Created
May 12, 2021 16:30
-
-
Save ariG23498/c5c9b32a6b34028eaa7e32a49f3f7172 to your computer and use it in GitHub Desktop.
PIL wandb images
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "scratchpad", | |
"provenance": [], | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"display_name": "Python 3", | |
"name": "python3" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"11cbc06d63fe453d89fc766a2c6583eb": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "VBoxModel", | |
"state": { | |
"_view_name": "VBoxView", | |
"_dom_classes": [], | |
"_model_name": "VBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_bdf02a7c3afd42039686f10116104425", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_5774efd745814abaa20b6cb4e6ad034e", | |
"IPY_MODEL_9e49b297ba4d4160a1d90fb2b435881d" | |
] | |
} | |
}, | |
"bdf02a7c3afd42039686f10116104425": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"5774efd745814abaa20b6cb4e6ad034e": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "LabelModel", | |
"state": { | |
"_view_name": "LabelView", | |
"style": "IPY_MODEL_2019cb7b13d041a6895a14d0ad99c3cc", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "LabelModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 0.02MB of 0.02MB uploaded (0.00MB deduped)\r", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_a5a748c18b3e42e2883746646b710137" | |
} | |
}, | |
"9e49b297ba4d4160a1d90fb2b435881d": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_899918d96a2a4444b3e427ff81932db8", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "", | |
"max": 1, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 1, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_fd9ee87194964cb79573ba64e98238bc" | |
} | |
}, | |
"2019cb7b13d041a6895a14d0ad99c3cc": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"a5a748c18b3e42e2883746646b710137": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"899918d96a2a4444b3e427ff81932db8": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"fd9ee87194964cb79573ba64e98238bc": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
} | |
} | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/ariG23498/c5c9b32a6b34028eaa7e32a49f3f7172/scratchpad.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "lIYdn1woOS1n" | |
}, | |
"source": [ | |
"import PIL\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt" | |
], | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "EdezNUV0Wxtx" | |
}, | |
"source": [ | |
"ar = [(np.random.rand(20,20,3)*225).astype('uint8') for i in range(10)]" | |
], | |
"execution_count": 33, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 282 | |
}, | |
"id": "a3zD1u3sYC8W", | |
"outputId": "857c0b27-1fe6-48ab-dfea-2a092e76f3e6" | |
}, | |
"source": [ | |
"plt.imshow(ar[0])" | |
], | |
"execution_count": 34, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.image.AxesImage at 0x7f851defdc10>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 34 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD4CAYAAADl7fPiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAXsklEQVR4nO3de5yWY/4H8M/HdFJNmnSgohwSrUNoKwrZ6LSIJVvSwUZZWrIlLbtqc8pG/ZBVE6kUwm4K/Whk91eWMFIUxcjQjA50PilT398fc7e/uabn0fc3zxyemf28X69e8zz3/Znrvp6Z6Tv3/dzXXBfNDCIiBxxW1h0QkeSioiAiARUFEQmoKIhIQEVBRAKVyroDsdQ4vKal1TrSla26sbK73apHbHFnU7jJnV1dz/dlrPaV/8ud1ijVncW67e6opTZyZ/duWe3O1qxd251du6+qv90f97uzKXl13NkdNbJcua1p/r4ekdPAna3UYLc7u6uqvw91tu5y5TZu2YodO3cz1r6kLApptY7E4GvucGVPnOr/IT+x6xx39ogqM93ZHjfUc+VO6VfX3eZV95/vzu57YKE7+2PHe9zZb1/u7c6ec2kXd/b+7Se4s+3W7nFna393tTu7qO3lrtyrVzV1t9ntjtvc2bRbVrqzS09q4s5e8+oSV+6BifF/vnX5ICKBhIoCyS4kV5HMIjkixv6qJGdF+98j2TSR44lIyStyUSCZAuBxAF0BtADQi2SLQrEBADab2YkAxgN4sKjHE5HSkciZQmsAWWa22sz2AngeQPdCme4ApkWPXwLQkWTMNzdEJDkkUhQaAVhT4HlOtC1mxszyAGwFEPO2AsmBJDNJZu7cvSOBbolIIpLmjUYzSzezVmbWqsbhNcu6OyL/sRIpCrkAjinwvHG0LWaGZCUARwDYmMAxRaSEJVIUPgDQjORxJKsA6AlgbqHMXAD9osdXAXjL9LfaIkmtyIOXzCyP5GAAbwBIATDFzFaQHA0g08zmAngKwDMkswBsQn7hEJEkxmT8xX1ypTRLT+3gyk4+Za273Yt6r3Jn31rgH0nXcO1DrlzbLqe627xu6SB39nedR7qzJ5x3mjtb5SL/12D4pj+5s+P3DXZnG5w2w52dcPkF7uzs832jW9OuXXPoUKTtqCvd2SaH13dnL3tyuTv70XW+kZqPjLoZa776POadwKR5o1FEkoOKgogEVBREJKCiICIBFQURCagoiEhARUFEAioKIhJQURCRgIqCiASScuLWvKZ18f1DA1zZK6r7Z7r9KNs/XLRau6fd2Vce+Isr90baz9xttnj4End23QNnurNdb3/LnX080z+jda9JvslrAWCQPeXOjulxsTvbvNFQd/aEXh+5cpeP9X9tr8nwzUAOAG1+8w939p2WvqHLADCjw3Gu3NTU+P9vdKYgIgEVBREJqCiISEBFQUQCKgoiElBREJGAioKIBBJZIeoYkv8g+SnJFSRvjZHpQHIryaXRv7sT666IlLREBi/lARhqZktIpgL4kGSGmX1aKLfIzPwjcUSkTBX5TMHM1prZkujxdgCf4eAVokSknCmWYc7RatJnAngvxu5zSC4D8C2AYWa2Ik4bAwEMBICG1VPRcmaG69gzav7G3c+ebRe7sykf1HBn26b4Zmmu/f697jYbLD/Znf1u4CvubP+fd3Bn7xvtn805+9sT3dlT6jXw92HsPnd2+sbZ7my97+5z5e5uvcjd5le9f3BnL68+yp3t0WK9O3v9mLNcua/XxZ/FPeE3GknWBPA3AEPMbFuh3UsANDGzMwA8BuDleO0UXDauTtXDE+2WiBRRQkWBZGXkF4SZZvb3wvvNbJuZ7YgezwNQmWTdRI4pIiUrkbsPRP4KUJ+Z2bg4maMOLD1PsnV0PK0lKZLEEnlPoR2APgA+Ibk02nYngGMBwMwmIn/9yN+SzAOwG0BPrSUpktwSWUvybQAxl50qkJkAYEJRjyEipU8jGkUkoKIgIgEVBREJqCiISEBFQUQCSTmb895t9fB1xm9d2S5VJrvbfaySfyjumtSDxmLF1ejNHq5cldd9Q2sBYPf4Oe7s6nPudGdHjkt3Zx94dZo726DF0kOHIg2nxBzpHtPYRr90Z68Z/jd39qU/xx1cG9hP/3+RVvdd6M6e/uQJ7uy1QzLd2fv2DHPl1lTNibtPZwoiElBREJGAioKIBFQURCSgoiAiARUFEQmoKIhIQEVBRAIqCiISSMoRjbnNtuJPU+a5sutmnO5u954mHdzZSZ/7vzQv3F7Tlbtv/hHuNttMqu7Odn7zY3e24aIF7ux3v7vYnW35SVN3dkidru7sRZvP9WcX+Uehtq76oCt3wZrb3G2+0usod/ajDN/PDAA8vdA/JUn6sb7f81uqxB9VqjMFEQmoKIhIoDimeM8m+Um0LNxBf7nBfI+SzCL5MUnfxPQiUiaK6z2FC83s+zj7ugJoFv1rA+CJ6KOIJKHSuHzoDmC65VsMoDbJo0vhuCJSBMVRFAzAfJIfRku/FdYIwJoCz3MQY81JkgNJZpLMzNu8sxi6JSJFURyXD+3NLJdkfQAZJFea2cL/byNmlg4gHQBqnnKM1oYQKSMJnymYWW70cQOA2QBaF4rkAjimwPPG0TYRSUKJriVZg2TqgccAOgFYXig2F0Df6C5EWwBbzWxtIscVkZKT6OVDAwCzo+UiKwF41sxeJ3kj8O+l4+YB6AYgC8AuANcleEwRKUFMxqUdDzv+CKs6ur0rO3BdX3e71R9u5c4+9Upnd7bd1btcuQu2+oZuA8Az93zhzn7TyD98+paZ/qG4v9j2ojubc61/0tQtv6/qzrZv8K072278Pe5sm4UprtzeGf7vw6ejr3FnF5y72Z0de8l0d/adure6cms+6oUftq+IueyjRjSKSEBFQUQCKgoiElBREJGAioKIBFQURCSgoiAiARUFEQmoKIhIQEVBRAJJOZsz8g6Dba3mis5p4R8GO2vbLH8X+n7jzm691zeR1PLsHe42s+kfYlz9lsJ/mBrfxX1Gu7PXrM92Z+8cdaU7e/7917qzW76r785axhB3tvaS81y5HvfOcbd59eKH3NktI9Pd2U/61nZn33hquCvXfU9O3H06UxCRgIqCiARUFEQkoKIgIgEVBREJqCiISEBFQUQCRS4KJJtHS8Ud+LeN5JBCmQ4ktxbI3J14l0WkJBV58JKZrQLQEgBIpiB/2vbZMaKLzOySoh5HREpXcV0+dATwpZl9XUztiUgZKa5hzj0BPBdn3zkklwH4FsAwM1sRKxQtOTcQAIjDUHXoP10HrjOzi7uTaX0nu7MZr/tPbnoet9+Vaz39Xnebdf6w2p2d/8IF7mzfb8a4swteqOfOtj9pi78PF/3Lnc3Ke9udnTb8Dne2z3fLXLk//u10d5t1ujd2ZzM7n+vOvvjBM+5sh71/deXWWY+4+4pjKfoqAC4DEGuw/hIATczsDACPAXg5Xjtmlm5mrcysVbSOhIiUgeK4fOgKYImZrS+8w8y2mdmO6PE8AJVJ1i2GY4pICSmOotALcS4dSB7F6Nc+ydbR8TYWwzFFpIQk9J5CtH7kxQAGFdhWcMm4qwD8lmQegN0AeloyLkklIv+WUFEws50Ajiy0bWKBxxMATEjkGCJSujSiUUQCKgoiElBREJGAioKIBFQURCSQlLM5H3bi8aj6V99wzQuzNrvbnXykf2bgI9/MdmdrLOztytXd4x86/fYNWe7sFe0HuLOzWv7enV09+kx3dtAdd7qzr9w/051d03atO7v/pifd2T5X+2bg7vz8UnebHe+d7s5+unqDO9sw2z88f/jGz1y5v+TtibtPZwoiElBREJGAioKIBFQURCSgoiAiARUFEQmoKIhIQEVBRAIqCiISUFEQkUBSDnOutr4STh6f5sqe1X+ku93MB492Z6uua+fOVtr0oCvHy2u52+y9/TR3duiv/DMpn73PP2T2X1P7u7Ptv/H34eSV/uHeZ80a6842b7LTnR3x2O2u3K82HuFus0mbr9zZ10a3dmfrLX7BnR1bbeKhQwDyhscfPq4zBREJuIoCySkkN5BcXmBbHZIZJL+IPsb81U6yX5T5gmS/4uq4iJQM75nCVACFV10ZAWCBmTUDsCB6HiBZB8BIAG0AtAYwMl7xEJHk4CoKZrYQwKZCm7sDmBY9ngbg8hif2hlAhpltMrPNADJwcHERkSSSyHsKDczswLsV6wA0iJFpBGBNgec50TYRSVLF8kZjtJZDQus5kBxIMpNk5o97/ROniEjxSqQorCd5NABEH2NNJZML4JgCzxtH2w5ScC3JylX0toNIWUmkKMwFcOBuQj8Ac2Jk3gDQiWRa9AZjp2ibiCQp7y3J5wC8C6A5yRySAwCMAXAxyS8AXBQ9B8lWJJ8EADPbBOAeAB9E/0ZH20QkSblGNJpZrzi7OsbIZgK4vsDzKQCmFKl3IlLqknKYc42UbLROvcGVXXT8o+52f5i22J1tVO8ud7bW/P6uXPpb77rb3PvpKnf26V/4X9feu852Z+c19r/he9rxvuG1ADCw16BDhyI/H1HXne2f7f9xbrq/siuX9udO7jbHXTfene04t5k7+8T3rdzZmVdc7MqNqPJy3H0a5iwiARUFEQmoKIhIQEVBRAIqCiISUFEQkYCKgogEVBREJKCiICIBFQURCSTlMOdd1aph6SknubI5V8YfrlnY8+Oy3Nkdz7qjyN5b25U7a0RXd5sPZ33ozu647B13dk//o9zZj8+LP+NvYbc3vv7Qochdrfu6s1n8gzub8Wh/d7b6f//Jlbt40i3uNs8ccLg7O+ajT9zZw1+71Z297taVrtzub+Lv05mCiARUFEQkoKIgIgEVBREJqCiISEBFQUQCKgoiEjhkUYizjuRYkitJfkxyNsmYN+pJZpP8hORSkpnF2XERKRmeM4WpOHiptwwAp5rZ6QA+B/BTI0wuNLOWZuafaE5Eyswhi0KsdSTNbL6Z5UVPFyN/kRcRqQCKY5jzbwDMirPPAMwnaQAmmVl6vEZIDgQwEACq1K+JXe3ruQ5+w37/bL8z+vhnJ+6x3z8c+Puee1y5J+6NtYhWbFmfjnVnO/7hoJn24zqnS1t3dvaO99zZ59/v7s527Pu2Ozsn9VJ3luc0cWc7n3e0K/dej7+725xe079M6nGdHnFnL311tTv7aXZvV+6dvf+Muy+hokDyLgB5AGbGibQ3s1yS9QFkkFwZnXkcJCoY6QBQs3n9hNalFJGiK/LdB5L9AVwCoHe0wOxBzCw3+rgBwGwArYt6PBEpHUUqCiS7ABgO4DIz2xUnU4Nk6oHHyF9HcnmsrIgkD88tyVjrSE4AkIr8S4KlJCdG2YYk50Wf2gDA2ySXAXgfwGtm9nqJvAoRKTaHfE8hzjqST8XJfgugW/R4NYAzEuqdiJQ6jWgUkYCKgogEVBREJKCiICIBFQURCSTlbM55VVKxoel5rmzKlynudgdPXuDOzli90509u49vJuNntma72+wzrpo7u3K7fyjw1Ev3u7PTHmvozt7w1Rfu7PXvnuLOnvDIYnd20vkvurNPn+frb6Vuw91t1pjqH5o+Y0PcEf8H+eu7nd3Zfw59xpXbM45x9+lMQUQCKgoiElBREJGAioKIBFQURCSgoiAiARUFEQmoKIhIQEVBRAJJOaIxbetOXPWqb9LQ0UNauNud8rxvUksA2P/0E+4s/3yTK9d65GfuNp8YFm/ay4OtuSrXnU1LX+XO1v3lje7soiVZ7uzTu/q6s7k/NHVnL2o71J2tkjHZlTuyz4nuNl966Bh3dtNfFrmzH7d/0p1dOCzHleu7f2/cfTpTEJGAioKIBIq6bNwokrnR/IxLSXaL87ldSK4imUVyRHF2XERKRlGXjQOA8dFycC3NbF7hnSRTADwOoCuAFgB6kfS/ASAiZaJIy8Y5tQaQZWarzWwvgOcB+JcREpEykch7CoOjVaenkEyLsb8RgDUFnudE22IiOZBkJsnMXTtiLiUhIqWgqEXhCQAnAGgJYC2AhxPtiJmlm1krM2tVvWb1RJsTkSIqUlEws/Vmts/M9gOYjNjLweUCKHjjtnG0TUSSWFGXjSu4ZO8ViL0c3AcAmpE8jmQVAD0BzC3K8USk9BxyRGO0bFwHAHVJ5gAYCaADyZbIX2o+G8CgKNsQwJNm1s3M8kgOBvAGgBQAU8xsRYm8ChEpNoyzYHSZOrVuLXupe1tXtuPrD7nbPeOMSe7skq6V3dlZ79R05ZYdPs7d5qnn+idNvfSOX7iz7277H3f2vfaPuLMb7/YPXX70Rv8J6h87NnFns3/mH7Xf77PLXLlXjj3V3eZrmd+7s4uHTndnB1xQ1Z1dWNd3o/CrDcuxe++OmLO3akSjiARUFEQkoKIgIgEVBREJqCiISEBFQUQCKgoiElBREJGAioKIBFQURCSQlLM57697LHZf91+uLOvvc7fbb/sCd/bHjb5ZcQFg/VmvuXJtvvzC3eazG1q5s53qrXRn2w1t5s5OrH6SOzuqt7+/vdv7/zT+NPp/RL85fZg7u+P78125dmf4Z+Bu81Ebd3biRt/QeADoM/JFd7YLx7hywyZ8HnefzhREJKCiICIBFQURCagoiEhARUFEAioKIhJQURCRgGeOxikALgGwwcxOjbbNAtA8itQGsMXMWsb43GwA2wHsA5BnZv6b2SJSJjwjQ6YCmADg35PKmdmvDzwm+TCArT/x+ReamX/yOhEpU4csCma2kGTTWPtIEsDVAPwzh4pIUnPN5hwVhVcPXD4U2H4+gHHxLgtIfgVgM/Kngp9kZuk/cYyBAAYCQAOmnD27lm824/lDbnLlAGDxy/6ZnzMG+WfQXfVlfVfu5qb+Ibtjhtztzu7s4p8l+sdHtrmz/zB/f+f0edydrVH5Knc2bdxt7uyC1mvd2fl9prpynX7nGw4NAE1y/FfHJ8240p0dUOtLd/bGVb63Cb9fdhN+3PF5zNmcE/3bh14AnvuJ/e3NLJdkfQAZJFdGC9YeJCoY6QBwSqUqyTfvvMh/iCLffSBZCcCvAMyKlzGz3OjjBgCzEXt5ORFJIonckrwIwEozi/nnhCRrkEw98BhAJ8ReXk5Eksghi0K0bNy7AJqTzCE5INrVE4UuHUg2JDkvetoAwNsklwF4H8BrZvZ68XVdREqC5+5Drzjb+8fY9i2AbtHj1QDOSLB/IlLKNKJRRAIqCiISUFEQkYCKgogEVBREJOAa5lzaDju6llUa4BvntKyz/88u3r2tsjt77Mmj3Nmbfz3Rlbu62Wh3mzP/dY47O26zf4bm3itXuLPjebM7++wLF7izzaf7+/Da9pgDYGO6Y3rzQ4ciw7q96cotuNA/q/dho1Ld2Ss+O9mdfXO1f8g9G//UAOP/8+vcD7Biz7aYw5x1piAiARUFEQmoKIhIQEVBRAIqCiISUFEQkYCKgogEVBREJKCiICIBFQURCSTlMGeS3wH4utDmugAq4voRFfV1ARX3tVWE19XEzOrF2pGURSEWkpkVcYWpivq6gIr72irq6zpAlw8iElBREJFAeSoKcVeXKucq6usCKu5rq6ivC0A5ek9BREpHeTpTEJFSoKIgIoFyURRIdiG5imQWyRFl3Z/iQjKb5Cckl5LMLOv+JILkFJIbSC4vsK0OyQySX0Qf08qyj0UR53WNIpkbfd+WkuxWln0sbklfFEimAHgcQFcALQD0ItmibHtVrC40s5YV4L73VABdCm0bAWCBmTUDsCB6Xt5MxcGvCwDGR9+3lmY2L8b+civpiwLyV6rOMrPVZrYXwPMAupdxn6QQM1sIYFOhzd0BTIseTwNweal2qhjEeV0VWnkoCo0ArCnwPCfaVhEYgPkkPyQ5sKw7UwIamNna6PE65C86XFEMJvlxdHlR7i6Lfkp5KAoVWXszOwv5l0Y3kzy/rDtUUiz/3ndFuf/9BIATALQEsBbAw2XbneJVHopCLoBjCjxvHG0r98wsN/q4AcBs5F8qVSTrSR4NANHHDWXcn2JhZuvNbJ+Z7QcwGRXs+1YeisIHAJqRPI5kFQA9Acwt4z4ljGQNkqkHHgPoBGD5T39WuTMXQL/ocT8Ac8qwL8XmQKGLXIEK9n2rVNYdOBQzyyM5GMAbAFIATDEz/xJDyasBgNkkgfzvw7Nm9nrZdqnoSD4HoAOAuiRzAIwEMAbACyQHIP9P4a8uux4WTZzX1YFkS+RfDmUDGFRmHSwBGuYsIoHycPkgIqVIRUFEAioKIhJQURCRgIqCiARUFEQkoKIgIoH/Bel7ZNWv8i1uAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "-rFeoIuEWuaS" | |
}, | |
"source": [ | |
"images = [PIL.Image.fromarray(image, 'RGB') for image in ar]" | |
], | |
"execution_count": 35, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 282 | |
}, | |
"id": "-0ewy_nQYGPA", | |
"outputId": "57e3e174-5bee-4500-b098-1fd5d6e4c3b3" | |
}, | |
"source": [ | |
"plt.imshow(images[1])" | |
], | |
"execution_count": 36, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.image.AxesImage at 0x7f851e9c7950>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 36 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD4CAYAAADl7fPiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAXqElEQVR4nO3deXjU1d0F8HNIWDSCEZBNIlKLWkRFjSgFEUQRUEF5UQEVarWgRevui4rgRktd6oYVQSnUBalVEBURtLaICxIQQWQxIErCJvsuBL7vH/nhkxtm4PtmskzS83kenszM7+TOb0g4zGRu7qWZQURkn0plfQIiklxUCiISUCmISEClICIBlYKIBFLL+gRiqZGaZnUqp7uyG2qtc49b5bA0d3b7us3u7FEb6rhyOY1Xucesydru7K5c3/0DwNb67ijSd2xyZ1du3ejOptU62p2tsTvbnd2eXt2d3bnY9/ebesgK95hV9hzpzq6rvtSdTUs9zJ3du6KuK/fT3tXYvXczYx1LylKoUzkdjzf+vSs7rvcY97iNW7VwZ2f9/X13duh437ne/tSf3GP2qNzLnf3h3hvd2U8H+p8cXvrVu+7skE/Hu7OZvf/qznZcebE7m9W1nTu7qP1vXbnazR50j9lw63Xu7Jg2V7qzZ9bNdGd3DLzVlZuz5ba4x/TyQUQCCZUCyY4kF5HMJjkgxvGqJMdFx2eQPCaR+xORklfkUiCZAuBZAJ0ANAXQk2TTQrFrAWwws18CeALAn4t6fyJSOhJ5ptACQLaZLTWzXQBeA9C1UKYrgH0v+v8JoD3JmD/cEJHkkEgpHAVgeYHrOdFtMTNmlgdgE4BasQYj2ZdkFsmszXnbEjgtEUlE0vyg0cxGmFmmmWXWSPW/dSgixSuRUsgFkFHgesPotpgZkqkADgfgn1ggIqUukVKYCaAJycYkqwDoAWBiocxEAH2iy90B/Mv0u9oiSa3Ik5fMLI/kjQDeB5ACYJSZzSf5IIAsM5sI4EUAL5HMBrAe+cUhIkmMyfgf96Hpx1mTNk+7srfXm+we95nT/TMaL5nxnjsL+mYUrqt/iHvI3w271p19cdx6d7buK8sPHor8q4t/Nt8zx/in+A4cc487+9MX7d3Ztv38WWx61BU77Tb/VO+h2f6v2en9/NOnn/r3Ynd2wjGDXbnrc/pj0c7FMd8JTJofNIpIclApiEhApSAiAZWCiARUCiISUCmISEClICIBlYKIBFQKIhJQKYhIICmnOWcckmK3Nj7UlV1xZzX3uP0e9U+DffNJ/4KhKVc+5cq1e82/vszveYo7+83d/dzZLv0ed2dTd+9xZ7vv/tKdHfjyhe5skzor3dk6G/ZbETCuLi18f2ef9qjiHnPTuHnubFrD2e5ss4vPcWdbrPKtgn7ptdmYt3CHpjmLyMGpFEQkoFIQkYBKQUQCKgURCagURCSgUhCRQCI7RGWQ/IjkNyTnk7w5RqYtyU0k50R/BiV2uiJS0hLZdToPwO1mNptkdQCzSE41s28K5T42s4sSuB8RKUVFfqZgZivNbHZ0eQuABdh/hygRKWcSeabws2g36VMBzIhxuCXJrwCsAHCHmc2PM0ZfAH0BoFJKdTy6wzcNtVvVju7zvObCHHf2xwGvurP3PtHElVs8sot7TGt2uDt71lk73NlTn7rCnR0z8Gh3tlG/893Zm+v3cmf7vXy2O/vr17a6sy0X/cKVm/PtUveYH+a2c2fPHtvanR365XB3dshHjV25Davi77aQcCmQPAzAGwBuMbPNhQ7PBtDIzLaS7AxgAoCY/4LMbASAEQBQuWq95PuFDJH/Egm9+0CyMvIL4RUze7PwcTPbbGZbo8uTAFQmWTuR+xSRkpXIuw9E/g5QC8zsL3Ey9fZtPU+yRXR/2ktSJIkl8vKhFYCrAcwjOSe67R4ARwOAmQ1H/v6RN5DMA7ADQA/tJSmS3BLZS3I6gAMuEGBmwwAMK+p9iEjp04xGEQmoFEQkoFIQkYBKQUQCKgURCRTLNOfilpGyEw8dvtiVvTNrgXvcLbv8Kz+n3+BfGTjv9DdcuQ+G3O4e86XLGrizL7x3pDv73hb/VOszfqznznb7KdOd7bVipjs7pPn77uw7d/tXlJ5e1bdKdHa1ge4xb265xJ19dtAx7mx2+0fc2fGX+v6f5+s/xD2mZwoiElApiEhApSAiAZWCiARUCiISUCmISEClICIBlYKIBFQKIhJgMq55UqNyqrVIT3dlLzqiv3vcRzKquLPruix0Zxd8cpUr1878HZySkeXO7hz5rDt7V/vD3NnnNtVwZ4fPXuPOvlL5Qnf2xfHV3dlL+o1yZx/q/por13ztbe4xl3x9mjt782NHuLMn3ZPnzn6Zd44rN33WXdi4JTvmeih6piAiAZWCiAQSLgWSy0jOi7aF2+85L/M9TTKb5FyS/udYIlLqiuu3JNuZ2do4xzohf6+HJgDOBPBc9FFEklBpvHzoCuDvlu9zAOkk65fC/YpIERRHKRiAKSRnRVu/FXYUgOUFrucgxp6TJPuSzCKZtXtv8r0jIvLfojhePrQ2s1ySdQBMJbnQzKb9fwcpuG1cjcqpagWRMpLwMwUzy40+rgEwHkCLQpFcABkFrjeMbhORJJToXpJpJKvvuwygA4CvC8UmAugdvQtxFoBNZuZbC0tESl2iLx/qAhgfbReZCuBVM5tM8nrg563jJgHoDCAbwHYA1yR4nyJSgpJymnOjOlXsf//Htxhp8xH+H1/c2s03tRUAlu8e4s7eMed1Vy7v9IyDhyJv9Y65Z29Mi5r93p396XJ3FKf8cIM7m9H9Fnf29p073dlpV/3Znd0w8XB39oN/zHfl2u0c4R7z4qvecme/eekyd/bhq/zfN4+9eacrd9fauViya6umOYvIwakURCSgUhCRgEpBRAIqBREJqBREJKBSEJGASkFEAioFEQmoFEQkUFwrLxWrPZuAre/5pl9f1uJ097g392jrzrauN96dndrXN3d47NRd7jF7Nf+NO3viTTe5s8cdNdyd/eNH/pWy29/5W3f2nG7+VbU/mJviztrVf3Vna936jitX7cnfucc899K97uz8w/xTsjduvtudXdD4aVdu5+becY/pmYKIBFQKIhJQKYhIQKUgIgGVgogEVAoiElApiEigyKVA8vhoq7h9fzaTvKVQpi3JTQUygxI/ZREpSUWevGRmiwA0BwCSKchftj3WjJ+Pzeyiot6PiJSu4nr50B7AEjP7vpjGE5EyUlzTnHsAGBvnWEuSXwFYAeAOM4u5jG605VxfAEivWh97Mya77njnU9vcJ9lgnH/q8iX/uNedTc/0TfG1JQ3dYy5p/bg7u7rVh+5s2iD/uJ0u+Mmd3bTraHf2jlPrubPzL/dP8f3hzs7u7PCqe1y5Xk8OdY85ddvz7myXVP8/vcy1c9zZ1YN8Kz9vvSn+rxEUx1b0VQB0ARBrnfPZABqZ2SkAngEwId44ZjbCzDLNLDOt8hGJnpaIFFFxvHzoBGC2ma0ufMDMNpvZ1ujyJACVSdYuhvsUkRJSHKXQE3FeOpCsx2j7KJItovtbVwz3KSIlJKGfKUT7R54PoF+B2wpuGdcdwA0k8wDsANDDknFLKhH5WUKlYGbbANQqdNvwApeHARiWyH2ISOnSjEYRCagURCSgUhCRgEpBRAIqBREJJOVqztXqrkPTW192Zc9a5V/NeeWl/ikSQ7e84M7W3LHBlev9v/PcY67Z2MudHTLMtzIxAAz7ZSd39p0HP3dn96zwT/Edv/gzd7bjhf4pvg/08r/R9enXvlWizx3pmzYMAM88cpw7W63KW+5s3bfXurN3L5joyi3ZGX+at54piEhApSAiAZWCiARUCiISUCmISEClICIBlYKIBFQKIhJQKYhIQKUgIoGknOa8NjUdL9br4so2e+8V97iZjba7syNave3O3rL7367cDSd86x6z57Iz3dlVHfxfxkrnt3Rn7x+y3p297/g67mz/4f5tQK4Z+ZQ7++LSUe5st1/4vr+ennnLwUORV2dPcWdvX3S7O9shZ6A7+8Ik3+rmazfFn8KuZwoiEnCVAslRJNeQ/LrAbTVJTiX5bfQx5rrsJPtEmW9J9imuExeRkuF9pjAaQMdCtw0A8KGZNQHwYXQ9QLImgMEAzgTQAsDgeOUhIsnBVQpmNg1A4ReYXQGMiS6PAXBJjE+9AMBUM1tvZhsATMX+5SIiSSSRnynUNbOV0eVVAOrGyBwFYHmB6znRbSKSpIrlB43RXg4J7edAsi/JLJJZuzZuLI7TEpEiSKQUVpOsDwDRxzUxMrkACi5d0zC6bT8F95Kskp6ewGmJSCISKYWJAPa9m9AHQKz1pd4H0IHkEdEPGDtEt4lIkvK+JTkWwGcAjieZQ/JaAEMBnE/yWwDnRddBMpPkCwBgZusBPARgZvTnweg2EUlSrqlwZtYzzqH2MbJZAK4rcH0UAP9UMxEpU0k5zTl1JVHzocqu7OjOI9zjTvjmY3e2Q1P/tN25Dz7kys250D9ldsrb/qnADzer4c4ee/lQd7Zjr3Pd2c3zPnRn27Ra5c5W6d7Ene1db6s7e+8HV7tyZ474p3vMXSN83wcAsDXXN80aAAYvXO3O1mrTwJWbMTv+vy9NcxaRgEpBRAIqBREJqBREJKBSEJGASkFEAioFEQmoFEQkoFIQkYBKQUQCSTnN2dLWY/eZY13Zw6ZMcI87uJV/SvSTb+9wZ2eO+tKVO7/rSe4xr8pa4s4+cvNkd/aV+/zTt7Ozf3BnF/ce5M5e9Z9u7uzg1GHu7Korr3VnWz3/N1eubZvd7jGPvu0Ld/bmB/7kzh4/4zt39j3sceV2HmD5Ez1TEJGASkFEAioFEQmoFEQkoFIQkYBKQUQCKgURCRy0FOLsI/koyYUk55IcTzLmmuwkl5GcR3IOyaziPHERKRmeZwqjsf9Wb1MBNDOzkwEsBnD3AT6/nZk1N7PMop2iiJSmg5ZCrH0kzWyKmeVFVz9H/iYvIlIBFMc0598CGBfnmAGYQtIAPG9mcecZk+wLoC8ApNQ7Ah9d3Mh15298eqz7RC/6VaztLmP71XvPurN9alZz5Z58zb+N5pSzq7uzyzMucGcPaXyNO1trfQ93tu3x/sc2vdV1Bw9FOrdc4c5Wb32ZOzv3Xd/Xd8As/yrVf+vhX6H5uoXfuLMbTzvSnT20lu8cJk39JO6xhEqB5L0A8gC8EifS2sxySdYBMJXkwuiZx36iwhgBAFWaZiS0L6WIFF2R330g+RsAFwG4Mtpgdj9mlht9XANgPIAWRb0/ESkdRSoFkh0B3AWgi5ltj5NJI1l932Xk7yP5daysiCQPz1uSsfaRHAagOvJfEswhOTzKNiA5KfrUugCmk/wKwBcA3jUz/+/4ikiZOOjPFOLsI/linOwKAJ2jy0sBnJLQ2YlIqdOMRhEJqBREJKBSEJGASkFEAioFEQkk5WrOdbAHf6i0wZV94tQB7nHfWTvdnT33+73ubGb1na7cbQsfc4/55lkxJ37GdF6/Me7slltWurM9z63lzk52rmgNACOWNXBnz/y8pTs74TP/KtEntPBNeV+/wz/FuOeyo93Zvuc0dmdPXzXVnT0x9XtX7tM9m+Ie0zMFEQmoFEQkoFIQkYBKQUQCKgURCagURCSgUhCRgEpBRAIqBREJJOWMxj0/bMPGG79wZfNaP+Eet97HOe5stZOfd2f/8OszXLkn937gHrPHw4e7s3fvucudrZTn//ua0eANd/aEqYPd2TMeG+TObh/rP99zvvMvKv5d1QdcOTb+t3vMTtN83wcAcMyJ/u+vATXvd2e7D/P9P79rW/xtWPRMQUQCKgURCRR127j7SeZG6zPOIdk5zud2JLmIZDZJ/28uiUiZKeq2cQDwRLQdXHMzm1T4IMkUAM8C6ASgKYCeJJsmcrIiUvKKtG2cUwsA2Wa21Mx2AXgNQNcijCMipSiRnyncGO06PYrkETGOHwVgeYHrOdFtMZHsSzKLZNb23bsSOC0RSURRS+E5AMcCaA5gJYDHEz0RMxthZplmlnlo5SqJDiciRVSkUjCz1Wa2x8z2AhiJ2NvB5QLIKHC9YXSbiCSxom4bV7/A1UsRezu4mQCakGxMsgqAHgAmFuX+RKT0HHRGY7RtXFsAtUnmABgMoC3J5sjfan4ZgH5RtgGAF8yss5nlkbwRwPsAUgCMMrP5JfIoRKTYMM6G0WWqabO69vLrV7iyj923xT3urLnN3Nlaey92Z2tumODKHTko/tTSwhpu8y+wetzqT9zZm1r6F03tX2u1O7sgZaQ7O7mb/3xPmvW6O5t2fx939qZpz7lytUalu8ds1N3/vfhS+zbu7MjFf3RnXzjSt7F7/5l7sXizMdYxzWgUkYBKQUQCKgURCagURCSgUhCRgEpBRAIqBREJqBREJKBSEJGASkFEAkk5zTmtapqdWN83JfnO+/wrGT+cWf/goUilGf5f0/jLGV+6cj8+57//WjbLnU2d3tedfYu/cmevvMI3ZRYA/vmZ/3fd3rhghDvbca1/RemWH/zSnT31+m2u3PJD9rrHvPfNxu7sHWlb3dm8q+51Zwde0cOVy924HT/l7dE0ZxE5OJWCiARUCiISUCmISEClICIBlYKIBFQKIhLwrNE4CsBFANaYWbPotnEAjo8i6QA2mlnzGJ+7DMAWAHsA5JlZZjGdt4iUEM9W9KMBDAPw9303mNnPCyiSfBzApgN8fjszW1vUExSR0nXQUjCzaSSPiXWMJAFcDuDc4j0tESkrnmcKB3I2gNVm9m2c4wZgCkkD8LyZxZ3fSrIvgL4AUP2QKmhzsu8E+jTq6T7Z+UMWubPrvm/vzk57+HRXLuPkE9xjvtO6njv7xoyH3dn+fxrjzl4wIc+dff+DWHsQx3Zhm5ru7CdX+1fgbtqxvzv7wupWrtyESf7VpDcNfMKdvWbB9e7sA4dPd2f/Mr6bK3fH796NeyzRUugJYOwBjrc2s1ySdQBMJbkw2rB2P1FhjACAeulpyfcLGSL/JYr87gPJVADdAIyLlzGz3OjjGgDjEXt7ORFJIom8JXkegIVmlhPrIMk0ktX3XQbQAbG3lxORJHLQUoi2jfsMwPEkc0heGx3qgUIvHUg2IDkpuloXwHSSXwH4AsC7Zja5+E5dREqC592HmD/JM7PfxLhtBYDO0eWlAE5J8PxEpJRpRqOIBFQKIhJQKYhIQKUgIgGVgogEEp3RWCJS6lVCjQGHuLKnzcxyj/vrFW+5s03O7eXO5p10uCu36sTa7jHvfvIcd7bSm/9yZ0cv/s6dPTInxZ3t/JJvqjcAfPafW93ZFl39k1sP67Pana22a7Qr1/+Cqu4xl5x3mTtbNWOFOztr2Q/u7N/u6eDK5W6L/z2jZwoiElApiEhApSAiAZWCiARUCiISUCmISEClICIBlYKIBFQKIhJQKYhIgGbJt0YqyR8BfF/o5toAKuL+ERX1cQEV97FVhMfVyMyOjHUgKUshFpJZFXGHqYr6uICK+9gq6uPaRy8fRCSgUhCRQHkqhbi7S5VzFfVxARX3sVXUxwWgHP1MQURKR3l6piAipUClICKBclEKJDuSXEQym+SAsj6f4kJyGcl5JOeQ9K8rl4RIjiK5huTXBW6rSXIqyW+jj0eU5TkWRZzHdT/J3OjrNodk57I8x+KW9KVAMgXAswA6AWgKoCfJpmV7VsWqnZk1rwDve48GUHg/+gEAPjSzJgA+jK6XN6Ox/+MCgCeir1tzM5sU43i5lfSlgPydqrPNbKmZ7QLwGoCuZXxOUoiZTQOwvtDNXQGMiS6PAXBJqZ5UMYjzuCq08lAKRwFYXuB6TnRbRWAAppCcRbJvWZ9MCahrZiujy6uQv+lwRXEjybnRy4ty97LoQMpDKVRkrc3sNOS/NOpPsk1Zn1BJsfz3vivK+9/PATgWQHMAKwE8XranU7zKQynkAsgocL1hdFu5Z2a50cc1AMYj/6VSRbKaZH0AiD6uKePzKRZmttrM9pjZXgAjUcG+buWhFGYCaEKyMckqAHoAmFjG55Qwkmkkq++7DKADgK8P/FnlzkQAfaLLfQD4d+NJYvuKLnIpKtjXLSl3iCrIzPJI3gjgfQApAEaZ2fwyPq3iUBfAeJJA/tfhVTObXLanVHQkxwJoC6A2yRwAgwEMBfAPktci/1fhLy+7MyyaOI+rLcnmyH85tAxAvzI7wRKgac4iEigPLx9EpBSpFEQkoFIQkYBKQUQCKgURCagURCSgUhCRwP8BZ6JvIBaWXXEAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"tags": [], | |
"needs_background": "light" | |
} | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "1Ly_gA1OXTXN", | |
"outputId": "1e7bebe3-abbf-4560-c4bc-3d5f3397863d" | |
}, | |
"source": [ | |
"!pip install wandb -qqq\n", | |
"import wandb" | |
], | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"\u001b[K |████████████████████████████████| 1.8MB 5.0MB/s \n", | |
"\u001b[K |████████████████████████████████| 133kB 28.4MB/s \n", | |
"\u001b[K |████████████████████████████████| 102kB 6.8MB/s \n", | |
"\u001b[K |████████████████████████████████| 163kB 33.9MB/s \n", | |
"\u001b[K |████████████████████████████████| 71kB 5.7MB/s \n", | |
"\u001b[?25h Building wheel for subprocess32 (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 517, | |
"referenced_widgets": [ | |
"11cbc06d63fe453d89fc766a2c6583eb", | |
"bdf02a7c3afd42039686f10116104425", | |
"5774efd745814abaa20b6cb4e6ad034e", | |
"9e49b297ba4d4160a1d90fb2b435881d", | |
"2019cb7b13d041a6895a14d0ad99c3cc", | |
"a5a748c18b3e42e2883746646b710137", | |
"899918d96a2a4444b3e427ff81932db8", | |
"fd9ee87194964cb79573ba64e98238bc" | |
] | |
}, | |
"id": "RIPkDXUSXC7Y", | |
"outputId": "69f8e471-c4ef-49b2-aea0-9fad5424959b" | |
}, | |
"source": [ | |
"run = wandb.init(entity=\"repro\", project=\"PIL_Images\")\n", | |
"with run:\n", | |
" run.log({\"img\":[wandb.Image(image) for image in images]})" | |
], | |
"execution_count": 37, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"\n", | |
" Tracking run with wandb version 0.10.30<br/>\n", | |
" Syncing run <strong style=\"color:#cdcd00\">amber-wildflower-6</strong> to <a href=\"https://wandb.ai\" target=\"_blank\">Weights & Biases</a> <a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">(Documentation)</a>.<br/>\n", | |
" Project page: <a href=\"https://wandb.ai/repro/PIL_Images\" target=\"_blank\">https://wandb.ai/repro/PIL_Images</a><br/>\n", | |
" Run page: <a href=\"https://wandb.ai/repro/PIL_Images/runs/wy2bait9\" target=\"_blank\">https://wandb.ai/repro/PIL_Images/runs/wy2bait9</a><br/>\n", | |
" Run data is saved locally in <code>/content/wandb/run-20210512_162938-wy2bait9</code><br/><br/>\n", | |
" " | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"<br/>Waiting for W&B process to finish, PID 388<br/>Program ended successfully." | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "11cbc06d63fe453d89fc766a2c6583eb", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"VBox(children=(Label(value=' 0.00MB of 0.01MB uploaded (0.00MB deduped)\\r'), FloatProgress(value=0.0, max=1.0)…" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"Find user logs for this run at: <code>/content/wandb/run-20210512_162938-wy2bait9/logs/debug.log</code>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"Find internal logs for this run at: <code>/content/wandb/run-20210512_162938-wy2bait9/logs/debug-internal.log</code>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"<h3>Run summary:</h3><br/><style>\n", | |
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: right }\n", | |
" </style><table class=\"wandb\">\n", | |
"<tr><td>_runtime</td><td>3</td></tr><tr><td>_timestamp</td><td>1620836981</td></tr><tr><td>_step</td><td>0</td></tr></table>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"<h3>Run history:</h3><br/><style>\n", | |
" table.wandb td:nth-child(1) { padding: 0 10px; text-align: right }\n", | |
" </style><table class=\"wandb\">\n", | |
"<tr><td>_runtime</td><td>▁</td></tr><tr><td>_timestamp</td><td>▁</td></tr><tr><td>_step</td><td>▁</td></tr></table><br/>" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"Synced 4 W&B file(s), 10 media file(s), 0 artifact file(s) and 0 other file(s)" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/html": [ | |
"\n", | |
" <br/>Synced <strong style=\"color:#cdcd00\">amber-wildflower-6</strong>: <a href=\"https://wandb.ai/repro/PIL_Images/runs/wy2bait9\" target=\"_blank\">https://wandb.ai/repro/PIL_Images/runs/wy2bait9</a><br/>\n", | |
" " | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment