Created
September 16, 2021 11:14
-
-
Save arshren/5fabe86db2860d3ae3daa678bfa109a2 to your computer and use it in GitHub Desktop.
Keras Model Creation using Model Subclass
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Import required libraries | |
import tensorflow as tf | |
from keras.datasets import mnist | |
#Creating the MNIST Dataset | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train, x_test= x_train/255.0, x_test/255.0 | |
x_train=x_train[...,tf.newaxis].astype('float32') | |
x_test=x_test[...,tf.newaxis].astype('float32') | |
#Building the model using Model sunc;ass | |
class Custom_Model(tf.keras.Model): | |
def __init__(self): | |
super(Custom_Model, self).__init__() | |
self.conv1= tf.keras.layers.Conv2D(32,3, activation='relu') | |
self.flatten= tf.keras.layers.Flatten() | |
self.dense1= tf.keras.layers.Dense(128, activation='relu') | |
self.dense2= tf.keras.layers.Dense(10, activation='softmax') | |
def call(self, inputs): | |
x= self.conv1(inputs) | |
x= self.flatten(x) | |
x= self.dense1(x) | |
x= self.dense2(x) | |
return x | |
model= Custom_Model() | |
# compile the mode; | |
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) | |
# Fit the model on MNIST dataset | |
model.fit(x_train, y_train, epochs=10) | |
#Evaluate the model on the test data | |
test_loss, test_acc=model.evaluate(x_test, y_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment