKiowMW5weHgAAhKotSsOA\nAQOSk5OfeuqpI0eOZGdnt8E9AgCAVtcW+zRompabm5ubm9sG9wUAAExii12aAQCA/VEaAACAEkoD\nAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAEkoDAABQQmkAAABKKA0A\nAEAJpQEAACihNAAAACWUhu/ryJEjO3futDpFWHrvvffq6uqsThF+ysvL9+zZY3WK8OP3+9etW6fr\nutVBwk9RUVFlZaXVKWALTqsDfCsuLi4uLs7qFC1x7NixQ4cO3XDDDVYHCT/Lli277rrrEhISrA4S\nZsrKyurq6jIzM60OEma8Xu/27dtHjhypafyzFJrCwsLOnTsPHDjQ6iCwHi8eAACghNIAAACU2OXr\nifAVFxeXnJxsdYqw1LNnT6eTNTBkHTt2rK+vtzpF+NE0LT09XUppdZDwk5SUFB8fb3UK2IJktyAA\nAKCCrycAAIASSgMAAFDiyMvLszqDveTl5ZWXl+/cuXPnzp3R0dFJSUlWJwoPjcft7bffHjZsmNWJ\nwkBeXt6wYcN0XV+zZs2pU6cuu+wyqxOFE2P0ml++ROTl5Tmdzssvv1wI8fHHHy9duvRSGwFYgt3Q\nzuHee++1OkJYCo4bTVSdruvr1q1LSkq69tprrc6CMHP8+PEmFwCzURouLi8vb/r06e+++66mabqu\n33LLLUlJSXl5eenp6UKI/fv35+XlFRUV/fOf/xw7duxvfvObX//616tWrerVq9dVV13l9/vXrFlz\n4sQJp9M5atSokydPfvzxx/v3709PTx86dKixhHasySht27bts88+i4iIuOyyy3r37t1kKPLy8oy2\nkZeXd//992/YsEFKqev6yJEjk5KSGg9jYmKixQ+s9WzYsCEhISErK8u4agzC//3f/61fv/5Xv/pV\nk0edl5fXvXv35OTk3Nzc6urq9evX+/3+urq6oUOH9u/f37jthx9+GBsb261bt0tkABtr8nIzRiy4\nBl54PL/66quwGzGXy1VfXy+ldLlcxpQmI3DkyJFzvi+JZq/Nl156acqUKZqm/fGPf5w8eXJkZGTj\n12OTF+8//vGPoUOHHj582Ofz5ebmpqSkNBm9lJSUJssPLid4IXg1OKX509fWAwoF7NNwDsYa/Pjj\nj+/atcuYUlBQkJWVNXny5Ouvv37t2rXGT04mTZo0adIkY4arrrqqZ8+e69atE0KsW7euZ8+exitz\n9+7dnTt3vueee7Kzs1evXp2enm7cZNKkSe2+MTQfJa/Xe/vtt0+YMOHTTz+98FC8/fbb11577ZQp\nU4YMGbJmzZomw9jGD8RUZWVlTY7tGAgEDhw4IJqtPMZfb7/99rKyMiHE6tWrhwwZMnny5AkTJvzz\nn/80/rply5aYmJjMzMxLZwAba/Iwm6yBFx7PcByxnj17VlZWHjhwoGfPnsaUJrHP977U/LVpLOro\n0aOdOnWKjIxsfl+NX7xCiJSUlClTpgwdOnTt2rWi2eg1X76KsBhzsKXhHPLy8nRd37t379q1a6++\n+mohRHV1tfHBlpaWtmLFivr6+qioqCa3+sEPfmCUjOPHj99yyy3GxK+++urTTz/dtGmTEKL5Tdq3\nurq62NjYxlMSExM//PDDmJiY8/3QN/ifx/Hjx9PS0oQQaWlpq1evbsfDmJOT8/rrr//sZz+LiIgw\nppSUlPTr16+4uPicj/rpp5/Ozc0VQhw9etRYJzt06DB27Fjjr+Xl5VOnThWX0gA21uRhNlkDLzye\n4ThiGRkZW7ZscTgcP/zhD40pzWOf832p+TtYv379duzYoWla42NFN/6escmL11j30tPTCwoKRLPR\nO+c7pGj2xWVeXp7D4Qgegz8sxhyUhnOTUjbeBTI+Pr6ysrJ3796VlZUdOnQ4e/Zst27dGs9v7MuW\nmZl56NChwYMHr1mzZvTo0VLK+Pj4UaNGDR48uKam5uDBg23+OKx04sSJLl26NJ6yfv36n//851LK\nTz/9VNf15ofZCW69TEpKqqio6N+/f2VlpXFgmfY6jAMGDGhoaHjjjTfuvPNOYyPznj17xo8fL4Q4\n56N+5JFHnn/++czMzOTk5MrKyl69enk8npUrVxr/0gXXvUtnABtr8jCbrIEXHs9wHDG3211bW6tp\nWkxMjDGlSezzvS81fwczvmLwer0333xzcGLw9Si+++IVQuzfv3/AgAEVFRXG+2ST0Wu+/OYLNC4c\nO3bspZdeOmf41hwptB5Kwzn86U9/0nX9zJkzwdfPrbfe+v7772/bts3n840ZM+bPf/6zpmnLli0z\n/rpkyZIePXp079590KBBK1eu/MEPfhAIBNasWTNq1KjMzMxVq1Z98cUXjQv1JWLXrl1NHvLgwYNX\nr14dFxd32WWXFRYWDhky5Hy3HT169IYNGwoLCwOBwOjRozt27NiOh/Hqq69uaGh48803f/rTnwoh\nevToYZxR6Zwrz+uvv96/f38hxJgxYzZs2PDJJ5/U1dXdeOONxl8br3sbN25s9wP4pz/9qfHlu+++\nu/HDbLIGXng8w3SVS0hICAQCwauNH2NWVtaaNWvO+b7U5B3s2Weffeihh7p166brusPhOOcdNX7x\nHjlypLKysrCwsKGhYdSoUaLZ6J1z+c2XuWzZMq/Xe91113300UfiPE8QbEdH6BYuXHiBqwDaHi9D\ndc3fwRoaGpYuXXr48OEW3Fxl+aGkg61xGGkA7UFZWVnv3r2tThGuli9f7nK5xowZo3Jujvz8/Dlz\n5rRBKtgQpQEAACjhJ5eAKTwez/z58wcOHBgbGztw4MBHHnnE4/FYHQoAvhdKA9D6PB7P4MGDT506\n9cYbb3z99devv/56TU3N4MGDT58+bXU0AGg5vp4AWt/8+fNPnjzZeN9+IcTUqVO7dOny+9//3qpU\nAPA9saUBaH0bN26cPXt2k4lz5szZuHHjlClTUlJSpJTGMfWCfzWmGH8ypvzxj3/MyMhITk4ePXr0\nsWPHQp2z8R5twcvBC7NmzbroHQFAUxb/egNoj9xu9+nTp5tM9Hg8xgH1dF1v/tILTjEufPLJJ337\n9j1w4EB9fX1BQcHNN98c6pyN76LJTYqLi42DE1z4jgCgCQ7uBLS+tLS0/fv3G8f5D6qoqOjTp885\n5z9z5ozT+Z0X49///vfS0tIePXoYVzt16mRcqKura3L4nfPNKb67sSFI1/W5c+f+/ve/Nw6ffIGb\nA0ATfD0BtL4RI0YsXry4ycT8/Pxhw4adc/6ioqKuXbs2npKQkDB58mSj2tfX1+/YscOYfvDgwc6d\nO6vMKb67pSFo3bp1Usqf/OQnF705ADTVhls1gEvFN99806tXr+nTp5eUlNTW1hYXF997773p6enH\njx83Zmj80vP5fPfdd9+0adMa/6mioqJr1667du2qra2dN2/eXXfdZfz1xRdfvPXWW1XmFOf5esI4\nG9ZFbw4AzVEaAFN88803Dz/8cP/+/aOjozMyMubOnRtsDHqzT3QhRGxsbHJycnJycrDNr1ixonfv\n3gkJCbfcckvwtllZWcZHfuOFnHPO85WGmTNnqtwcAJrjJ5eAxaRs+jJsPgUA7IB9GgCL7dmz56JT\nAMAO+IcGAAAoYUsDAABQQmkAAABKKA0AAEAJpQEAACihNAAAACWUBgAAoITSAAAAlFAaAACAkv8P\nKQsqezuzsUYAAAAASUVORK5CYII=\n",
"prompt_number": 7,
"text": [
"<GGPlot - Python:0x7f7cc217cfc8 / R:0x2baf078>"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import pandas as pd\n",
"from rpy2.robjects import pandas2ri\n",
"pandas2ri.activate()\n",
"import rpy2.robjects as robj\n",
"from rpy2.robjects.lib import ggplot2 as gg\n",
"from rpy2.ipython.ggplot import ggplot as iggplot\n",
"\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"/usr/local/lib/python2.7/dist-packages/pandas/io/excel.py:626: UserWarning: Installed openpyxl is not supported at this time. Use >=1.6.1 and <2.0.0.\n",
" .format(openpyxl_compat.start_ver, openpyxl_compat.stop_ver))\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = pd.DataFrame([('\u0411\u044e\u0434\u0436\u0435\u0442', 106, 23), ('\u041f\u043b\u0430\u0442\u043d\u043e\u0435', 10, 5), ('\u0426\u0435\u043b\u0435\u0432\u043e\u0435', 5, 1), ('\u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435', 7, 0), ('\u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435', 4, 1)], columns=['\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435', '\u041f\u043e\u0441\u0442\u0443\u043f\u0438\u043b\u0438', '\u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b'])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data['\u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c'] = data['\u041f\u043e\u0441\u0442\u0443\u043f\u0438\u043b\u0438'] - data['\u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b']"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435</th>\n",
" <th>\u041f\u043e\u0441\u0442\u0443\u043f\u0438\u043b\u0438</th>\n",
" <th>\u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b</th>\n",
" <th>\u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> \u0411\u044e\u0434\u0436\u0435\u0442</td>\n",
" <td> 106</td>\n",
" <td> 23</td>\n",
" <td> 83</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> \u041f\u043b\u0430\u0442\u043d\u043e\u0435</td>\n",
" <td> 10</td>\n",
" <td> 5</td>\n",
" <td> 5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> \u0426\u0435\u043b\u0435\u0432\u043e\u0435</td>\n",
" <td> 5</td>\n",
" <td> 1</td>\n",
" <td> 4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> \u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435</td>\n",
" <td> 7</td>\n",
" <td> 0</td>\n",
" <td> 7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> \u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435</td>\n",
" <td> 4</td>\n",
" <td> 1</td>\n",
" <td> 3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 4,
"text": [
" \u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435 \u041f\u043e\u0441\u0442\u0443\u043f\u0438\u043b\u0438 \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\n",
"0 \u0411\u044e\u0434\u0436\u0435\u0442 106 23 83\n",
"1 \u041f\u043b\u0430\u0442\u043d\u043e\u0435 10 5 5\n",
"2 \u0426\u0435\u043b\u0435\u0432\u043e\u0435 5 1 4\n",
"3 \u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435 7 0 7\n",
"4 \u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435 4 1 3"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df = data[['\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435', '\u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c']]\n",
"df.columns = ['\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435', '\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e']\n",
"df['\u0422\u0438\u043f'] = '\u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c'\n",
"\n",
"df_ = data[['\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435', '\u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b']]\n",
"df_.columns = ['\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435', '\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e']\n",
"df_['\u0422\u0438\u043f'] = '\u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b'\n",
"\n",
"df = pd.concat((df, df_))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>\u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435</th>\n",
" <th>\u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e</th>\n",
" <th>\u0422\u0438\u043f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> \u0411\u044e\u0434\u0436\u0435\u0442</td>\n",
" <td> 83</td>\n",
" <td> \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> \u041f\u043b\u0430\u0442\u043d\u043e\u0435</td>\n",
" <td> 5</td>\n",
" <td> \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> \u0426\u0435\u043b\u0435\u0432\u043e\u0435</td>\n",
" <td> 4</td>\n",
" <td> \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> \u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435</td>\n",
" <td> 7</td>\n",
" <td> \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> \u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435</td>\n",
" <td> 3</td>\n",
" <td> \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> \u0411\u044e\u0434\u0436\u0435\u0442</td>\n",
" <td> 23</td>\n",
" <td> \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> \u041f\u043b\u0430\u0442\u043d\u043e\u0435</td>\n",
" <td> 5</td>\n",
" <td> \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> \u0426\u0435\u043b\u0435\u0432\u043e\u0435</td>\n",
" <td> 1</td>\n",
" <td> \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> \u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435</td>\n",
" <td> 0</td>\n",
" <td> \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td> \u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435</td>\n",
" <td> 1</td>\n",
" <td> \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
" \u041e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u0435 \u041a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e \u0422\u0438\u043f\n",
"0 \u0411\u044e\u0434\u0436\u0435\u0442 83 \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\n",
"1 \u041f\u043b\u0430\u0442\u043d\u043e\u0435 5 \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\n",
"2 \u0426\u0435\u043b\u0435\u0432\u043e\u0435 4 \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\n",
"3 \u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435 7 \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\n",
"4 \u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435 3 \u041e\u0441\u0442\u0430\u043b\u0438\u0441\u044c\n",
"0 \u0411\u044e\u0434\u0436\u0435\u0442 23 \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b\n",
"1 \u041f\u043b\u0430\u0442\u043d\u043e\u0435 5 \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b\n",
"2 \u0426\u0435\u043b\u0435\u0432\u043e\u0435 1 \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b\n",
"3 \u041a\u0438\u0435\u0432\u0441\u043a\u043e\u0435 0 \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b\n",
"4 \u041c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u044b\u0435 1 \u041e\u0442\u0447\u0438\u0441\u043b\u0435\u043d\u044b"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment