I hereby claim:
- I am arunreddy on github.
- I am arunreddy (https://keybase.io/arunreddy) on keybase.
- I have a public key whose fingerprint is 70DE 4849 57EB F197 1C6C B887 AB43 972A 33B0 3B5C
To claim this, I am signing this object:
StandardSGD <LogisticRegressionFunction<>> sgdOpt(lrf); | |
sgdOpt.MaxIterations() = maxIterations; | |
sgdOpt.Tolerance() = tolerance; | |
sgdOpt.StepSize() = stepSize; | |
Log::Info << "Training model with SGD optimizer." << endl; | |
// This will train the model. | |
model.Train(sgdOpt); |
// Without policy class.. | |
Optimize(arma::mat& iterate){ | |
arma::mat v = arma::zeros<arma::mat>(iterate.n_rows, iterate.n_cols); | |
for(;;){ | |
v = momentum*v - stepSize * gradient; | |
iterate += v; | |
} |
/** | |
* Stochastic Gradient Descent is a technique for minimizing a function which | |
* can be expressed as a sum of other functions. That is, suppose we have | |
* | |
*/ | |
class SGDMomentum{ | |
public: | |
/** | |
* Constructor |
I hereby claim:
To claim this, I am signing this object:
import os | |
import random | |
import string | |
import tempfile | |
import subprocess | |
def random_id(length=8): | |
return ''.join(random.sample(string.ascii_letters + string.digits, length)) | |
TEMPLATE_SERIAL = """ |
using PyPlot; | |
using Distributions; | |
TOPIC_N = 5; | |
VOCABULARY_SIZE = 1000; | |
DOC_NUM = 100; | |
TERM_PER_DOC = 200; | |
X = zeros(DOC_NUM,VOCABULARY_SIZE); |
# Install ARCH Linux with encrypted file-system and UEFI | |
# The official installation guide (https://wiki.archlinux.org/index.php/Installation_Guide) contains a more verbose description. | |
# Download the archiso image from https://www.archlinux.org/ | |
# Copy to a usb-drive | |
dd if=archlinux.img of=/dev/sdX bs=16M && sync # on linux | |
# Boot from the usb. If the usb fails to boot, make sure that secure boot is disabled in the BIOS configuration. | |
# Set swedish keymap |
a = [1 -2 ; -3 4]; | |
aPos = (a.>0.0).*a; | |
aInd = (a.<0.0).*a*-1; |
#include <stdio.h> | |
int main() | |
{ | |
int i, x, y, sizeX, sizeY, width, height, count, c; | |
/* All five shape types */ | |
const int features = 5; | |
const int feature[][2] = {{2,1}, {1,2}, {3,1}, {1,3}, {2,2}}; | |
const int frameSize = 24; |
CmdUtils.executeCommand("SMILExtract -C /media/MEDIA02/msthesis/emobase2010.conf -I example_audio1.wav -O targetFile.arff -label1 ); | |
public static String executeCommand(String command) { | |
StringBuffer output = new StringBuffer(); | |
Process p; | |
try { | |
p = Runtime.getRuntime().exec(command); | |
p.waitFor(); |