Skip to content

Instantly share code, notes, and snippets.

View aribornstein's full-sized avatar

PythicCoder aribornstein

View GitHub Profile
@aribornstein
aribornstein / inferenceconfig.py
Created September 13, 2019 12:43
InferenceConfig
from azureml.core.model import InferenceConfig
inference_config = InferenceConfig(environment=deploy_env,
entry_script="score.py")
from azureml.core.webservice import AciWebservice, Webservice
from azureml.core.model import Model
aspect_lex = Model(ws, 'aspect_lex')
opinion_lex = Model(ws, 'opinion_lex')
service = Model.deploy(workspace=ws,
name='absa-srvc',
models=[aspect_lex, opinion_lex],
inference_config=inference_config,
@aribornstein
aribornstein / PythonFromRecognizerAsync.py
Created March 15, 2020 12:10
Python Form Recognizer Async Layout
########### Python Form Recognizer Async Analyze #############
import json
import time
from requests import get, post
# Endpoint URL
endpoint = r"<endpoint>"
apim_key = "<subsription key>"
model_id = "<model_id>"
post_url = endpoint + "/formrecognizer/v2.0-preview/custom/models/%s/analyze" % model_id
import json
import time
import pandas as pd
from requests import get, post
def extract_value(value):
"""
Helper Method to Extract Cell Value from Response
"""
if value['type'] == 'number':
@aribornstein
aribornstein / set_environment_variables_for_nccl_backend.py
Last active May 24, 2024 03:48
set_environment_variables_for_nccl_backend
def set_environment_variables_for_nccl_backend(single_node=False, master_port=6105):
if not single_node:
master_node_params = os.environ["AZ_BATCH_MASTER_NODE"].split(":")
os.environ["MASTER_ADDR"] = master_node_params[0]
# Do not overwrite master port with that defined in AZ_BATCH_MASTER_NODE
if "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = str(master_port)
else:
os.environ["MASTER_ADDR"] = os.environ["AZ_BATCHAI_MPI_MASTER_NODE"]
import os
from azureml.core import ScriptRunConfig, Experiment
from azureml.core.runconfig import MpiConfiguration
cluster = ws.compute_targets[cluster_name]
src = ScriptRunConfig(
source_directory=source_dir,
script=script_name,
arguments=["--max_epochs", 5, "--gpus", 2, "--num_nodes", 2, "--accelerator", "ddp"],
class LitModel(pl.LightningModule):
def __init__(self, encoder: nn.Module, coeff_x: float = 0.2, lr: float = 1e-3)
def forward(...):
embeddings = self.encoder(x)
def training_step(...):
x, y = ...
z = self.encoder(x)
pred = self.decoder(z)
...
class DataModule(pl.LightningDataModule):
def __init__(self, data_dir: str = PATH, batch_size):
# Initalize
def prepare_data(self):
# Download and Preprocess Raw Data to File System or In Memory
def setup(self, stage=None):
# Load, Transform and Split Data
! pip install lightning-flash