Created
November 21, 2013 05:24
-
-
Save araastat/7576484 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Sample Size" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"<script type=\"text/javascript\">\n", | |
" on = \"View code\";\n", | |
" off = \"Hide code\"\n", | |
" function onoff(){\n", | |
" currentvalue = document.getElementById('onoff').value;\n", | |
" if(currentvalue == off){\n", | |
" document.getElementById(\"onoff\").value=on;\n", | |
" $('div.input').hide();\n", | |
" $('div.output_prompt').hide();\n", | |
" }else{\n", | |
" document.getElementById(\"onoff\").value=off;\n", | |
" $('div.input').show();\n", | |
" $('div.output_prompt').show();\n", | |
" }\n", | |
"}\n", | |
" window.onload = onoff;\n", | |
"</script>\n", | |
"<input type=\"button\" class=\"ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only\" value=\"Hide code\" id=\"onoff\" onclick=\"onoff();\">\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Sample size computations\n", | |
"\n", | |
"## Two-sample t-test with unequal variances\n", | |
"\n", | |
"If we want to detect a difference $\\delta$ between two independent populations with standard deviations $\\sigma_1$ and $\\sigma_2$, with Type I error $\\alpha$ and power $1-\\beta$, then the common sample size can be computed as \n", | |
"\n", | |
"$$\n", | |
"n = (z_{1-\\alpha/2}+z_{1-\\beta})^2 \\frac{\\sigma_1^2+\\sigma_2^2}{\\delta^2}\n", | |
"$$\n", | |
"\n", | |
"This can be computed using the following function:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from scipy.stats import norm\n", | |
"from math import ceil\n", | |
"\n", | |
"def SS2S(delta, s1, s2, alpha=0.05, power=0.9):\n", | |
" za = norm.ppf(1-alpha/2.)\n", | |
" zb = norm.ppf(power)\n", | |
" n = (za+zb)**2 * (s1*s1+s2*s2)/(delta*delta)\n", | |
" n = ceil(n)\n", | |
" return n\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Sample size computations based on Arnedt et al, 2013\n", | |
"\n", | |
"## Insomnia Severity Index\n", | |
"\n", | |
"The insomnia severity index showed a post-treatment mean of 5.2 (sd=3.7) in the CBT group against a post-treatment mean of 7.8 (sd=4.9) in the IPC group. We will compute sample sizes to detect differences of 2, 2.5 and 3, using the standard deviations observed, at both 80% and 90% power" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"from SScalc import *\n", | |
"Sample_Sizes = SS2Stable(D=[2,2.5,3], s1=3.7, s2=4.9, alpha=0.05, power = [0.8, 0.9])\n", | |
"Sample_Sizes" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Sample size per arm</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difference</th>\n", | |
" <th>Power</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 74</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 100</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">2.5</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 48</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 64</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">3</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 33</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 45</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 2, | |
"text": [ | |
" Sample size per arm\n", | |
"Difference Power \n", | |
"2 80.0% 74\n", | |
" 90.0% 100\n", | |
"2.5 80.0% 48\n", | |
" 90.0% 64\n", | |
"3 80.0% 33\n", | |
" 90.0% 45" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Total Sleep Time\n", | |
"\n", | |
"The total sleep time, measured in minutes, shows a post-treatment average of 406.8 (sd=67) in the CBT group and 391.7 (sd=57.6) in the IPC group, i.e. an observed difference of 15.1 minutes. We will compute sample sizes for differences of 10, 15 and 20 minutes." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"Sample_Sizes = SS2Stable(D = [10,15,20], s1 = 67, s2=57.6, alpha=0.05, power=[0.8,0.9])\n", | |
"Sample_Sizes" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Sample size per arm</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Difference</th>\n", | |
" <th>Power</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">10</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 613</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 821</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">15</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 273</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 365</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">20</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 154</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 206</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 3, | |
"text": [ | |
" Sample size per arm\n", | |
"Difference Power \n", | |
"10 80.0% 613\n", | |
" 90.0% 821\n", | |
"15 80.0% 273\n", | |
" 90.0% 365\n", | |
"20 80.0% 154\n", | |
" 90.0% 206" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We now look at the kinds of differences we could statistically detect given the sample sizes we have planned for based on the Insomnia Severity Index" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"Diffs = Diff2Stable(N = [50,75,100], s1=67, s2=57.6, alpha=0.05, power=[0.8,0.9])\n", | |
"Diffs" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Detectable difference</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Sample size</th>\n", | |
" <th>Power</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">50 </th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 35.01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 40.50</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">75 </th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 28.58</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 33.07</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">100</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 24.75</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 28.64</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 4, | |
"text": [ | |
" Detectable difference\n", | |
"Sample size Power \n", | |
"50 80.0% 35.01\n", | |
" 90.0% 40.50\n", | |
"75 80.0% 28.58\n", | |
" 90.0% 33.07\n", | |
"100 80.0% 24.75\n", | |
" 90.0% 28.64" | |
] | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We can also look at the statistical power we would have to detect differences like we have observed" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"Power = Pow2Stable(D = [10,15,20], N = [50,75,100], s1=67, s2=57.6)\n", | |
"Power" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Power</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Sample size</th>\n", | |
" <th>Difference</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"3\" valign=\"top\">50 </th>\n", | |
" <th>10</th>\n", | |
" <td> 12.3%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td> 22.4%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td> 36.0%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"3\" valign=\"top\">75 </th>\n", | |
" <th>10</th>\n", | |
" <td> 16.4%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td> 31.2%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td> 50.0%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"3\" valign=\"top\">100</th>\n", | |
" <th>10</th>\n", | |
" <td> 20.4%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td> 39.7%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td> 61.9%</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 5, | |
"text": [ | |
" Power\n", | |
"Sample size Difference \n", | |
"50 10 12.3%\n", | |
" 15 22.4%\n", | |
" 20 36.0%\n", | |
"75 10 16.4%\n", | |
" 15 31.2%\n", | |
" 20 50.0%\n", | |
"100 10 20.4%\n", | |
" 15 39.7%\n", | |
" 20 61.9%" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Sleep efficiency \n", | |
"\n", | |
"Sleep efficiency is a percentage, so we would test differences using a two-sample test of proportions. The observed post-treatment efficiency in the IPC group was 83.6 percent. We will start with baseline control group proportions of 80% and 85%, and treatment group proportions of 90% and 95%" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"Sample_Sizes = SS2ptable(P1=[.8, .85], P2 = [.9, .95], alpha=0.05, power=[.8, .9])\n", | |
"Sample_Sizes" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Sample size per arm</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>P1</th>\n", | |
" <th>P2</th>\n", | |
" <th>Power</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"4\" valign=\"top\">0.80</th>\n", | |
" <th rowspan=\"2\" valign=\"top\">0.90</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 199</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 266</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">0.95</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 76</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 101</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"4\" valign=\"top\">0.85</th>\n", | |
" <th rowspan=\"2\" valign=\"top\">0.90</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 686</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 918</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">0.95</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 141</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 188</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 6, | |
"text": [ | |
" Sample size per arm\n", | |
"P1 P2 Power \n", | |
"0.80 0.90 80.0% 199\n", | |
" 90.0% 266\n", | |
" 0.95 80.0% 76\n", | |
" 90.0% 101\n", | |
"0.85 0.90 80.0% 686\n", | |
" 90.0% 918\n", | |
" 0.95 80.0% 141\n", | |
" 90.0% 188" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"As before, we will see the values of P2 (efficiency in the treatment group) we can detect given a range of sample sizes based on the ISI analysis" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"Diffs = Diff2ptable(N=[75,100], P1=[.8,.85], alpha=.05, power=[.8, .9])\n", | |
"Diffs" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Detectable P2</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>P1</th>\n", | |
" <th>Sample size</th>\n", | |
" <th>Power</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"4\" valign=\"top\">0.80</th>\n", | |
" <th rowspan=\"2\" valign=\"top\">75 </th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 0.950</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 0.967</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">100</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 0.934</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 0.950</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"4\" valign=\"top\">0.85</th>\n", | |
" <th rowspan=\"2\" valign=\"top\">75 </th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 0.977</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 0.991</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">100</th>\n", | |
" <th>80.0%</th>\n", | |
" <td> 0.964</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>90.0%</th>\n", | |
" <td> 0.977</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": [ | |
" Detectable P2\n", | |
"P1 Sample size Power \n", | |
"0.80 75 80.0% 0.950\n", | |
" 90.0% 0.967\n", | |
" 100 80.0% 0.934\n", | |
" 90.0% 0.950\n", | |
"0.85 75 80.0% 0.977\n", | |
" 90.0% 0.991\n", | |
" 100 80.0% 0.964\n", | |
" 90.0% 0.977" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"We can also look at the statistical power we would have to detect differences like we have observed." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"P = Pow2ptable(N = [50,75,100], P1=[.8, .85], P2 = [.9, .95], alpha=0.05)\n", | |
"P" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>Power</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>P1</th>\n", | |
" <th>P2</th>\n", | |
" <th>Sample size</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"6\" valign=\"top\">0.80</th>\n", | |
" <th rowspan=\"3\" valign=\"top\">0.90</th>\n", | |
" <th>50 </th>\n", | |
" <td> 28.6%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75 </th>\n", | |
" <td> 40.2%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>100</th>\n", | |
" <td> 50.8%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"3\" valign=\"top\">0.95</th>\n", | |
" <th>50 </th>\n", | |
" <td> 62.4%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75 </th>\n", | |
" <td> 79.9%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>100</th>\n", | |
" <td> 90.0%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"6\" valign=\"top\">0.85</th>\n", | |
" <th rowspan=\"3\" valign=\"top\">0.90</th>\n", | |
" <th>50 </th>\n", | |
" <td> 11.4%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75 </th>\n", | |
" <td> 15.0%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>100</th>\n", | |
" <td> 18.6%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"3\" valign=\"top\">0.95</th>\n", | |
" <th>50 </th>\n", | |
" <td> 38.3%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75 </th>\n", | |
" <td> 53.3%</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>100</th>\n", | |
" <td> 65.6%</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": [ | |
" Power\n", | |
"P1 P2 Sample size \n", | |
"0.80 0.90 50 28.6%\n", | |
" 75 40.2%\n", | |
" 100 50.8%\n", | |
" 0.95 50 62.4%\n", | |
" 75 79.9%\n", | |
" 100 90.0%\n", | |
"0.85 0.90 50 11.4%\n", | |
" 75 15.0%\n", | |
" 100 18.6%\n", | |
" 0.95 50 38.3%\n", | |
" 75 53.3%\n", | |
" 100 65.6%" | |
] | |
} | |
], | |
"prompt_number": 8 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment