Last active
November 2, 2020 04:47
-
-
Save arc279/9bdfab55115393cccde0485ba98cd7fb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# ループしながらプロットする" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from sklearn.datasets import load_iris\n", | |
"iris = load_iris()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>sepal length (cm)</th>\n", | |
" <th>sepal width (cm)</th>\n", | |
" <th>petal length (cm)</th>\n", | |
" <th>petal width (cm)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>5.1</td>\n", | |
" <td>3.5</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>4.9</td>\n", | |
" <td>3.0</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>4.7</td>\n", | |
" <td>3.2</td>\n", | |
" <td>1.3</td>\n", | |
" <td>0.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>4.6</td>\n", | |
" <td>3.1</td>\n", | |
" <td>1.5</td>\n", | |
" <td>0.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>5.0</td>\n", | |
" <td>3.6</td>\n", | |
" <td>1.4</td>\n", | |
" <td>0.2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>145</th>\n", | |
" <td>6.7</td>\n", | |
" <td>3.0</td>\n", | |
" <td>5.2</td>\n", | |
" <td>2.3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>146</th>\n", | |
" <td>6.3</td>\n", | |
" <td>2.5</td>\n", | |
" <td>5.0</td>\n", | |
" <td>1.9</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>147</th>\n", | |
" <td>6.5</td>\n", | |
" <td>3.0</td>\n", | |
" <td>5.2</td>\n", | |
" <td>2.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>148</th>\n", | |
" <td>6.2</td>\n", | |
" <td>3.4</td>\n", | |
" <td>5.4</td>\n", | |
" <td>2.3</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>149</th>\n", | |
" <td>5.9</td>\n", | |
" <td>3.0</td>\n", | |
" <td>5.1</td>\n", | |
" <td>1.8</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>150 rows × 4 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)\n", | |
"0 5.1 3.5 1.4 0.2\n", | |
"1 4.9 3.0 1.4 0.2\n", | |
"2 4.7 3.2 1.3 0.2\n", | |
"3 4.6 3.1 1.5 0.2\n", | |
"4 5.0 3.6 1.4 0.2\n", | |
".. ... ... ... ...\n", | |
"145 6.7 3.0 5.2 2.3\n", | |
"146 6.3 2.5 5.0 1.9\n", | |
"147 6.5 3.0 5.2 2.0\n", | |
"148 6.2 3.4 5.4 2.3\n", | |
"149 5.9 3.0 5.1 1.8\n", | |
"\n", | |
"[150 rows x 4 columns]" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df = pd.DataFrame(iris.data, columns=iris.feature_names)\n", | |
"df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 1件ずつ" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"sepal length (cm)\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQOElEQVR4nO3cfYxld13H8ffXLuiyQ7bg4rgujdM/SJPaEWQntYghMxZIpaaFSEwbrV0esqiAKJuYlT+USEj6BwXjQ8RCkaKlA5ZWaluQpnZoSLRxtlRnSyVUWKBr2aVQtkxtxClf/5gzMExn7r1zn7/L+5VM5t7z+Lm/mf3MuWfPPZGZSJLq+pFRB5Ak9cYil6TiLHJJKs4il6TiLHJJKm7HMHe2Z8+enJqaGuYuf8Djjz/Orl27Rrb/TlXJCXWymrO/quSEOllb5Txy5MgjmfmcLVfOzKF97d+/P0fprrvuGun+O1UlZ2adrObsryo5M+tkbZUTWMwW3eqpFUkqziKXpOIsckkqziKXpOIsckkqziKXpOIsckkqziKXpOIsckkqbqgf0VcNU4dv63jZQ9MrHNjG8u0cu+rivm1L+mHhEbkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxXn4osb1LLvvNSy7VK4/IJak4i1ySirPIJak4i1ySimtb5BFxVkTcFRGfi4j7I+ItzfS3R8TxiLiv+XrF4ONKkjbq5KqVFeBQZt4bEc8EjkTEHc2892TmuwYXT5LUTtsiz8yHgYebx9+OiAeAfYMOJknqTGRm5wtHTAF3A+cBbwUOAI8Bi6wetT+6yToHgYMAk5OT++fn53sO3a3l5WUmJiZGtv9OjTrn0vFTHS87uRNOPNG/fU/v292/ja3Tbky385r7bf1rHvXPvlNVckKdrK1yzs3NHcnMma3W7bjII2IC+DTwzsy8KSImgUeABN4B7M3M17baxszMTC4uLna0v0FYWFhgdnZ2ZPvv1Khzbvd+5Fcv9e9zZYP6cEy7MR2XDwSN+mffqSo5oU7WVjkjomWRd3TVSkQ8DfgYcH1m3gSQmScy88nM/C7wPuD87QaXJPWuk6tWArgWeCAz371u+t51i70KONr/eJKkdjp5T/xi4ApgKSLua6a9Dbg8Il7A6qmVY8AbBpBPktRGJ1etfAaITWbd3v84kqTt8pOdklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklRc/25bdxob9p3xDk2vcODwbQO7E6Ck04tH5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUXNsij4izIuKuiPhcRNwfEW9ppj87Iu6IiC803581+LiSpI06OSJfAQ5l5rnABcAbI+Jc4DBwZ2Y+D7izeS5JGrK2RZ6ZD2fmvc3jbwMPAPuAS4HrmsWuA145oIySpBYiMztfOGIKuBs4D/hKZp7ZTA/g0bXnG9Y5CBwEmJyc3D8/P99z6G4tLy8zMTGx7fWWjp8aQJqtTe6EE0/A9L7dQ93vmu283rWs/TKo19zuZz/sn/F6619zt7+jw1YlJ9TJ2irn3Nzckcyc2Wrdjos8IiaATwPvzMybIuJb64s7Ih7NzJbnyWdmZnJxcbGj/Q3CwsICs7Oz215v6vBt/Q/TwqHpFa5e2sGxqy4e6n7XbOf1rmXtl0G95nY/+2H/jNdb/5q7/R0dtio5oU7WVjkjomWRd3TVSkQ8DfgYcH1m3tRMPhERe5v5e4GT2wktSeqPTq5aCeBa4IHMfPe6WbcAVzaPrwQ+3v94kqR2OnlP/GLgCmApIu5rpr0NuAr4aES8Dvgy8GsDSShJaqltkWfmZ4DYYvaF/Y0jSdouP9kpScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUXP/uPyqpK+tvoXtoeoUDQ7ql7qhuk6z+84hckoqzyCWpOItckoqzyCWpOItckoqzyCWpOItckoqzyCWpOItckoqzyCWpOItckoqzyCWpOItckoqzyCWpOG9jq7EyNaBbuA7z9rDSsHlELknFWeSSVJxFLknFWeSSVFzbIo+ID0TEyYg4um7a2yPieETc13y9YrAxJUlb6eSI/IPARZtMf09mvqD5ur2/sSRJnWpb5Jl5N/DNIWSRJHUhMrP9QhFTwK2ZeV7z/O3AAeAxYBE4lJmPbrHuQeAgwOTk5P75+fl+5O7K8vIyExMT215v6fipAaTZ2uROOPEETO/bPdT9rtnO613LOu7M+VS9/H51+29pFKpkbZVzbm7uSGbObLVut0U+CTwCJPAOYG9mvrbddmZmZnJxcbHt/gZlYWGB2dnZba83qA+pbOXQ9ApXL+3g2FUXD3W/a7bzeteyjjtzPlUvv1/d/lsahSpZW+WMiJZF3tVVK5l5IjOfzMzvAu8Dzu9mO5Kk3nVV5BGxd93TVwFHt1pWkjRYbd/DRcQNwCywJyIeAv4YmI2IF7B6auUY8IbBRZQktdK2yDPz8k0mXzuALJKkLvjJTkkqbvz/G/+H2LCvlpFUk0fkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklScRS5JxVnkklRc2yKPiA9ExMmIOLpu2rMj4o6I+ELz/VmDjSlJ2konR+QfBC7aMO0wcGdmPg+4s3kuSRqBtkWemXcD39ww+VLguubxdcAr+xtLktSpyMz2C0VMAbdm5nnN829l5pnN4wAeXXu+yboHgYMAk5OT++fn5/sSvBvLy8tMTExse72l46cGkGZrkzvhxBND3WXXqmQ151NN79vd9brd/lsahSpZW+Wcm5s7kpkzW627o9edZ2ZGxJZ/DTLzGuAagJmZmZydne11l11bWFigm/0fOHxb/8O0cGh6hauXev7RDEWVrOZ8qmO/Ptv1ut3+WxqFKll7ydntVSsnImIvQPP9ZJfbkST1qNsivwW4snl8JfDx/sSRJG1XJ5cf3gD8C3BORDwUEa8DrgJeFhFfAF7aPJckjUDbk3GZefkWsy7scxZJUhf8ZKckFWeRS1Jx4389VmOqD5cAHppeGfqlhJI0aB6RS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFWeRS1JxFrkkFbdj1AEkjcbU4du6XvfQ9AoHelj/2FUXd71uL3p5zb0a5Gv2iFySirPIJak4i1ySiuvpHHlEHAO+DTwJrGTmTD9CSZI614//7JzLzEf6sB1JUhc8tSJJxUVmdr9yxJeAR4EE/jozr9lkmYPAQYDJycn98/PzXe1r6fiprnOumdwJJ57oeTMDVyUn1Mlqzv6qkhPGJ+v0vt0t5y8vLzMxMbHpvLm5uSOtTl33WuT7MvN4RPwEcAfw5sy8e6vlZ2ZmcnFxsat99eP6z0PTK1y9NP6XzlfJCXWymrO/quSE8cna7jryhYUFZmdnN50XES2LvKdTK5l5vPl+ErgZOL+X7UmStq/rIo+IXRHxzLXHwMuBo/0KJknqTC/vNyaBmyNibTsfzsxP9iWVJKljXRd5Zn4ReH4fs0iSuuDlh5JUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScVZ5JJUnEUuScX1VOQRcVFEfD4iHoyIw/0KJUnqXNdFHhFnAH8J/DJwLnB5RJzbr2CSpM70ckR+PvBgZn4xM78DzAOX9ieWJKlTkZndrRjxauCizHx98/wK4Ocz800bljsIHGyengN8vvu4PdsDPDLC/XeqSk6ok9Wc/VUlJ9TJ2irnT2fmc7Zaccdg8nxfZl4DXDPo/XQiIhYzc2bUOdqpkhPqZDVnf1XJCXWy9pKzl1Mrx4Gz1j1/bjNNkjREvRT5vwHPi4izI+LpwGXALf2JJUnqVNenVjJzJSLeBPwTcAbwgcy8v2/JBmMsTvF0oEpOqJPVnP1VJSfUydp1zq7/s1OSNB78ZKckFWeRS1Jxp22RR8QZEfHZiLh1k3kHIuLrEXFf8/X6EWU8FhFLTYbFTeZHRPxZcwuE/4iIF45pztmIOLVuPP9oFDmbLGdGxI0R8Z8R8UBEvGjD/HEZ03Y5Rz6mEXHOuv3fFxGPRcTvbVhmXMazk6wjH9Mmx+9HxP0RcTQiboiIH9sw/0cj4iPNmN4TEVNtN5qZp+UX8Fbgw8Ctm8w7APzFGGQ8BuxpMf8VwCeAAC4A7hnTnLObjfOIsl4HvL55/HTgzDEd03Y5x2ZMmzxnAF9j9YMpYzeeHWYd+ZgC+4AvATub5x8FDmxY5neA9zaPLwM+0m67p+UReUQ8F7gYeP+os/ToUuBDuepfgTMjYu+oQ42riNgNvAS4FiAzv5OZ39qw2MjHtMOc4+ZC4L8y88sbpo98PDexVdZxsQPYGRE7gGcA/71h/qWs/qEHuBG4MCKi1QZPyyIH/hT4A+C7LZb51eat4I0RcVaL5QYpgU9FxJHmVgYb7QO+uu75Q820YWuXE+BFEfHvEfGJiPiZYYZb52zg68DfNKfV3h8RuzYsMw5j2klOGI8xXXMZcMMm08dhPDfaKiuMeEwz8zjwLuArwMPAqcz81IbFvjemmbkCnAJ+vNV2T7sij4hfAU5m5pEWi/0jMJWZPwvcwff/+g3bL2bmC1m9g+QbI+IlI8rRTruc97L6Nvb5wJ8D/zDkfGt2AC8E/iozfw54HBjH2yt3knNcxpRY/cDfJcDfjypDp9pkHfmYRsSzWD3iPhv4KWBXRPxGr9s97YoceDFwSUQcY/WOjL8UEX+3foHM/EZm/m/z9P3A/uFG/F6O4833k8DNrN5Rcr2xuA1Cu5yZ+VhmLjePbweeFhF7hp2T1aPBhzLznub5jawW5nrjMKZtc47RmMLqH/B7M/PEJvPGYTzX2zLrmIzpS4EvZebXM/P/gJuAX9iwzPfGtDn9shv4RquNnnZFnpl/mJnPzcwpVt9i/XNm/sBfvA3n8C4BHhhixLUMuyLimWuPgZcDRzcsdgvwm82VARew+jbs4XHLGRE/uXYOLyLOZ/X3quUv3iBk5teAr0bEOc2kC4HPbVhs5GPaSc5xGdPG5Wx9qmLk47nBllnHZEy/AlwQEc9oslzIU/vnFuDK5vGrWe2wlp/cHPjdD8dFRPwJsJiZtwC/GxGXACvAN1m9imXYJoGbm9+rHcCHM/OTEfFbAJn5XuB2Vq8KeBD4H+A1Y5rz1cBvR8QK8ARwWbtfvAF6M3B98xb7i8BrxnBMO8k5FmPa/PF+GfCGddPGcTw7yTryMc3MeyLiRlZP86wAnwWu2dBP1wJ/GxEPstpPl7Xbrh/Rl6TiTrtTK5L0w8Yil6TiLHJJKs4il6TiLHJJKs4il6TiLHJJKu7/Ac0Qmq+NOOMYAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"sepal width (cm)\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD4CAYAAAD4k815AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARn0lEQVR4nO3df4xld1nH8ffTssimg1uw9brZVoekDaZ2ZHFvFkj/mSnWFEpoiY3SYO1KyaARrHGjrvyh/JCkRAtEQ9SF1q6KDE1/SC2tpikdahMBZ8rCtF0IFRZlU3ct3W47uKmZ8vjHnK2325m9Z87cO3fme9+v5GbOr++9z5Mz89lzz557bmQmkqRynDboAiRJvWWwS1JhDHZJKozBLkmFMdglqTAvWcsXO+uss3J0dLTR2B/84AecccYZvS1oAxnm/u19OHuH4e6/s/fZ2dknMvPsumPXNNhHR0eZmZlpNHZ6eprx8fHeFrSBDHP/9j4+6DIGZpj77+w9Ir67krGeipGkwhjsklQYg12SCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMKs6SdPpW5G93z+Rct2jy2wa4nlvXTw+sv6+vzSWvKIXZIKY7BLUmEMdkkqjMEuSYUx2CWpMAa7JBXGYJekwnQN9oh4WUR8JSK+FhGPRMQHquU3R8R3ImJ/9dje92olSV3V+YDSs8DFmTkfEZuAByPinmrd72bmrf0rT5K0Ul2DPTMTmK9mN1WP7GdRkqTmYjG3u2wUcTowC5wHfCIzfz8ibgbewOIR/X3Ansx8domxk8AkQKvV2jE1NdWo0Pn5eUZGRhqNLcGw9D936NiLlrU2w+Hj/X3dsW1b+vsCDQ3Lfl/OMPff2fvExMRsZrbrjq0V7M9vHHEmcAfwXuD7wH8BLwX2Av+emR881fh2u50zMzO1X6/TMH9bOQxP/8vdK+aGuf7e1mi93itmWPb7coa5/87eI2JFwb6iq2Iy8yngfuDSzHw8Fz0L/DWwcyXPJUnqjzpXxZxdHakTEZuBS4BvRMTWalkAVwAP969MSVJddd7fbgX2VefZTwNuycy7IuILEXE2EMB+4Nf7V6Ykqa46V8V8HXjtEssv7ktFkqRV8ZOnklQYg12SCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMIY7JJUGINdkgpjsEtSYQx2SSqMwS5JhTHYJakwBrskFcZgl6TC9PcbgqUNYqkv0V4r6/WLtLVxecQuSYUx2CWpMF2DPSJeFhFfiYivRcQjEfGBavmrIuLLEfFYRHw2Il7a/3IlSd3UOWJ/Frg4M18DbAcujYjXAx8BPpaZ5wFHgWv7VqUkqbauwZ6L5qvZTdUjgYuBW6vl+4Ar+lGgJGllIjO7bxRxOjALnAd8AvgT4EvV0ToRcS5wT2ZeuMTYSWASoNVq7ZiammpU6Pz8PCMjI43GlmBY+p87dOxFy1qb4fDxARSzRsa2bVl23bDs9+UMc/+dvU9MTMxmZrvu2FqXO2bmc8D2iDgTuAP46bovkJl7gb0A7XY7x8fH6w59genpaZqOLcGw9L9ricsOd48tcMNcuVfmHnzH+LLrhmW/L2eY+19N7yu6KiYznwLuB94AnBkRJ/7azgEONapAktRTda6KObs6UiciNgOXAAdYDPgrq82uAT7XpxolSStQ5/3tVmBfdZ79NOCWzLwrIh4FpiLij4GvAjf2sU5JUk1dgz0zvw68donl3wZ29qMoSVJzfvJUkgpjsEtSYQx2SSqMwS5JhTHYJakwBrskFcZgl6TCGOySVBiDXZIKY7BLUmEMdkkqjMEuSYUx2CWpMAa7JBXGYJekwhjsklQYg12SCmOwS1JhDHZJKkzXYI+IcyPi/oh4NCIeiYjrquXvj4hDEbG/ery5/+VKkrrp+mXWwAKwOzMfioiXA7MRcW+17mOZ+af9K0+StFJdgz0zHwcer6afiYgDwLZ+FyZJaiYys/7GEaPAA8CFwO8Au4CngRkWj+qPLjFmEpgEaLVaO6amphoVOj8/z8jISKOxJRiW/ucOHXvRstZmOHx8AMWskbFtW5ZdNyz7fTnD3H9n7xMTE7OZ2a47tnawR8QI8EXgw5l5e0S0gCeABD4EbM3Md57qOdrtds7MzNSt7QWmp6cZHx9vNLYEw9L/6J7Pv2jZ7rEFbpirc9ZwYzp4/WXLrhuW/b6cYe6/s/eIWFGw17oqJiI2AbcBn87M2wEy83BmPpeZPwQ+CexcaeGSpN6rc1VMADcCBzLzox3Lt3Zs9jbg4d6XJ0laqTrvby8CrgbmImJ/tex9wFURsZ3FUzEHgXf3oT5J0grVuSrmQSCWWHV378vRerDUeW5JG4efPJWkwhjsklQYg12SCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMIY7JJUGINdkgpT7k2uC9B5z5bdYwvs8h4ukmrwiF2SCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMJ0DfaIODci7o+IRyPikYi4rlr+yoi4NyK+Vf18Rf/LlSR1U+eIfQHYnZkXAK8HfjMiLgD2APdl5vnAfdW8JGnAugZ7Zj6emQ9V088AB4BtwOXAvmqzfcAVfapRkrQCkZn1N44YBR4ALgT+IzPPrJYHcPTE/EljJoFJgFartWNqaqpRofPz84yMjDQau1HNHTr2/HRrMxw+PsBiBqj03se2bVl23TD+3nca5v47e5+YmJjNzHbdsbWDPSJGgC8CH87M2yPiqc4gj4ijmXnK8+ztdjtnZmbq1vYC09PTjI+PNxq7UZ18r5gb5obz1j6l937w+suWXTeMv/edhrn/zt4jYkXBXuuqmIjYBNwGfDozb68WH46IrdX6rcCRlRQtSeqPOlfFBHAjcCAzP9qx6k7gmmr6GuBzvS9PkrRSdd7fXgRcDcxFxP5q2fuA64FbIuJa4LvAL/WlQknSinQN9sx8EIhlVr+xt+VIklbLT55KUmEMdkkqjMEuSYUx2CWpMAa7JBXGYJekwhjsklQYg12SCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMIY7JJUGINdkgpjsEtSYQx2SSqMwS5Jheka7BFxU0QciYiHO5a9PyIORcT+6vHm/pYpSaqrzhH7zcClSyz/WGZurx5397YsSVJTXYM9Mx8AnlyDWiRJPRCZ2X2jiFHgrsy8sJp/P7ALeBqYAXZn5tFlxk4CkwCtVmvH1NRUo0Ln5+cZGRlpNHajmjt07Pnp1mY4fHyAxQxQ6b2Pbduy7Lph/L3vNMz9d/Y+MTExm5ntumObBnsLeAJI4EPA1sx8Z7fnabfbOTMzU7e2F5ienmZ8fLzR2I1qdM/nn5/ePbbADXMvGWA1g1N67wevv2zZdcP4e99pmPvv7D0iVhTsja6KyczDmflcZv4Q+CSws8nzSJJ6r1GwR8TWjtm3AQ8vt60kaW11fX8bEZ8BxoGzIuJ7wB8B4xGxncVTMQeBd/evREnSSnQN9sy8aonFN/ahFklSD/jJU0kqjMEuSYUx2CWpMAa7JBXGYJekwhjsklQYg12SCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMIY7JJUGINdkgpjsEtSYcr9hmBJp9T5Zelr7VRf4K3V84hdkgpjsEtSYboGe0TcFBFHIuLhjmWvjIh7I+Jb1c9X9LdMSVJddY7YbwYuPWnZHuC+zDwfuK+alyStA12DPTMfAJ48afHlwL5qeh9wRW/LkiQ1FZnZfaOIUeCuzLywmn8qM8+spgM4emJ+ibGTwCRAq9XaMTU11ajQ+fl5RkZGGo3dqOYOHXt+urUZDh8fYDEDZO+DrqL3xrZtqbXdMP7dn9DZ+8TExGxmtuuOXfXljpmZEbHsvw6ZuRfYC9But3N8fLzR60xPT9N07Ea1q+NytN1jC9wwN5xXp9p7eb0ffMd4re2G8e/+hNX03vSqmMMRsRWg+nmk4fNIknqsabDfCVxTTV8DfK435UiSVqvO5Y6fAf4VeHVEfC8irgWuBy6JiG8BP1/NS5LWga4n7zLzqmVWvbHHtUiSesBPnkpSYQx2SSqMwS5JhTHYJakwBrskFcZgl6TCGOySVBiDXZIKY7BLUmEMdkkqjMEuSYUp70bPfTDacV90SVrvPGKXpMIY7JJUGINdkgpjsEtSYQx2SSqMwS5JhTHYJakwq7qOPSIOAs8AzwELmdnuRVGSpOZ68QGlicx8ogfPI0nqAU/FSFJhIjObD474DnAUSOCvMnPvEttMApMArVZrx9TUVKPXmp+fZ2RkpHGtqzF36NhAXrdTazMcPj7oKgbD3gddRe+NbdtSa7tB/t0PWmfvExMTsys51b3aYN+WmYci4seBe4H3ZuYDy23fbrdzZmam0WtNT08zPj7erNBVWg/3itk9tsANc8N5ax97L6/3g9dfVmu7Qf7dD1pn7xGxomBf1amYzDxU/TwC3AHsXM3zSZJWr3GwR8QZEfHyE9PALwAP96owSVIzq3mP1wLuiIgTz/P3mflPPalKktRY42DPzG8Dr+lhLac0d+gYu9bBuW5JWu+83FGSCmOwS1JhDHZJKozBLkmFMdglqTAGuyQVxmCXpMIY7JJUGINdkgpjsEtSYQx2SSpMeTd6lrTu1f2Og91jC8XcI6ruPeh7wSN2SSqMwS5JhTHYJakwBrskFcZgl6TCGOySVBiDXZIKs6pgj4hLI+KbEfFYROzpVVGSpOYaB3tEnA58AngTcAFwVURc0KvCJEnNrOaIfSfwWGZ+OzP/F5gCLu9NWZKkpiIzmw2MuBK4NDPfVc1fDbwuM99z0naTwGQ1+2rgmw1rPQt4ouHYEgxz//Y+vIa5/87efyozz647sO/3isnMvcDe1T5PRMxkZrsHJW1Iw9y/vQ9n7zDc/a+m99WcijkEnNsxf061TJI0QKsJ9n8Dzo+IV0XES4G3A3f2pixJUlONT8Vk5kJEvAf4Z+B04KbMfKRnlb3Yqk/nbHDD3L+9D69h7r9x743/81SStD75yVNJKozBLkmFWVfBHhHnRsT9EfFoRDwSEdctsU1ExJ9VtzH4ekT83CBq7bWavY9HxLGI2F89/nAQtfZDRLwsIr4SEV+r+v/AEtv8SER8ttr3X46I0QGU2nM1e98VEf/dse/fNYha+yUiTo+Ir0bEXUusK3K/d+rS/4r3/Xr7ztMFYHdmPhQRLwdmI+LezHy0Y5s3AedXj9cBf1H93Ojq9A7wL5n5lgHU12/PAhdn5nxEbAIejIh7MvNLHdtcCxzNzPMi4u3AR4BfHkSxPVand4DPnvwBwIJcBxwAfnSJdaXu906n6h9WuO/X1RF7Zj6emQ9V08+w2Oi2kza7HPibXPQl4MyI2LrGpfZczd6LVe3P+Wp2U/U4+X/2Lwf2VdO3Am+MiFijEvumZu/FiohzgMuATy2zSZH7/YQa/a/Yugr2TtXbrdcCXz5p1TbgPzvmv0dhAXiK3gHeUL1lvycifmZtK+uv6u3ofuAIcG9mLrvvM3MBOAb82JoW2Sc1egf4xer0460Rce4S6zeqjwO/B/xwmfXF7vfKxzl1/7DCfb8ugz0iRoDbgN/OzKcHXc9a6tL7QyzeM+I1wJ8D/7DG5fVVZj6XmdtZ/BTzzoi4cMAlrZkavf8jMJqZPwvcy/8fwW5oEfEW4Ehmzg66lkGo2f+K9/26C/bqHONtwKcz8/YlNin2Vgbdes/Mp0+8Zc/Mu4FNEXHWGpfZd5n5FHA/cOlJq57f9xHxEmAL8P01La7Plus9M7+fmc9Ws58Cdqxxaf1yEfDWiDjI4h1iL46Ivztpm5L3e9f+m+z7dRXs1XmzG4EDmfnRZTa7E/jV6uqY1wPHMvPxNSuyT+r0HhE/ceLcYkTsZHH/FfELHhFnR8SZ1fRm4BLgGydtdidwTTV9JfCFLOATdnV6P+n/kd7K4v/BbHiZ+QeZeU5mjrJ4W5IvZOavnLRZkfsd6vXfZN+vt6tiLgKuBuaq840A7wN+EiAz/xK4G3gz8BjwP8CvrX2ZfVGn9yuB34iIBeA48PZSfsGBrcC+WPwCl9OAWzLzroj4IDCTmXey+A/f30bEY8CTLP4hlKBO778VEW9l8eqpJ4FdA6t2DQzJfl/Wave9txSQpMKsq1MxkqTVM9glqTAGuyQVxmCXpMIY7JJUGINdkgpjsEtSYf4PzFrcLPY01gEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"petal length (cm)\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAARnklEQVR4nO3df4wcd3nH8feTHwjXR21Q0pXlRDUSKFUUi4SsUlAqdJc0yBBUgoQqIholheqoBCgIq63LP0BppVStoZKFqhoc4qom1zQ/ZBR+tFHINY1UoHfBcEkMAoJpYwVfUydOLrKCHJ7+cWPrOO68c7O7t/td3i9pdbvf2/nu8/hmP56bm9mJzESSVJ5zBl2AJKkZA1ySCmWAS1KhDHBJKpQBLkmFOm89X+yCCy7Ibdu2NVr2xRdfZOPGjb0taIBGqZ9R6gXsZ5iNUi9Qv5/Z2dlnMvPC5ePrGuDbtm1jZmam0bLT09OMj4/3tqABGqV+RqkXsJ9hNkq9QP1+IuInK427C0WSCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgq1rmdidmPu6Alu2fXlgbz2kduuH8jrStLZuAUuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhOgZ4RLwyIr4VEd+JiMcj4pPV+B0R8eOIOFTdLu97tZKkM+qcyPMScE1mLkTE+cAjEfHV6nt/kpl39688SdJqOgZ4ZiawUD08v7plP4uSJHUWi/nc4UkR5wKzwOuAz2bmn0XEHcCbWdxCfxDYlZkvrbDsJDAJ0Gq1rpyammpU6PzxExw72WjRrm3fuqnncy4sLDA2NtbzeQdhlHoB+xlmo9QL1O9nYmJiNjPby8drBfiZJ0dsBu4DPgz8H/BT4BXAXuBHmfkXZ1u+3W5n06vS7zlwkN1zg/noln58FsooXV17lHoB+xlmo9QLrOmq9CsG+JqOQsnM54CHgB2Z+XQuegn4AnDVWuaSJHWnzlEoF1Zb3kTEBuA64HsRsaUaC+AG4LH+lSlJWq7OPoktwP5qP/g5wF2ZeX9EfD0iLgQCOAT8cf/KlCQtV+colO8CV6wwfk1fKpIk1eKZmJJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1Kh6lyV/pUR8a2I+E5EPB4Rn6zGXxsR34yIH0bEP0fEK/pfriTptDpb4C8B12TmG4DLgR0R8Sbgr4HPZObrgGeB9/etSknSL+kY4LlooXp4fnVL4Brg7mp8P3BDPwqUJK0sMrPzkyLOBWaB1wGfBf4G+Ea19U1EXAx8NTMvW2HZSWASoNVqXTk1NdWo0PnjJzh2stGiXdu+dVPP51xYWGBsbKzn8w7CKPUC9jPMRqkXqN/PxMTEbGa2l4+fV+dFMvNl4PKI2AzcB/xW3QIzcy+wF6Ddbuf4+HjdRX/BngMH2T1Xq9yeO/Le8Z7POT09TdN/i2EzSr2A/QyzUeoFuu9nTUehZOZzwEPAm4HNEXE6US8CjjauQpK0ZnWOQrmw2vImIjYA1wGHWQzyd1dPuxk42KcaJUkrqLNPYguwv9oPfg5wV2beHxFPAFMR8ZfAt4F9faxTkrRMxwDPzO8CV6ww/iRwVT+Kkn6VbNv15b7Ov3P7KW5Z4TWO3HZ9X19X/eeZmJJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQg3mKsHSkFl6UYXVLoAgDRu3wCWpUAa4JBWqzlXpL46IhyLiiYh4PCJurcY/ERFHI+JQdXt7/8uVJJ1WZx/4KWBnZj4aEa8CZiPigep7n8nMv+1feZKk1dS5Kv3TwNPV/Rci4jCwtd+FSZLOLjKz/pMjtgEPA5cBHwVuAZ4HZljcSn92hWUmgUmAVqt15dTUVKNC54+f4NjJRot2bfvWTT2fc2FhgbGxsZ7POwij0Mvc0RNn7rc2MLB1rR9W66cf63W/jcK6tlTdfiYmJmYzs718vHaAR8QY8O/AX2XmvRHRAp4BEvgUsCUz33e2Odrtds7MzNR6veX2HDjI7rnBHPV45Lbrez7n9PQ04+PjPZ93EEahl+WHEQ5qXeuH1frpx3rdb6Owri1Vt5+IWDHAax2FEhHnA/cABzLzXoDMPJaZL2fmz4HPAVetpXBJUnfqHIUSwD7gcGZ+esn4liVPexfwWO/LkyStps7viVcDNwFzEXGoGvsYcGNEXM7iLpQjwAf6UJ8kaRV1jkJ5BIgVvvWV3pcjSarLMzElqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQtW5Kv3FEfFQRDwREY9HxK3V+Gsi4oGI+EH19dX9L1eSdFqdLfBTwM7MvBR4E/DBiLgU2AU8mJmvBx6sHkuS1knHAM/MpzPz0er+C8BhYCvwTmB/9bT9wA19qlGStILIzPpPjtgGPAxcBvx3Zm6uxgN49vTjZctMApMArVbryqmpqUaFzh8/wbGTjRbt2vatm3o+58LCAmNjYz2fdxBGoZe5oyfO3G9tYGDrWj+s1k8/1ut+G4V1bam6/UxMTMxmZnv5+Hl1XygixoB7gI9k5vOLmb0oMzMiVvyfIDP3AnsB2u12jo+P133JX7DnwEF2z9Uut6eOvHe853NOT0/T9N9i2IxCL7fs+vKZ+zu3nxrYutYPq/XTj/W630ZhXVuq235qHYUSEeezGN4HMvPeavhYRGypvr8FmG9chSRpzeochRLAPuBwZn56ybe+BNxc3b8ZONj78iRJq6nze+LVwE3AXEQcqsY+BtwG3BUR7wd+Avx+XyqUJK2oY4Bn5iNArPLta3tbjiSpLs/ElKRCGeCSVCgDXJIKZYBLUqEMcEkq1OicbiZpTbYtOft0vR257fqBvfYocQtckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUHWuSn97RMxHxGNLxj4REUcj4lB1e3t/y5QkLVdnC/wOYMcK45/JzMur21d6W5YkqZOOAZ6ZDwPH16EWSdIaRGZ2flLENuD+zLysevwJ4BbgeWAG2JmZz66y7CQwCdBqta6cmppqVOj88RMcO9lo0a5t37qp53MuLCwwNjbW83kHYRR6mTt64sz91gYGtq71wzD20/Q9NQrr2lJ1+5mYmJjNzPby8aYB3gKeARL4FLAlM9/XaZ52u50zMzMdX28lew4cZPfcYC4g1I+rh0xPTzM+Pt7zeQdhFHpZenWandtPDWxd64dh7Kfpe2oU1rWl6vYTESsGeKOjUDLzWGa+nJk/Bz4HXNVkHklSc40CPCK2LHn4LuCx1Z4rSeqPjr9XRcSdwDhwQUQ8BXwcGI+Iy1nchXIE+ED/SpQkraRjgGfmjSsM7+tDLZKkNfBMTEkqlAEuSYUywCWpUAa4JBXKAJekQg3X6VlDaulZer2yc/spbukwbz/OAJU0OtwCl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoT6WXtO6afjxFnY+gOJtR+3gKt8AlqVAGuCQVqmOAR8TtETEfEY8tGXtNRDwQET+ovr66v2VKkparswV+B7Bj2dgu4MHMfD3wYPVYkrSOOgZ4Zj4MHF82/E5gf3V/P3BDb8uSJHUSmdn5SRHbgPsz87Lq8XOZubm6H8Czpx+vsOwkMAnQarWunJqaalTo/PETHDvZaNGh1NpAx362b920PsV0aWFhgbGxsUGX0ZW5oyfO3K/zsynJKPXTbS/D9p6q+96ZmJiYzcz28vGuDyPMzIyIVf8XyMy9wF6Adrud4+PjjV5nz4GD7J4bnaMed24/1bGfI+8dX59iujQ9PU3Tn+uwWHpoWp2fTUlGqZ9uexm291S3752mR6Eci4gtANXX+cYVSJIaaRrgXwJuru7fDBzsTTmSpLrqHEZ4J/CfwCUR8VREvB+4DbguIn4A/G71WJK0jjruTMrMG1f51rU9rkWStAaeiSlJhTLAJalQBrgkFcoAl6RCGeCSVKjROD1LI6PpB/1Lv4rcApekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSpUV59GGBFHgBeAl4FTmdnuRVGSpM568XGyE5n5TA/mkSStgbtQJKlQkZnNF474MfAskMA/ZObeFZ4zCUwCtFqtK6emphq91vzxExw72bjUodPaQMd+tm/dtD7FdGlhYYGxsbGezDV39ERP5ulGnZ9NSUapn5J7Wen9XPe9MzExMbvSLupuA3xrZh6NiN8AHgA+nJkPr/b8drudMzMzjV5rz4GD7J4bnQsI7dx+qmM/R267fp2q6c709DTj4+M9mWsYrshT52dTklHqp+ReVno/133vRMSKAd7VLpTMPFp9nQfuA67qZj5JUn2NAzwiNkbEq07fB94KPNarwiRJZ9fN7yIt4L6IOD3PFzPzaz2pSpLUUeMAz8wngTf0sBZJ0hp4GKEkFcoAl6RCGeCSVCgDXJIKZYBLUqHKPKVJfbXWsyF3bj/FLUNwBqX0q8YtcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEJ1FeARsSMivh8RP4yIXb0qSpLUWeMAj4hzgc8CbwMuBW6MiEt7VZgk6ey62QK/CvhhZj6ZmT8DpoB39qYsSVInkZnNFox4N7AjM/+oenwT8NuZ+aFlz5sEJquHlwDfb1jrBcAzDZcdRqPUzyj1AvYzzEapF6jfz29m5oXLB/t+RZ7M3Avs7XaeiJjJzHYPShoKo9TPKPUC9jPMRqkX6L6fbnahHAUuXvL4ompMkrQOugnw/wJeHxGvjYhXAO8BvtSbsiRJnTTehZKZpyLiQ8C/AucCt2fm4z2r7Jd1vRtmyIxSP6PUC9jPMBulXqDLfhr/EVOSNFieiSlJhTLAJalQQx/gEXF7RMxHxGODrqVbEXFxRDwUEU9ExOMRceuga+pGRLwyIr4VEd+p+vnkoGvqVkScGxHfjoj7B11LtyLiSETMRcShiJgZdD3diojNEXF3RHwvIg5HxJsHXVMTEXFJ9TM5fXs+Ij7SaK5h3wceEW8BFoB/zMzLBl1PNyJiC7AlMx+NiFcBs8ANmfnEgEtrJCIC2JiZCxFxPvAIcGtmfmPApTUWER8F2sCvZ+Y7Bl1PNyLiCNDOzJE48SUi9gP/kZmfr458+7XMfG7AZXWl+kiSoyyeBPmTtS4/9FvgmfkwcHzQdfRCZj6dmY9W918ADgNbB1tVc7looXp4fnUb7i2Cs4iIi4Drgc8Puhb9oojYBLwF2AeQmT8rPbwr1wI/ahLeUECAj6qI2AZcAXxzwKV0pdrlcAiYBx7IzJL7+TvgT4GfD7iOXkng3yJitvpIi5K9Fvhf4AvVLq7PR8TGQRfVA+8B7my6sAE+ABExBtwDfCQznx90Pd3IzJcz83IWz8S9KiKK3M0VEe8A5jNzdtC19NDvZOYbWfzE0A9WuyNLdR7wRuDvM/MK4EWg6I+wrnYD/R7wL03nMMDXWbWv+B7gQGbeO+h6eqX6dfYhYMeAS2nqauD3qv3GU8A1EfFPgy2pO5l5tPo6D9zH4ieIluop4Kklv+HdzWKgl+xtwKOZeazpBAb4Oqr+6LcPOJyZnx50Pd2KiAsjYnN1fwNwHfC9gRbVUGb+eWZelJnbWPy19uuZ+QcDLquxiNhY/aGcalfDW4Fij+TKzJ8C/xMRl1RD1wJF/vF/iRvpYvcJrMOnEXYrIu4ExoELIuIp4OOZuW+wVTV2NXATMFftNwb4WGZ+ZXAldWULsL/6S/o5wF2ZWfzhdyOiBdy3uM3AecAXM/Nrgy2pax8GDlS7Hp4E/nDA9TRW/ad6HfCBruYZ9sMIJUkrcxeKJBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmF+n9WsFp3dDYZowAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"petal width (cm)\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAASo0lEQVR4nO3dfYxs9V3H8fe3PFjC4qUtON5c0MXQ1CBrae8GaUjMLLXmCqbQSAykQa6l2frQivFqiv3D0tZGGksbH5oYLMjV1C4NpYI8WAllS5pY6l4KLA/WUrxVbvAiLdyylWC2fv1jz8W9y947Z2bPzOxv5v1KJsw585sz3y/n7IfDmXPmRGYiSSrPq4ZdgCSpNwa4JBXKAJekQhngklQoA1ySCnX0ID/spJNOysnJSb7//e9z/PHHD/KjN5Vx7n+ce4fx7n+ce4eN9b9nz55nM/PktfMHGuCTk5MsLCwwPz9Pu90e5EdvKuPc/zj3DuPd/zj3DhvrPyK+vd58D6FIUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhBnol5kZMXnXH0D577zUXDO2zJelw3AOXpELVDvCIOCoivh4Rt1fTp0XE/RHxRETcFBHH9q9MSdJa3eyBXwk8vmr6Y8AnM/N04DngiiYLkyQdWa0Aj4hTgAuAT1fTAZwH3FwN2Q1c1If6JEmHEXXuSh8RNwN/BJwA/C6wE/hqtfdNRJwK3JWZZ67z3llgFqDVam2fm5tjaWmJiYmJrgpd3Hegq/FNmtq2pdHl9dL/qBjn3mG8+x/n3mFj/c/MzOzJzOm18zuehRIRvwg8k5l7IqLd7Qdn5nXAdQDT09PZbrd7+l3cncM8C+Wd7UaXN86/izzOvcN49z/OvUN/+q9zGuG5wNsj4nzg1cAPA38CnBgRR2fmMnAKsK/RyiRJR9TxGHhm/n5mnpKZk8AlwJcy853AvcDF1bDLgVv7VqUk6RU2ch74+4HfiYgngNcB1zdTkiSpjq6uxMzMeWC+ev4kcHbzJUmS6vBKTEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoToGeES8OiK+FhEPRcSjEfGhav6NEfFvEfFg9Tir79VKkl5W5448LwHnZeZSRBwDfCUi7qpe+73MvLl/5UmSDqdjgGdmAkvV5DHVI/tZlCSps1jJ5w6DIo4C9gCnA5/KzPdHxI3AW1jZQ78HuCozX1rnvbPALECr1do+NzfH0tISExMTXRW6uO9AV+ObNLVtS6PL66X/UTHOvcN49z/OvcPG+p+ZmdmTmdNr59cK8JcHR5wIfAF4H/Ad4D+BY4HrgG9l5oeP9P7p6elcWFhgfn6edrtdv3pg8qo7uhrfpL3XXNDo8nrpf1SMc+8w3v2Pc++wsf4jYt0A7+oslMx8HrgX2JGZT+eKl4C/wjvUS9JA1TkL5eRqz5uIOA54G/AvEbG1mhfARcAj/StTkrRWnbNQtgK7q+PgrwI+l5m3R8SXIuJkIIAHgV/rX5mSpLXqnIXyMPCmdeaf15eKJEm1eCWmJBXKAJekQhngklQoA1ySClXnLBRp5A3qQrFdU8vsXPNZTV8opvHhHrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklSoOrdUe3VEfC0iHoqIRyPiQ9X80yLi/oh4IiJuiohj+1+uJOmgOnvgLwHnZeYbgbOAHRFxDvAx4JOZeTrwHHBF36qUJL1CxwCv7jy/VE0eUz0SOA+4uZq/m5UbG0uSBiQys/OglRsa7wFOBz4F/DHw1Wrvm4g4FbgrM89c572zwCxAq9XaPjc3x9LSEhMTE10VurjvQFfjmzS1bUujy+ul/1GxWXsf1PbVOg72v3jovKa3r81qs677QdlI/zMzM3syc3rt/Fq/B56ZPwDOiogTgS8AP1n3gzPzOuA6gOnp6Wy328zPz9Nut+suAuAVv6E8SHvf2W50eb30Pyo2a++D2r52TS1z7eKhf3ZNb1+b1WZd94PSj/67OgslM58H7gXeApwYEQe3xFOAfY1WJkk6ojpnoZxc7XkTEccBbwMeZyXIL66GXQ7c2qcaJUnrqHMIZSuwuzoO/irgc5l5e0Q8BsxFxB8CXweu72OdkqQ1OgZ4Zj4MvGmd+U8CZ/ejKElSZ16JKUmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqVJ1bqp0aEfdGxGMR8WhEXFnNvzoi9kXEg9Xj/P6XK0k6qM4t1ZaBXZn5QEScAOyJiLur1z6ZmR/vX3mSpMOpc0u1p4Gnq+cvRMTjwLZ+FyZJOrKujoFHxCQr98e8v5r13oh4OCJuiIjXNF2cJOnwIjPrDYyYAL4MfDQzb4mIFvAskMBHgK2Z+a513jcLzAK0Wq3tc3NzLC0tMTEx0VWhi/sOdDW+SVPbtjS6vF76HxWbtfdBbV+t42D/i4fOa3r72qw267oflI30PzMzsyczp9fOrxXgEXEMcDvwxcz8xDqvTwK3Z+aZR1rO9PR0LiwsMD8/T7vdrls7AJNX3dHV+CbtveaCRpfXS/+jYrP2Pqjta9fUMtcuHnrksunta7ParOt+UDbSf0SsG+B1zkIJ4Hrg8dXhHRFbVw17B/BIT5VJknpS5yyUc4HLgMWIeLCa9wHg0og4i5VDKHuB9/ShPknSYdQ5C+UrQKzz0p3NlyNJqssrMSWpUAa4JBXKAJekQhngklQoA1ySClXnNEJJI2jQF8ftmlpmZ/WZ43LxUr+5By5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBWqzj0xT42IeyPisYh4NCKurOa/NiLujohvVv98Tf/LlSQdVGcPfBnYlZlnAOcAvxkRZwBXAfdk5uuBe6ppSdKAdAzwzHw6Mx+onr8APA5sAy4EdlfDdgMX9alGSdI6IjPrD46YBO4DzgT+PTNPrOYH8NzB6TXvmQVmAVqt1va5uTmWlpaYmJjoqtDFfQe6Gt+kqW1bGl1eL/2Pis3a+6C2r9ZxsP/FQ+c1vX3VNei/qdW9D6vnYdrItj8zM7MnM6fXzq8d4BExAXwZ+Ghm3hIRz68O7Ih4LjOPeBx8eno6FxYWmJ+fp91ud9XAoH+7eLWmf7u4l/5HxWbtfVDb166pZa5dPPRn+If129jD+D3wg72P4++Bb2Tbj4h1A7zWWSgRcQzweeAzmXlLNXt/RGytXt8KPNNTZZKkntQ5CyWA64HHM/MTq166Dbi8en45cGvz5UmSDqfOLdXOBS4DFiPiwWreB4BrgM9FxBXAt4Ff7kuFkqR1dQzwzPwKEId5+a3NliNJqssrMSWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhapzS7UbIuKZiHhk1byrI2JfRDxYPc7vb5mSpLXq7IHfCOxYZ/4nM/Os6nFns2VJkjrpGOCZeR/w3QHUIknqQmRm50ERk8DtmXlmNX01sBP4HrAA7MrM5w7z3llgFqDVam2fm5tjaWmJiYmJrgpd3Hegq/FNmtq2pdHl9dL/qNisvQ9q+2odB/tfPHRe09tXXYP+m1rd+7B6HqaNbPszMzN7MnN67fxeA7wFPAsk8BFga2a+q9Nypqenc2Fhgfn5edrtdlcNTF51R1fjm7T3mgsaXV4v/Y+Kzdr7oLavXVPLXLt46L3Em96+6hr039Tq3ofV8zBtZNuPiHUDvKezUDJzf2b+IDP/F/hL4OyeqpIk9aynAI+Irasm3wE8crixkqT+OLrTgIj4LNAGToqIp4APAu2IOIuVQyh7gff0r0RJ0no6BnhmXrrO7Ov7UIsk9dUwv0u7ccfxjS/TKzElqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYXqGOARcUNEPBMRj6ya99qIuDsivln98zX9LVOStFadPfAbgR1r5l0F3JOZrwfuqaYlSQPUMcAz8z7gu2tmXwjsrp7vBi5qtixJUieRmZ0HRUwCt2fmmdX085l5YvU8gOcOTq/z3llgFqDVam2fm5tjaWmJiYmJrgpd3Hegq/FNmtq2pdHl9dL/qNisvQ9q+2odB/tfPHRe09tXXYP+m1rd+7j0vNppW47qedufmZnZk5nTa+dvOMCr6ecys+Nx8Onp6VxYWGB+fp52u91F+cO9Geneay5odHm99D8qNmvvg9q+dk0tc+3iofcSb3r7qmvQf1Orex+Xnle7ccfxPW/7EbFugPd6Fsr+iNhaLXgr8EyPy5Ek9ajXAL8NuLx6fjlwazPlSJLqqnMa4WeBfwLeEBFPRcQVwDXA2yLim8DPVdOSpAE6utOAzLz0MC+9teFaJI2JYR6LHiVeiSlJhTLAJalQBrgkFcoAl6RCdfwSU81/4bJrapmdNZY5rIsdhskvt6T63AOXpEIZ4JJUKANckgplgEtSofwSU6/Qzy8S636BK6kz98AlqVAGuCQVygCXpEIZ4JJUKL/ElIbMq0/VK/fAJalQG9oDj4i9wAvAD4Dl9W66KUnqjyYOocxk5rMNLEeS1AUPoUhSoTYa4An8Y0TsiYjZJgqSJNUTmdn7myO2Zea+iPgR4G7gfZl535oxs8AsQKvV2j43N8fS0hITExNdfdbivgM917nZtI6D/S92Hje1bUv/i1lHP/9d1+19VI1z/+PcO8BpW47qOvcOmpmZ2bPed4wbCvBDFhRxNbCUmR8/3Jjp6elcWFhgfn6edrvd1fJH6VSrXVPLXLvY+euHYd3Qod+/hVKn91E1zv2Pc+8AN+44vuvcOygi1g3wng+hRMTxEXHCwefAzwOP9Lo8SVJ3NvKfwxbwhYg4uJy/zcx/aKQqSVJHPQd4Zj4JvLHBWiRJXfA0QkkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgo1vvc3KsAo3UZOUvPcA5ekQm0owCNiR0R8IyKeiIirmipKktTZRm5qfBTwKeAXgDOASyPijKYKkyQd2Ub2wM8GnsjMJzPzf4A54MJmypIkdRKZ2dsbIy4GdmTmu6vpy4Cfycz3rhk3C8xWk28AvgGcBDzba9EjYJz7H+feYbz7H+feYWP9/3hmnrx2Zt/PQsnM64DrVs+LiIXMnO73Z29W49z/OPcO493/OPcO/el/I4dQ9gGnrpo+pZonSRqAjQT4PwOvj4jTIuJY4BLgtmbKkiR10vMhlMxcjoj3Al8EjgJuyMxHa779us5DRto49z/OvcN49z/OvUMf+u/5S0xJ0nB5JaYkFcoAl6RC9TXAO11qHxE/FBE3Va/fHxGT/axn0Gr0vzMi/isiHqwe7x5GnU2LiBsi4pmIeOQwr0dE/Gn17+XhiHjzoGvspxr9tyPiwKr1/geDrrFfIuLUiLg3Ih6LiEcj4sp1xozk+q/Ze7PrPjP78mDli81vAT8BHAs8BJyxZsxvAH9RPb8EuKlf9Qz6UbP/ncCfD7vWPvT+s8CbgUcO8/r5wF1AAOcA9w+75gH33wZuH3adfep9K/Dm6vkJwL+us92P5Pqv2Xuj676fe+B1LrW/ENhdPb8ZeGtERB9rGqSx/amBzLwP+O4RhlwI/HWu+CpwYkRsHUx1/Vej/5GVmU9n5gPV8xeAx4Fta4aN5Pqv2Xuj+hng24D/WDX9FK9s5uUxmbkMHABe18eaBqlO/wC/VP1v5M0Rceo6r4+iuv9uRtlbIuKhiLgrIn5q2MX0Q3VI9E3A/WteGvn1f4TeocF175eYw/X3wGRm/jRwN///fyMabQ+w8tsWbwT+DPi74ZbTvIiYAD4P/HZmfm/Y9QxSh94bXff9DPA6l9q/PCYijga2AN/pY02D1LH/zPxOZr5UTX4a2D6g2oZtrH+GITO/l5lL1fM7gWMi4qQhl9WYiDiGlQD7TGbess6QkV3/nXpvet33M8DrXGp/G3B59fxi4EtZHekfAR37X3Pc7+2sHDMbB7cBv1KdjXAOcCAznx52UYMSET968LueiDiblb/Dkdhxqfq6Hng8Mz9xmGEjuf7r9N70uu/brxHmYS61j4gPAwuZeRsrzf5NRDzBypc+l/SrnkGr2f9vRcTbgWVW+t85tIIbFBGfZeXb9pMi4ingg8AxAJn5F8CdrJyJ8ATw38CvDqfS/qjR/8XAr0fEMvAicMkI7bicC1wGLEbEg9W8DwA/BiO//uv03ui691J6SSqUX2JKUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklSo/wOIRdw8LewiVAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"for x in df.columns:\n", | |
" print(x)\n", | |
" fig = plt.figure()\n", | |
" ax = fig.add_subplot(1,1,1)\n", | |
" df[x].hist(ax=ax)\n", | |
" plt.show()\n", | |
" plt.close(fig)\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## 一緒にプロット\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"sepal length (cm)\n", | |
"sepal width (cm)\n", | |
"petal length (cm)\n", | |
"petal width (cm)\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq30lEQVR4nO3de3wV1bn/8c9DuJvINURAzwl4CSGJBIlURTABVFooiAdtrVUoLRQEtK3aop4qqKj1UFv1CNaqRS0tcrHqsZxWreRw0Z+YQJBLBG9IEYQAgokQSOL6/ZGd3RCS7MneO8ke/L5fr7zYM3vNmiezkyfDmlnPmHMOERHxnxbNHYCIiIRHCVxExKeUwEVEfEoJXETEp5TARUR8qmVT7qxr164uOTnZU9svv/ySU045pXEDCpNiC49iC49iC8/JFFt+fv4+51ziCW8455rsa8CAAc6rFStWeG7b1BRbeBRbeBRbeE6m2IA8V0tO1RCKiIhPKYGLiPiUEriIiE816UVMEWk4M+Pjjz+mtLS0uUM5QYcOHSgsLGzuMGrlx9jatm3L6aefTqtWrTz1owQuEuNOOeUUEhISSE5OxsyaO5zjFBcXk5CQ0Nxh1MpvsTnn2L9/Pzt37qRXr16e+tEQikiMi4uLo0uXLjGXvCW6zIwuXbo06H9aSuAiPqDk/fXQ0M9ZCVxExKc0Bi7iM8kz/xrV/rY/MDKq/TVUbm4uc+fO5ZVXXvG0PlIvvvgi55xzDn379gUgOzubuXPnkpWVVe92u3fvZtKkSRHHU1RUxDXXXMPrr78eUT/gowRe2CfVU7vU92LzqrOIxIYXX3yRUaNGBRO4Vw899BCTJk2KeP+JiYmcdtpprFmzhkGDBkXUl4ZQRKReX375JSNHjqRfv36kp6fz/PPPA5Cfn883v/lNBgwYwOWXX87u3buByjPam266iczMTNLT01m7di0Aa9eu5cILL6R///5cdNFFbN26tUExTJw4kYEDB9K/f39eeuklABYsWMCVV17JiBEjOPvss/n5z38e3ObZZ5/lnHPOYeDAgUyaNInp06fz5ptv8vLLL3PrrbeSmZnJhx9+CMCSJUsYOHAg55xzDqtWrao1hmXLljFixAgAKioquOWWW0hPT+fcc8/l0UcfBSA5OZnbbruNzMxMsrKyWLduHZdffjlnnnkmjz/+eLCvUaNGsXDhQs/ff108n4GbWRyQB3zqnBtlZr2ARUAXIB+4zjl3LOKIRCSm/O1vf6NHjx789a+VQzeHDh2irKyMGTNmsHDhQnr16sXzzz/PHXfcwdNPPw3A4cOHKSgoYOXKlUycOJFNmzbRp08fVq1aRcuWLXn99de5/fbbWbZsmacY5syZw9ChQ3n66ac5ePAgAwcOZPjw4QAUFBSwfv162rRpQ0pKCjNmzCAuLo4HH3yQ9evXk5CQwNChQ+nXrx8XXXQRo0ePZtSoUYwbNy7Yf3l5OWvXrmX58uXMnj37hOGNjz/+mE6dOtGmTRsAnnjiCbZv305BQQEtW7bkwIEDwbb/9m//RkFBAT/96U+ZMGECa9asobS0lPT0dKZMmQJA//79mTNnTpifyL80ZAjlJqAQODWw/CvgN865RWb2OPBDYH7EEYlITMnIyODmm2/mF7/4BaNGjWLw4MFs2rSJTZs2MWbMGFq0aEFFRQXdu3cPbnPNNdcAMGTIEL744gsOHjxIcXEx48eP5/3338fMKCsr8xzDq6++yssvv8zcuXMBKC0tZceOHQAMGzaMDh06ANC3b18++eQT9u3bx6BBg+jcuTMAV111Fdu2bauz/yuvvBKAAQMGsH379hPe3717N4mJ/yoG+PrrrzNlyhRatqxMoVX7ARg9enTwuJWUlJCQkEBCQgJt2rTh4MGDdOzYkcTERHbt2uX5+6+LpwRuZqcDI4E5wM+s8l6XocD3Ak2eAWahBC5y0jnnnHNYt24dy5cv5z//8z8ZNmwYY8eOJS0tjVdffbXWyTI1b4czM375y1+Sk5PDX/7yF7Zv3052drbnGJxzLFu2jJSUlOPWv/3228GzYqi8Z768vLxh3yAE+6hr+3bt2nm+P7uqrxYtWhwXW4sWLYJ9l5aW0q5duwbHWZPXM/DfAj8Hqj6pLsBB51zVd7oT6FnbhmY2GZgMkJSURG5urqcdlpSUHNe2dMZ0T9vt8dh/JGrGFksUW3hiObZTTz2V4uLiRus/VN+7d++mU6dOjBkzhtatW/Pss88ybdo09uzZw1tvvcWFF15IWVkZH3zwAampqVRUVPDHP/6RrKws3nrrLRISEmjRogX79++nc+fOFBcX87vf/Q7nHMXFxRw+fJjy8vIT4qi+Picnh1//+tfMnTsXM2PDhg3069eP0tJSjh07Fty2vLycw4cPk5qayurVq9mxYwcJCQksXryYvn37UlxcTJs2bSgqKgpuU1FRwZdffklxcTElJSXBuKrr3r07H3/8cXD94MGDeeyxx8jKygoOoXTu3BnnHCUlJbRp0+aE2Kq/t23bNvr06VPrsS8tLfX8sxgygZvZKGCvcy7fzLI99VqNc+4J4AmArKws5/Wvbm5u7nF/oQunTPW0XVPchVIztlii2MITy7FVjeNWaerb/t58803GjRtHixYtaNWqFfPnz6dLly688MILTJs2jZKSEsrLy/nJT37CwIEDiYuLIyEhgSFDhlBWVsYf/vAHEhISuP322xk/fjy//vWvGTlyJGZGQkIC7du3p2XLliecyVdff8899/CTn/yEQYMG8dVXX9GrVy9eeeUV2rZtS+vWrYPbtmzZkvbt25OSksItt9zCsGHD6Ny5M3369CExMZGEhASuv/56Jk2axBNPPMHSpUuJi4sLlis4evRoMK7qEhISOOuss9izZw9nnXUW06dPZ8eOHQwaNIhWrVoFL5KaGfHx8SQkJJwQW/X31qxZw5gxY2r930vbtm3p37+/tw+ntiLh1b+A+6k8w94OfAYcBhYC+4CWgTYXAn8P1VckD3TYktLH01dTOJkKxTclxRaedevWNXcIdfriiy9OWHfJJZe4d955pxmiOd6uXbucc86VlZW5UaNGuRdeeCGi/l544QV3xx13RCM0d9FFF7kDBw7U+t6WLVtOWEe4D3Rwzt3mnDvdOZcMfBd4wzl3LbACqLqMOx54ydufDBGRxnf//fcHb2Xs1asXV1xxRUT9jR07Fq+PhKxPUVER06dPp1OnThH3FclEnl8Ai8zsXmA98FTE0YiI78XKtYQ5c+ZEvRrhj370o4j7SExMZNSoUVGIpoEJ3DmXC+QGXn8EDIxKFCIi0mCaiSki4lNK4CIiPqUELiLiU76pRigiAbM6RLm/Q9Htr4HCLRu7a9cubrzxRpYuXXrCe9nZ2cyePZtLLrmE++67j9tvvx2A7du3M2rUKDZt2hSy/9/+9rd07tyZ66+/vkFx1fTf//3ftG/fnokTJ0bUT210Bi4ivtSjR49ak3dN9913X4P7Li8v5+mnn+Z73/te6MYhTJw4MVitMNqUwEWkXs1VTnbkyJG8++67QGX1vrvvvhuAO++8k9///vds376d9PR0AI4cOcJ3v/tdUlNTGTt2LEeOHAFg5syZHDlyhMzMTK699lqgcur8pEmTSEtL47LLLgu2re6NN97gvPPOCxar+uCDDxg+fDj9+vXjvPPO48MPPyQ3N5dLLrmEMWPG0Lt3b2bOnMnChQsZOHAgGRkZwVK17du3Jzk5OXgcokkJXETqVVVOdsOGDWzatIkRI0YEy8k+99xz5OfnM3HiRO64447gNlXlZOfNmxccOqgqJ7t+/Xruvvvu4LBGXQYPHsyqVas4dOgQLVu2ZM2aNQCsWrWKIUOGHNd2/vz5tG/fnsLCQmbPnk1+fj4ADzzwAO3ataOgoCBYf/v9999n2rRpbN68mY4dO9Za0nbNmjUMGDAguHzttdcybdo0NmzYwJtvvhmsvLhhwwYef/xxCgsLee6559i2bRtr167lRz/60XFn3VlZWXXWGY+ExsBFpF7NVU528ODBPPLII/Tq1YuRI0fy2muvcfjwYT7++GNSUlKOK/u6cuVKbrzxRgDOPfdczj333Dr77dWrF5mZmUD95WNTUyufAlZcXMynn37K2LFjgcpaJVXOP//84Pd95plnctlllwWP2YoVK4LtunXrxnvvvVfv9xsOJXARqVdzlZM9//zzycvLo3fv3lx66aXs27eP3//+98edGYejZvnZ2oZQvJaPrVkutnop2eplaaNVPrYmJfAwbNm/hRnPzGiUvjeO39go/Ta7WR0gZTbMGlNPm+a9G0Jqt2vXLjp37sz3v/99OnbsyJNPPsnMmTMpKiri7bffZvjw4ZSVlbFt2zbS0tIAeP7558nJyWH16tV06NCBDh06cOjQIXr2rKw6vWDBgpD7bd26NWeccQZLlizhzjvvpKioiFtuuYVbbrnlhLZDhgzhT3/6E0OHDmXTpk3BsXOAVq1aUVZWRqtWrTx/z6mpqXzwwQdAZSXC008/nRdffJErrriCo0ePUlFR4bkvgG3btkX8/MvaKIGL+E0T/6HbuHEjt95663HlZFu3bs3SpUuZNm0aN998c7CcbFUCryqJWlZWFnzM2s9//nPGjx/Pvffey8iR3kriDh48mH/84x+0a9eOwYMHs3PnTgYPHnxCu6lTp/KDH/yA1NRUUlNTjztLnzx5Mueeey7nnXee58eYffOb3+S6664LLj/33HP8+Mc/5s4776RVq1YsWbLEUz9V1qxZw6xZsxq0jRdWWamwaWRlZbm8vDxPbU+oBx5DT6Wft2we80sa5+FDkZ6Bx2xd61kdyE2ZTfbWu+pp03xn4DF73KisB+65PnQTKy4uPmEIJTs7m7lz55KVldVMUVWqLbaGGDt2LA8++CBnn312RHGsX7+ehx56iOeee85TbIWFhcHx9ypmlu+cO+GA6i4UEZFaPPDAA8FbIyOxb98+7rnnnihEdCINoYhIVMVKOdlIpaSknPAMznBceumlUYimdjoDFxHxKSVwERGfCpnAzaytma01sw1mttnMZgfWLzCzj82sIPCV2ejRiohIkJcx8KPAUOdciZm1Alab2f8G3rvVORe6moyIiERdyAQeeCJySWCxVeCr6e49FJHjZDyTEdX+GmPy2IIFC7jsssvo0aNHve0mTJjAqFGjGDdunKf1kYqV0rJXXXVVRP1U8XQXipnFAfnAWcBjzrm3zWwqMMfM7gT+Acx0zh2tZdvJwGSApKQkz1eoS0pKjmtbOmO6p+32NMEV8MS4RKbGT22UviO9gl/zuMWMlNmUtOlBbsrsuts0Y9wxe9yAU089leLi4kbrP5K+Kyoqat3+qaeeolevXiHvwy4rK+PIkSMn9FHX+khju++++5gxo3IWdUlJCV999VXIfZSXl/Pkk0+yatWqiD+Hq666issuu4wrr7yyzr5KS0s9/yx6SuDOuQog08w6An8xs3TgNuAzoDXwBJVPqb+7lm2fCLxPVlaW8zpZ4oSJPFO8JUzfT+T5j5N1Is+Y0BN5rtFEntqsX78+6k9Xry5U39u3b2fEiBEMGDCAdevWkZaWxrPPPkv79u1ZuXIlv/zlLykpKaFr164sWLCANWvWsH79eiZPnky7du146623+K//+i/+53/+hyNHjnDRRRfxu9/9DjOjVatWtGvX7oQYqq/Pz8/nZz/72XH76N69O9nZ2XzjG99gxYoVHDx4kKeeeorBgwdz+PBhJkyYwLvvvktqaiq7du3iscceY+nSpRw5coTBgweTlpbGnDlzcM7xs5/9jDfffJOePXvy0ksvnVCz5NVXXyUrK4tOnToBlaVlp0yZQlFREXFxcSxZsoR//vOf3HXXXXTs2JGNGzdy9dVXk5GRwcMPP8yRI0d48cUXOfPMM0lISKB3796sX7+enJycWo931SxWLxp0F4pz7iCwAhjhnNvtKh0F/oCeUC9y0tq6dSs33HADhYWFnHrqqcybN4+ysjJuvfVWli5delxJ2XHjxpGVlcXChQspKCigXbt2TJ8+nXfeeYdNmzZx5MgRz0/fqSpbW3MfVcrLy1m7di2//e1vmT278n938+bNo1OnTrzzzjvcc889MVla9q233mrgJ1C7kGfgZpYIlDnnDppZO+BS4Fdm1t05t9sqy45dAYQeSBIRXzrjjDOCxZi+//3v88gjjzBixAgKCwuDE1VqlpStbsWKFTz44IMcPnyYAwcOkJaWxre//e2Q+926dSubNm2qcx9XXnklcHxZ2NWrV3PTTTcBkJ6eHpOlZasX24qElyGU7sAzgXHwFsBi59wrZvZGILkbUABMiUpEIhJzaisP65yjT58+IZ80U1payg033EBeXh5nnHEGs2bN8lSqFcA5R1paWp1nrFXlW+Pi4o4r3+pVc5WWrZ74IxFyCMU5965zrr9z7lznXLpz7u7A+qHOuYzAuu8750pC9SUi/rRjx45gEv3Tn/7ExRdfTEpKCvv27QuuLysrY/PmzUDluHrVRbqq5Ne1a1dKSko8PceySkpKCkVFRbXuoy6DBg1i8eLFAGzZsoWNG/91XamqtGxD1FVaFuDo0aMcPny4Qf1t27aNvn37NmibuqgWiojPNEfN+JSUFB577DEmTpxI3759mTp1Kq1bt+a5557jF7/4BYcOHTqupOyECROYMmVK8CLmpEmTSE9P57TTTuP888/3vN+qsrU33njjCfuoyw033MD48eM5//zz6du3L2lpaXTo0AGIndKyN998c4O2qYvKyYZB5WTDoHKyYWvucrL13S8dacnWxlBRUUFZWRllZWXs3buX4cOHs3XrVlq3bh12n9EuLTtv3ryolJPVGbiInFQOHz5MTk4OR48excyYN29eRMkb/lVaNtIEHu3SskrgIlKv5ORkT7MVY0VCQgJ5eXlR/d9BtEvLRmtilhJ4E1h8f+ir41ffpo9CRBpG5WRFRHxKCVxExKeUwEVEfEoDryI+4/WWWq8a49bbSMvJhvL444/Tvn37E8q7Vr/l8d133+XQoUN861vfAmDWrFnEx8dzyy231Nu3c45hw4bx4osvcuqppzYorpqGDx/OkiVLgoWwok1n4CISdQsWLGDXrl2N1v+UKVNC1ubeuHEjy5cvb3Dfy5cvp1+/fhEnb4DrrruOefPmRdxPXZTARaRe27dvp0+fPlx77bWkpqYybty44PTx9evXc8kllzBgwAAuv/xydu/ezdKlS8nLy+Paa68lMzOTI0eOcPfdd3P++eeTnp7O5MmTqW8C4d69e4PV/zZs2ICZsWPHDqCySNThw4eZNWsWc+fOBSA/P59+/frRr18/HnvsMQCOHTvGnDlzeP7558nMzOT5558HKqfWZ2dn07t3bx555JFa979w4ULGjBkTXH722Wc599xz6devX3BG5oQJE5g6dSoXXHABvXv3Jjc3l4kTJ5KamsqECROC244ePZo///nP4Rx2T5TARSSkpiwn261bN0pLS/niiy9YtWoVWVlZrFq1ik8++YRu3brRvn3749r/4Ac/4NFHH2XDhg3Bda1bt+aOO+7gO9/5DgUFBXznO98B4L333uPvf/87a9euZfbs2bXWRalePnbz5s3ce++9vPHGG2zYsIGHH3442O7zzz/nrbfe4je/+Q2jR4/mpz/9KZs3b2bjxo0UFBQA0KlTJ44ePcr+/fvDPvb1UQIXkZBqlpNdvXo1W7duDZaTzczM5N5772Xnzp21br9ixQq+8Y1vkJGRwRtvvBGyINVFF13EmjVrWLlyJbfffjsrV65k1apVDB48+Lh2Bw8e5ODBgwwZMgTguJoltRk5ciRt2rSha9eudOvWjT179pzQ5sCBA8EJQG+88QZXXXUVXbt2BaBz587Bdt/+9rcxMzIyMkhKSiIjI4MWLVqQlpZ2XFnabt26Ndpwki5iikhITV1OdsiQIcGz7jFjxvCrX/0KM2PkyJERfR81y8fWVoK2ZcuWfPXVV7RoUf/5bfVysTVLydYsH1vzKT/RojNwiR2zOoT+kmbR1OVkBw8ezB//+EfOPvtsWrRoQefOnVm+fDkXX3zxce06duxIx44dWb16NUDwSTsA8fHxYU1ZT0lJ4aOPPgJg6NChLFmyJDgEcuDAgQb15Zzjs88+Izk5ucFxeKEzcBGfaYqKmzU1dTnZ5ORknHPBoZGLL76YnTt31no73h/+8AcmTpyImQWfggOVfwQefvhhMjMzue222zx/ryNHjiQ3N5ezzjqLtLQ07rjjDi655BLi4uLo378/CxYs8NxXfn4+F1xwAS1bNk6qDVlO1szaAiuBNlQm/KXOubvMrBewCOhC5RPrr3POHauvr69rOdmG1EL5WpeT9dRP45ScjdnjhsrJhivc2Hbv3s3111/Pa6+9FnEMN910E6NHj2bYsGGeY2tIOVkvQyhHgaHOuX5AJjDCzC4AfgX8xjl3FvA58EMPfYmIxLTu3bszadIkvvjii4j7Sk9PPyF5R5OXR6q5ao9LaxX4csBQoGow6xkqH2wsIicZv5WTjYarr746KhN5Jk2aFIVo6ubpiTyBBxrnA2cBjwH/Bfy/wNk3ZnYG8L/OufRatp0MTAZISkoasGjRIk+BlZSUEB8fH1wuDXHbUZW29TxqKVqKDhZRVFHkuX3vz0If449Oq7zK37dLZM/Kq3ncYsbuAkra9CD+aIS3U3XPjEo4NcXscaPyguDZZ599wp0gsaCiooK4uLjmDqNWfozNOceHH37IoUPHDxXm5OSE/0Qe51wFkGlmHYG/AH28BuqcewJ4AirHwL2OM54wBj5lqqftYnIM/NHQY+C3Vo2B/8fJOgY+Jjpj4Nd8/cbA8/LyOHbsGF26dIm5JH4yjoE3hdpic86xf/9+Onbs6PmaR4MujTrnDprZCuBCoKOZtXTOlQOnA582pC8R8ebLL7+kuLiYoiLv/+trKqWlpbRt27a5w6iVH2Nr27Ytp59+uud+QiZwM0sEygLJux1wKZUXMFcA46i8E2U88JLnvYqIZ845evXq1dxh1Co3N7dZ75Cpz9chNi9n4N2BZwLj4C2Axc65V8xsC7DIzO4F1gNPRRyNiIh4FjKBO+feBU74U+Gc+wgY2BhBiZwMMp7JiEo/U+OnMuOZGceti3S+gJwcNJVeRMSnlMBFRHxKCVxExKeUwEVEfEoJXETEp5TARUR8SglcRMSnlMBFRHxKCVxExKf0SDWRk1jyzL+Gtd32ByJ7eLA0DZ2Bi4j4lBK4iIhPKYGLiPiUEriIiE/pIqZ8rVWVfK2tZKs0nC6aNi2dgYuI+FTIBG5mZ5jZCjPbYmabzeymwPpZZvapmRUEvr7V+OGKiEgVL0Mo5cDNzrl1ZpYA5JvZa4H3fuOcm9t44YmISF28PFJtN7A78LrYzAqBno0dmIiI1K9BY+Bmlkzl8zHfDqyabmbvmtnTZtYp2sGJiEjdzDnnraFZPPB/wBzn3AtmlgTsAxxwD9DdOTexlu0mA5MBkpKSBixatMjT/kpKSoiPjw8ul27e7Gm7tmlpntpFouhgEUUVRZ7b9/4s9DH+6DQDoG+XvmHHBScet5ixu4CSNj2IP7orsn66Z0YlnCpb9m8BIDEusUGfaVOqLTavPycbPz0U1j4zenbw1K7mz1tj768hYvZ3gYbHlpOTk++cy6q53lMCN7NWwCvA351zD9XyfjLwinMuvb5+srKyXF5enqeAc3Nzyc7ODi4X9kn1tF3qe4We2kVi3rJ5zC+Z77n94vvLQ7a5+rbK0axInzZe87jFjFkdyE2ZTfbWuyLsJ7wEUZfqtxE25DNtSrXF5vXnpLFv66v58xZLtxHG7O8CDY/NzGpN4F7uQjHgKaCwevI2s+7Vmo0FNnmORkREIublLpRBwHXARjMrCKy7HbjGzDKpHELZDvy4EeITEZE6eLkLZTVgtby1PPrhiIiIV5pKL5GZFf2LTyLijabSi4j4lBK4iIhPKYGLiPiUEriIiE/pIqbPhJrQVDpjOsTo5AURiS6dgYuI+JQSuIiITymBi4j4lBK4iIhP6SKm1E2zLEVims7ARUR8SglcRMSnlMBFRHxKCVxExKeUwEVEfEoJXETEp7w8E/MMM1thZlvMbLOZ3RRY39nMXjOz9wP/dmr8cEVEpIqXM/By4GbnXF/gAmCamfUFZgL/cM6dDfwjsCwiIk0kZAJ3zu12zq0LvC4GCoGewBjgmUCzZ4ArGilGERGphTnnvDc2SwZWAunADudcx8B6Az6vWq6xzWRgMkBSUtKARYsWedpXSUkJ8fHxweXSzZs9bdc2Lc1Tu0gUHSyiqKLIc/ven4U+xh+dVvnc6L5d+tbbLtRxONatG6cmJnqOrV67C6LTT0BJmx7EH90VWSfdM6MSS5Ut+7cAkBiX2KDPtCnVFluon5MqGz89FNY+M3p6m4Vb8/e0sffXEDVjiyUNjS0nJyffOZdVc73nBG5m8cD/AXOccy+Y2cHqCdvMPnfO1TsOnpWV5fLy8jztLzc3l+xqda1D1cGukvpeoad2kZi3bB7zS+Z7br/4/vKQba6+rbKqwcbxG+ttF+o4fDJjOiOmTfMcW72iPJU+N2U22VvviqyTWeEliLpkPJMBwNT4qQ36TJtSbbGF+jmpkjzzr2Htc/sDIz21q/l72tj7a4iascWShsZmZrUmcE93oZhZK2AZsNA590Jg9R4z6x54vzuw13M0IiISMS93oRjwFFDonHuo2lsvA+MDr8cDL0U/PBERqYuXaoSDgOuAjWZWEFh3O/AAsNjMfgh8AlzdKBGKiEitQiZw59xqwOp4e1h0wxEREa80E1NExKeUwEVEfEoJXETEp5TARUR8Ss/EFPGhqglIoSR4m/92nOLCBxq+UYRiaQKQn+gMXETEp5TARUR8SglcRMSnlMBFRHxKCVxExKeUwEVEfEoJXETEp5TARUR8SglcRMSnNBNTRE7gdWbkzRnlTAhzFqVETmfgIiI+5eWRak+b2V4z21Rt3Swz+9TMCgJf32rcMEVEpCYvZ+ALgBG1rP+Ncy4z8LU8umGJiEgoIRO4c24lcKAJYhERkQYw51zoRmbJwCvOufTA8ixgAvAFkAfc7Jz7vI5tJwOTAZKSkgYsWrTIU2AlJSXEx8cHl0s3b/a0Xdu0NE/tIlF0sIiiiiLP7Xt/FvoYf3Ra5WNH+3bpW2+7UMfhWLdunJqY6Dm2eu0uiE4/ASVtehB/dFdknXTPjEosVbbs3wJAYlxigz7TptTUsVWU9vTcNqkd7DnSiMGEkNGzQ53v1cwhsaShseXk5OQ757Jqrg83gScB+wAH3AN0d85NDNVPVlaWy8vL8xRwbm4u2dnZweXCPt4KG6e+V+ipXSTmLZvH/JL5ntsvvr88ZJurb6u8IWjj+I31tgt1HD6ZMZ0R06Z5jq1es+r+5QhHbspssrfeFVknsw5FJ5iAqrraU+OnNugzbUpNHVtD6oHfnFHOrzc2381s9dUDr5lDYklDYzOzWhN4WHehOOf2OOcqnHNfAb8HBobTj4iIhC+sBG5m3astjgU21dVWREQaR8j/+5jZn4FsoKuZ7QTuArLNLJPKIZTtwI8bL0QREalNyATunLumltVPNUIs0oS8XVPoQep3I7zoKCKNRjMxRUR8SglcRMSnlMBFRHxKCVxExKdUTjbGVE0sqcviCPoINUlIRPxFZ+AiIj6lBC4i4lNK4CIiPqUELiLiU0rgIiI+pQQuIuJTSuAiIj6lBC4i4lNK4CIiPqWZmHJy8vI4uCg/nu1kkZA603PbuLZTSUj1/ri3hjyuTULTGbiIiE+FTOBm9rSZ7TWzTdXWdTaz18zs/cC/nRo3TBERqcnLGfgCYESNdTOBfzjnzgb+EVgWEZEmFDKBO+dWAgdqrB4DPBN4/QxwRXTDEhGRUMw5F7qRWTLwinMuPbB80DnXMfDagM+rlmvZdjIwGSApKWnAokWLPAVWUlJCfHx8cLl082ZP27VNS/PULhJFB4soqijy3L73Z6GP8UenWVT6OtatGztb1B5b3y59g689H8/OZZ7aeVHSpgfxR2PoGZvdM9myfwsAiXGJDfpMm9LJFFtFac+o7j+jZ90Xq2vmkFjS0NhycnLynXNZNddHnMADy58750KOg2dlZbm8vDxPAefm5pKdnR1c9vYQXkh9r9BTu0jMWzaP+SXer7wvvr88ZJurb/N2Q1Covj6ZMZ1b4x+v9b3q9cA9H88oPtQ4N2U22Vvvilp/EZt1KFg7fWr81AZ9pk3pZIot2nehbH9gZJ3v1cwhsaShsZlZrQk83LtQ9phZ90DH3YG9YfYjIiJhCjeBvwyMD7weD7wUnXBERMQrL7cR/hl4C0gxs51m9kPgAeBSM3sfGB5YFhGRJhRy4NU5d00dbw2LciwSJXWNkxfe723cW0T8QTMxRUR8SglcRMSnlMBFRHxKCVxExKdOunKyXiaoRHOyj5dJOhKZjF7/1jgdBybxiPiVzsBFRHxKCVxExKeUwEVEfEoJXETEp066i5jRUt/F0N4zprP4UV28FJHmpTNwERGfUgIXEfEpJXAREZ9SAhcR8SldxIwRmtEp0nDJM/9a53s3Z5QzoY7363sUW7j7CyXcfdZHZ+AiIj4V0Rm4mW0HioEKoLy2h26KiEjjiMYQSo5zbl8U+hERkQbQEIqIiE9FmsAd8KqZ5ZvZ5GgEJCIi3phzLvyNzXo65z41s27Aa8AM59zKGm0mA5MBkpKSBixatMhT3yUlJcTHxweXSzdvDjvOmtqmpYVsU9/+jnXrRuu9e6MWTzRFO7a2ncui1ldJmx7EH93V4O22tG4dtRjqkhiXSFFFUaPvJxyKzbuK0p7B10ntYM+RZgymhoyeHYKva+a3UHJycvJru8YYUQI/riOzWUCJc25uXW2ysrJcXl6ep/5yc3PJzs4OLnt5UINXXh7oUN/+PpkxnX9/9L+jFk80RTu21O82POHWJTdlNtlb72rwdo32QIdqpsZPZX7J/EbfTzgUm3fFhQ8EX9+cUc6vN8bOndLVbyOsmd9CMbNaE3jYQyhmdoqZJVS9Bi4DNoXbn4iINEwkf56SgL+YWVU/f3LO/S0qUYmISEhhJ3Dn3EdAvyjGIiIiDaDbCEVEfEoJXETEp5TARUR8SglcRMSnlMBFRHwqdu5yF1/zMtlmauvWzGiCSTkiXxc6AxcR8SklcBERn1ICFxHxKSVwERGfUgIXEfEpJXAREZ9SAhcR8SklcBERn1ICFxHxqa/lTMxoPp5NRKS56AxcRMSnIkrgZjbCzLaa2QdmNjNaQYmISGiRPNQ4DngM+CbQF7jGzPpGKzAREalfJGfgA4EPnHMfOeeOAYuAMdEJS0REQjHnXHgbmo0DRjjnfhRYvg74hnNueo12k4HJgcUUYKvHXXQF9oUVXONTbOFRbOFRbOE5mWL7d+dcYs2VjX4XinPuCeCJhm5nZnnOuaxGCCliii08ii08ii08X4fYIhlC+RQ4o9ry6YF1IiLSBCJJ4O8AZ5tZLzNrDXwXeDk6YYmISChhD6E458rNbDrwdyAOeNo5tzlqkYUx7NKEFFt4FFt4FFt4TvrYwr6IKSIizUszMUVEfEoJXETEp2IygcfqFH0ze9rM9prZpuaOpSYzO8PMVpjZFjPbbGY3NXdMVcysrZmtNbMNgdhmN3dMNZlZnJmtN7NXmjuW6sxsu5ltNLMCM8tr7niqM7OOZrbUzN4zs0Izu7C5YwIws5TA8ar6+sLMftLccVUxs58Gfg82mdmfzaxt2H3F2hh4YIr+NuBSYCeVd7tc45zb0qyBAWY2BCgBnnXOpTd3PNWZWXegu3NunZklAPnAFTFy3Aw4xTlXYmatgNXATc65/9fMoQWZ2c+ALOBU59yo5o6nipltB7KcczE3IcXMngFWOeeeDNyJ1t45d7CZwzpOIJ98SuUkw09iIJ6eVP7893XOHTGzxcBy59yCcPqLxTPwmJ2i75xbCRxo7jhq45zb7ZxbF3hdDBQCPZs3qkquUklgsVXgK2bOHMzsdGAk8GRzx+IXZtYBGAI8BeCcOxZryTtgGPBhLCTvaloC7cysJdAe2BVuR7GYwHsC/6y2vJMYSUR+YWbJQH/g7WYOJSgwRFEA7AVec87FTGzAb4GfA181cxy1ccCrZpYfKEsRK3oBRcAfAkNPT5rZKc0dVC2+C/y5uYOo4pz7FJgL7AB2A4ecc6+G218sJnCJgJnFA8uAnzjnvmjueKo45yqcc5lUztgdaGYxMQRlZqOAvc65/OaOpQ4XO+fOo7Lq57TAMF4saAmcB8x3zvUHvgRi5noVQGBYZzSwpLljqWJmnagcUegF9ABOMbPvh9tfLCZwTdEPU2B8eRmw0Dn3QnPHU5vAf7NXACOaOZQqg4DRgbHmRcBQM/tj84b0L4EzNpxze4G/UDnEGAt2Ajur/U9qKZUJPZZ8E1jnnNvT3IFUMxz42DlX5JwrA14ALgq3s1hM4JqiH4bAhcKngELn3EPNHU91ZpZoZh0Dr9tReYH6vWYNKsA5d5tz7nTnXDKVP2tvOOfCPiOKJjM7JXBBmsDwxGVATNwB5Zz7DPinmaUEVg0Dmv2CeQ3XEEPDJwE7gAvMrH3gd3YYlderwhJzz8Rsgin6YTOzPwPZQFcz2wnc5Zx7qnmjChoEXAdsDIw1A9zunFvefCEFdQeeCdwR0AJY7JyLqdv1YlQS8JfK33NaAn9yzv2teUM6zgxgYeBE6yPgB80cT1DgD96lwI+bO5bqnHNvm9lSYB1QDqwngmn1MXcboYiIeBOLQygiIuKBEriIiE8pgYuI+JQSuIiITymBi4j4lBK4iIhPKYGLiPjU/wd2PqQ4yMJ7UwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure()\n", | |
"ax = fig.add_subplot()\n", | |
"\n", | |
"for x in df.columns:\n", | |
" print(x)\n", | |
" df[x].hist(ax=ax, label=x)\n", | |
"\n", | |
"ax.legend()\n", | |
"\n", | |
"plt.show()\n", | |
"plt.close(fig)\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## subplot で1枚に複数フラフを描く" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"sepal length (cm)\n", | |
"sepal width (cm)\n", | |
"petal length (cm)\n", | |
"petal width (cm)\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAHSCAYAAAAZhx1RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABSMUlEQVR4nO3deZhcZZnw/+8NBBIgstO/SJg3qIhAAgGajIhAA4IoDBB/jKNXRBAlLjDiTEaN6Djg9qIvqCPjMnFgQH5R0SDLIMPIi/SwqDAJBhKIKGirgci+pIFgOt6/P7rSdjrd6aqu6lPb93NdfXXVqbPcz1On6qn7nOc8JzITSZIkSZKKtFm9A5AkSZIktR+TUUmSJElS4UxGJUmSJEmFMxmVJEmSJBXOZFSSJEmSVDiTUUmSJElS4bYocmM777xzTps2rchNlu35559nm222qXcYNWFZGlcrlceyNKZWKguMXp4lS5Y8kZm7FBhSy6lV29xq+14RrLPKWWeVs84qZ51VbnCdVdI2F5qMTps2jcWLFxe5ybJ1d3fT1dVV7zBqwrI0rlYqj2VpTK1UFhi9PBHx2+KiaU21aptbbd8rgnVWOeusctZZ5ayzyg2us0raZrvpSpIkSZIKZzIqSZIkSSqcyagkSZIkqXCFXjMqSbW0du1aVq5cyZo1a6paz3bbbceKFStqFFV9tVJZ4M/lmThxIlOnTmXChAn1DkmSVIFatdVFarW2dLzUom02GZXUtFauXMnkyZOZNm0aETHm9axevZrJkyfXMLL6aaWyQH95tt12W5588klWrlzJHnvsUe+QJEkVqFVbXaRWa0vHQ2bWpG22m66kprVmzRp22mmnpmncNDYRwU477dRUR9UlSf1sq1tTrdpmk1FJTc3GrT34PktS8/I7vDXV4n21m64KNW3+Dyuaf96MPk6vcJlK9Vxw/LiuXxqr7u5uLrzwQq6//vqyplfrmmuu4dWvfjX77LMPAF1dXVx44YV0dnZucrlVq1Zx5plnVh3P448/zqmnnsqNN95Y1XokNb+Rfi8U8btgJP5e0HDG2iY/8sgjfPCDH2TRokUbvTa4/f3c5z7HueeeC0BPTw8nnHACy5cvH3X9X/7yl9lxxx155zvfWVFcQ/3Lv/wLW2+9NWeccUZV6xmJyaikllHpwY7RtNsPj2uuuYYTTjhhIBkt1xe/+EXOPPPMqre/yy67MGXKFO644w4OPfTQqtcnSWo8ttX9Xv7ylw+biA41OBktV19fH5deeil33333WMMbcMYZZ3DooYeOWzJqN11JGqPnn3+e448/nv3335/p06dz5ZVXArBkyRKOOOIIDjroIN74xjeyatUqoP9I5znnnMPMmTOZPn06d911FwB33XUXhxxyCAcccACve93reOCBByqK4YwzzmDWrFkccMAB/PCH/Y38ZZddxlve8haOO+449txzTz7ykY8MLHPJJZfw6le/mlmzZnHmmWdy9tln85Of/ITrrruOD3/4w8ycOZOHHnoIgO9///vMmjWLV7/61dx2223DxnDVVVdx3HHHAbBu3Tr+4R/+genTp7Pffvtx8cUXAzBt2jQ+9rGPMXPmTDo7O7n77rt54xvfyCtf+Uq+8Y1vDKzr5JNPZuHChWWXX5KkTRlLW/2Rj3yk6rb6+OOP59577wXggAMO4FOf+hQAn/zkJ/nmN79JT08P06dPB+DFF1/kbW97G3vvvTezZ8/mxRdfBGD+/Pm8+OKLzJw5kzlz5gD97eyZZ57Jvvvuy7HHHjsw72A//vGPOfDAA9lii/7zjg8++CBveMMb2H///TnwwAN56KGH6O7u5ogjjuCkk07iFa94BfPnz2fhwoXMmjWLGTNmDPwO2HrrrZk2bdpAPdSayagkjdGNN97Iy1/+cu655x6WL1/Occcdx9q1a/nbv/1bFi1axJIlSzjjjDP4+Mc/PrDMCy+8wNKlS/na1742cJTxNa95Dbfddhs///nP+dSnPlXREdDPfvazHHXUUdx1113ccsstfOITn+D5558HYOnSpVx55ZUsW7aMK6+8kt///vc88sgjfPrTn+ZnP/sZd9xxB7/4xS8AeN3rXseJJ57I//k//4elS5fyyle+Eug/unrXXXfx5S9/mfPPP3+j7f/mN79hhx12YKuttgJgwYIF9PT0sHTpUu69996BxhPgL/7iL1i6dCmHHXYYp59+OosWLeJnP/sZ//RP/zQwT2dn54hJryRJlRpLW/3iiy9W3VYfdthh3HbbbTz77LNsscUW3HHHHQDcdtttHH744RvM+/Wvf52tt96aFStWcP7557NkyRIALrjgAiZNmsTSpUsHDtT+6le/4qyzzuK+++5j++2356qrrtpo23fccQcHHXTQwPM5c+Zw1llncc899/CTn/yEKVOmAHDPPffwjW98gxUrVnDFFVfwy1/+krvuuov3vOc9AweTYXzbZrvpStIYzZgxg3nz5vHRj36UE044gcMOO4zly5ezfPlyjjnmGKD/COb6L32At7/97QAcfvjhPPfcczzzzDOsXr2a0047jV/96ldEBGvXri07hh/96Edcd911XHjhhQC89NJL/O53vwPg6KOPZrvttgNgn3324be//S1PPPEERxxxBDvuuCMAf/3Xf80vf/nLEdf/lre8BYCDDjqInp6ejV5ftWoVu+yyy8Dz//t//y/ve9/7Bo7Grt8OwIknnjhQb729vUyePJnJkyez1VZb8cwzz7D99tuz66678sgjj5RdfkmSNmUsbfUpp5wCVNdWH3bYYXzlK19hjz324Pjjj+emm27ihRde4De/+Q177bXXBm3qrbfeygc/+EEA9ttvP/bbb78R17vHHnswc+ZMYNNt89577w3036bm4YcfZvbs2UD/vUHXO/jggwfK/cpXvpJjjz12oM5uueWWgfl23XXXgYPXtWYyKklj9OpXv5q7776bG264gU984hMcffTRzJ49m3333Zef/vSnwy4zdOS5iOAf//EfOfLII7n66qvp6emhq6ur7Bgyk6uuuoq99toL+PO90e68886Bs5UAm2++OX19fRWXcf06Rlp+0qRJZQ/rvn5dm2222QaxbbbZZgPrXrNmDZMmTao4TkmShlOvtvrggw9m8eLFvOIVr+CYY47hiSee4Jvf/OYGZyzHYmjbPlw33XLb5qFt8eB2enCbP55ts910JWmMHnnkEbbeemve8Y538OEPf5i7776bvfbai8cff3yggVu7di333XffwDLrr1W5/fbb2W677dhuu+149tln2W233YD+az0r8cY3vpGLL76YzAT6u9xsysEHH8x///d/8/TTT9PX17dB957JkyezevXqirb/6le/eoOjsscccwz/+q//OtCIPfXUUxWt75e//OXANTSSJFVrLG31D37wA6C6tnrLLbdk99135/vf/z6HHHIIhx12GBdeeOFGXXSh/wzst7/9bQCWL18+cK0pwIQJEyrqMQWw99578+CDDwL9bfvUqVO55pprgP4eVC+88EJF6xvPttkzo1IDqvVIc7XQrKPVjadly5bx4Q9/mM0224wJEybw9a9/nS233JJFixbxwQ9+kGeffZa+vj4+9KEPse+++wL93WMOOOAA1q5dy6WXXgrARz7yEU477TQ+85nPcPzxldXzP/7jP/KhD32I/fbbjz/96U/svvvum7w1ym677ca5557LrFmz2HHHHXnNa14z0JX3bW97G2eeeSZf+cpXyhrhD2Cbbbbhla98JQ8++CCvetWreM973sMvf/lL9ttvPyZMmDAwQFK5brnllorroB1FxETgVmAr+tvyRZn5TxFxGXAE8Gxp1tMzc2ldgpSkBjCWtnqrrbaqSVt92GGHcfPNNzNp0iQOO+wwVq5cyWGHHbbRfO9///t517vexd57783ee++9wdnTuXPnst9++3HggQfy2c9+tqztvulNb+LUU08deH7FFVfw3ve+l09+8pNMmDCB73//+2WtZ7077riD8847r6JlyhXrj6YXobOzMxcvXlzY9irR3d1dUde4RtbIZRnLfUYvWja+x0yKTLLKfW+aIRlthP1sxYoVA9dEVGN919bxVu59O6tRTll6e3vZdttt6evrY/bs2ZxxxhkD15KMxdVXX82SJUv4zGc+M+Z1rHf44Ydz7bXXssMOOwAblme49zsilmTm+FVog4r+PmTbZGZvREwAbgfOAd4HXJ+Z5R1NoHZtcyN8JzQb62xkm7rP6Hj/LhhJsx6Urfd+Vqu2uihdXV2cf/75HHHEEfUOpSqzZ8/mC1/4AnvuuWdV6/n5z3/OF7/4Ra644ophX1///g7ezyppm+2mK0lt5rzzzhsYsn6PPfbg5JNPrmp9s2fPZtq0aVXH9fjjj/P3f//3A4moRpb9ektPJ5T+iju6LElqaBdccMHA7Wqq8cQTT/DpT3+6BhENz266klSQ7u7ueocAMDDybi295z3vqXodu+yyS9WJcTuJiM2BJcCrgK9m5p0R8X7gsxHxSeBmYH5mvlTPOCWpmXR3d1c8fkIj2muvvQYGN6zG+hGHx8uoyWhE7A58C+ig/6jrgsz854g4DzgTeLw067mZecN4BSpJkv4sM9cBMyNie+DqiJgOfAz4A7AlsAD4KPCpoctGxFxgLkBHR0dNDpT09vY2zAGXZmGdjWzejOFH/+6YNPJr461Z36t672fbbbdd0yV369ata7qY62XNmjV0d3ePeT8r58xoHzAvM++OiMnAkoi4qfTalzKz9ofYJalMmbnREOxqPUWOb9BsMvOZiLgFOG5Qm/xSRPw78A8jLLOA/mSVzs7OrMX1ZPW+Lq0ZWWcjO70Rrxmd01WX7Var3vvZihUr2HbbbZuqrS5qLIlml5kDAzOOdT8b9ZrRzFyVmXeXHq8GVgC7VbwlSaqxiRMn8uSTT5qotLjM5Mknn9zgRt3tLiJ2KZ0RJSImAccAv4iIKaVpAZwMLK9XjJIEttWtqlZtc0WHliJiGnAAcCdwKHB2RLwTWEz/2dOnh1mm5l2BxkO9uzDUUiOXpdKuNUV0xymyrsp9b+rVBWlThsbdCPtZRLDNNtvw+9//vqr1tNLZ1VYqC/y5POvWreP555/nt7/9bb1DahRTgMtL141uBnwvM6+PiB9HxC5AAEvpH11Xkupm6tSprFy5kscff3z0mRvEmjVrPABahokTJzJ16tSq1lF2MhoR2wJXAR/KzOci4uvAp+m/jvTTwEXAGUOXG4+uQOOh3l0YaqmRyzJSt5uRFHJrlwK73ZT73lRaT0UYWk+NvJ9VyrI0rlYrT61k5r30HxweOv2oOoQjSSOaMGECe+yxR73DqEh3dzcHHLDRV6zGQVm3dindw+wqYGFm/gAgMx/NzHWZ+Sfgm8Cs8QtTkiRJktRKRk1GS9edXAKsyMwvDpo+ZdBss/G6FEmSJElSmcrp/3gocCqwLCKWlqadC7w9ImbS3023B3jvOMQnSZIkSWpBoyajmXk7/QMhDOU9RSVJkiRJY1LWNaOSJEmSJNWSyagkSZIkqXAmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkSZKkwpmMSpIkSZIKt0W9A2gV0+b/sN4hDJg3o4/T5/+QnguOr3cokiRJkjQsz4xKkiRJkgpnMipJkiRJKpzddCVJkqRRNNIlWet5SZaanWdGJUlqMhExMSLuioh7IuK+iDi/NH2PiLgzIh6MiCsjYst6xypJ0khMRiVJaj4vAUdl5v7ATOC4iHgt8HngS5n5KuBp4N31C1GSpE0zGZUkqclkv97S0wmlvwSOAhaVpl8OnFx8dJIklcdkVJKkJhQRm0fEUuAx4CbgIeCZzOwrzbIS2K1O4UmSNCoHMJIkqQll5jpgZkRsD1wNvKbcZSNiLjAXoKOjg+7u7qrj6e3trcl62ol1NrJ5M/qGnd4xaeTX2lE5+4/7WeWss8qNtc5MRiVJamKZ+UxE3AIcAmwfEVuUzo5OBR4eYZkFwAKAzs7O7OrqqjqO7u5uarGedmKdjez0EUaunTejj4uW+fN1vZ45XaPO435WOeuscmOtM7vpSpLUZCJil9IZUSJiEnAMsAK4BTilNNtpwLV1CVCSpDJ4aEmSpOYzBbg8Ijan/8Dy9zLz+oi4H/huRHwG+DlwST2DlCRpU0xGJUlqMpl5L3DAMNN/DcwqPiJJkipnN11JkiRJUuFMRiVJkiRJhTMZlSRJkiQVzmRUkiRJklS4UZPRiNg9Im6JiPsj4r6IOKc0fceIuCkiflX6v8P4hytJkiRJagXlnBntA+Zl5j7Aa4GzImIfYD5wc2buCdxcei5JkiRJ0qhGTUYzc1Vm3l16vJr+m2rvBpwEXF6a7XLg5HGKUZIkSZLUYiq6ZjQiptF/X7M7gY7MXFV66Q9AR21DkyRJkiS1qi3KnTEitgWuAj6Umc9FxMBrmZkRkSMsNxeYC9DR0UF3d3dVAY+X3t7eqmKbN6OvdsFUqWNSfzyNWNeV1tP6soynIuup3P2skfan9YbGXe1nppFYlsbVauWRJEl/VlYyGhET6E9EF2bmD0qTH42IKZm5KiKmAI8Nt2xmLgAWAHR2dmZXV1f1UY+D7u5uqont9Pk/rF0wVZo3o4+Llm1Bz5yueoeykUrraX1ZxlOR9VTuftZI+9N6Q+up2s9MI7EsjavVyiNJkv6snNF0A7gEWJGZXxz00nXAaaXHpwHX1j48SZIkSVIrKueU06HAqcCyiFhamnYucAHwvYh4N/Bb4K3jEqEkSZIkqeWMmoxm5u1AjPDy0bUNR5IkSZLUDioaTVeSJEmSpFowGZUkSZIkFc5kVJIkSZJUOJNRSZIkSVLhTEYlSWoyEbF7RNwSEfdHxH0RcU5p+nkR8XBELC39vbnesUqSNJJybu0iSZIaSx8wLzPvjojJwJKIuKn02pcy88I6xiZJUllMRiVJajKZuQpYVXq8OiJWALvVNypJkipjMipJUhOLiGnAAcCdwKHA2RHxTmAx/WdPnx5mmbnAXICOjg66u7urjqO3t7cm62kn1tnI5s3oG3Z6x6SRX2tH5ew/7meVs84qN9Y6MxmVJKlJRcS2wFXAhzLzuYj4OvBpIEv/LwLOGLpcZi4AFgB0dnZmV1dX1bF0d3dTi/W0E+tsZKfP/+Gw0+fN6OOiZf58Xa9nTteo87ifVc46q9xY68xPs6SyTBvyw2DejL4RfywUpeeC4+u6fameImIC/Ynowsz8AUBmPjro9W8C19cpPEmSRuVoupIkNZmICOASYEVmfnHQ9CmDZpsNLC86NkmSyuWZUUmSms+hwKnAsohYWpp2LvD2iJhJfzfdHuC99QhOkqRymIxKktRkMvN2IIZ56YaiY1HzG3oZhiQVxW66kiRJkqTCmYxKkiRJkgpnMipJkiRJKpzJqCRJkiSpcCajkiRJkqTCmYxKkiRJkgpnMipJkiRJKpzJqCRJkiSpcCajkiRJkqTCmYxKkiRJkgq3Rb0DkOpt2vwfFrateTP6OL3A7UmSGsvgNsc2QVK788yoJEmSJKlwJqOSJEmSpMKNmoxGxKUR8VhELB807byIeDgilpb+3jy+YUqSJEmSWkk5Z0YvA44bZvqXMnNm6e+G2oYlSZIkSWployajmXkr8FQBsUiSJEmS2kQ114yeHRH3lrrx7lCziCRJ0iZFxO4RcUtE3B8R90XEOaXpO0bETRHxq9J/22dJUsMa661dvg58GsjS/4uAM4abMSLmAnMBOjo66O7uHuMmx1dvb29Vsc2b0Ve7YKrUMak/nkas60rraX1ZWkUrlacRylKrfbzaz38jaaWyQOuVp4b6gHmZeXdETAaWRMRNwOnAzZl5QUTMB+YDH61jnJIkjWhMyWhmPrr+cUR8E7h+E/MuABYAdHZ2ZldX11g2Oe66u7upJrZGuk/YvBl9XLRsC3rmdNU7lI1UWk/ry9IqWqk8jVCWWu3j1X7+G0krlQVarzy1kpmrgFWlx6sjYgWwG3AS0FWa7XKgG5NRSVKDGlM33YiYMujpbGD5SPNKkqTxExHTgAOAO4GOUqIK8Aego15xSZI0mlFPa0TEd+g/yrpzRKwE/gnoioiZ9HfT7QHeO34hSpKk4UTEtsBVwIcy87mIGHgtMzMicoTlan4JjV2qyzP48oZGuNyh2VhnGyrnM+dns3LWWeXGWmejJqOZ+fZhJl9S8ZYkSVLNRMQE+hPRhZn5g9LkRyNiSmauKvViemy4ZcfjEhq7VJdn8OUqjXC5Q7OxzjZUzuUqfjYrZ51Vbqx1Vs1oupIkqQ6i/xToJcCKzPzioJeuA04rPT4NuLbo2CRJKpeHliRJaj6HAqcCyyJiaWnaucAFwPci4t3Ab4G31ic8SZJGZzLawqY10Ai/kqTayczbgRjh5aOLjEWSpLGym64kSZIkqXAmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkNZmIuDQiHouI5YOmnRcRD0fE0tLfm+sZoyRJozEZlSSp+VwGHDfM9C9l5szS3w0FxyRJUkVMRiVJajKZeSvwVL3jkCSpGlvUOwBJklQzZ0fEO4HFwLzMfHq4mSJiLjAXoKOjg+7u7qo33NvbW5P1tLp5M/oGHndM2vC5Rmedbaicz5yfzcpZZ5Uba52ZjEqS1Bq+DnwayNL/i4AzhpsxMxcACwA6Ozuzq6ur6o13d3dTi/W0utPn/3Dg8bwZfVy0zJ9ilbDONtQzp2vUefxsVs46q9xY68xuupIktYDMfDQz12Xmn4BvArPqHZMkSZsyajI6woh9O0bETRHxq9L/HcY3TEmStCkRMWXQ09nA8pHmlSSpEZRzZvQyNh6xbz5wc2buCdxcei5JkgoQEd8BfgrsFRErI+LdwBciYllE3AscCfxdXYOUJGkUo3a6z8xbI2LakMknAV2lx5cD3cBHaxmYJEkaXma+fZjJlxQeiCRJVRjrNaMdmbmq9PgPQEeN4pEkSZIktYGqhyPLzIyIHOn18Rg+fjxUO4RzIw0z3krDnrdSWaC1ytMIZanV90krDeHeSmWB1iuPJEn6s7Emo49GxJTMXFUaMOGxkWYcj+Hjx0O1QzgPHqq93lpp2PNWKgu0VnkaoSzlDGlfjlYawr2VygKtVx5JkvRnY+2mex1wWunxacC1tQlHkiRJktQOyrm1y3Aj9l0AHBMRvwLeUHouSZIkSVJZyhlNd7gR+wCOrnEskiRJkqQ2MdZuupIkSZIkjZnJqCRJkiSpcE05rOe0cRi5dt6MvoYaEVeSJEmSWplnRiVJkiRJhTMZlSRJkiQVzmRUkiRJklQ4k1FJkiRJUuFMRiVJkiRJhTMZlSRJkiQVrilv7SJJkiSp8YzHLRir1XPB8fUOQSPwzKgkSU0mIi6NiMciYvmgaTtGxE0R8avS/x3qGaMkSaMxGZUkqflcBhw3ZNp84ObM3BO4ufRckqSGZTIqSVKTycxbgaeGTD4JuLz0+HLg5CJjkiSpUiajkiS1ho7MXFV6/Aego57BSJI0GgcwkiSpxWRmRkSO9HpEzAXmAnR0dNDd3V31Nnt7e2uynlY3b0bfwOOOSRs+1+issw1dvPDaUefpmFTefLUyb0Zhmypbpd9Nfp9Vbqx1ZjIqSVJreDQipmTmqoiYAjw20oyZuQBYANDZ2ZldXV1Vb7y7u5tarKfVnT5opNF5M/q4aJk/xSphnVXOOoOeOV0Vze/3WeXGWmd205UkqTVcB5xWenwaUNypEEmSxsBkVJKkJhMR3wF+CuwVESsj4t3ABcAxEfEr4A2l55IkNaz2PmcvSVITysy3j/DS0YUGIklSFTwzKkmSJEkqnMmoJEmSJKlwJqOSJEmSpMKZjEqSJEmSCucARpKa1rRB9+urxrwZfRvc+68aPRccX5P11Eqt6qiWGq2OJElSfXhmVJIkSZJUOJNRSZIkSVLhquqmGxE9wGpgHdCXmZ21CEqSJEmS1Npqcc3okZn5RA3WI0mSJElqE3bTlSRJkiQVrtozown8KCIS+NfMXFCDmCRJkqrWiKNJS5L+rNpk9PWZ+XBE7ArcFBG/yMxbB88QEXOBuQAdHR10d3dXucn+2zDUWsek8VlvPViWxtVK5bEsw7t44bU1Wc9YdUzaMIZ5M+oYzAgqaQd6e3tr0m5IkqTGU1UympkPl/4/FhFXA7OAW4fMswBYANDZ2ZldXV3VbBKgZvcDHGzejD4uWtYat121LI2rlcpjWRpTM5SlZ05X2fN2d3dTi3ZDkiQ1njFfMxoR20TE5PWPgWOB5bUKTJIkSZLUuqo5fN4BXB0R69fz7cy8sSZRSZIkSZJa2piT0cz8NbB/DWORJEmSJLWJxr6wSJIkVSQieoDVwDqgLzM76xuRJEnDMxmVJKn1HJmZT9Q7CEmSNmXMAxhJkiRJkjRWJqOSJLWWBH4UEUtK9/qWJKkh2U1XkqTW8vrMfDgidgVuiohfZOYG9wAvJalzATo6Ouju7q56o729vTVZTy3Nm9FX7xA2qWNS48fYaKyzyllnVPzd1IjfZ41urHVmMipJUgvJzIdL/x+LiKuBWcCtQ+ZZACwA6OzszK6urqq3293dTS3WU0unz/9hvUPYpHkz+rhomT/FKmGdVc46g545XRXN34jfZ41urHVmN11JklpERGwTEZPXPwaOBZbXNypJkobX3odJJElqLR3A1REB/W38tzPzxvqGJEnS8ExGJUlqEZn5a2D/eschSVI5TEYlSVLVlj38bMNfoylJaixeMypJkiRJKpzJqCRJkiSpcCajkiRJkqTCmYxKkiRJkgpnMipJkiRJKpzJqCRJkiSpcCajkiRJkqTCmYxKkiRJkgpnMipJkiRJKtwW9Q5AkiRJksbLtPk/rGj+eTP6OL3CZZpdzwXH12W7nhmVJEmSJBXOZFSSJEmSVDiTUUmSJElS4UxGJUmSJEmFMxmVJEmSJBXOZFSSJEmSVLiqktGIOC4iHoiIByNifq2CkiRJY2PbLElqFmNORiNic+CrwJuAfYC3R8Q+tQpMkiRVxrZZktRMqjkzOgt4MDN/nZl/BL4LnFSbsCRJ0hjYNkuSmkY1yehuwO8HPV9ZmiZJkurDtlmS1DQiM8e2YMQpwHGZ+Z7S81OBv8zMs4fMNxeYW3q6F/DA2MMdVzsDT9Q7iBqxLI2rlcpjWRpTK5UFRi/P/8rMXYoKptHVuW1utX2vCNZZ5ayzyllnlbPOKje4zspum7eoYoMPA7sPej61NG0DmbkAWFDFdgoREYszs7PecdSCZWlcrVQey9KYWqks0HrlKUDd2mbfq8pZZ5WzzipnnVXOOqvcWOusmm66/wPsGRF7RMSWwNuA66pYnyRJqo5tsySpaYz5zGhm9kXE2cB/AZsDl2bmfTWLTJIkVcS2WZLUTKrppktm3gDcUKNY6q3huxJXwLI0rlYqj2VpTK1UFmi98oy7OrbNvleVs84qZ51VzjqrnHVWuTHV2ZgHMJIkSZIkaayquWZUkiRJkqQxabtkNCI2j4ifR8T1w7x2ekQ8HhFLS3/vqUeM5YqInohYVop18TCvR0R8JSIejIh7I+LAesRZjjLK0hURzw56bz5ZjzjLERHbR8SiiPhFRKyIiEOGvN407wuUVZ6meG8iYq9BMS6NiOci4kND5mmK96bMsjTF+wIQEX8XEfdFxPKI+E5ETBzy+lYRcWXpfbkzIqbVKdS2FxG7R8QtEXF/6T07Z5h5muJzVJQy66xpPq9FiIiJEXFXRNxTqrPzh5nH74VByqyzpvqdW4TYdF7gPjaMUeqs4n2sqmtGm9Q5wArgZSO8fuXQ+7E1uCMzc6T7IL0J2LP095fA10v/G9WmygJwW2aeUFg0Y/fPwI2ZeUr0j2a59ZDXm+19Ga080ATvTWY+AMyE/i9S+m93cfWQ2ZrivSmzLNAE70tE7AZ8ENgnM1+MiO/RPwLsZYNmezfwdGa+KiLeBnwe+JvCgxVAHzAvM++OiMnAkoi4KTPvHzRPU3yOClROnUETfF4L9BJwVGb2RsQE4PaI+M/M/Nmgefxe2FA5dQbN9zt3vG0qL3AfG15Nc6m2OjMaEVOB44F/q3csBTkJ+Fb2+xmwfURMqXdQrSwitgMOBy4ByMw/ZuYzQ2ZrmvelzPI0o6OBhzLzt0OmN817M8hIZWkmWwCTImIL+g92PDLk9ZOAy0uPFwFHR0QUGJ9KMnNVZt5derya/h8kuw2ZrRk/R+OmzDrTIKV9p7f0dELpb+ggJ34vDFJmnWmQMvIC97EhxiOXaqtkFPgy8BHgT5uY5/8tdStaFBG7b2K+RpDAjyJiSUTMHeb13YDfD3q+ksZtAEcrC8Ahpe4n/xkR+xYZXAX2AB4H/r3UheHfImKbIfM00/tSTnmgOd6bwd4GfGeY6c303qw3UlmgCd6XzHwYuBD4HbAKeDYzfzRktoH3JTP7gGeBnYqMUxsrdVk7ALhzyEvN+DkqxCbqDJrg81qkUlfApcBjwE2ZOeJ+5vdCvzLqDJrrd+54+zKbzgvcxzb2ZWqcS7VNMhoRJwCPZeaSTcz2H8C0zNwPuIk/Hw1pVK/PzAPp7xJ1VkQcXu+AqjBaWe4G/ldm7g9cDFxTcHzl2gI4EPh6Zh4APA/Mr29IVSmnPM3y3gBQ6mp8IvD9esdSrVHK0hTvS0TsQP/R5z2AlwPbRMQ76huVRhMR2wJXAR/KzOfqHU8zGKXOmuLzWqTMXJeZM4GpwKyImF7nkBpeGXXWbL9zx02ZeYEGGa9cqm2SUeBQ4MSI6AG+CxwVEf/f4Bky88nMfKn09N+Ag4oNsTKlMwpk5mP0Xy82a8gsDwODj0hMLU1rOKOVJTOfW9/9pHQPvQkRsXPhgY5uJbBy0NHIRfQnc4M1zftCGeVpovdmvTcBd2fmo8O81kzvDWyiLE30vrwB+E1mPp6Za4EfAK8bMs/A+1Lqyrsd8GShUWpA6Xq0q4CFmfmDYWZpts/RuButzpro81q40qUhtwDHDXnJ74URjFRnzfY7d5yNmhfgPjbUuORSbZOMZubHMnNqZk6jv1vbjzNzg6PvQ65pOZH+6zoaUkRsUxoIgVK3yWOB5UNmuw54Z/R7Lf3d31YVHOqoyilLRPw/6/vpR8Qs+vfdhvtCyMw/AL+PiL1Kk44Ghg5S0RTvC5RXnmZ5bwZ5OyN3a22a96ZkxLI00fvyO+C1EbF1Kd6j2fi79zrgtNLjU+j//vZaqDoovUeXACsy84sjzNZsn6NxVU6dNdHntRARsUtEbF96PAk4BvjFkNn8XhiknDprpt+5462cvAD3sQ2MVy7VjqPpbiAiPgUszszrgA9GxIn0j3z3FHB6PWMbRQdwdant2gL4dmbeGBHvA8jMbwA3AG8GHgReAN5Vp1hHU05ZTgHeHxF9wIvA2xr4C+FvgYWlLpS/Bt7VpO/LeqOVp2nem9LBjmOA9w6a1pTvTRllaYr3JTPvjIhF9HdT7AN+DiwY8t18CXBFRDxI/3fz2+oWsA4FTgWWla5NAzgX+Atovs9RQcqps6b4vBZoCnB59I8Wvhnwvcy83u+FTSqnzprpd25duI9Vrtp9LNr7u06SJEmSVA9t001XkiRJktQ4TEYlSZIkSYUzGZUkSZIkFc5kVJIkSZJUOJNRSZIkSVLhTEYlSZIkSYUzGZUkSZIkFc5kVJIkSZJUOJNRSZIkSVLhTEYlSZIkSYUzGZUkSZIkFc5kVJIkSZJUOJNRSZIkSVLhTEYlSZIkSYUzGZUkSZIkFc5kVJIkSZJUOJNRSZIkSVLhTEYlSZIkSYUzGZUkSZIkFc5kVJIkSZJUOJNRSZIkSVLhTEYlSZIkSYUzGZUkSZIkFW6LIje2884757Rp06pez/PPP88222xTfUBNqF3L3q7lBsvejmVv13JD5WVfsmTJE5m5yziG1PIGt83tvO+NlXVWOeusctZZZayvytWyzippmwtNRqdNm8bixYurXk93dzddXV3VB9SE2rXs7VpusOztWPZ2LTdUXvaI+O34RdMeBrfN7bzvjZV1VjnrrHLWWWWsr8rVss4qaZvtpitJkiRJKpzJqCRJkiSpcCajkiRJkqTCFXrNqCTV2tq1a1m5ciVr1qypdyg1s91227FixYp6h1EXI5V94sSJTJ06lQkTJtQhKklStYpsr9u5HR2rsdRZLdpmk1FJTW3lypVMnjyZadOmERH1DqcmVq9ezeTJk+sdRl0MV/bM5Mknn2TlypXssccedYpMklSNItvrdm5Hx6rSOqtV22w3XUlNbc2aNey0004tk4hqYxHBTjvt1FJnvyWp3dhet5Zatc0mo5Kang1b6/M9lqTm53d5a6nF+2kyKkkFu+yyy3jkkUdGne/0009n0aJFZU+v1uc+97mBxz09PUyfPr2s5b785S/zrW99q+rt/8u//AtXXHFF1euRJKkWqm2vR/ONb3xj2PZzcBu8dOlSbrjhhoHXzjvvPC688MJR152ZHHXUUTz33HMVxzXUG97wBp5++umq1zOcprxmdNnDz3L6/B/WO4wN9FxwfL1DkARMq/F3w3h8ti+77DKmT5/Oy1/+8pqvuxqf+9znOPfccytapq+vj0svvZS777676u2fccYZHHLIIXzgAx+oel3tIiI2BxYDD2fmCRGxB/BdYCdgCXBqZv6xiFhq/dmrBdtmqXHZXsP73ve+UedZunQpixcv5s1vfnNF677hhhvYf//9ednLXjbW8AaceuqpfO1rX+PjH/941esayjOjklSFnp4eXvOa1zBnzhz23ntvTjnlFF544QUAlixZwhFHHMFBBx3EG9/4RlatWsWiRYtYvHgxc+bMYebMmbz44ot86lOf4uCDD2b69OnMnTuXzCx7+8NtA6Crq4uPfvSjzJo1i1e/+tXcdtttALzwwgu89a1vZZ999mH27Nn85V/+JYsXL2b+/Pm8+OKLzJw5kzlz5gCwbt06zjzzTPbdd1+OPfZYXnzxxY22/+Mf/5gDDzyQLbboP7b54IMP8oY3vIH999+fAw88kIceeoju7m6OOOIITjrpJF7xilcwf/58Fi5cyKxZs5gxYwYPPfQQAFtvvTV/8Rd/wV133TX2N6T9nAMMHv7w88CXMvNVwNPAu+sSlSQ1mKLb68cee4yDDjoIgHvuuYeI4He/+x0Ar3zlK3nhhRc2OMu5ZMkS9t9/f/bff3+++tWvAvDHP/6RT37yk1x55ZXMnDmTK6+8EoD777+frq4uXvGKV/CVr3xl2O0vXLiQk046aeD5t771Lfbbbz/2339/Tj31VKD/jO773/9+Xvva17LffvvR3d3NGWecwd57783pp58+sOyJJ57Id77znbFU+6hMRiWpSg888AAf+MAHWLFiBS972cv42te+xtq1a/nbv/1bFi1axJIlSzjjjDP4+Mc/zimnnEJnZycLFy5k6dKlTJo0ibPPPpv/+Z//Yfny5bz44ovceOONZW13pG2s19fXx1133cWXv/xlzj//fAC+9rWvscMOO3D//ffz6U9/miVLlgBwwQUXMGnSJJYuXcrChQsB+NWvfsVZZ53Ffffdx/bbb89VV121UQx33HHHQGMLMGfOHM466yzuuecefvKTnzBlyhSgvyH+xje+wYoVK7jiiiv45S9/yV133cV73vMeLr744oHlDzjggIHEWZsWEVOB44F/Kz0P4ChgfV+xy4GT6xKcJDWgWrfX119//Yjb2nXXXVmzZg3PPfcct912G52dndx222389re/Zdddd2XrrbfeYP53vetdXHzxxdxzzz0D07bccks+9alP8Td/8zcsXbqUv/mbvwHgF7/4Bf/1X//FXXfdxfnnn8/atWs32v7g9vm+++7jM5/5DD/+8Y+55557+Od//ueB+Z5++ml++tOf8r//9//mxBNP5O/+7u+47777WLZsGUuXLgVghx124KWXXuLJJ58cc92PpCm76UpSI9l999059NBDAXjHO97BV77yFY477jiWL1/OMcccA/SfZVyfmA11yy238IUvfIEXXniBp556ile96lVlbfeBBx7Y5Dbe8pa3AHDQQQfR09MDwO23384555wDwPTp09lvv/1GXP8ee+zBzJkzN1rHYKtWrWLvvfcG+oeFf/jhh5k9ezbQf/+x9Q4++OCB2F75yldy7LHHAjBjxgxuueWWgfl22WWXYbejYX0Z+Aiwfiz+nYBnMrOv9HwlsFsd4pKkhlTr9nrfffflr/7qr0bc3ute9zruuOMObr31Vs4991xuvPFGMpPDDjtsg/meeeYZnnnmGQ4//HCgv1vsf/7nf4643uOPP56tttqKrbbail133ZVHH32UqVOnbjDPU089NXCrlh//+Mf89V//NTvvvDMAO+6448B8f/VXf0VEsM8++9DR0cGMGTMA2Hfffenp6Rn4HbDrrrvyyCOPsNNOO40Y11iYjEpSlYaOJhcRZCb77rsvP/3pTze57Jo1a/jABz7A4sWL2X333TnvvPPKHiZ9tG1stdVWAGy++eb09fUNO8+mrF9+/TqG66Y7adKksuIdvK7NNtts4Plmm222QWxr1qxh0qRJFcfabiLiBOCxzFwSEV1jWH4uMBego6OD7u5uAHp7ewceV2rejMr3sfE21rJUopo6a1fWWeVaoc622247Vq9ePW7rH7zudevWbbSt3t7eDeZ74YUXWLduHb29vbzmNa/h5ptv3mh969at4/nnn2f16tWsWbOG97///fz3f/83U6dO5XOf+xzPPvssq1evZu3atbz44osbbfPggw/m5ptv5te//jVHHXUUn/vc5+jr6+ONb3wjq1ev5qWXXmLChAmsXr2azBxY/vnnn+dPf/rTwHb/+Mc/Drw2eBno/83xzDPPsN12222w7S222IJnn32WzTbbbKN1rLd27dqB7QAbrHd9HQ6tr6HrWLNmTVX7psmoJFXpd7/7HT/96U855JBD+Pa3v83rX/969tprLx5//PGB6WvXruWXv/wl++67L5MnTx74Ml+fyO2888709vayaNGiTR5lHWxT2xjJoYceyve+9z2OPPJI7r//fpYtWzbw2oQJE1i7di0TJkwou+x77703Dz74IACTJ09m6tSpXHPNNZx88sm89NJLrFu3rux1Qf81p0ceeWRFy7SpQ4ETI+LNwETgZcA/A9tHxBals6NTgYeHWzgzFwALADo7O7OrqwvoT97WP65Uow0sCNAzp2vct1FNnbUr66xyrVBnK1asGDhTNx4Gr3v16tUbbWvbbbfl97//PcuXL+eQQw7hmmuuoauriwMPPJCnnnpqYPrgtnT77bfnT3/6E5MnT2bdunVEBNOmTWPdunX8x3/8B6eccgqTJ09mwoQJTJo0aaNtHnvssXzmM5/h8MMPZ7vttmOXXXbhpptu4sILL2Ty5MkDZzd33313dthhB+655x5e//rXc80117DZZpsxefJkdtllF1566aWBda9fZv3zzTbbjG233Xajba//jfCqV72KN7/5zcyePZv58+ez00478dRTT7HjjjtuEPdmm202sE1gg9cyk8cee4zp06cPjBGx3sSJEznggAPG/L6Nes1oREyMiLsi4p6IuC8izi9NvywifhMRS0t/M8cchSQ1sb322ouvfvWr7L333jz99NO8//3vZ8stt2TRokV89KMfZf/992fmzJn85Cc/AfoHDHjf+97HzJkz2WqrrTjzzDOZPn06b3zjGzn44IPL3u6mtjGSD3zgAzz++OPss88+fOITn2DfffcdOJo6d+5c9ttvv4EBjMrxpje9iVtvvXXg+RVXXMFXvvIV9ttvP173utfxhz/8oex1Adx5550DXaU0ssz8WGZOzcxpwNuAH2fmHOAW4JTSbKcB19YpRElqOEW319OmTSMzB7rfvv71r2f77bdnhx122Gjef//3f+ess85i5syZGwyMtP7g8eABjMpx/PHHD5yx3Hffffn4xz/OEUccwf7778/f//3fl70e6B9c6bWvfe1GiWgtxGijNpYGRNgmM3sjYgJwO/2j970PuD4zy76pTmdnZy5evLiaeAG4eOG1XLSssU7qFjV8fCscGRuLdi03WPbRyr5ixYqBaxbroaenhxNOOIHly5fXbJ3DHdGtlXXr1rF27VomTpzIQw89xBve8AYeeOABttxyyzGvc/bs2XzhC19gzz33rCq2n//853z+85/nu9/97rCvD/deR8SSzOysasNNrtRN9x9Kt3Z5Bf23dtkR+Dnwjsx8aVPLD26bq/m+addbu7Tzd/RYWWeVa4U6K7K9Hq4dHY/2upGtWrWKd77zndx0001lzb+p3x7nnHMOJ554IkcfffRGr1XbNo+a0WV/ttpbejqh9Ff+fQckSQ3jhRde4Mgjj2Tt2rVkJl/72teqSkShfyTeVatWVZ2MPvHEE3ziE5+oah3tKDO7ge7S418Ds+oZjySp/qZMmcKZZ57Jc889V/W9RqdPnz5sIloLZZ1eLN1UewnwKuCrmXlnRLwf+GxEfBK4GZg/2tFXSWo106ZNa6qjrJMnT6YWPVQG22uvvdhrr72qXs8xxxwzroNbSJLaV7O117Xw1re+tSbrOfPMM2uynuGUlYxm5jpgZkRsD1wdEdOBjwF/ALakfxCEjwKfGrrsSCP2VaNjUuON2lfUCGetMJraWLRrucGyj1b28R6drx6GG62uXWyq7NWO2CdJkhpLRRdeZuYzEXELcFxmXlia/FJE/DvwDyMsM+yIfdVoyGtGCxixD1rjmoGxaNdyg2Uv55rRbbfddqPbqzSz8bxmtNGNVPbMrHrEPklSfWVmS7XX7W60sYfKUc5ouruUzogSEZOAY4BfRMSU0rQATgba67y3pIYwceJEnnzyyZp8IaoxZSZPPvkkEydOrHcokqQxsr1uLbVqm8s5vTgFuLx03ehmwPcy8/qI+HFE7AIEsJT+0XUlqVBTp05l5cqVPP744/UOpWbWrFnTtonXSGWfOHEiU6dOrUNEkqRaKLK9bud2dKzGUme1aJvLGU33XmCjflGZeVRVW5akGpgwYQJ77LFHvcOoqe7u7rbtjtrOZZekVlZke21bUrl61dmo3XQlSZIkSao1k1FJkiRJUuFMRiVJkiRJhTMZlSRJkiQVzmRUkiRJklQ4k1FJkiRJUuFMRiVJkiRJhTMZlSRJkiQVzmRUkqQmExETI+KuiLgnIu6LiPNL0y+LiN9ExNLS38w6hypJ0oi2qHcAkiSpYi8BR2Vmb0RMAG6PiP8svfbhzFxUx9gkSSqLyagkSU0mMxPoLT2dUPrL+kUkSVLl7KYrSVITiojNI2Ip8BhwU2beWXrpsxFxb0R8KSK2ql+EkiRtmmdGJUlqQpm5DpgZEdsDV0fEdOBjwB+ALYEFwEeBTw1dNiLmAnMBOjo66O7uBqC3t3fgcaXmzegb03LjaaxlqUQ1ddaurLPKWWeVsb4qV686MxmVJKmJZeYzEXELcFxmXlia/FJE/DvwDyMss4D+ZJXOzs7s6uoC+pO39Y8rdfr8H45pufHUM6dr3LdRTZ21K+usctZZZayvytWrzuymK0lSk4mIXUpnRImIScAxwC8iYkppWgAnA8vrFaMkSaPxzKgkSc1nCnB5RGxO/4Hl72Xm9RHx44jYBQhgKfC+OsYoSdImjZqMRsRE4FZgq9L8izLznyJiD+C7wE7AEuDUzPzjeAYrSZIgM+8FDhhm+lF1CEeSpDEpp5vu+nuZ7Q/MBI6LiNcCnwe+lJmvAp4G3j1uUUqSJEmSWsqoyWj2G+5eZkcB62+qfTn916ZIkiRJkjSqsgYwGnovM+Ah4JnMXD+O+0pgt3GJUJIkSZLUcsoawGjovcyA15S7gZHuZVaNjkmNdz+zou7L0673TWrXcoNlb8eyt2u5ob3LLklSu6loNN1B9zI7BNg+IrYonR2dCjw8wjLD3susGhcvvJaLljXWQMBF3MsM2ve+Se1abrDs7Vj2di03tHfZJTW2aXW8l+68GX3D3su354Lj6xCNVDujdtMd4V5mK4BbgFNKs50GXDtOMUqSJEmSWkw5pxdHupfZ/cB3I+IzwM+BS8YxTkmSJElSCxk1Gd3Evcx+Dcwaj6AkSZIkSa2tsS68lNSw6nGtzEjXyKzntTKSJEnNq6xbu0iSJEmSVEsmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkNZmImBgRd0XEPRFxX0ScX5q+R0TcGREPRsSVEbFlvWOVJGkkJqOSJDWfl4CjMnN/YCZwXES8Fvg88KXMfBXwNPDu+oUoSdKmmYxKktRksl9v6emE0l8CRwGLStMvB04uPjpJkspjMipJUhOKiM0jYinwGHAT8BDwTGb2lWZZCexWp/AkSRrVFvUOQJIkVS4z1wEzI2J74GrgNeUuGxFzgbkAHR0ddHd3A9Db2zvwuFLzZvSNPlPBxlqWSlRTZ+2qWeusnvt4x6Tht9+M9ViEZt3H6qledWYyKklSE8vMZyLiFuAQYPuI2KJ0dnQq8PAIyywAFgB0dnZmV1cX0P/Ddv3jSp0+/4djWm489czpGvdtVFNn7apZ66ye+/i8GX1ctGzjn+1F7OPNqFn3sXqqV53ZTVeSpCYTEbuUzogSEZOAY4AVwC3AKaXZTgOurUuAkiSVwTOjkiQ1nynA5RGxOf0Hlr+XmddHxP3AdyPiM8DPgUvqGaQkSZtiMipJUpPJzHuBA4aZ/mtgVvERSZJUObvpSpIkSZIK55lRqQFNGzRIwrwZfQ05MIgkSZJUjVHPjEbE7hFxS0TcHxH3RcQ5pennRcTDEbG09Pfm8Q9XkiRJktQKyjkz2gfMy8y7I2IysCQibiq99qXMvHD8wpMkSZIktaJRk9HMXAWsKj1eHRErgN3GOzBJkiRJUuuqaACjiJhG/+h9d5YmnR0R90bEpRGxQ62DkyRJkiS1prIHMIqIbYGrgA9l5nMR8XXg00CW/l8EnDHMcnOBuQAdHR10d3dXHXTHpP5BXRpJLcpVjt7e3sK21UjardyD9+9G3N+LMlrZW3WfaLf9fbB2LrskSe2mrGQ0IibQn4guzMwfAGTmo4Ne/yZw/XDLZuYCYAFAZ2dndnV1VRkyXLzwWi5a1lgDAffM6SpkO93d3dSiDptNu5X79CGj6Tba/l6U0cpe1OeuaO22vw/WzmWXJKndlDOabgCXACsy84uDpk8ZNNtsYHntw5MkSZIktaJyTrccCpwKLIuIpaVp5wJvj4iZ9HfT7QHeOw7xSZIkSZJaUDmj6d4OxDAv3VD7cCRJkiRJ7aCi0XQlSZIkSaoFk1FJkiRJUuFMRiVJkiRJhTMZlSSpyUTE7hFxS0TcHxH3RcQ5pennRcTDEbG09PfmescqSdJI2vPmhZIkNbc+YF5m3h0Rk4ElEXFT6bUvZeaFdYxNkqSymIxKktRkMnMVsKr0eHVErAB2q29UkiRVxm66kiQ1sYiYBhwA3FmadHZE3BsRl0bEDvWLTJKkTfPMqCRJTSoitgWuAj6Umc9FxNeBTwNZ+n8RcMYwy80F5gJ0dHTQ3d0NQG9v78DjSs2b0Tem5cbTWMtSiWrqrF01a53Vcx/vmDT89puxHovQrPtYPdWrzkxGJUlqQhExgf5EdGFm/gAgMx8d9Po3geuHWzYzFwALADo7O7Orqwvo/2G7/nGlTp//wzEtN5565nSN+zaqqbN21ax1Vs99fN6MPi5atvHP9iL28WbUrPtYPdWrzuymK0lSk4mIAC4BVmTmFwdNnzJottnA8qJjkySpXJ4ZlSSp+RwKnAosi4ilpWnnAm+PiJn0d9PtAd5bj+AkSSqHyagkSU0mM28HYpiXbig6FkmSxspuupIkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXCjDmAUEbsD3wI66B+db0Fm/nNE7AhcCUyjf8S+t2bm0+MXqiRJkqRGNq0B7jk8b0bfBveF7bng+DpGo00p58xoHzAvM/cBXgucFRH7APOBmzNzT+Dm0nNJkiRJkkY1ajKamasy8+7S49XACmA34CTg8tJslwMnj1OMkiRJkqQWU9E1oxExDTgAuBPoyMxVpZf+QH83XkmSJEmSRjXqNaPrRcS2wFXAhzLzuYg/32s7MzMicoTl5gJzATo6Ouju7q4qYICOSf19wRtJLcpVjt7e3sK21UjardyD9+9G3N+LMlrZW3WfaLf9fbB2LrskSe2mrGQ0IibQn4guzMwflCY/GhFTMnNVREwBHhtu2cxcACwA6OzszK6urqqDvnjhtVy0rOw8uhA9c7oK2U53dze1qMNm027lHnzR/bwZfQ23vxdltLIX9bkrWrvt74O1c9klSWo3o3bTjf5ToJcAKzLzi4Neug44rfT4NODa2ocnSZIkSWpF5ZxuORQ4FVgWEUtL084FLgC+FxHvBn4LvHVcIpQkSZIktZxRk9HMvB2IEV4+urbhSJIkSZLaQUWj6UqSJEmSVAsmo5IkNZmI2D0ibomI+yPivog4pzR9x4i4KSJ+Vfq/Q71jlSRpJCajkiQ1nz5gXmbuA7wWOCsi9gHmAzdn5p7AzaXnkiQ1JJNRSZKaTGauysy7S49XAyuA3YCTgMtLs10OnFyXACVJKoPJqCRJTSwipgEHAHcCHZm5qvTSH4COesUlSdJoyrm1iyQ1pGnzf1jvEDbSc8Hx9Q5BbSQitgWuAj6Umc/13xq8X2ZmROQIy80F5gJ0dHTQ3d0NQG9v78DjSs2b0Tem5cbTWMtSiWrqrF01a53Vcx/vmDT89huxHhvhu2BofTViPTWaen0uTUYlSWpCETGB/kR0YWb+oDT50YiYkpmrImIK8Nhwy2bmAmABQGdnZ3Z1dQH9P9jWP67U6Y14cGhO17hvo5o6a1fNWmf13MfnzejjomUb/2wvYh+vVCN8Fwytr0asp0ZTr8+l3XQlSWoy0X8K9BJgRWZ+cdBL1wGnlR6fBlxbdGySJJXLM6OSJDWfQ4FTgWURsbQ07VzgAuB7EfFu4LfAW+sTniRJozMZlSSpyWTm7UCM8PLRRcYiSdJY2U1XkiRJklQ4k1FJkiRJUuFMRiVJkiRJhTMZlSRJkiQVzmRUkiRJklQ4k1FJkiRJUuFMRiVJkiRJhRs1GY2ISyPisYhYPmjaeRHxcEQsLf29eXzDlCRJkiS1knLOjF4GHDfM9C9l5szS3w21DUuSJEmS1MpGTUYz81bgqQJikSRJkiS1iS2qWPbsiHgnsBiYl5lPDzdTRMwF5gJ0dHTQ3d1dxSb7dUyCeTP6ql5PLdWiXOXo7e0tbFuNpN3KPXj/bsT9vSjNWPZa7Kfttr8P1s5llySp3Yw1Gf068GkgS/8vAs4YbsbMXAAsAOjs7Myurq4xbvLPLl54LRctqyaPrr2eOV2FbKe7u5ta1GGzabdynz7/hwOP583oa7j9vSjNWPZafBe02/4+WDuXXZKkdjOm0XQz89HMXJeZfwK+CcyqbViSJEmSpFY2pmQ0IqYMejobWD7SvJIkSZIkDVXOrV2+A/wU2CsiVkbEu4EvRMSyiLgXOBL4u3GOU5IklXjbNUlSKxj1YqzMfPswky8Zh1gkSVJ5LgP+BfjWkOlfyswLiw9HkqTKjambriRJqh9vuyZJagUmo5IktY6zI+LeUjfeHeodjCRJm9Jc90yQJEkjKfu2ayPdA7ya+7w24j2Bi7hnrffGrVyz1lk99/GR7rvdiPXYCN8FQ+urEeup0dTrc2kyKklSC8jMR9c/johvAtdvYt5h7wFezX1eB98fuVEUcQ9w741buWats3ru4yPdd7uo+9xXohG+C4bWVyPWU6Op1+fSbrqSJLUAb7smSWo2nhmtkWkFHQWaN6Ov7CNOPRccP87RSJLqoXTbtS5g54hYCfwT0BURM+nvptsDvLde8UmSVA6TUUmSmoy3XZMktQKTUUmSJEkqSFE9Kitx2XHb1GW7XjMqSZIkSSqcyagkSZIkqXAmo5IkSZKkwpmMSpIkSZIKZzIqSZIkSSqcyagkSZIkqXAmo5IkSZKkwnmfUUmqoVrcO2zejD5Or9E9yHouOL4m65EkSaq1Uc+MRsSlEfFYRCwfNG3HiLgpIn5V+r/D+IYpSZIkSWol5XTTvQw4bsi0+cDNmbkncHPpuSRJkiRJZRk1Gc3MW4Gnhkw+Cbi89Phy4OTahiVJkiRJamVjHcCoIzNXlR7/AeioUTySJEmSpDZQ9QBGmZkRkSO9HhFzgbkAHR0ddHd3V7tJOib1D/DRjiopey3qulH09va2VHlGM/g9dn9vv7LXstzN9rlpt8+6JEntbKzJ6KMRMSUzV0XEFOCxkWbMzAXAAoDOzs7s6uoa4yb/7OKF13LRsvYcCHjejL6yy94zp2t8gylQd3c3tdh3msXgkVQrec9bTbuWvZblbrbvgXb7rI9VRFwKnAA8lpnTS9N2BK4EpgE9wFsz8+l6xShJ0mjG2k33OuC00uPTgGtrE44kSSrDZTi4oCSpyZVza5fvAD8F9oqIlRHxbuAC4JiI+BXwhtJzSZJUAAcXlCS1glH7gWXm20d46egaxyJJksbOwQUlSU2l/S7GkiSpxY11cMFqBpBqxMHGihgMy0G3KtesdVbPfXykge0asR4b4btgaH01Wj01Qh0NVa/PpcmoJEmtoerBBasZQGrwwGuNoogBvBx0q3LNWmf13MdHGtiuEQepa4TvgqH11Wj11Ah1NNRlx21Tl8/lWAcwkiRJjcXBBSVJTcVkVJKkJuPggpKkVmA3XUmSmoyDC0pS+aY1YLdY9TMZVdvzC0qSJEkqnt10JUmSJEmFMxmVJEmSJBXOZFSSJEmSVDivGZUkSS2piDEB5s3oq+iegT0XHD+O0bQOx3OQ2oNnRiVJkiRJhTMZlSRJkiQVzmRUkiRJklQ4k1FJkiRJUuEcwEiSJKmNFT1YUKWDPklqXZ4ZlSRJkiQVzmRUkiRJklS4qrrpRkQPsBpYB/RlZmctgpIkSZIktbZaXDN6ZGY+UYP1SJIkSSpT0df7SrXmAEaSJLUQey1JkppFtcloAj+KiAT+NTMXDJ0hIuYCcwE6Ojro7u6ucpPQMal/JLZ2VEnZa1HXjaK3t3fcytPo+5L7e/uVvZblvnjhtTVZTy3N2G27EV8bz896m7HXkiSp4VWbjL4+Mx+OiF2BmyLiF5l56+AZSgnqAoDOzs7s6uqqcpP9P64uWtaeJ3Xnzegru+w9c7rGN5gCdXd3U4t9ZziNPrx8Je95q2nXsrd6uTf13TSen3VJktRYqhpNNzMfLv1/DLgamFWLoCRJ0pit77W0pNQ7SZKkhjTmQ+8RsQ2wWWauLj0+FvhUzSKTJEljMWqvpZEuoammm3Q7dqmHyrvVN2I39KLfu3a9BKMa1lllrK/K1esymWr6gXUAV0fE+vV8OzNvrElUkiRpTAb3WoqI9b2WyrqEpppu0o1+ycN4qbRbfSNeQlP0e9fqlyKMB+usMtZX5S47bpu6XCYz5ncpM38N7F/DWCRJUhXstSRJaiYeMpAkqXXYa0mS1DRMRiVJahH2WpIkNZOqRtOVJEmSJGksTEYlSZIkSYUzGZUkSZIkFc5rRlWoaWMcPn7ejL62vW2AJEmS1Io8MypJkiRJKpzJqCRJkiSpcCajkiRJkqTCmYxKkiRJkgpnMipJkiRJKpzJqCRJkiSpcCajkiRJkqTCmYxKkiRJkgpnMipJkiRJKtwW9Q5AkiSpXUyb/8N6hyBJDaOqM6MRcVxEPBARD0bE/FoFJUmSxsa2WZLULMacjEbE5sBXgTcB+wBvj4h9ahWYJEmqjG2zJKmZVHNmdBbwYGb+OjP/CHwXOKk2YUmSpDGwbZYkNY1qktHdgN8Per6yNE2SJNWHbbMkqWlEZo5twYhTgOMy8z2l56cCf5mZZw+Zby4wt/R0L+CBsYc7YGfgiRqspxm1a9nbtdxg2dux7O1abqi87P8rM3cZr2CaTQ3a5nbe98bKOqucdVY566wy1lflallnZbfN1Yym+zCw+6DnU0vTNpCZC4AFVWxnIxGxODM7a7nOZtGuZW/XcoNlb8eyt2u5ob3LXiNVtc3Wf+Wss8pZZ5WzzipjfVWuXnVWTTfd/wH2jIg9ImJL4G3AdbUJS5IkjYFtsySpaYz5zGhm9kXE2cB/AZsDl2bmfTWLTJIkVcS2WZLUTKrppktm3gDcUKNYKlHTbr9Npl3L3q7lBsvejtq13NDeZa+JKttm679y1lnlrLPKWWeVsb4qV5c6G/MARpIkSZIkjVU114xKkiRJkjQmTZWMRsSlEfFYRCyvdyxFiojdI+KWiLg/Iu6LiHPqHVNRImJiRNwVEfeUyn5+vWMqUkRsHhE/j4jr6x1LkSKiJyKWRcTSiFhc73iKFBHbR8SiiPhFRKyIiEPqHdN4i4i9Su/1+r/nIuJD9Y6rlUXEcRHxQEQ8GBHzh3l9q4i4svT6nRExrQ5hNpQy6uz0iHh80H78nnrE2ShG+80W/b5Sqs97I+LAomNsNGXUWVdEPDtoH/tk0TE2knJ+H7ufbajMOit0P6vqmtE6uAz4F+BbdY6jaH3AvMy8OyImA0si4qbMvL/egRXgJeCozOyNiAnA7RHxn5n5s3oHVpBzgBXAy+odSB0cmZnteI+wfwZuzMxTSqOhbl3vgMZbZj4AzIT+AzD034rk6nrG1MpKdfxV4BhgJfA/EXHdkDbl3cDTmfmqiHgb8Hngb4qPtjGUWWcAVw69p2sbu4xN/2Z7E7Bn6e8vga+X/rezyxj9d+5tmXlCMeE0vHJ+H7ufbajcnKKw/aypzoxm5q3AU/WOo2iZuSoz7y49Xk1/crJbfaMqRvbrLT2dUPpriwudI2IqcDzwb/WORcWIiO2Aw4FLADLzj5n5TF2DKt7RwEOZ+dt6B9LCZgEPZuavM/OPwHeBk4bMcxJweenxIuDoiIgCY2w05dSZBinjN9tJwLdK7fzPgO0jYkox0TWmdv2dO1Zl/j52PxukEXOKpkpGBaWuUgcAd9Y5lMKUuqouBR4DbsrMdin7l4GPAH+qcxz1kMCPImJJRMytdzAF2gN4HPj3Uvfsf4uIbeodVMHeBnyn3kG0uN2A3w96vpKNf4wMzJOZfcCzwE6FRNeYyqkzgP+31BVwUUTsXkxoTavcOtWGDilduvSfEbFvvYNpFJv4fex+NoJRcorC9jOT0SYSEdsCVwEfyszn6h1PUTJzXWbOBKYCsyJiep1DGncRcQLwWGYuqXcsdfL6zDyQ/u41Z0XE4fUOqCBbAAcCX8/MA4DngY2uTWtVpW7JJwLfr3cs0hj8BzAtM/cDbuLPZ5alWrkb+F+ZuT9wMXBNfcNpDO36+7gao9RZofuZyWiTKF0veRWwMDN/UO946qHUXfEW4Lg6h1KEQ4ETI6KH/u5gR0XE/1ffkIqTmQ+X/j9G/7WDs+obUWFWAisHnf1fRH9y2i7eBNydmY/WO5AW9zAw+Kzd1NK0YeeJiC2A7YAnC4muMY1aZ5n5ZGa+VHr6b8BBBcXWrMrZDzVIZj63/tKl0v2EJ0TEznUOq67K+H3sfjbEaHVW9H5mMtoEStfpXAKsyMwv1jueIkXELhGxfenxJPoHj/hFXYMqQGZ+LDOnZuY0+rst/jgz31HnsAoREduULqqn1EX1WKAtRtDOzD8Av4+IvUqTjgbaYaCy9d6OXXSL8D/AnhGxR+ls9NuA64bMcx1wWunxKfR/B7XF9fojGLXOhlyHdiL912JpZNcB7yyNdvpa4NnMXFXvoBpZRPw/66/djohZ9P+Ob9uDRGX+PnY/G6ScOit6P2uq0XQj4jtAF7BzRKwE/ikzL6lvVIU4FDgVWFa6dhLg3NLRilY3Bbi8NJLhZsD3MrOtbnPShjqAq0vfg1sA387MG+sbUqH+FlhY+sH7a+BddY6nEKUDD8cA7613LK0uM/si4mzgv4DNgUsz876I+BSwODOvo//HyhUR8SD9A6q8rX4R11+ZdfbBiDiR/tEqnwJOr1vADWC432z0D0JIZn4DuAF4M/Ag8AJt8l23KWXU2SnA+yOiD3gReFubHyQa9vcx8BfgfjaCcuqs0P0s2nsfliRJkiTVg910JUmSJEmFMxmVJEmSJBXOZFSSJEmSVDiTUUmSJElS4UxGJUmSJEmFMxmVJEmSJBXOZFSSJEmSVDiTUUmSJElS4f5/A6WgBplnyWYAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1152x576 with 4 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure(figsize=(16, 8))\n", | |
"\n", | |
"for i, x in enumerate(df.columns, start=1):\n", | |
" print(x)\n", | |
" ax = fig.add_subplot(2,2,i)\n", | |
" df[x].hist(ax=ax, label=x)\n", | |
" ax.legend()\n", | |
"\n", | |
"plt.show()\n", | |
"plt.close(fig)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment