Last active
April 20, 2021 17:28
-
-
Save aseyboldt/7eb724a21b21165a4d10c936ae1bcdba to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import xarray as xr\n", | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"import pymc3 as pm\n", | |
"import seaborn as sb\n", | |
"import theano.tensor as tt\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"N = 200\n", | |
"\n", | |
"coords = {\n", | |
" 'subject': np.array([f'm{i:03}' for i in range(N)]),\n", | |
" 'treatment': np.array(['Sorafenib', 'Lurbinectedin']),\n", | |
" 'oncogene': np.array(['P19', 'MYC', 'AKT']),\n", | |
"}\n", | |
"\n", | |
"data = xr.Dataset(coords=coords)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['treated_idx'] = (\n", | |
" 'subject',\n", | |
" np.random.randint(2, size=N))\n", | |
"data['treated'] = (\n", | |
" 'subject',\n", | |
" data['treatment'].isel_points(data.subject, treatment=data.treated_idx))\n", | |
"\n", | |
"data['genotype_idx'] = (\n", | |
" 'subject',\n", | |
" np.random.randint(3, size=N))\n", | |
"data['genotype'] = (\n", | |
" 'subject',\n", | |
" data['oncogene'].isel_points(data.subject, oncogene=data.genotype_idx))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (oncogene: 3, subject: 200, treatment: 2)\n", | |
"Coordinates:\n", | |
" * subject (subject) <U4 'm000' 'm001' 'm002' 'm003' 'm004' 'm005' ...\n", | |
" * treatment (treatment) <U13 'Sorafenib' 'Lurbinectedin'\n", | |
" * oncogene (oncogene) <U3 'P19' 'MYC' 'AKT'\n", | |
" treated_idx (subject) int64 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 ...\n", | |
" treated (subject) <U13 'Lurbinectedin' 'Lurbinectedin' 'Sorafenib' ...\n", | |
" genotype_idx (subject) int64 0 1 2 1 0 2 0 1 1 0 2 2 2 0 2 0 0 0 1 2 1 ...\n", | |
" genotype (subject) <U3 'P19' 'MYC' 'AKT' 'MYC' 'P19' 'AKT' 'P19' ...\n", | |
"Data variables:\n", | |
" *empty*" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.set_coords(data.variables, inplace=True)\n", | |
"data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data['true_treatment_effect'] = (\n", | |
" 'treatment',\n", | |
" 0.08 * np.random.randn(data.dims['treatment']))\n", | |
"\n", | |
"data['true_interaction'] = (\n", | |
" ('oncogene', 'treatment'),\n", | |
" 0.05 * np.random.randn(data.dims['oncogene'], data.dims['treatment']))\n", | |
"\n", | |
"data['true_intercept'] = np.log(30.)\n", | |
"data['true_sigma'] = 0.13\n", | |
"data['true_expected_survival'] = (\n", | |
" 'subject',\n", | |
" data['true_intercept']\n", | |
" + data.true_treatment_effect.sel_points(\n", | |
" data.subject,\n", | |
" treatment=data.treated)\n", | |
" + data.true_interaction.sel_points(\n", | |
" data.subject,\n", | |
" oncogene=data.genotype,\n", | |
" treatment=data.treated))\n", | |
"\n", | |
"data['survival'] = (\n", | |
" 'subject',\n", | |
" data['true_expected_survival']\n", | |
" + data['true_sigma'].values * np.random.randn(N))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (oncogene: 3, subject: 200, treatment: 2)\n", | |
"Coordinates:\n", | |
" * subject (subject) <U4 'm000' 'm001' 'm002' 'm003' 'm004' ...\n", | |
" * treatment (treatment) <U13 'Sorafenib' 'Lurbinectedin'\n", | |
" * oncogene (oncogene) <U3 'P19' 'MYC' 'AKT'\n", | |
" treated_idx (subject) int64 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 ...\n", | |
" treated (subject) <U13 'Lurbinectedin' 'Lurbinectedin' ...\n", | |
" genotype_idx (subject) int64 0 1 2 1 0 2 0 1 1 0 2 2 2 0 2 0 ...\n", | |
" genotype (subject) <U3 'P19' 'MYC' 'AKT' 'MYC' 'P19' ...\n", | |
"Data variables:\n", | |
" true_treatment_effect (treatment) float64 0.1311 -0.09077\n", | |
" true_interaction (oncogene, treatment) float64 -0.06961 0.01454 ...\n", | |
" true_intercept float64 3.401\n", | |
" true_sigma float64 0.13\n", | |
" true_expected_survival (subject) float64 3.325 3.439 3.47 3.439 3.325 ...\n", | |
" survival (subject) float64 3.348 3.657 3.387 3.63 3.326 ..." | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>survival</th>\n", | |
" <th>genotype</th>\n", | |
" <th>genotype_idx</th>\n", | |
" <th>treated</th>\n", | |
" <th>treated_idx</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>subject</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>m000</th>\n", | |
" <td>3.348438</td>\n", | |
" <td>P19</td>\n", | |
" <td>0</td>\n", | |
" <td>Lurbinectedin</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>m001</th>\n", | |
" <td>3.657182</td>\n", | |
" <td>MYC</td>\n", | |
" <td>1</td>\n", | |
" <td>Lurbinectedin</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>m002</th>\n", | |
" <td>3.386957</td>\n", | |
" <td>AKT</td>\n", | |
" <td>2</td>\n", | |
" <td>Sorafenib</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>m003</th>\n", | |
" <td>3.629847</td>\n", | |
" <td>MYC</td>\n", | |
" <td>1</td>\n", | |
" <td>Lurbinectedin</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>m004</th>\n", | |
" <td>3.325638</td>\n", | |
" <td>P19</td>\n", | |
" <td>0</td>\n", | |
" <td>Lurbinectedin</td>\n", | |
" <td>1</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" survival genotype genotype_idx treated treated_idx\n", | |
"subject \n", | |
"m000 3.348438 P19 0 Lurbinectedin 1\n", | |
"m001 3.657182 MYC 1 Lurbinectedin 1\n", | |
"m002 3.386957 AKT 2 Sorafenib 0\n", | |
"m003 3.629847 MYC 1 Lurbinectedin 1\n", | |
"m004 3.325638 P19 0 Lurbinectedin 1" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.survival.to_dataframe().head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa67db86550>" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAEGCAYAAAA9unEZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYXFd5r/vuqeapq6t6ntSSvD3IIyZw7QBxQIANGBLC\nMZDA4Rxi4gRIHJIQLmAGGx+GkxByLgRjwpQEcsl1Jh5IAHng3GDiSZMtSypJLannuWvommsP549d\nXepWq6WW1EN193of7WdX73HtUlf9en3rW79Psm0bgUAgEAg2CvJ6N0AgEAgEgotBCJdAIBAINhRC\nuAQCgUCwoRDCJRAIBIINhRAugUAgEGwo1PVuwGZncnJ2UdpmQ4OPZDK/Hs1ZMcQz1Acb/Rk2evtB\nPMNqEY8HpaX2iR7XOqCqyno34bIRz1AfbPRn2OjtB/EM64EQLoFAIBBsKIRwCQQCgWBDIYRLIBAI\nBBsKIVwCgUAg2FAI4RIIBALBhkIIl0AgEAg2FEK4BAKBQLChEMIlEAgEgg2FEC6BQCAQbCiEcG0x\nHntsDz/5yb+tdzMEAoHgkhFehXXO5OQEDz74KVpb2/F4PORyWUKhMMnkNIVCkbe97e1cf/2NvPOd\nv8HrXnc74+NjeDxe7r33j3nmmad45JHvEwqF8Hg8vP/99/K97/0NgUCAdDpNqVTkXe/6bxQKBX73\nd9/LBz5wL3/7t9/i6qt3MTBwmle96tW89rWv5/vf/y6HDr2AbdvcdttrePWrd6/32yIQCLYwQrjq\nnB/+8F957Wtv54473sS3v/3X9PUdp1Ao8MADnyOfz/NHf/QBvvrVb5JMTvNbv/UeNE3jbW97M/fe\n+8d89av/i6985ev4fH7uv/8++vqOc8stv0xHRye//Muv5P3vfx/vetd/4+c//9/86q++BlmWqVQq\n/M7vvJ9SqcTdd7+bm266mSeeeIyHHvomlmVx993/ldtue/V6vy2CS8CyLNLpFDMzM6TTSdLpNNns\nLNlslkIhT6FQoFQqUqlUqFQqmKaJbVuAhCRJKIqCpmmoqorb7cHj8eD1evH5/Pj9AYLBIMFgkFAo\nTCTSQCAQRJZFUEew8gjhqnMmJye4/vobAbjiiiv50Y9+QCaT4cEHPwWAojj/hZFIA5qmASDLjqly\noVDE5/MD0NbWzvj4WO26fn+AnTuv4MCBfTzxxGPce+8fMzQ0SHt7BwBut5tyucL4+BjJ5Eztfm63\nm2x2lubm8Ko/u+DisW2bVCrJ8PAQo6PDjI2NMjExzsTEONPT01iWubwLSTKSJANzBt22I2K2tey2\nyLJCQ0MDDQ1RGhtjNDbGiMXixONNxONNNDbGLvr5BAIQwlX3NDREmZycAODEiWO0tbXT3NzCRz/6\nSWzbpr//9JLn+nxe8vkcPp+fkZFhbrnll+nvP41lOV8+b3zjW/jHf/w+lmXS1NTM0NAgQ0ODABQK\nBdxuNy0tLbS0tPGxj30KgJMn+wiFhGjVA5ZlMTAwwL59LzAw0M/AwGkGBwfI53OLjpVUD5I7gqr5\nkVQvsup1tinu6qKBrCHJKkgKknTuihK2bYNtYlsmWBVsq4JtlqtLyVmMIrZRwDIKzKTzTE9Pc+LE\nsUXXUhSF5uYW4vEmWlraaG1to6Wllba2dgKB4Iq/X4LNgxCuOueOO97EZz97P0eOHEZRZNra2vH7\nAzzwwCfIZme59dZX0tOz7Zzn/u7vfpBPf/rjBAJBGhoauPrqXUxNTfHtb3+drq4err/+Bj7/+Qd4\n73t/p3aOqqr85V/+Of39p3j3u/87jY0xXv7yW/jkJz+KaRr09u6gt3f7Wj2+YB6ZTJq+vuP09Z3g\n5MkTnDp1klKpuOAYyRVEDXYgu8PO4goiuwJIsrYibZAkCSTVETjcyzrHti1HyCo57HIOq5LFKmex\nKllGx6cYGRnm4MH9C84JhcK0t3fQ1tZBR0cnHR2dtLd34vF4VuQ5BBsbybYX1TkUrCDnKiQZjweZ\nnJxd5vkTzMzMoOtX8uMf/4jBwQHuvvt3V6RthmFw772/xxe/+GVcLhf79j3HT3/673zkI/dd8NyL\neYZ6pZ6fwbIsRkaGOXHiGMePJzhx4lit5z2H7Aohe6MoHmeRPeEVE6i1xDZKWOVZrHIGs5TBKmew\nSmnsysKeoyRJxONNdHZ20dnZTWdnN11d3USjjUv2ENeCev49Wi71+AznKyQpelx1jqIofO1rX6Gh\noYFMJs2f/MlHV+S6x48nePjhv+Kd73w3LpdrRa4puHQKhQKnTvXR13ec48ePVZNwzlSklRQXir8V\nxduI4ouheKJIyub4f5NUN4rqRvHFmC+7tlXBKjkiZhZTWKUUk9MpJibG2bv32dpxPp+frq5uurp6\nqutuWlraUFXx9bZZET2uVeZye1z1iniGS8c0TUZHhzl5sq8qVicYHh5k/mdR1gLIvhiKN4biiyO7\nQuvaq6gXbNt2wo7FFGYpiVVMYRWTWJXsguMURaWjo6PaM3N6aB0dXQQCgRVvk/gsrA6ixyUQrBOF\nQp6RkWEGBwcYHOynv/80g4P9VCqVMwdJCoonhjzXm/LGkFUxlnMuJElC0nzImg812FbbbpsVzFKq\nJmRmKUX/wMCi5KVIpIGOji46Opzxs/b2Dlpa2vB6vWv8JILLQQiXQHCZWJbFzMw04+NjTEyMMTo6\nytjYKCMjQ8zMTC88WJKQXWG0cIMjVJ4osidSTT0XXCqSoqH64uCL17bZtuWMnRWTWKUUZjFNOpsi\ndegghw4dXHB+NNpIS0srLS2tNDe30NzcQlNTC42Nsdo0E0H9IIRLIDgPtm2Tzc6SSqVIJmdIpZLM\nzEwzPT3FzMw0U1OTS86PklQvir8Z2RVG8USQ3RFkdxhJVtbhSbYekiSjuMMo7oXTN2yzjFlKY5XS\nzhhaOU0yM8vMzCEOHz501jUkGhqixGLx2ly0aLSRhoYokUgDkUgD0ahvLR9LgBAuwRbDtm3K5RKz\ns7Ok0+MMDo4xOzvL7GyGTMZZZmfTZDJp0uk06XQK01x60u78+VFzqeeyK4TsCq5p8oRlFGC5k4vr\nHVlBVlcvdCcprkW9M3DCjVZ5tpquP4tVzmKXsyQzOWZmji7dXFkmEHAcQ+bcQ/z+IH6/v+oq4sfr\n9eH1evF4vHg8HtxuN263G4/Hg6pqYvzyIhHCVQd8/L7/m1Q6tWLXi4QjfOaBz573mNHREd797rej\n61cCUCwWede73sOrXvWrPP74o3z2s5/ma1/7Fr29OwD4+c//f77znW+gqgqvec3ruOee316x9i4H\ny7KqVkRlyuUypVKRUqlEqVSiWCxSLBYoFosUCnnyece+KJ/Pkc/nyOXOrHO5LIZhXPiGkuyIkhZB\n9XqQNG914q4PSfMia34k1bfuvSezmKIw/CR2efUG1l0uF7FYjKmpKcrl8qrdZz6SK4i3/VYUT2RN\n7gdOuFHxRlG80UX7bNvEruSxKnlsI49VKWAbc0uR2UKR2ewotjVw8feVJDTNhcu1cNE0rbb9XK81\nTav+PP/1+c5x7Lo0zYWqqijK0hPN6x0hXHVAKp1C6bx95a43+O/LOq6rq5svf/lhAGZnZ3nPe95B\nKBTmqaeeZPv2nbXjTNPki1/8PN/85ncJBoO8//1385a3vBFF8V9WO3O5LF/60v+kr+/4ZV3nwkhV\nZwgXkhpCcbuRVDeS4qo5RxjZUazCNEgSZ2yOwDYLmGYBSslVbuOlYVcKwOplBrtcLu655x52797N\nnj17eOihh9ZEvOzyLPlTP0HSNlDShKJV59HZzmKDPe81i147axsolyvz3tf6zPTu6urmD/7gwzQ0\nNKx3U0RZE4FDMBiksTFGKBTmox/95II5MOl0Cr/fTyQSQVEUrrvuen7xi19c9j2np6dXTbQkxY3s\niaIGO9GiV6BFr8TVOLfouKI6ruiVztKwA9kVBFl2hGuhdtUtTvr86n7JxWIxdu92qgHs3r2bWGwt\n/QVtNtx0HYnq75AMsowkK0iyiqSoSLIjbJJSXao/I2ugVBd54SK7I6ihbpRAG7I35kyLUDzO9deY\ngYF+xsZG1vy+50L0uAQAjIwMk06n6O7uWbQvEmkgn88zNDRIU1MzBw7sp7W16bLv2dXVzYMP/hmz\nsxlM06wthuE4k1cqFQzDwDCcv0YrFWddLpdqYcK5kGGhUKBYLFAoFCgU8lQqjm+eVZy5YDskWQXF\njaR4kVQ3supBUjxOqLDq6ed4+3nXPTR4Ntm+H61qmHBqaoo9e/bUelxTU1Ordq+zkV1B/NvfsGb3\nuxhs25znyVisvi6e8Wus+TeWa56OF2NQPIdVciZen40kSaiaC5dLQ3O5cGmualjw7DDimZ/nQoTz\nw4aq6ryORPzk8waqqqAoThhxbpFlGVmW8fv9tLa2r8Tbd9kI4drCDAz084EPvA9wPArvu+/+c7oN\nyLLMRz5yHw8++EmCwTDbtvWumNtGa6tjrrrSVCqV2njX3NiWM86VZXZ2llwuS6VSZGpqZl5yRgqz\naHK+FAdJcSOpzjwiZz6RH0nzO0kZWsAJSa4h3vZbKQ4/ibVK4lUul3nooYd45JFH1nSMS3YF8bTf\nuib3Ohe2ZVS9FR1PRauSq45x5bArBWyzeMFrqKpaTc4I4fP5qokZTnKGk6DhweVyVRM1PAvGrOZE\nZ6kxLFVVV3R8qh4nIJ8PIVxbmPljXBfipS99GS996csA+LM/+yxtbSsvNiuJ8wEPn9fJ/uwPq23b\n5PO5anbhXFahU7cqlUqSTM6QTM4wMzNNOXvuMS9J9SBrQWR30MkurJrdSqp3VQbCFU8E//Y3rHpW\nYRrQOmFNZHmVswrncFw48tWU+AxWyfFLtMpZbCN/znNUVSXa2Eg02ltNh4/Q3t6CLLtrWYWBgLMI\nK7XVQwiXYFn88R//Ph/72KdxuTT27n2WT3ziY+TzFx/6qGckScLvD+D3B87bC7Rtm1wux/T0FNPT\nk0xOTjA5OcHExDjj42NMTU1iFiYXXltxOfO4PA0ongZkT9RJmV8hMVuLL/qNjGWUamE3q5jGLKWx\nyxknhHcW0Wgjzc3baGpqJh5vIhZrIh535nEFg4uttzZab2UzIISrDoiEI8vOBFzu9S6VH/7wX/jx\nj/+NEyeO8T/+x/10d/dw333386Y3vYUPfej9WJbNe9/7O/j9fvL5rflhlSSJQCBAIBA455hgpVJm\nfHyc0dFhhoeHGB4eZHBwgImJccz8BHNflZKsOULmbXRsnryNwurpMnHcMrLz3DIcsbKNwoLjZFmh\ntaW1WjqlvVoLrI3m5hbc7uWVaxGsH8Jkd5URJrv1y1o/Q6FQYGhogNOnT3H69ElOnT7J2OjCLK0F\n5rremBNm3KBzbVYb2zKqzvHJM6a7pdSikGk02khHRxednV3V2l5dNDe3rJh7vPgsrA7CZFcgqAO8\nXi87d+rs3KnXtuXzOU6dOlktEHmcEyeOU0ifxkifBqq9Mm+sZr6reKMbsubW5VBzhJ/Xg7KKqWpC\nyjxHfVmho629Vtqkq6tn1RzhBeuLEC6BYB3x+fxcc821XHPNtYDjEDI6OsKJE8dqRSQnJkYxc6PV\nMyRkd7gaXmx0xsrcoU1h0mvbtjOFYc5DcM5PsJx20srn4fF46dx5BV1dPXR2dtHd3UNbW4cwxN0i\nCOESCOoIWZZpb3fKbbzqVb8KQCaTrvXGjh9P0N9/ikoqRSXVVz1JQXZHnKQPdwRlzsx3jVPzl4tt\nVqp+gHOegM5ilzOLBEqSJJqaWmq1tTo6Ouns7CYWi4sQ6hZGCJdAUOeEQmFuvPFmbrzxZgAMw2Bo\naIBTp/oYHR3k6NEEIyPDVAoLS6hIqrdm+Cu7As58s+r8M0lxr0ovzbbMmn+fZRTO+PpVctU5UDls\ns7ToPFmWaYo309bWRmtr+7ykiXaRVi5YhBAugWCDoaoqPT299PT01gbVK5UyQ0ODtWVkZIjR0RFm\nZsYx8+PnuIrkOIPM+TVWbYckWQVJQZKUs3wbbbBtbNsE23LSyC0D26qccYgwS9jW0gbGiqISj8WI\nx5uJx+M0N7ewY0cPXm+EeLxpxZIlBJsf8ZsiEGwCNM3Ftm3b2bZt+4LtpVKRyckJxsfHmJ6eZmbG\nqSOWSqXIZNLMzs5SyKcv694ulwuf308o5MxzCoXChMMRIpEI0WgjkUgDsVicUCiMLC/s5dVjNpug\n/hHCVQd8/FMfJpVawbImkQif+dQXznvM6OgIb3vbnTz88Le5+updte133/1uYrE4fX0nePjh7xCJ\nOHPCHnvsp/zsZ4/zwAOfY2Zmms985uOcPHkaVVVpb+/gQx/6U4LB4Io9g2BlcLs91VL1XUseY5pm\nzeuxWCxQqRhUKmUsy8KyLCRJQpIkZFmu2Q/N1ZLyeLyXnRAxVyOtUChQqTg+lZIkoSgKLpdzHxEu\nFMxHCFcdkEql8L7m8k1ra9d7dGJZx7W1tfP444/WhGtsbJRMJkNPTy933fVOvv3tr3PvvX9CpVLh\nW9/6a77whb8A4P777+Ouu97Gxz9+GwDf+97f8MUvfp5PfvIzK/YMgrVDUZTahOrVwrZtJicnGBzs\nZ3h4iPHxMSYnJ0ink8wkk5gXqJGmaRrBYIhIpIGGhijxeJx4vImWFsfrMhyOiGSNLYQQri3Mrl3X\nsXfvM9i2jSRJPPHEY7z0pS+nVCry5je/lfe+97cYGhrkF7/4D2699RW0tbVz+vQpcrkcd955Zy3E\nc9ddv0mptHjAXbB1sSyL/v7THD36IonEEfr6jpPL5RYeJIHsUZGCCppLQ9JkJFkCWaqWrrKxTRu7\nYmGVLVKFNDOpGTh5YtH9/H4/nZ3ddHY6c7h6enppbW1bFJoUbA6EcG1hFEVh506dF188xK5d1/KL\nX/wHb3/7b/Gznz2Gqqq8733v50tf+p+MjY3yta99C3Ac5XfuvGLRdXw+33o8gqCOKBTyvPDCQQ4c\n2MsLLzxPLpet7ZN9Kq4OP2rEjRJyoQQ1ZK/qCNVFYNs2dtHEzBtY2QpmtoI5W6aQLnH06GGOHj1c\nO9bldrOtp5fe3h309m6nt3dnXRRBFFw+Qri2OLfd9mqeeGIPTU1NBIMhvN4zZq233voKvve9v+HN\nb34rfr8TRjIMA8vaXOa6gkunUMizf/9enn32KQ69+EIt5Cd7VdzdQbQmL1rMg+xdma8aSZKQvKpz\nvcaFvo62YWGkyxipEmayhJEqkUgcIZE4UjsmGm1k+/ad1WUHXV09YtLyBkQI1xbnpS99OV/72l/R\n3NzKq15126L9bW3ttLWdKR63bVsv3/nONxYdd/ToEa688qpVbaugPqhUKjz//AGeeupJDh7ch1EV\nKyXswtvWgKvVhxJ2rfmYk6TKaI0etHmCZlcsjGQJI1mkMlMiOZPi2Wef4tlnn3LarKr0dPewbdsO\ntm/fwbZt24nHm8R4WZ0jhGuLo6oqO3dewY9+9K985St/zbFjR897/LZtvUQiEf7u7/6O173uzQB8\n//vf5ciRw3zqUw+uRZMF64BlWRw/nuA///PnPPvc0xTyTr0qJajh7WjA3eFHCdZf5p+kyU6vr8mL\nFyfUaOUNjOkixkyJykyRvpMn6Os7waOPOuf4/QG2bXPmyXV399DdvY3GxpgQszpCCFcdEIlElp0J\nuNzrXQy33fYaUqnksrPKHnjgc/zVX/0F//APj6BpGr292/nIR+67lKYK6hjbthkcHODpp3/B00//\ngpkZx5lD9ih4doZxdwbWpWd1OUiShOLXUPwa7i5n+oZtWhjJMkbSEbNCqsihQ89z6NDztfP8fn/V\nF7Gbzk7Hab61tV2EGdcJUdZklRFlTeoX8QyLsW2b4eFBnnvuGZ559qla2RVJk3G1+XB3BlHjng0l\nVpeCVTKdsbKUM2ZmpMpYuYVFJ2VZpqWljR07eonFWujo6KS9vZPGxtiGy2asx8+CKGsiEAiWxDAM\nTpw4xoED+zhwYC8TE45FlKRIuNp8uDoDuFp8SMrG+jK+HGS3gqvZB81nsmXtioWRKWOmyxjpEma6\nzOjECCMjQwvOdbvdNRFzaoA5PTSfz7/Wj7FpEcIlEGwxLMtiaGiQROIwR44c5siRQ7V5eJIq42r3\n42rzO2KlbR2xuhCSdo7kj+qYmZkpY6TLzjpTro2bzScabaSrq2dBvTAxdnZpCOESCDYxlmUxPj7G\n0NAA/f2nOX36JCdPnqBYLNaOkQManvYQWosPLe7ZUj2ry2X+mJmr9UyPyrZszNm53pmzTqVTzBzY\ny4EDe2vH+Xz+WgJIT882urp6aGpq3nChxrVGCJdAsEGxbZtcLsf4+BiZTJp0OkUyOcPU1BRTU46x\n7vjE+CI7JSWo4W4OoMa8aHEPik8kGKw0kiyhht2oYTfuedutouEIWXXcrJgqceTIixw58mLtGLfb\nXe2ZOb2zzs4u2to6hF/jPFZNuHRd7wEeSSQSN1/keaeBXYlEIjtv2+uBbYlE4qsr0K47gR8nEony\nMo59I/AbwEeATycSid+53PsLNj/zTWOLxSLFYoFSqUSxWKRcLlEul6lUKlQqc+sKhlHBMEwMw8A0\nDQzDwDAqtf3OOWWKxRKlUpFCIU+hUDjvZHBJk5EDGu6QByXsQg27USIuZJeyJu+DVTSwzfpM/pIU\nCdmz9n+3yx4Vl0ddMHZmVayqkDliZqRKHD+R4PjxxJn2ShJNTc20t3fS2ur4MzY3t9Lc3IzfH9hy\n4ca66nHpun7O/nEikfjxCt7mQ8DjwAWFa979xwAhWpsc27YxjAqlUplSqVgVnWLNNT2fd8SiUMiT\nz+fJ53PVbQt/LhbPLyiXjCwhKRKSKjmiFNFQXAqyW0Zyq8geBdmrIHtVFL+G5JLX5QvNSJeZfXoc\nK1u58MFL4HK5iMViTE1NUS4v+6N6UcgBjeDLmlHD69uTkTUZOe5Fi59xrbFNqxZinFtPzDi96LPx\neLzEYnEaGxtpaIgSiTQQCoUJBkMEg0H8/gA+nw+v14fb7d4UIremwqXr+s+ADyQSiUO6rn8AiAHf\nBr4LjFdfA3xE1/WXAwrwa8BbgF3AnwIJ4BHgVmAWeCPgB75RvZ4CfDCRSDyv6/o7gN+vbvtzwAW8\nHPh3XddfDdwNvB2Qgf8vkUh8Sdf1a4G/AYaA0Wq7e6j2HnVd/w/gx8AvA23AGxOJxODlvC+f/viH\nSaeSl3OJBYQjDXzyM+cvawLw05/+mAcf/CT/+q8/IRKJ8I1vfI1IJMJb33oXtm1z331/yo033kxX\nVxff+c43AXjhhYNce+31uFwqv/3bv7egJEq98+KLL/Dnf/7ZVbm2pMqOoLiqgqLJzjatul2VnbEj\ntSo+inxGiGQJFIniyTSVyeLC69a+Y6QzNR0B27CxDROKJuaqPNGlYxUMxyT3EnG5XNxzzz3s3r2b\nPXv28NBDD62KeFnZCunHh1bMjupicbX78V/beM59kiKjRT1o0YWJIHbRxJytejRmK5i5CpVcheGx\nIYaGBpZ970984jP09PRe9jOsF/XS47oB6EwkEjO6rv8v4IVEIvFxXde/ALwLR6BIJBKmruu9wPcS\nicRHdF1/GrgWeBPwk0Qi8Q1d168Bvqjr+luBTwA3Ah7gO4lE4s26rj8A3A60Ar8OvLLahid1Xf9H\n4D7gvkQi8UNd17+CI3bzMYFMIpG4Xdf1z1ev8ZeX8/DpVJJ3uL0XPnCZ/P0yRfDRR39MZ2cXP/vZ\no7zlLb+xYN83v/kwsVict771vwCONRTAG97war785Yfrct7HhbiQK8hFoUgoPhV5bnEpjkidvajy\nGVFTZJBZ8i/e8kjuok1n6w3bti9LtABisRi7d+8GYPfu3TzyyCOMjIysQOvOgU2tOkK9M9+nUY17\nsAoGVs7AzFWwcgZGpoyRLGEXL/ynzNjYmBCuFaAvkUjMzPv5ier6WeBVwHPz9mUSicTclPZBIAK8\nFGjXdf1d1e0e4IrqdYtAEXjzWfe8CdDn3SsI9ABXA09Xt/1v4I5ztPc/5t3/3H8y1TmZTJrDh1/k\nYx/7JN/97t8sEK4nnniUo0cP87nPfXEdW7jy3Hnnr3PddTdQLpcxTQO/38XUVBrDMCiXy/OWUi1U\nWCqVakUWa2HBQp5ioeD85Tt7keEwyflrmnk9LaeUhzOgL/vUWmmPBfuVuTDhvB6cS0bWFGftUZDc\nSl18ASd/OnhZYcKpqSn27NlT63FNTU2tYOsWIgc0Gl7buWrXv1xs23ZEqZpqb86WMTMVrFxlyfFD\nn89POBwhGAwuChV6PB6CwTAveclL1/hJVpa1Fq757/T8e58dB5g7TmLx329nV5yb+6T+QSKReHJu\no67rN+GEAM/HvycSibvnb9B1ff49lzp/fhvW/5viEnj88T3ceusr+KVf+r/43Oc+w+SkYzl17FiC\nJ554jL/7u39AUdZmEH+tUBSF7dt31n6+nF6jZVkUi06SRC6Xq41zOUkTc2NhjuAVCk5yhiOIzrqW\ncGFUMCpGNTmjcnljYxLVcS4V2a+h+FWUoFNCRAlqa5bmHnxZ82WNcZXLZR566CEeeeSRNRnjqhds\n03bmgVWTNMzqJOezBcrldtPe3k1LSwtNTS3E403EYnGiUWeMaytkH661cKU500N5CdC3xHGvBP4R\n+CXgyBLHzOdpnB7Vk7quXw28Dvg6cIWu636c8N4Pgd2ABbiBvcAXdF33AQXgSzjZg4lq234CLLZL\n3yTs2fMT3vOe30ZRFG677dU8/vgewHF5v+uud/LlL3+J++9fnfGgzYAsy/h8Pnw+H42NsRW7rmVZ\ntazCSmV+ZmG5Knrlmhjm83lsu8z4+BSZTJpUykmHTyZnMGbOKuwpOWnwasSNGvWgNjp1sVajh6aG\nXTS8tvOyswrzgI9mVqPS23plFc6xoATLnFBlygv+TJdlmfa2Djo7u2tOHG1t7USjjVt+ntdq/8/p\n1YSMOR4HvqTr+nM4YnGud18BrtF1/fdw/hvvxxlHOh//D/DtauKEipOckdV1/T7gsep9/jKRSNjV\n9jwB/CrwFzjhQBv4l0QiUdB1/TPAt3Rd/33gJLByg091wvj4GEeOvMiXv/wlJEmiWCwSDAZ4+ctv\n5c4738IS4+jFAAAgAElEQVRb33oXH/7wH/KDH/wzd975a+vd3C2FLMvIsgtNc+Fdxm/euXqNpmmS\nTM4wPj7G2NgIw8NDDA0NMjBwmtJAltKAM9NE0mTUmAdXkxet2YcSWNn5XOspDPXCXELFmQxBpxd1\ndohZ0zR6ep36YN3d2+jq6qa9vQNN2/y9p0tBmOyuMssx2f3QB+5e2eSMUoEvfvnrS+7/7ne/w8zM\nDB/84B8Czofr7W//NXbtuparr97FW996F8lkkve97z18/vNfpLd3e+3cN7zh1fzoR49tyOSMs9lq\nz2BZFqOjI/T1Hef48QRHjx5mevrM+JES0NBafbja/KjRzZE2vZbYxhkvwznrJzNdwS4vTJbwer10\ndnbXBKqnp5eWltZ1Dc3X42dBmOzWOeFIw7IzAZd7vfPx6KM/4b777q/9LEkSt9/+Rr71ra/X0tsb\nGhr4oz/6Uz796Y/x8MPfxu32LHU5wQZBlmXa2ztob+/gla90ouATE+O8+OILHDp0kBdffIHi8TTF\n42lkj+L4FXYEUBuFiM3HtmwnFX3OcDfjCJWVWzj8LkkSsXicrs5u2ts7qy4Y3cRicfF+Xiaix7XK\niLIm9Yt4hoWUy2UOHz7Evn3PsX//s+RyOQBkr4qr04+7M4Aadl/gKpuLubEoM1WqjkmVsWYXJ0wE\ng0E6Orpob++orjtpb+/A49kYf/DV42dB9LgEAsEFcblc3HDDTdxww00Yxn/n6NHDPP30L9i791mK\nx9IUj6VRQi7cXQFcHQEU3+b6+phzqzCSJYxkCTNZwsxWFiRMKKpKZ/uZYpLt7Z1cf/1VGMbmei/q\nHdHjWmVEj6t+Ec+wPCqVMgcPHuCpp57k4PP7a6a9asyDuzOAq82P7N5YUydq86NmilRmShgzRcz0\nwqw+t9tNd/e22lhUd/c2WlpaUdWFIiV+j1YH0eMSCASXjKa5uPnmX+Lmm3+JXC7Ls88+zVNPPcmx\nY0cxporkDkyhNXlxtQdwtfrqUsTsioWRLFGZKWLMlDBmSguSJhRVZVvPdnp7t9PT08u2bdtpaWnd\n8mnn9YoQLoFAsGz8/gC/8iuv5ld+5dVMT0/xzDP/ydNP/ycDA6epjBfISaA2enC1+JwU+5C25okI\ntlWdyFsN+RnJ0qI5Uo2NMbZv38H27Tvp7d1JV1c3mibKu2wUhHAJBIJLorExxu23v4nbb38T4+Nj\n7N37DPv37+XkyRPkp4pwaAbZraDGPKiNHtSoGzXsWjEHD9u2scvWgoKNRrqMlVmYPKFpLrbvvJLe\nXkeotm/fQeQCmbeC+kYIl0AguGyam1u44447ueOOO0mn09X0+uc5cuQw6eEU5WEnQxEJx44qoKEE\nHMNY2aM6JVg0uebTiA3YNrZpY1cs7LKJVTKxiiZWwcDMGY5fX3mhRZaiKHS2d9PTs42enl56e7fT\n3t656ezLtjpCuAQCwYoSDoe59dZXcuutr8S2bSYmxujrO8GpU30MDg4wNDRIfizHpdvwOmNSzbFm\nWlqcoopOGnonbW0di5InBJsP8T8sEAhWDUmSqpV6W7nlllcATogvl8syMTGOZRUZGBitGRUbRgXT\nNJEkCVlWcLvdeDwe/P4AwWCQSCRKNBolHI6IxIktjBAugUCwpkiSRCAQJBAIEo8H2bGjvtKwBfWP\nEC6BYB0wTZOZmWmmp6eYnp4ilUqSTqfIZNLkcjny+Rz5fMEpgVIuY5gmtm2BDZIso6oKqqrh9/tQ\nVQ2v14ff76/1TEKhMKFQmEikgYaGKA0NDcKwVbBpEMIlEKwipVKJkZEhhoeHGBkZZmRkmPHxUSYn\nJ85be0uRJFxIqBJoSLilM4XfbBOsMpjkmUmnMbCpLMNIIBgM0dgYo7ExRiwWJxaLVWs5NRGPx4Ww\nCTYMQrgEghUik8kwMHCK/v7TDAz0MzBwmomJcc52p/FIMnFZJuTSCMoyQVnBL8v4JBmfLOGWZNSL\nnPtk2TYl26ZoWxRtm7xlUbAscrZFzrLIWhbZXJbB7CynT5885zUaIg3Em5qJx5toamqhqamJpqZm\n4vFmAoHAJb8vAsFKI4RLILgE0uk0/f2n6O8/xenTJ+k/fYqZ5MyCY9ySRIui0KioRBWFqKLSICt4\nViGpQJYkvJKE9wJFv23bpmDbzFomGcsiY5pk5l5n0hxLJTl27Oii83xeH/GmJuLx5qqYNdXWorCh\nYK0RwiUQnAfbtpmenmJg4Ewvqv/0KZJnlaHxSjJdqkZcVYkpzhKU5borXyFJEj5JwifLnKtovWnb\nZ4TMNElbVWErlRjqP01//+lF5yiKQmOjE3Y8e4nF4vj9orcmWFmEcAkEOAKVSqVqFYNHRpyqwUND\ngxSLhQXH+mWZbs1FXFGIKypxVcUvb44Jrook0aCoNCjAWQ5Itm2Tsy0yplUVN0fg0qbJ7OQkExPj\n57ymz+sjFnfG0ZzxNEfQ4vEmwuFtq/9Qgk2HEC7BlsEwDJLJGaamJpmamiSfT3Pq1ADj42OMj48t\nEigJiMgKHZqLRkUlVu1N+bZoWEySJAKSQkBWaDtb1YCKbS8IPc7O662NDDq91XMRDkcWiJmTOOIs\nDQ1RMaFYsAjxGyHY0FiWRT6fI5vNMjubIZPJMDubqaWWp1JJkskkyeQMmUx6UaIEgIJESJZp01xE\nFIUG2RmPiijKRSdJbGU0SaJRVWk8x9fK3NhaxjLJmCazlnVG4GYz9KVTnDhxbNF5kiTR0BAlFovX\nMiKj0cbaOhqN4vX61uLxBHWEEC7BumJZFsVikWKxQD6fr60LhTyFQoFCIV+d05Svzm9yfs7lsuSy\nWXL53DnFaD4KEj5ZolVxegsBWSYkK4RkmbCi4JfqbyxqszF/bK1FXdxbM22bXFXMZqu9tbl1JpXk\n+Mw0i2XNwePx0tAwN18tSiQSIRJpIBxuIBwO1+a0eTwe8f+8SRDCJbhonF5OnmRyhmKxUBUeR3wK\nBednZ12obZ/bN7d9TpRKpdJF31/GSSl3SxLNioJHkvFIEl5ZxivJeKtfkF5Zxl89rl6+sPKWhbGB\nireq1fdytVEkiZCiEFrCDHdO2GYt00ntry0m2UqZmbFRRkdHznsPVVUJhcIEAkGCwWDVvSOA3z+3\n+PH5/Ph8Pvz+AF6vF6/Xh9vtFlmTdYYQrk2EbduYpolhGBhGhUrFWZfL5dq6XC5TqZRrr8vlMqVS\nkVKpRLlcolQqUy6XKBaLlErF6rpUe10sFiiXy5fcRgUJTZJwSRCQJKKqikuScUnSmYUzr93ymX1u\nqTrHCepGiJbLtGnwk+wsacu88MHnweVyEYvFmJqauqz/h4shLCu8LhCkUVm/r4sLCRs4Y2x5y5m3\nlrct8vPWRdsib9kUUklGkjMX9ceDJEl4PB68Xh8ejwe324PH46m9jkSCWJZc/dmNy+XC5Zpbu9C0\ns9caqqqiqhqa5iyKomy43+n1RAhXHbNnz7/z93//t+vaBgln7EKrCk5YktBUdcE2lyRX187Ptdfz\nBGhum7ICH85f5HOcrFx8T209yVoWl9vPcrlc3HPPPezevZs9e/bw0EMPrYl4pS2TRzIp/Jug1yEB\nXknCRnIqp2BX184SVRRaVY2SbVO2bcq2Rcm2qZTLlEsl8tXtS3uerA0ul5sPf/hj9PbuWOeWrA9C\nuOqYAwf2rfk9PZKEV5KdUJsk45WlBSJ19uJCWiBaKyFMmw3bti9btABisRi7d+8GYPfu3TzyyCOM\njJw/PLZSWDjPsVl6BVLNQuvM89g2xBSVXW7PPOE6s1SqQlaxbYq2TWFej66wQv/Hy6VcLnHqVJ8Q\nLkH98cEP/hHDw0PYtoVpmliWhWVZmKaBaTrbnNdOeNA0jVp40DAMKpUylYpBpVKpvp4LF5aoVCqU\nSkXK5eq6VKJULlGsVCjaJslLDGnJUO2BsUSv60zv7Oze2IJtLD0udYvPzy34L+OdXXu+l05edphw\namqKPXv21HpcU1NTK9S6CxORFd4R3lhVg03bpmBbFCxn7QiMRdE6Y41VtJx1ybYp2RYvlIq8UCpe\n9L1UVa2GCd0LwoVut7saItTQNFc1NOhCVdV5YUIVTXNCh4qioKoqiqKgKAqyrNRez4UTFUVB01x0\ndnatwru2MZAulJEluDwmJ2cXvcHxeJDJyfos5WBZVm28q1gsUCqVaskX5XKplnyhqjbT02lKpWJt\n21wyxvwEjFKpeMGsv3MhwQIhc1dFz119PZec4ZadxAxPtXfoleS67PVNmwY/zc6S2oBjXBFZ4bXr\nPMZ1NiX7TIJGrpqkkZs3vpWritOFkCQJv8+PPxCsJmf4agkaXq8Pn8+Hx+OtrZ2xLS8ejxuPx4vb\n7aGjI8bMTH4Nnnr1qMfvpHg8uOQHuX5+EwV1gSzL1WwqL+FwZMnjlvuLbts2pVJpQZZhoZCfl4F4\nJttwYQr8mde5fJ7psyYHnw+XJNUMa32SjL9qYhuoLkFZwbvGmYaNiso7wg0rk1WYLYDH7yyrzFpl\nFc5nvp/igtT46vyvbDVctxQej6eaDh8hHI4QCoUJh8MEg6Hqciar0Ov1XXbGoHKehBHB6iCES7Cq\nzGVkeTwe4NJDTXMp+M6crhy5XI5sdra2np2dJZudJZNJ1yYgj2az2LZxzuupkkRQkgkpCuHqfK4G\nWSGiqPhWUdS2quvG2ZSq1lFz7hqzVW/EWcti1l5a3D0eL82xGNFojGg0SjTaSEODs56rPeb8rgk2\nM0K4BBsCWZYJBAIXVV7DMIx57hkz1cKNTvHGqakJpqYm6c/lFp3nliQaFIWorNKoKI4bhKLgkoTo\nLJc5s945h4zZef6Gs5aTqXcufF4fbVVfQ6duWFOtflhjYwyfT7hkCIRwCTYxqqpWbYEaz7k/Hg9y\n6tQI4+NjjI2NMladxDoyMuRsMxb21kKyXHN+j6sqcUXFu0V7UGdbOGWshca7uSWKZGqaRqxa4yse\nj9PT04nHE6oZ8AphEiwHIVyCLY3jnhBk+/adC7ZXKmVGR0cYHBxgaGiwWtbkNCdzOU5WziRFBGTZ\ncYivmvDGN5EJr2nbZC3LKW1SNc9Nz7NlOtc405y3YMc809z5SygUXhCGrcekAEH9I4RLIDgHmuai\nq6uHrq6e2jbbtpmZma4WkDxdLSJ5ilOZNKfmiZlflokpCjFFrRWRDMsKch1mO5bOLlNSfZ2uWiud\nK6DndrtpaWqpFpNsIhZz1k5RyRiattiLUCBYSYRwCQTLRJKkmkP5TTe9FJir45WsiVh//ykG+k/T\nn0rSX6nUzlWg5jwfqQpZWFFWNcPRqobzctVU8dlq2vhs9XXGMpccawqHwmxvcqodL6x43EwwGNw0\nE5EFGxMhXALBZTAXGmtoiHLDDS+pbc9kMgwO9jM0NMDg4ADDw0OMjg4zXS5DZeE15tzrfVXHkjlP\nRrckoUoSCiBLEhLO/DYLR5RMwKg6OsxNoC2dNel2qaRxVVWJNbcsCOM1NTXXCj2KzDxBPbOkcOm6\n/gQs+XsvJxKJX1mVFgkEm4BQKMQ111zLNddcW9tmWRYzM9O1wpUTE+PMzEwxPT1FKplkMpPGqpw7\nff9i8Hg8hEJh2kLhWop4Q0OUxkYnUSUWixMMhoTjuWDDcr4e12eq67cAJvAYjqPP64DsKrdLINh0\nyLJcq+w7X9DmsCzLqTOWy9VqkM05+Zum6Xge2nbV/kdFVRWam6MUCiZerw+/34/f70fTXOvwdALB\n2rGkcCUSiccAdF1/fyKR+PV5u/5V1/UfrHrLBIIthizLNXeH5SKy8gRbkeXECq7Qdb2WK1x9vX31\nmiQQCAQCwdIsJznj48Djuq7PjdZWgD9cvSYJBAKBQLA0FxSuRCLxL8C/6LoeBaREIjG9+s0SCAQC\ngeDcXFC4dF3fDvwFEE0kEr+s6/o9wM8SicTRVW+dQCAQCARnsZwxrq8CDwFzebovAA+vWosEAoFA\nIDgPyxEuOZFI/BvVOV2JROJJnPR4gUAgEAjWnOUIl6brepiqcOm6fjXgXdVWCQQCgUCwBMvJKnwA\neApo03X9eSAG/OaqtkogEAgEgiVYjnA9B9wI6Di9rmNA62o2SiAQCASCpThvqFDXdRn4Z6CEk5Rx\nCMfo+p9Xv2kCgUAgECxmSeHSdf0dwFHgVTjJGBWczMIMMLwmrRMIBAKB4CzO51X498Df67r+qUQi\n8an5+6rJGgKBQCAQrDnLcc74VDWTMFbd5Aa+CCy2txYIBAKBYJVZjnPGl4DXA83AaaAH+MKqtkog\nEAgEgiVYzjyulyUSiSuBA4lE4kYcEYusbrMEAoFAIDg3yxGuOZcMVdd1JZFIPA28fBXbJBAIBALB\nkixnHtdBXdf/EGc+16O6rp8EgqvbLIFAIBAIzs1ykjPer+t6BMjiOGZEgftWu2ECgUAgEJyL5YQK\nAW4DPphIJL4D/BswvnpNEggEAoFgaS4oXNWswndwxp/wN4CvrGajBAKBQCBYiuX0uG5KJBL/BZgF\nSCQSDwLXr2qrBAKBQCBYguUkZ8xlFc6VNVFYfohRIBAIloVlWaRSSWZmppmdzZDP5ymXy1iWiSTJ\naJqG1+sjEAgQDkeIRqO43Z71brZgHViOcD2r6/pf45Q1+RDwFuCJ1W2WQCDYzJimyeBgP08/Pcih\nQ0cYGOhnbGyESqVyUdcJBII0N7fQ2tpGW1sHnZ1ddHZ2EwqFVqnlgnpgOVmFH9Z1/TdwQoUdwJcS\nicQ/rXrLBALBpsG2bcbGRjl06CCHDx8ikThCsVg8c4CkILtCqMEAkuZHVj1IigskBSTJOcYysC0D\n2yxhVwpYRp5cKUtf3wn6+o4vuF9DtJHebb309u5gx44r6OnpRdO0NXxiwWpyXuHSdV0CPlod13pk\nbZokEAg2A4ZhkEgc4cCBfTz//H4mJydq+2RXEC3ShuKNI3ujyK4gknRpIxC2bWGVs1ilNFYxiVlK\nkcrMsHfvs+zd+ywAqqqyfftOdP0qrrrqGrZv34mqLifgJKhHzvs/l0gkbF3Xt+u6fkUikTi2Vo0S\nCAQbk3w+x/PPH2T//ud44YUDtV6VJGuowU7UQCuKvxlZ86/YPSVJRnGHUNwhCHUCTg/PNvKYhWnM\n/CRmfpJE4giJxBF+8IN/wuVyc9VVV7Nr1/Vcd90NxONNK9YeweqznD85XgK8qOv6DE5BSQnwJhKJ\n2PlPEwgEW4FkcoYDB/ayb99zHDlyGMty8rkkzY/WcAVqsB3FF0OSlDVrkyRJTshR86OFugCwzTJG\nfgIzN46RG+Pgwf0cPLif734XWlvbuP76m7j++hvZseMKFGXt2iq4eJYjXKPAm3AEy66un1nNRgkE\ngvpmdHSYffueY9++5zh1qq+2XfY04Aq0owY7kN1hpLnxqTpAUlxowQ60YAcAVjmLkRvDyI4wOjbO\n6OgP+fGPf4jf7+faa2/ghhtuYteu6/D5Vq53KFgZlhQuXdd/E/gE0AX8fN4uD6ICskCwpbBtm4GB\nfvbufYa9e59hdHSkukdC8TWhBjtQg+0rGgJcbWRXAJdrB66GHdiWgZmbwMiOkM8O89RTT/LUU08i\nyzI7dlzBrl3XsWvXdXR19SDLYjbQenO+Csjf1XX9/wW+AXxy3i4LGDn3WQKBYLNg2zYnT/axd+/T\nPPfcM0xNTTo7JAW12qtSg21Iint9G7oCSLKKGmxDDbZh2y/BKqUwsiMYsyMcO3aUY8eO8k//9A/4\nfH50/UquuOJKduy4gq6unvVu+pbkQskZJvCetWmKQCBYbyzLoq/vOM899wzPPfcMyeQ0UE2uCHVV\nEyxakOTNm1ouSRKKpwHF04A7dg2WUcLMjWHmxijkJ9i/fy/79+8FQFEUuru7aW3toL29k7a2dlpa\nWmlsjIlxslVE5IMKBFucubT1ffuc9PFMJg1UxSrcgxbsRPG3IMlb84tYVt3I4W60cDcAViXnZCoW\npjELM5w81c/JkycXniPLNDbGiMXiNDbGiEYbFy0ej3D9uFSEcAkEW5BMJs2hQ8/z/PP7ef75gxSL\nBQAkxY0W3oYa6kTxN69pJuBGQdb8yGE/WrgHmJtHNotVyjhzycqzWJUsU8nMgrlrZ+P3B4jF4sTj\nTTQ1NdPU1ExzcwstLa2EQvWV2FJvCOESCLYA2WyWEycSJBJHOXz4EIOD/bV9C9PW45c8EfhSsIwC\nWOaFD1xJZAVZ9a7Y5Zx5ZGEUdxjoXLDPtgxso4BVyWFX8liVPLbhrPOVHP0D/fT3n1p0Ta/XR1ub\nY2PV1tZeW0ejjULQEMIlEGwqbNsmmZxhZGSYoaFBBgZOc+rUScbHR88cJMkoviaUQCtqoA3ZFVrz\nL0OzmKIw/CR2efa8x7lcLmKxGFNTU5TL5RW7v+QK4m2/FcUTWbFrnvM+sorkCiK7zl003pkoXcSq\nzGKXs7WeW6k8S9/JPvr6Tiw43uVyV30ZnbG05uYW4vFm4vEm/H7/lhE1IVwCwQYgnU6TTqcolYoU\nCnlyuRzZbBbLKjEyMk4ymWR6epKpqclFRrWSrKH4m1G8MRRfHMUbQ5IXfvSL4wcwZgfW7HnsSoFq\nwYklcblc3HPPPezevZs9e/bw0EMPrZh42eVZ8qd+gqStXM9rJVCDXXg7XwGcIwRZSmOUM0v20jwe\nD9FoIw0NUcLhCKFQmGAwiN8fwO/34/X68Hg8eDxeWlpaN3RavxAugaDOGR4e4r77PnzhAyUZ2R1G\n9QSQ3SFkdwTFE0HSAnX1l7ht21xItABisRi7d+8GYPfu3TzyyCOMjKzkTBwb27br6r2Zz1IhSNu2\nsCs5R9TKWWepZClXcoyMjjIycuFptq95zet45zv/6yq2fnURwiUQ1DnLdjW3LWyjgC0p2LKGrbiw\nKi4UxQ2K67yneppvgOYbVqC1yyPb96MLhgmnpqbYs2dPrcc1NTW1om2QXUH829+wotdcbWzbxjbL\nWEYBq1KojZnZRgHbKIBtLes6G90NRHL++hGsFpOTs4ve4Hg8yOTk+T+09Y54hrXFMAyKxQLFYpFC\noUA+n2N2dhbbLjE8PE4yOcP09BSTkxNMTU1y9udadoXOhAr9TevucGEWUxSHn8RapzEu2RXEswZj\nXJeKM/ZVcMKE5XQ1VJjBKmewzcXvg6ZpNDbGaGyMzQsVhggGQ/j9AXw+Pz6fEyp0uz34fL4F59fj\nZyEeDy7ZFRY9LoFgA6CqKoFAkEBg4SD/ub5wKpUKExPjDA4OMDjYz+nTJzl5so9S+iSVtDPfSHYF\nUfytjlu7r2nN52gpngj+7W9YVlZhGtA6YcWmPK9wVuGlMtd7sivVcF95trbY5Vlsa+FYpSzLNMWb\naWtro7W1nebmltqy1dLnhXAJBJsMTdNob++gvb2Dl7/8FsBxxBgcHCCROMyRIy9y5MhhysljVJLH\nkGQVxd/iWDgF2pwCjmtEPQjIamHbplPwci4V3sifSYmv5JwQn2UsOk9RVFpaWmrp8K2tbbS3d9Dc\n3CqKYVYRwiUQbAFkWaa7u4fu7h5e+9o7MAyD48cTHDy4jwMH9jExMYQxOwSShOJrdqydgh3I6sb3\nIVxtLKOIVUrNC+c5E5DPlznp9fqINbfX3DWam5uJx5tpaWklFotv6Iy/tUAIl0CwBVFVlauuuoar\nrrqGu+76LUZG5sqUPEN//2nM3BilsedQfHHU0JyIbd7e0XKxbROrkMQoTGIVpjEL005SxFk0NESJ\nx7tq404LbZ+ieL2+c1xdsFyEcAkEWxxJkmqhxTe96S1MTk6wd69jsnvy5AnM/ASlsb0o3jhqqMMR\nsQ1UvuRysG0bq5TGzI1h5MawClMLwnuhUJgrrriGlpYOOjo6a2NPLtfahVu3IkK4BALBAuLxJl7/\n+jfy+te/kZmZ6WoNrmc5fjxBqTBJaXw/sieKGmxHDXaiuEPr3eQVxanNNe6UNcmNYlfytX1tbe1c\neeXVtbIm0WhjXWbkbXaEcAkEgiWJRhvZvft2du++nXQ6VQ0nPuskd0zOUJ58AdkVrNbm6kD2RDdk\ndptVKWBkhzGyI5i5cbCdTEefz8+1N93Crl3Xcc011xKJNKxzSwUghEsgECyTcDjCbbe9httuew25\nXJaDB/ezf/9zvPDCQcrTRyhPH0FSvaiBtqphb3PdlkKxbQurMOP0qrKjWKVkbV9bWzvXX38T119/\nIzt2XCESJeoQIVwCgeCi8fsD3HLLK7jllldQKpU4fPgF9u17jgMH9pFL9VFJ9VXT7B0jXyXQtq4Z\nirZtY5UzmLkJzPw4Zm68Nk9KURSuvnpXTayamprXrZ2C5SGESyAQXBZut5sbb7yZG2+8GdM0OXHi\nWLVK8HNMTg5izA4CIHsbUf2tqIGWakhx9XoytmVgFVOYhanaYhvF2v5YLM6uXddx7bXXc+WV1+D1\niozJjYQQLoFAsGIoioKuX4WuX8Vdd/0mIyPDHDy4j+efP8CJE8coF6YpTx1CkjVkbwzFF0PxNCJ7\nGi6pR1azRio7DupmMYVVTGKV0zDP9ioSaUDXb0LXr+Lqq3eJXtUGRwiXQCBYFean2d9xx53kclmO\nHHmRw4cPceTIi4yPj2LmztQJkxQPsiuApPmQVC+SrDnlVyQJbNtxojAr2GYJ2yg6DulGbpFllKa5\n2Na7nW3bttPbu4MdO66gsTG2IZNGBOdGCJdAIFgT/P4AN9/8Mm6++WUApNMpJieHOHjwRQYHBxgd\nHXYMggvLc4H3en3EWzpoanLK3be3d9DZ2U1zcwuKUp9JIYKVQQiXQCBYF8LhCDt2dLJjx67aNsMw\nyGTSpNNp8vkclUoZ0zSRZRmXy43H4yUQCBAOR/B4POvYesF6IoRLIBDUDaqq1qyRLoRlWeTzefL5\nHIVCgUIhXy39UqJcLlEqlahUyhiGgWmaznhYtXCkoiioqoqmuXC5XHi9Xvx+P35/gGAwRCgUFu4X\ndYwQLoFAUBcUCgVSqWStxzU7m2Z2dpZsdm7JkstlyeVyZLNZisXFHoEridfnI9rQSGNjjHg8XjXB\nbTHCFBgAAB7XSURBVKGlpU0Y4a4zQrgEAsGakclkGB4eZGxshLGxMVKpKUZGRpmenl6WEEmKhORS\nkNwyasCDpMnImow0t6hziwSKhCTLoDiJItSSM2znn2ljmzaYFnbFwqpY2GULq2xiF03KxQoj48MM\nDw8uaoemuWhra6Ojo4urrrqCxsZWurq6hXnuGiGESyAQrAqFQp6+vhP09R3n1KmTnO4/SSadXnSc\npMnIXgUt7EX2qMgeBcmjILudRXIpyC75/7R398GNpPWBx7/drZYsyZYsyZL8Mva87j4sG1gWFthl\nYWEJAykgyeWSHEdVrgJVueySSuUudXdUjlwoEiBUqjYvd9Rxu1zqWOpCQiVbgbpKQmCAu0pYYCmW\nnZndYXhmxuvx+GXssWRZll8ldff90S2P7fHbzPpFmvl9qrosS93tp223fnqe5/c8jx+wrP3NDPQ8\nzw9q83Wc+RrOXA2nUsOZrTI8Mszw8GWeffafVvbP57s5erSR0XicgYEjsobWHpDAJYTYFbValQsX\n9Eq6+/DwEN6qsVRmNITdHSOUCGMlbMx2G6vdxgw3bwagYRhB4LQIpdaOM/Nczw9k5Sr1mWXqM8tc\nm77G5OQE3//+s4A/rm1g4AjHj5/g+PG7OH78LknN3wUSuIQQt6xYLHDmzAucPfsC58+fo1YLlps3\nDULpMKFMFDsTIZSKYLbdXm83hmkQSoQJJcJE+tuBYGqpuRr10jL16WVq08sMXR5kaGiQb37z64C/\nFMqxYyc4dswfZ3bkyDFiMWlivBm313+SEGJPua7L8PBlTp9+ntOnn2dk5MrKa1aHTdvhJHY+ip1p\nwwjdeckLhmFgdYSxOsJEBjoA8ByX+kyV+vQS9eIyc6X5ld9fQz7fzeHDRzl8+AgDA0fo7z9MInF7\nLRezmyRwCSG2tLy8xPnz5zhz5gXOnPkRMzMz/gumgZ2PEu6OYffEsGLSl7MRwzKxM23YmTa4y3/O\nXaxTm16mXlrGKV1vYvzBD763clwimaT/0AC9vYfo7e2ju7uH7u5eEonEHd/UKIFLCLGG67qMjY1y\n7tyLnDt3Fq3PU6/7q/4aYYvIQDt2T4xwPnZH1qp2gxkNEekLEenzV5L2PA93vk59ZtnvMytXmZud\nD/4GL645tq0tSi6XJ5fL0dWVI5vNkslkyWS6yGS67oiB2U0fuJRSHwH+DVAFYsDvaK2/fYvnSgPP\nAl/VWv/nmzjuQ0AZKAG/qbX+pVv5+UI0o1qtypUrwwwOXuTiRY3WP2Fu7vqKvlYyTFu+k3BPjFA6\nsuef9t2lup+m3uQMy9i1fjvDMLCCZBUOXX/erbk4lSrObA1nroo7V6M2V2NkbJgrVy5veK5YLL4y\niDudTpNKNb6mSaVSpFKZlg9uTR24lFJHgF8H3qi1riul7gaeArYMXEopU2vtbvDSvcCFmwlaAFrr\np4PzvuNmjhOimdTrdYrFKSYmJrh6dYyxsVGuXBlmbGwE171+u5hRi/BAO3Y2SjgXxYzuz9tEvVyl\n8twk7lxt188dDofp6uqiUChQrVZ37bxmu03Hm/OEknszy4Zpm5jpNuz02kDjeR7ekoMzX8ddqOEs\n1HGDbXmxytjECKOjVzY5q19rS6VSdHamSKXS9PbmCYfjdHZ2kkw2tiSRSHMGuKYOXEACiAIRoK61\nvgA8qpR6DfDfAQ+YBX4VeC3wH/Gv6eNKqbcCvwyYwD9orX8f+DNgQCn1GeCzwP8E2oA68GvAOKCB\nZ4CHgQrwfuDjQAF4CUgppb6M31r9Va31J/f6lyDERqaniywsTDM5WWJpaYmlpSUWFxeYn59nfn6O\nSqXC7OwMMzMlitNFyjMza9LTwa81WMkwdiqCnY4QyrRhxkI31KrmXyxSHZvf0+txF+v+Hb3LwuEw\njz/+OCdPnuTUqVM8+eSTuxa83Lka5W+P7ltw3ykjbGHYnr+yi+cPuLbabayOMO5Sndqiw0RxgqtX\nx7c8TzgcpqMjQUdHgvb2dtrb24nF4sEWo60tGmwRIpE2wuEI4XAY27YJhUK0t3fsSe3OWP+P3GyU\nUl8A3gd8Dfh74G+BbwC/q7X+nlLqPwBJ/FrY08DdWutq8PzngCVgEHgd8HqCpj6l1J8Df6W1/pZS\n6n3Az2mtH1NKucDrtNZnlVLP4df4foHrgeuvgePAMvAT4AGt9fRm5Z+aqtzwC85mO5iaqmy0e8uQ\nazhY3/rWN/jSl57e8f5mm4UZt7HiIX/8VIdNKBHGjNsY5vZNf3sduDzPw1t0tt/xFvT29vLUU0+t\nfP/YY48xPr71G/bNMqJW0ydMhPvixF+zdg5Iz3Fxlxzcxbr/dcnxm2qXHNxlf/OC52/VE098dkdz\nT66XzXZs+gttro8JG9BafzhoInwv8FHgI8CrtdaN9Jt/Bv4LfuA6q7VufJSq4Qc4B8gC6XWnfiPw\nKqXU7wEWcC14flZrfTZ4PAJ0rjvuh1rrCoBS6jxwDNg0cAmxF+Lx+E3t7y47/pRHBmAaGJaB05ge\naQe1hfhrMje86e220jdG9qSZsFAocOrUqZUaV6Gws2VTdspst0m9u39Xz7kfvJqLu1THXfSDVSNo\nNQKY1whc1Y16XXamLRolFNr9bNOmDlxKKQOIBE2EF5RSn8Wv5eRW7WYAjd9sNTjuGPBbwP1a60oQ\nYDbyAa312Lrn6uu+Xx/1vXWvNXeVVdyWHnzwYd70podIJMKMjxdZXl5e01TYmJi2XC4zM1NierpI\noTjFTKFEvbC05lxmm4XVGSGUjmBn2vwEDGv/swU73pzfkz6uarXKk08+yTPPPLNnfVzNZGWaqoW6\nX5NaDGpUjVpV8JxX3zogxeNxEplOOjo6gubCjpUZ9GOxONFolGg0RltbG21tfjNhJOI3FYZCflPh\nXtVCmzpw4fc7/bRS6oNaaw/owO+z+rZS6i1a6+8C7wR+uO64FHAtCFoP4ufprO89fQ74eeBzSql3\nAnmt9V/toExvUErF8Gtyr8JvhhRi35mmSTQaJZFI7viYWq3KtWvXuHp1jNHREUZGhrk8PERpYpra\nxAKLEMx6EcHORrHzUUKpvc8kBAglw6Te3b9nWYULQIw8uzVHxW5mFd4Mz/PwlhuJGf4cio3EDGeh\njre49e8vHo+T6k7T2dnIMkxz6FA3lhWlszNFMpkkkUgSCjVveGjekvn+F3A38AOl1Bx+0PoNYAw/\n4Hj4fU8fxu+/ajgNlJVS3wO+i5/I8VngM6v2+QTwtFLqX+PXmj60g/JYwI+AL+AnZzyltZ651YsT\nYr/Zdpi+vkP09R1aWYkYYGamxODgpSAd/jxXrlymXlhi8XwJI2xi52P+QON8dM/nFrzdpoa6VZ7r\n+RP6Vqo4s9WVCX7d+fqmtaV4vJ1MX98NqfDpdGYlg3CjdcZarb+36ZMzWp0kZzQvuYbNzc3N8ZOf\n/JiXXjrDiy+eoVQKunENCGXaCPfECPfE/XFH4hVzqw7OTDBZb7mKU17GqdRu6IiwbTsYfNxNLpcn\nm83R1eUPPu7q6rrl9PVmvBdaOjlDCLH/2tvbeeCBN/HAA2/C8zxGR0c4c+ZHnD79PENDL7NQWGLh\nxWmsDhu7OxYMTm7bUYbinW7N3IUlf9ond35t13o4EuHIsRP09fUHUz710tPTRyqVlgUskcAlhNiG\nYRj09w/Q3z/A+9//LyiXy5w9+wIvvPA8586dZelimaWLZQzbxM62Yedi2LkoZnzvOudbhed5uAt1\n6sWlldninfLymppULBbn6L33rJlkN5vNSYDaggQuIcRNSSaTvO1t7+Btb3sH1WqV8+fPcfbsC5x9\n8TTF8QLV8QXAn48v1OVnKdqpCFYyfCDZivvJrTortah6MImut3x9DJRlWRw7en1Jk6NHj5HLdd/x\nAf5mSeASQtyycDjMfffdz3333Y/neUxOTnD+/Ev8+MfnuHDhPJWRCtWROX9nA3/Jj2QYq8Ofl8+K\n237NzDZb6s27MeVSoz+qHvRPrW/yS6czHHvNCU6cuItjx05w+PARbHtvpoe6k0jgEkLsCsMwgqU3\nenj00ZN4nsfExFVefvkSQ0ODDA8PMTI6cj2QrT42ZGJGLcy2EEab5c/0EbH81YcjZrAKsRlMZWTu\nS1/a6vFQznwdd97P6nPm/ElvvdrazL54PM6Re+/h6NHjwXaMzs7UnpfzTiSBSwixJwzDoKenl56e\nXh5++BHAXzKlUJhiYmKciYkJ5uZKjIyMUSwWKJWmmZ/a2bRShm3esJm2CY3ZQEL+7CCGaUCwra7Q\neS7geniuh1d3/a3qb6unOtoo7dw0TfK5fDCsoJ+f+qlX0dmZJ5PpaqlaYyuTwCWE2DemaQbp3Hle\n+9ob07BrtSrlcpnZWX+rVCrBLCBzzM1VmJ+fZ2Fhnrm5ORYW/MmEl8tLW/zEm2cYBu3tHaR6/XFP\nfqp5jlwuRz7fQy6Xx7avDwNoxlTy250ELiFE07DtMF1dWbq6sjs+xnEclpYWWVxcZGlpkaWlJZaX\nl6lWq9RqVer1Oo7j+Bl+rotpmpimSSgUwrbDRCJhotEY0WgsmAG9QzL6mpwELiFES7Msi3i8nXi8\n/aCLIvaJfKwQQgjRUiRwCSGEaCnSVCiEaAme5zE9XeTq1XEmJycoFqeYni5SLpeZm6uwuLhIdXkZ\nx3XwPAhZFuFIhGg05i/RkUjS2Zkik8mQzebI5brJ5/MyrqoFSeASQjQd13WZnJxgaGiQy5dfZnj4\nMiMjV1haWtxw/4hhEDYMbAwiQUa6W4Xa4gLzpWnGNplM3DAMurqy9PX1c+hQP4cO+VNb5fPdkqDR\nxCRwCSEO3OLiIkNDg1y6dIFLly7y8suXWFi4PqbLADpNiz47TMqySFoWCdOi3TSJGibWNuOnXM9j\nyfOYd10qrsOs61B2XEpunVKhwOmpa5w+/fzK/uFwOJif8TADA0c4fPgIfX39Gy4JIvafBC4hxL5q\nTA01OHiR8fFhXnrpHKOjI6xeYilhmtwVjpCzQuRCITJWCPsVDO41DYOYYRAzTbIbvO0tuC7TTp2C\nU6foOBScOi8PXmJw8NLKPo0B1f39h4OamV9D6+qSbMb9JoFLCLFnXNdlauqav9Ly5SGGh4cYGhpk\nYWFhZR/LMMhbFj2WTT4UIh+yie1zM13MNImZYQ6t6u+qex6lIIgVnDqFep2pq+OMj4/x3HPfvX5s\nLEZPTx99fYfo7e2jp6ePnp5e0umMNDfuEQlcQohXzHVdZmZKXL06zvj4KGNj/jY6eoXl5eU1+66u\nTXUHtantmvoOQsgwyIZCZFctYe95HhXXpRjUzIpOnemlZV4evMjg4MU1x9u2TT7fTT7fE3ztXpk1\nJJnslKD2CkjgEkLsSL1eZ3q6yNTUtZXt2rVJJicnmJy8Sq1WW7O/id8v1W9H6ApZZK0QWStEpIXf\nsA3DIGFZJCyLo6uedzyPsusw7TjMOA4lx2HGrTM5Nsro6MgN57Ftm2w2t7J1dTUeZ+nqytHWdmsr\nGd8pJHAJIQA/MBWLhZWtUJha+VooTFEqTa/ph2qwDYOkaZIMEic6rRBpy6LTtJqyJrUXLMMgbYVI\nW2vfUj3PY8HzKDsOZdffZoPHhaDZcSMdHR1rglk2m18JcqlUGsuy9uOympYELiHuELValWKxuBKI\nisUpCoXrAapcntkwMAHETZN8kMnXYZokTYsO06LTsogahsyKvgnDMIgbBnHTpBf7hteXXJeK6zIb\nZDrOOkHW4/w8w5VBhoYGbzjGNE26urLBWLQ82WyeXK7xOEckcvvX1iRwCXGbqFar62pLjRpTgamp\na5TLMxseZwDtpkmPZdEeBKaOVV/bze3TzXfTgutS3ySANoNQkJ24G9pMk7ZNMh1dz2Pec6k4qwKb\n61J2HCpTU1y7Nsm5cy/ecFwykSSbu15Dy+XyKxMXd3ambou+NQlcQjQ5z/NYXFykXC4xMzPDzEyJ\nmZmSv37V/Czj4xNMTxepVGY3PN7ErzH1hewbglKHaRI3TcwmqDEVnTpfn6tQdp3td95COBymq6uL\nQqFAtVrdpdKtlTQt3tPeQcbau7dQ0zDoMPya7Ua1tarnMhsEtXJQW5t1HcpzFQZny1y6dOGGYyzL\nIpPOkM50kcl0kUqlSaczHD7ci2FESCZTJBKJpm+KlMAlxB6rVGZZWFigXq9Tq1WD5TZqLC/7y280\nluJYWFgI1pjy15mam6tQqVSYnS1Tr9c3Pb+FX2NaHZjaTZORWpWr9TqNkNT41A61Tc91kOZcl1da\nzwqHwzz++OOcPHmSU6dO8eSTT+5J8Cq7Ds/MzhBv0tpL3DDxABePTJAUM+s6VFyXSqHAtalrWx7f\nHm+nI5Ggvb0jmHk/TiwWJxqNEovFaGuLEolEiETaCIfDhMNhbDscLBVjEwqFsCxrZb/dJoFLiD30\n4x+/xBNP/OEtHx83TNKmSdS2iRp+7ShmmsQNk3bTIm6am/YxTTsOprF5wGsmnue94qAF0NXVxcmT\nJwE4efIkzzzzDOPj47tw5hu5+OVuxv49w/CbgE0MMlaIB2PxNa87nsec6zLnOsy7LvOey7zrshg8\nXlxcZHJ+jqu7UJZPf/oJenp6d+FM10ngEmIPvdK05nnPpe56VD2TmulR9/zNMf03TgcP1zSJcWNz\n31ticd5CfOMTN6G/LJdecTNhoVDg1KlTKzWuQqGwS6W7Uadp8cFkas/Ov1dqnsdcUPuac/2ANe86\nLHguC67HgucHMHcXflZ0j2pcxmZZRGJ3TE1VbvgF3w5Lfcs13BzP84KmwtpKc+H1psIllpYWb2gq\nbCxbX6nMUi7PMDc3t+n5GwkW7Rv0YSWCmlmzp6YXnTrfmKsw0wJ9XJ2mxbv3uI/rVjVqU6v7viqN\nZkLXYWmL93zbtkkkkiQSSTo6EnR0rG0qjMViRKPRoAnQbyaMRCIrTYW2bWNZ1q7UQrPZjk1P0ny/\ndSFuQ4ZhYNs2tm0DsVs6R71eZ3a2TKlUYmZmmlKpxOLiLGNjVykWi0wXC0yUZ7i6QX+YgZ+gsVFy\nRrMEtowV4oPJ1O5kFc4tQlvc33bZbmYV3qpGYkZ5VRp94/FmfYW2bZPJdpMJEjPS6QyZTBednSmO\nH+/HdcNEo9GmbPpcTwKXEC0iFAqRTmdIpzMrz62vNTZmt1g/eLixTcyUNgxsEAQ2w6TDsoKa29og\nF9qnN7SDDgrNwA1qTZUgBX52VdZgxXVZ9DZuyEsmOzmevT6mq5EKn83mSCSSm6bCt1oLigQuIW4j\noVBoZT68jawObKuDW+PrZGmaCWfjwBYLAlvCskgENbWkZZE0ZRDyzfI8j2XPWxmbNetcH6dVCWpN\nG4Umy7LoyuU4ns2tG3jcGHy8+/1JzUgClxB3kO0Cm+M4lErTNwS0YtEfxDw1XWSyemNgsw2DzmAm\njZRpkbIs0laIRJOMETsInuex6HnMbDDd06zrUt2kOTSZSHJ01byF/lyGWXK5PKlU+rYYQPxKSeAS\nQqywLGtllgWl7rnhdcdxVmps165Nrplkd3Jygqnq2pngQ4ZB2rTosvxZ1rPBPIYH3Z+2m1zPY9Z1\nKTl1So5DyfUn2p1xnQ2Dk23bZPM9K814q5vzurqyd0yt6ZWQwCWE2DHLslamErrnnnvXvOa6LsVi\ngfHxMcbH/VnRR0aucPXqGNeqSxAk+JlAlxVaWXsrb4XoMM2WaGpcWFnSxF/WZNqpU3JdnHUByrIs\n8j29dHf3rixp0ljWpLMz1RLX2swkcAkhdoVpmitB7b777l95vl6vMzY2yvDwEJcvv8zly0OMjAxz\nbXmJF5eXAL//rNsK0R3yF5PMHvAaXZ7nUXbdlUUki/U6BddhwV3b82TbNkeOHCGX66G39xB9ff4i\nkl1duaafNqmVSeASQuypUCjE4cNHOHz4CI888ijgz1Q/PHyZiYkrnDnzEpcuXeDl8gwv1/xq2epa\nWTZoZuw0rT3pL1v2XErBopBFx6FYr1N0HWrralHpdIa7B45w6FA/AwOHOXRogFwuTz6fbKmMvNuB\nBC4hxL6z7TAnTtzNQw+9gbe+9V14nkexWODSpQsMDl7k0qWLK7WyBguDlGWSsvwgljD9aa9ipkmb\nYRA2jBsCm+t51IIkicVgWqPKqnFPM47D/LrUctM06ento7//MAMDfsDt7z9Me3v7vvxuxPYkcAkh\nDpxhGCtJIQ8++DDgL9Ny5cplLl8eYnh4iNHRK4yNjVJYlwCymoWBGcQux/O2nbYonc5wpKeXvr5+\n+voO0d8/QF/fIWw7vEtXJvaCBC4hRFMKh/1a2YkTd68857quP95scoJCYYrp6QKzs7PMzVVYXFxk\neXkZ13UBD8sKEQ6HaWuL0t7eTiKRJJVKkU5n7rhxT7cbCVxCiJZhmuaW49DEnUFGsgkhhGgpEriE\nEEK0FAlcQgghWooELiGEEC1FApcQQoiWIoFLCCFES5HAJYQQoqVI4BJCCNFSJHAJIYRoKRK4hBBC\ntBQJXEIIIVqK4W2wtLQQQgjRrKTGJYQQoqVI4BJCCNFSJHAJIYRoKRK4hBBCtBQJXEIIIVqKBC4h\nhBAtRQKXEEKIlhI66ALc7pRSfwg8CtjAH2mt/2bVa4eAvwCiwAta68cPppSb26b8vwn8CuAAzwP/\nTmvdVAMDlVIx4GkgD8SBP9Ba/59Vrz8E/DHQBvyt1vpTB1HOrezgGt4OfAbwgEvAh7XW7gEUdVPb\nXcOq/T4DPKS1fse+FnAHdvB3aOr7eQflb/r7uUFqXHtIKfUI8Dqt9UPAu4E/XbfLp4FPaK3fDLhK\nqcP7XcatbFV+pVQC+CjwVq31w8A9wIMHUtCt/RzwQ63124FfBJ5Y9/oXgQ8ADwA/q5Q6vs/l24nt\nruHzwC8Hf4co8N59Lt9ObHcNKKVeDTyy3wW7CdtdQ1Pfz2xR/ha6nwGpce217wL/Kng8A4SVUuaq\nT8Nv0Fr/KoDW+jcOooDb2Kr81WBLKKVm8T/BFQ+mmJvTWn951beHgNHGN0qpY8C01nok+P7v8AP0\n/9jXQm5jq2sIvFlrPRM8LgCJfSnYTdjBNYD/Rvox4Pf3pVA3aQfX0NT38zblb4n7uUEC1x7SWteB\nueDbXwP+oRG0lFKdQEUp9afAG4BngY81U9V8q/JrrZeUUp8ELgDzwDNa6wsHU9LtKaWeA7pZWxvp\nAaZWfX8N6N3Pct2MTa6BRtBSSvUA7wJ+b/9LtzObXYNS6kPA/wWGD6BYN2Wja2iF+7lho/K32v0s\nTYX7QCn188C/Bf79qqcjwL3AnwHvBF4PvG//S7e9jcofNC38Dn6Twt3AG5VS9x9MCbcXNN/8AvBl\npVTj/766bjcDv5+oKW1yDQAopXLA3wG/pbVu2k/KG12DUiqN37eyvim9KW3yd2iZ+3mTv0FL3c8S\nuPaYUuo9wMeBn1nVnAN+k86Q1no4qNmcAl59EGXcyhblvwe4pLWe0lov43/CfP1BlHErSqkHlFID\nAFrrH+H/z3cFL18Fcqt27wbG97eE29vmGhpvOv8IfFxr/Y8HU8qtbXMN78Sv/X4H+Arw+qDm0lS2\nuYamv5+3KX9L3M8NErj2kFIqCfwJ8N71n4K11g4wHPSzALwZ0PtcxC1tVX78Jp1XKaUiwfevAy7u\nZ/l26C0ENUWlVB7owH+TQWs9CthKqQGllAW8H/jaQRV0C5teQ+CPgf+mtf77AyjbTm31d3hGa32v\n1vpB/JrAj7TWv31gJd3cVtfQ9PczW/8ftcr9DMiyJntKKfXrwCfw240bvg28qLX+ilLqBH4iQBx4\nCXismdrEd1D+jwAfBurAs1rr/7T/pdxacCN+AejHb875A/xPmeXgGh4B/it+E+FfaK3/5MAKu4mt\nrgH4OlACvrfqkL/UWn9+v8u5le3+Dqv2OwI83aTp8Nv9LzX7/bxd+Zv+fm6QwCWEEKKlSFOhEEKI\nliKBSwghREuRwCWEEKKlSOASQgjRUiRwCSGEaCkSuIS4wymlfkYp9bu3cNw7lFLf2YsyCbEVmatQ\niDuEUsrYaFxRMNtGU864IcRGJHAJ0WKUUr3Al/BbTJLAU/hLs3xKa/3NYBDvd7TWh5RSTwOLwAng\nO0qpXq31Y8F5fgX4WfzZQt6FP4j5tRu8/iH85V+6gRjwN1rrP9qfqxXiRtJUKETr+QCgg3WV3oi/\nyOdWElrrk8Dn8Nccs1ad53+v2u+vN3k9D3xTa/0I8DDwsWB+RCEOhAQuIVrPKeB9Sqkv4i8IuN30\nTt8F0FpPAaeBtwfLcNzPqibCLV4vAQ8F/Vlfx18tOr2rVyTETZDAJUSL0Vq/BNwFfBl4D/B91i7H\nsr4LYHnV4y8Bv4Q/me1XgpnM2eb13wbCwNuAR4GF3bkSIW6NBC4hWoxS6oPAW7TWXwMeww9iHteX\naHnjFod/Ffhp4F+ytplwq9fTwIUgseMX8SdojWxwrBD7QgKXEK3nHPBJpdT/A/4Z+CTwKeCjSqnP\nAwNscm9rreeBHwLHtdY/2OHrfw58QCn1T8Bh/ID2xV29IiFugswOL4QQoqVIjUsIIURLkcAlhBCi\npUjgEkII0VIkcAkhhGgpEriEEEK0FAlcQgghWooELiGEEC3l/wOKfL9Bzei/VQAAAABJRU5ErkJg\ngg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa67dc14a20>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"sb.violinplot('survival', 'treated', hue='genotype', data=data.survival.to_dataframe())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th>treatment</th>\n", | |
" <th>Sorafenib</th>\n", | |
" <th>Lurbinectedin</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>oncogene</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>P19</th>\n", | |
" <td>-0.069610</td>\n", | |
" <td>0.014536</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>MYC</th>\n", | |
" <td>0.004711</td>\n", | |
" <td>0.128798</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>AKT</th>\n", | |
" <td>-0.062306</td>\n", | |
" <td>-0.156841</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
"treatment Sorafenib Lurbinectedin\n", | |
"oncogene \n", | |
"P19 -0.069610 0.014536\n", | |
"MYC 0.004711 0.128798\n", | |
"AKT -0.062306 -0.156841" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.true_interaction.to_pandas()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"treatment\n", | |
"Sorafenib 0.131061\n", | |
"Lurbinectedin -0.090770\n", | |
"dtype: float64" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.true_treatment_effect.to_pandas()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"```python\n", | |
"with pm.Model(coords=data.coords) as model:\n", | |
" intercept = pm.Flat('intercept')\n", | |
" \n", | |
" treat_sd = pm.HalfStudentT('treatment_sd', nu=3, sd=0.1)\n", | |
" treatment = pm.Normal('treatment_effect', dims='treatment')\n", | |
" \n", | |
" interact_sd = pm.HalfStudentT('interaction_sd', nu=3, sd=0.1)\n", | |
" interaction = pm.Normal('interaction', dims=('oncogene', 'treatment'))\n", | |
" \n", | |
" mu = (intercept\n", | |
" + treat_sd * treatment[data.treated_idx.values]\n", | |
" + interact_sd * interaction[data.genotype_idx.values, data.treated_idx.values])\n", | |
" sigma = pm.HalfStudentT('sigma', nu=3, sd=1)\n", | |
" pm.Normal('y', mu=mu, sd=sigma, observed=data.survival)\n", | |
"```" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"with pm.Model() as model:\n", | |
" intercept = pm.Flat('intercept')\n", | |
" \n", | |
" treat_sd = pm.HalfStudentT('treatment_sd', nu=3, sd=0.1)\n", | |
" treatment = pm.Normal('treatment_effect', shape=data.treatment.shape)\n", | |
" \n", | |
" interact_sd = pm.HalfStudentT('interaction_sd', nu=3, sd=0.1)\n", | |
" interaction = pm.Normal('interaction', shape=data.oncogene.shape + data.treatment.shape)\n", | |
" \n", | |
" mu = (intercept\n", | |
" + treat_sd * treatment[data.treated_idx.values]\n", | |
" + interact_sd * interaction[data.genotype_idx.values, data.treated_idx.values])\n", | |
" sigma = pm.HalfStudentT('sigma', nu=3, sd=0.2)\n", | |
" pm.Normal('y', mu=mu, sd=sigma, observed=data.survival.values)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"Auto-assigning NUTS sampler...\n", | |
"Initializing NUTS using ADVI...\n", | |
"Average Loss = 107.84: 9%|▉ | 17662/200000 [00:03<00:43, 4216.92it/s]\n", | |
"Convergence archived at 18000\n", | |
"Interrupted at 18,000 [9%]: Average Loss = 487.26\n", | |
" 99%|█████████▊| 986/1000 [03:14<00:02, 4.76it/s]/home/adr/git/pymc3/pymc3/step_methods/hmc/nuts.py:456: UserWarning: Chain 1 contains 1 diverging samples after tuning. If increasing `target_accept` does not help try to reparameterize.\n", | |
" % (self._chain_id, n_diverging))\n", | |
"100%|██████████| 1000/1000 [03:16<00:00, 10.06it/s]\n" | |
] | |
} | |
], | |
"source": [ | |
"with model:\n", | |
" trace = pm.sample(njobs=4)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def to_xarray(trace, coords, dims):\n", | |
" \"\"\"Convert a pymc3 trace to an xarray dataset.\n", | |
"\n", | |
" Parameters\n", | |
" ----------\n", | |
" trace : pymc3 trace\n", | |
" coords : dict\n", | |
" A dictionary containing the values that are used as index. The key\n", | |
" is the name of the dimension, the values are the index values.\n", | |
" dims : dict[str, Tuple(str)]\n", | |
" A mapping from pymc3 variables to a tuple corresponding to\n", | |
" the shape of the variable, where the elements of the tuples are\n", | |
" the names of the coordinate dimensions.\n", | |
" \"\"\"\n", | |
" coords = coords.copy()\n", | |
" coords['sample'] = list(range(len(trace)))\n", | |
" coords['chain'] = list(range(trace.nchains))\n", | |
" \n", | |
" coords_ = {}\n", | |
" for key, vals in coords.items():\n", | |
" coords_[key] = xr.IndexVariable((key,), data=vals)\n", | |
" coords = coords_\n", | |
" \n", | |
" data = xr.Dataset(coords=coords)\n", | |
" for key in trace.varnames:\n", | |
" if key.endswith('_'):\n", | |
" continue\n", | |
" dims_str = ('chain', 'sample')\n", | |
" if key in dims:\n", | |
" dims_str = dims_str + dims[key]\n", | |
" vals = trace.get_values(key, combine=False, squeeze=False)\n", | |
" vals = np.array(vals)\n", | |
" data[key] = xr.DataArray(vals, {v: coords[v] for v in dims_str}, dims=dims_str)\n", | |
" \n", | |
" return data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"dims = {\n", | |
" 'treatment_effect': ('treatment',),\n", | |
" 'interaction': ('oncogene', 'treatment'),\n", | |
"}\n", | |
"trace = to_xarray(trace, dict(data.coords), dims)\n", | |
"trace = xr.Dataset(trace.data_vars, coords=data.coords)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<xarray.Dataset>\n", | |
"Dimensions: (chain: 4, oncogene: 3, sample: 500, subject: 200, treatment: 2)\n", | |
"Coordinates:\n", | |
" * sample (sample) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...\n", | |
" * chain (chain) int64 0 1 2 3\n", | |
" * treatment (treatment) <U13 'Sorafenib' 'Lurbinectedin'\n", | |
" * oncogene (oncogene) <U3 'P19' 'MYC' 'AKT'\n", | |
" treated_idx (subject) int64 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 ...\n", | |
" treated (subject) <U13 'Lurbinectedin' 'Lurbinectedin' ...\n", | |
" genotype_idx (subject) int64 0 1 2 1 0 2 0 1 1 0 2 2 2 0 2 0 0 0 1 ...\n", | |
" genotype (subject) <U3 'P19' 'MYC' 'AKT' 'MYC' 'P19' 'AKT' ...\n", | |
" * subject (subject) <U4 'm000' 'm001' 'm002' 'm003' 'm004' ...\n", | |
"Data variables:\n", | |
" intercept (chain, sample) float64 3.564 3.441 3.435 3.439 3.412 ...\n", | |
" treatment_effect (chain, sample, treatment) float64 -0.4229 -1.114 ...\n", | |
" interaction (chain, sample, oncogene, treatment) float64 -0.3714 ...\n", | |
" treatment_sd (chain, sample) float64 0.2448 0.0599 0.04889 0.06563 ...\n", | |
" interaction_sd (chain, sample) float64 0.05679 0.1004 0.1127 0.08553 ...\n", | |
" sigma (chain, sample) float64 0.1442 0.1304 0.135 0.1287 ..." | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"trace" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style>\n", | |
" .dataframe thead tr:only-child th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: left;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th>treatment_effect</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>chain</th>\n", | |
" <th>sample</th>\n", | |
" <th>treatment</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th rowspan=\"5\" valign=\"top\">0</th>\n", | |
" <th rowspan=\"2\" valign=\"top\">0</th>\n", | |
" <th>Sorafenib</th>\n", | |
" <td>-0.422860</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Lurbinectedin</th>\n", | |
" <td>-1.113724</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th rowspan=\"2\" valign=\"top\">1</th>\n", | |
" <th>Sorafenib</th>\n", | |
" <td>0.937122</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Lurbinectedin</th>\n", | |
" <td>-2.412286</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <th>Sorafenib</th>\n", | |
" <td>0.870567</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" treatment_effect\n", | |
"chain sample treatment \n", | |
"0 0 Sorafenib -0.422860\n", | |
" Lurbinectedin -1.113724\n", | |
" 1 Sorafenib 0.937122\n", | |
" Lurbinectedin -2.412286\n", | |
" 2 Sorafenib 0.870567" | |
] | |
}, | |
"execution_count": 16, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"trace.treatment_effect.to_dataframe().head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa645452198>" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEGCAYAAADrH6t8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XHW9//HXObPPZF/aJl3p9u1CW0qhK2uhQlkFQUEv\nij9FERX04kW8VwQRQbyKeBFF5KJevbhVuCJIsUCBUkppoaWUwreltNC9SbNNksls5/z+OJOQLkkm\nbWYmk3yeD/JIOnPmnE+Gybzn+z3f8/0atm0jhBBC5CMz1wUIIYQQR0tCTAghRN6SEBNCCJG3JMSE\nEELkLQkxIYQQecud6wIGupqacFaGf5aWBqmvb83GofpEPtWbT7WC1JtJ+VQr5He9lZWFRjqPkZbY\nAOF2u3JdQq/kU735VCtIvZmUT7XC4KhXQkwIIUTekhATQgiRtyTEhBBC5C0JMSGEEHlLQkwIIUTe\nkhATQgiRtyTEhBBC5C0JMSGEEHlLQkwI0S8kk0mi0WiuyxB5RqadEkLk3JYtmvvuu4dIJIJSk5g+\nfSZnnHEWXq8316WJfk5CTAiRUytXruRHP/oRiUQS01fEpk0b2bRpI+vXv8YNN3wDn8+f6xJFPybd\niUKInHn11Ve4++67SVoQGHkaobGLCY2/GHfhCN55ZxP33HM3kUgk12WKfkxCTAiRE8lkkiVL/oCN\nSWD0WbgLqgAwPQH8w+fjLhzJli2ae+/9IfF4PMfViv5KQkwIkRNr1rxCbW0NnuLjcPlLD7rPMEz8\nw+d1BNkjj/w2R1WK/k5CTAiRdbZt8+STjwMG3vJJR9zGMEz81XMwfSW88MJzvPji8uwWKfKChJgQ\nIus2bFjPrl07cBeNwvQWdLmdYboJjDgFw+Xld7/7Ne+9924WqxT5QEJMCJF1//jH4wB4yyf3uK3p\nLcBfPY9kMsHPf/5TmpubM12eyCMSYkKIrHr//W1s2aJxhapw+UvSeoy7oApvxfHU1R3g4YcfwLbt\nDFcp8oWEmBAiq1atWgmAp3Rcrx7nrZiCKziU9etf5+mnn8xEaSIPSYgJIbLGsixWv7oKw+XFHarq\n1WPbRywabj9LlvyRd9/dnKEqRT6REBNCZI3Wb9PYUI+7cASG6er14023H3/1PCzL5he/+C+am8MZ\nqFLkEwkxIUTWvPKK05XoLhpz1Ptwh4birZhKfX0d//3fcn5ssJMQE0JkRTweY+3a1RjuIK5g5THt\ny1sxBVdoKG+8sU7Ojw1yEmJCiKzYsOENIpEI7qJRGIZxTPtyLoSeh+EOyPmxQU5CTAiRFe1diZ7i\n0X2yP+f82NxO58fk+rHBSEJMCJFxLS3NrF//OqavGNOX3rVh6XCHhuKtPD51fuwXcn5sEJIQE0Jk\n3Jo1q0kmE7iLxhxzV+KhvOWTO86PLV36RJ/uW/R/EmJCiIxbteolADzFo/p8353Pj/31r39iyxbd\n58cQ/ZeEmBAio2pra5xppoJDMD2hjBzDdPvxD//w+rGmpqaMHEf0PxJiQoiM+rAVNiajx3EHh+Ct\nnEZDQz0PPvgzkslkRo8n+gcJMSFExti2zcsvrwDDhbtwZMaP5y2fjKugmk2bNvLXv/4x48cTuSch\nJoTImPfe28q+fXtxFw7HcHkyfjzDMAhUz8X0FrJ06ZMdrUAxcEmICSEyZtmypwDwFI/N2jENl5fA\niFMxTA+//s2v2LpVFtIcyCTEhBAZUVtbw9q1qzF9JbhCQ7N6bNNXhH/4PBLxBD+592527tyR1eOL\n7JEQE0JkxLJlS7EsC2+56vNrw9LhLqjGX3UyrS0t/OhHd7Jv396s1yAyT0JMCNHnWlqaeeGF5zDc\nAdxFfX9tWLo8JWPxDT2RpqZG/vM/v8+uXTtzVovIDAkxIUSfe+GF54jFonjLJmIYvV83rC95yybi\nrZxBXd0B7vj+d9iwYX1O6xF9S0JMCNGnWltbePrpf2CYHjwl43JdDgC+isn4q+cRi8b56U//k7//\n/TESiUSuyxJ9QEJMCNGnliz5I+FwE57ySRgub67L6eApHk1g9EJw+Xnssb/w3e/+uyzhMgBIiAkh\n+szmze/w/PPPYvqK8ZZPynU5h3EFygmNXYynZBy7du3kzjtv47777mHbtq25Lk0cJXeuCxBCDAzx\neJzf/vYhAPzDTs75ubCuGC4v/qqTcRePJrrvDdatW8u6dWuZNGkKp5++kBNPPBmPJ/MXZou+ISEm\nhDhmtm3z5z8/wp49u/GUjMcVrMh1ST1yB4fgGnM2ydb9xGo38c47zldBQSGnnnoGZ555NhUVlbku\nU/RAQkwIccz+8Y+/8+yzT2P6ivANmZ7rctJmGAbu0FDcoaFY0SZiDVtpadzOU0/9naVLn2DGjBO5\n8MKPctxx/WOAijichJgQ4pisWPE8f/3rHzE9QQIjz+hXgzl6w/QV4R86E7tyOommD4jVb2H9+tdY\nv/41pk2bwUc/ejmVlTNyXaY4hISYEOKoWJbF448/yt///phznmnk6ZieYK7LOmaG6cJTchzu4jGp\nrsaNvPnmG7z55huceuqpnHfeJQwdOizXZYoUCTEhRK81NTXyq1/9nLfeehPTE8Q//BRcvuJcl9Wn\nOnc1Jlr2Ed3/BitWrGDlypUsWHAa559/MUOGZHdOSHE4CTEhRNqi0SjPPLOUJ598nLa2CK5QFYHq\nuRhuX65Lyyh3aCiuMYtIhHcQq9nIihXPs3Lli8yZM5+zzvoIY8eOz3WJg5aEmBCiR42NDbz44nKe\nW/4MjQ31GC4fvqEn4imdkJPJfXPBMAw8RaNwF44g0bSD2IG3WLXqJVateokxY8Zyyimnc/LJcygs\nLMp1qYOKhJgQ4ogikVbWr3+dtWtX88Yb67GsJIbpxls+GW/55LwdwHGsDMPEUzwad9Eoki37iNdv\nYfv2bWzf/h6PPPI/HH/8dGbNOpkZM06kqEgCLdMkxIQQgNNVuGPH+2j9Nps2bWTzZk0y6cwvaPpK\n8JWOw1M0JisrNOcDwzBwFwzDXTAMKx4h0fQ+8cbtbNiwjg0b1mEYBqNHH8ekSVOYOFExcuRoysrK\nB03LNVv6fYgppb4EXAXEgCBws9b6uaPcVxmwEvg/rfW3evG4q4FGoB74itb6sqM5vhCZZNs2LS0t\ntLU1sGfPAdra2kgmE1iWjW3b2LaFbTsza7S1RWhri1BXV8eBA7Xs3bubPXt2Y1lWx/5MXyne0uG4\ni0ZmbNCGlYiAlez7HZsuTHeg7/fb1eE8Abzlk/CWT8KKhUmEd5EI72T7+04LbenSJwAIBIIMHTqM\n8vIKysvLKS4uobi4hMLCIkKhEKFQCK/Xj8/nxePxYJouTNOU4OtGvw4xpdQY4AvAyVrrhFJqIvBL\noNsQU0qZWmvrCHdNBTb3JsAAtNa/Se33jN48TohD2bZNMpkkmUxiWUksy0oFjN1pm46fOrZPJBLE\nYlEikQitra00NNTT0FBPXd0BamtrqD1QS0N9HfF4/OgKM124fGV4/GW4ghW4gkMw3f5j/n27kmxr\nILJrJXYs3O12Xq+XiooKamtricVivTqG4S0kMHwBLn/JsZTaa6a3sCPQbCtBMlJLsrUWK9pINNrI\n9ve3s337e73ap2EYmKaJabpwu9243W48Hg9+vx+fz0cwGCIQCFJQUEBBQSEFBYUUFhYyYsRQkkkX\nwaATkIFAENMcWFPmGp3/ePobpdR04M/ALK11S6fbpwH3AzbQBHwGmA58AyeYvwOcAlyOM8nxP7TW\n31VKvQaMAh4C7gN+BfiBBPB5YDeggSXAAiAMXJDaXy2wEbgFqAEm4LTovtfd71BTE87KE1xZWUhN\nTfdvCNn2xhvr+OlP/zPXZQwKhtuP4Q5iugPOSEHTg2G6wXABRuq/1Kd5w8QwPWB6SIR3kGzd37FN\nttjxCM6fb9e8Xi/XXnstixYtYtmyZTzwwAO9DjIwMDzZa5EBuAtH4R96Qpf327aNnWzDjrdiJ9qw\nEhHsZBQ7GYdkDNtOgJV0vts2YINtY6e+Y1tgJ7HtpLOdFXdu64dmzTqZz33uS/j96X0g6vw+VllZ\nmNYrsl+3xLTWG5RSq4BtSqmngCeBR4GfAt/UWq9SSt0IfA2ndXY8MFFrHVNKnQosBNqArUqpnwA3\n4nQHfksp9RBwj9b6WaXU+cC3tdZfVEqNBR7RWt+slFoNTDukrGnAOCAKvKOUul9rXZfp5yIfrVu3\nNtclDHiGJ4QrWInpLcb0BDDcASfQTLcTVIZJRzp1dEkZHd1TyUhtp9uzw25/Y+5BRUUFixYtAmDR\nokUsWbKE3bt39/Zo2Lbdr7rjDMPAcAcg1d1p27YTSskYdjLm/GwlwE464WXbgNUp0Cxs2/ow6KyE\nE4TxFqxYM3YiktPfr7PXXlvDpZd+gqqq6owdo1+HGIDW+rOpbsTzgJuALwFTtNarUpusAL6NE2Ib\ntNbtH9XiwD+BJFAJlB2y65OBSUqpWwAXsD91e5PWekPq5x3AoX0Ra7XWYQCl1NvAWEBC7Ag+85nP\nc/bZ56bOsxzcXVZaGuTAgXBH11oymezUrWZjGGaq+8TE5XLhcrkwTWdWdOf9yEjt0/lu287t7R0L\nzvkfO/Wz8ybW/tX+pt7TftrvLy0NUl/fmtqPc59lWamuQKujS7D9NsuyOroLE4kkyWSCeDxOIpEg\nmUykvic77cPm0C7FD5+r9u7HBNFoe3diCw0N9dTX1xOJtJBobDnscd0znMEZhhvDE8AVqMD0FGD6\nS3H5SzE8oYy/6TdvfbLHrsTa2lqWLVvW0RKrra3t9XFMbyGhcecfbZl9xk7GsaKNJKMN2PFmrHgr\nVrwFO9EGyagTWn3E5/NTUFBAYWERZWUleL0BQqECQqEQfn+gowvS5XKn/q7MTn8fnfdkHPR30/73\n2Pnv0jDMjscc/rcDxcWlFBdn9iL4fh1iSikD8GmtNwOblVL3Ae8AQzptZgDtbelY6nFjgeuBmVrr\ncCpsjuQTWutdh9x26Kvp0L9m+5D7+m9/bI4ZhsGIESOPeF9lZSFFRf2r+7Mr/bGrtl0kEuHAgVpq\na/fT0NBAQ0M9sVgrDQ1h2traUqsX2x1hCR8O7HDOrTWQiBw4aJ+GO4ArOAR3aBjuguqMXMgcGL6A\ntl0rsboJslgsxgMPPMCSJUuO6pyY6S3EP3zBsZZ6VGwrTqJ5L8nW/SRb92NFGw/bxjRdFBcVUVw8\nhMLCQkKhAoLBID6fH6/Xi8fj7QgZl8tMhY2Jx+PB5Tr8nFgwGCQUCuHxfHjpQ39+7faVfh1iOOep\nzlJKXam1toFCnHNczyml5mutX8bpMjy036oU2J8KsLnACODQi1pWAxcDP1dKLQSGaq3/kEZNs5RS\nQZwW3iRAVtMTORMIBBgxYuRBHxZ688ZlWRYNDfXs2bObDz7Yzvbt29D6bZqa3ifR9D4YBq7gUOci\n36JRznm2PuDylxAad35aoxMbAc9I6NXA/iyPTgSntZUI7yQe3kGyZW/HeSqv18u4yVMZOXI0I0aM\nZNiwKsrLKyguLhlwgyxyob+H2MPAROBVpVQzToBdB+zCCR8bZ8DFZ4ETOz1uPdCYOp/2Ms4gkPuA\nuzptcxvwG6XUFTitqavTqMcFvA78Gmdgxy+11g1H+8sJkWumaVJWVk5ZWTlTpzqnf23bZteuHWzY\nsJ7XXnuVbdveI9myF2P/etxFY/CWK0xPqG+On+Wg6Wu2bZNs3U+8YSvJ8C5nsAUwfMRITpx5EtOm\nzWDMmLG43f39rTZ/9evRiQPBYB6d2J18qjefaoW+r7e2toYXX1zOiy8up6mpEQwXntIJ+CqmDNpZ\nO2wrSbxxG/G6zVixJgCGDB3G/HmnMGfO/H4zy30+v3YHxOhEIUTuVVRUcumlH+eiiy5l9eqXeeyx\nv1BX9w6Jxm34q+fiLqjKdYlZ0x5esQObsOOtuFwu5syZz5lnns2ECapfjYIcLCTEhBBpcbvdLFhw\nGrNnz+WZZ57m0Uf/QmTHC3grpuKtmIphDNzzO7Ztk2h6n1jNm1jxFjweL2d+5DzOPfd8SkpKc13e\noCYhJoToFY/Hy+LFFzJ58lTuv/9eDtS+hRVtwj983oALMtu2STTvIlazESvagNvtZuHZ53L++RdR\nXJzdmUDEkUmICSGOypgxY7nttju577572Lz5HaJ7ffiGzRoQXWq2nUwtt/IOVrQBwzCYN+8UPve5\nqzHN/F+9eiCREBNCHLVQqIDrr/8Gd999Ozt2vIvh9uOrPD7XZR01K95CvH4r8cb3sBNtHeF1wQUX\nU1U1PO8GSgwGEmJCiGMSDAb5+te/yZ133kZt7UZMfwmewhG5Litttm2TbN5DrH4LyZY9gDPb/KkL\nz2PhwkUMGTI0xxWK7kiICSGOWUlJKTfc8G/cdtu3iO59DXdwaL9fd8y2rVSX4dtYUedyz7Fjx3P6\n6QuZPXsePl/fz1Qi+p6EmBCiTwwfPoLzz7+Yxx9/lGjNBvzDZuW6pC4l2xpo2/MqVlsdhmEwd+4C\nzj33AkaNGp3r0kQvSYgJIfrM+edfxKuvrmLv3i14isfgCpTnuqSD2LZFrGYjsbq3wbaZPXsel176\ncekyzGMDazysECKnPB4vn/nM5wFo2/vaEWfmzxU7GSOy40ViBzZRXlbO17/+Ta699qsSYHlOWmJC\niD6l1GROOmk2a9e+SrJ1P+5Q7kPCioWJ7FiBFWti+vSZfPGLXyYQkKHyA4G0xIQQfe6ccy4AIHbg\nnRxXAlasmcgHy7FiTZxzzvlcf/2NEmADiISYEKLPjRs3ngkTFMmWPSTbcrfQgxWPENnxPFa8lcsv\nv5JPfOJTsvzJACP/N4UQGXHuuanWWJ3OyfGdc2DPY8WaufDCS1i8+MKc1CEyS0JMCJERM2bMZNiw\nKhJN72PFI1k9tm1bRHa9jBVt5Oyzz+GjH70sq8cX2SMhJoTICNM0+chHzgPbIt6Q3QXQo/s3kGzZ\ny/TpM7niiqsGxHyO4sgkxIQQGTNnznw8Hi+Jpu1ZG24fb9xOvO4dhg2r4gtf+LKcAxvg5P+uECJj\nAoEAs2adhBVrxmo7kPHjOTNxrMHvD/DVr95IMCijEAc6CTEhREbNm3cq4LSQMslOxmnbtRLsJNdc\n8yWqqqozejzRP0iICSEyasqU4ykqKibR9AG2nczIMWzbpm3vGqxYmHPOOZ+ZM0/KyHFE/yMhJoTI\nKJfLxdy587GTMRLNezJyjHjDVhJNHzBu3AQ+9rFPZOQYon+SEBNCZFx7l2Ki8f0+33eyrZ7ovnWE\nQgV86UvX43bLbHqDiYSYECLjRo0aTXX1CBLNu7CTsT7b76HnwcrK+tes+SLzJMSEEBlnGAbz5i0A\n2yIR3tkn+/zwPFgzixdfyPTpM/tkvyK/SIgJIbJizpz5QN+NUmw/DzZ+/EQuueTyPtmnyD8SYkKI\nrKioqGT8+IkkW/djxVuPaV+dz4Nde+1X5TzYICYhJoTImnnzFgCQaPrgqPch58FEZz2GmFLqB0e4\n7ZeZKUcIMZCddNIcTNNFvOnoRinatk3bnlflPJjo0GUbXCl1CXApcLZSqvOl70FgXqYLE0IMPIWF\nRRx//DQ2bFhPMtqEy1fUq8fHG94lEd7B+PET5DyYALpviS0FHgAagGc7ff0NWJj50oQQA9Hcuaku\nxV4O8EhG6jqdB5PrwYSjy1eB1joCrFRKzdRatymlDEDWMxBCHJOZM2cRDIWINLyLt2IKhtlzGNnJ\nGG27Xwbb4pprrpPzYKJDOgM7blBKNQIJIN7puxBC9JrP5+fss87BTsbSWmfMtm0iu1/BijVz/vkX\nMX36CVmoUuSLdNrj/w84Xmu9I9PFCCEGh7PPPoelS58gdkDjKR2PYbi63DZWu5Fk826mTDmeSy75\neBarFPkgnZaYlgATQvSlgoJCTj/9LOxEa7fzKSbCu4jVvkV5eQXXXvtVWeBSHCadltgGpdQfgeV0\n6kbUWj+csaqEEAPeOeecx3PP/ZPYgbdxF4/BMA4OqETzHtp2vYzb4+ErX/k6BQWFOapU9GfpfKwZ\nBUSAucCpqa9TMlmUEGLgKysrZ/78U7FiYdp2rsS2Eh33JZp3E9n5Ei6XwVe+/HVGjz4uh5WK/qzH\nlpjW+tNKKTdQJd2KQoi+dMUV/0JTUz1vvPEGre8/h7d0PImWvSTCO3G7Xdxw/TeYOnVarssU/Vg6\nM3acC2wF/pn6909TF0ILIcQxCQSC3HrrrU6LrK2Otj2vkmj6gPKycr7+tZskwESP0jkn9m3gJODP\nqX9/F+dC6McyVZQQYvDweDx87nPXMnnyVMLhMNOmzaC6ejiGIZelip6lE2JtWusapRQAWus6pVQk\ns2UJIQYTwzBYsOC0XJch8lA6IRZVSp0CGEqpUuATQFtmyxJCCCF6lk6IfRn4GTAD59zYCuALmSxK\nCCGESEc6oxO3AxdkvhQhhBCid3oMMaXUQuCLQAmdJgDWWn8kg3UJIYQQPUqnO/FB4E5gV4ZrEUII\nIXolnRDbLFNMCSGE6I/SCbFfKaV+BazCWYYFAK31/2SsKiGEECIN6YTYt4BmwN/pNhuQEBNCCJFT\n6YRYWGt9VsYrEUIIIXopnRB7Sil1Ood3J1oZq0oIIYRIQzohdisQSv1s4wyzt4Gul2IVQgghsiCd\nEButta7rfINSamyG6hFCCCHS1m2IKaVM4K+pC57bW2BB4FHghMyXJ4QQQnSty/XElFJXAu8ApwNJ\nnPNhSaAJufBZCCFEP9BlS0xr/QfgD0qp27TWt3W+TylVnOnChBBCiJ6kMwHwbUqpKUBF6iYfcA8g\nS64KIYTIqXQmAL4XOBcYCmwHxgA/zGhVQgghRBq6PCfWyRyt9SRgvdZ6Jk6glWS2LCGEEKJn6YRY\nMvXdrZRyaa1XA3MzWJMQQgiRlnSuE3tDKfV1YC3wjFLqPaAws2UJIYQQPUtnYMeXlVIlOJMAfwoo\nA27JdGFCiIEnkUhQU7OfvXt3U1RUwrhx43Ndkshz6bTEAM4Exmitf6KUUsC+DNYkhBiAnnrq7zz6\n2F9IJpwpWE3T5N/+7T+orJyd48pEPuvxnFhqdOKVOK0wgMuA+zNZlBBiYHn++Wf5y1/+gO228Y0q\nIKBKsGyb+39+L/v37891eSKPpTOw40St9ceBMIDW+vvAjIxWJYQYMF577VV+97uHMX0uik6touCk\nIQSnlhGaXkZzOMydd95JNBrNdZkiT/VmdKINoJRypfk4IcQg9+67m3nglz8Dl0Hh/GG4Cr0d9/nG\nFuEbU8jWrVv5059+n8MqRT5LJ4zWKKUeAqqVUv8KLE99CSFEl5qbm3nggftIJhMUzBmCu9R30P2G\nYRCaUYGrwMOKl16gqakxR5WKfNZjiGmtbwKWAk8BI4B7tdY3Z7owIUT+sm2bX//6l9TVHSAwqRTv\n0OARtzNcBr6xRSQTCVaseD67RYoBoaelWAzg31PnwZZkpyQhRL575pmnWbfuNdyVfgKTup/gxze6\nkMimepYvf4Zzz70Al0vW2xXp67YlprW2gXFKqYlZqkcIkee0fps///l/MX0uCk8agmEY3W5veky8\nI0PU1R3gjTdez1KVYqBI5zqxWcBbSqk6IIqzOGZAa13R/cOEEIPNnj27ue++H5O0LIpOHoYZSO9S\nVP/YYqLbwjz33DJOPPHkDFcpBpJ0BnbsAcYBs4FTUl/Jbh8hhBh0mpoa+cm9d9Pa2kroxAo8QwJp\nP9Zd7MVd4WfTpo3s2SNr7or0dbey86eUUhpnZeeXgBWp72uA3dkpTwiRD5qbw9x77w+prakhMKkE\n/+jeT6/qH1sEwAsvPNfX5YkBrMsQ01r/LzAF+BNwaqevWcBJWalOCNHv1dUd4K67vsv27dvwjS4k\nMLn0qPbjrQ5hel2sWrWSZFI6e0R6uu2w1longauzU4oQIt/s2bObH//4LurqDuAfX0xwWlmPAzm6\nYpgG3hEhwu818dZbG5g+fWYfVysGIpl5QwhxVLR+m+/feSt1dQcITi09pgBr5xtVAMDLL6/oixLF\nIJDuLPZCCNHh5ZdX8OtfP0jSsgidWIl/TN8sMegq9eEq9PD662tpbW0hGAz1yX7FwCUtMSFE2mzb\n5u9/f4yHHvoFlmlTtGBYnwUYOFNR+UYVkEgkWLv21T7brxi4JMSEEGmxLIvf/e5hHnvsL5hBN0Wn\nV/dqGH26vCOdUFy58sU+37cYeKQ7UQjRo1gsxoMP3s/rr6/BVeylaH76FzL3livoxl3pZ8sWzf79\n+xgyZGhGjiMGBmmJCSG61dzczI9+dCevv74Gd6WfotOqMxZg7dqvM1u+/JmMHkfkPwkxIUSXDhyo\n5a67buPddzfjHRGiaH4Vpifzbxve4QWYfhcvvvgckUgk48cT+UtCTAhxRFu2aL73vVvYs2c3/vHF\nFJw8BMN1bEPo02W4DHzHFRGJRHj5ZTk3JromISaEOIht2zz77NPcfff3aAo3EpxeTmh6+TFfA9Zb\n/uOKMEyDZc88jWVZWT22yB8ysEMI0aGlpZnf//43rF79MqbPRdHsKjyVfT8CMR2m34V3ZIj97+/l\nzTffYMYMmcFDHE5CTAgBwMaNG3j44V/S0FCPu8xHweyhuIK5fYvwjysm+n4zy5Y9JSEmjkhCTIhB\nLhpt489//gPLly8DwyAwpZTAxBIMM7vdh0fiLvHhrnSWaNm0aSNTphyf65JEPyPnxIQYxLZufZdb\nb/sWy5cvw1XkofjMaoKTSvtFgLULHV8OBvzudw8Tj8dzXY7oZyTEhBiEbNtm6dInuOuu29i/bx/+\n8cUUnzkcd4kv16Udxl3qwz+2iH379vLUU3/PdTmin5EQE2KQaW1t5f777+XPf34EvAZFp1Y5ow9d\n/fftIDClDNPv4okn/o99+/bmuhzRj/TfV60Qos/t2rWT27/3H87sGxV+ihcOz9now94wPSbB6eUk\nEgkefviX0q0oOkiICTFIrFu3ljvuuMXpPpxYTNEpVZj+/Bnb5R0ewlsdYssW7cyiL9eOCWR0ohAD\nnmVZPP74ozz++KMYLpOC2UPwjSjIdVm9ZhgGBSdX0vRSkjVrXqGoqIhPfvIzWb8IW/QvEmJCDGB1\ndQd48MF4XCn6AAAZwElEQVT72bz5Hcygm8K5Q/vl4I10GS6TwnlDaXpxD88++0/cbg+XX34lpimd\nSoOVhJgQA5Bt26xevYrf/++vaW1pwVsdInRiBabXlevSjpnpdVG0YBhNK/bw9NNPsnPnB3zxi1+l\noCD/Wpfi2MnHFyEGmG3btvHDH97Bgw/+jEhbK6ETKiiYM2RABFg7M+Cm6IxqPMOCvPXWm9x++3+w\nefM7uS5L5IC0xIQYILZt28rTT/+DNWtewbZtPFVBQtPLcYU8uS4tI0yvi8J5Q4m8XU/tOzX84Ae3\nc8opZ3D55VdQWFiU6/JElkiICZHHGhsbeO21NbzyykrefXczAK5iL8GpZXiHBXNcXeYZhkFwShme\nYUFa1tXy0kvP8/rrr7Jo0WLOOusc6WIcBCTEhMgj0WiU9957l7fffot33tnE1q1bsG0bAM/QAP4J\nxXgqA4NuxJ6nzE/xmcNp29pIRDfyt7/9laVLn+DUU89g3rxTGTPmuEH3nAwWEmJC9EPRaBsNDfXs\n3buXvXt3s2vXTrZvf49du3Z2hBYGuMt8eIcX4K0O5XzG+VwzTIPAhBL8xxXRtq2Jti2NPPPM0zzz\nzNMMHTqMmTNnMXHiZCZOVASDoVyXK/pIxl71SqkxwBKt9Um9fNx24HitdXOn284FjtNa/6IP6roI\nWKq1jqWx7QXAZcDNwHe11l881uOLwceyLOrr66ip2U9NzX6amhppamqiuTlMNBolGm2jra2t43s4\n3EQ0Gj1sP4bLwFXmxV3qx1Ppx10RwPRkfmyW1ZbATtoZ27/hMvr0omvDbTphNq6Y+L5Wojua2b9n\nH0uXPsnSpU9iGAbl5RVUV4+gurqaysqhDBnifJWXV8hw/TzTrz66KaWO+OrRWi/tw8P8K/Ac0GOI\ndTr+XkACTBxRIpGgpaWZcLiJhoYGamtrqK2tYd8+pxW1b99eEolE9zsxnDdfw21g+F14SgKYPhdm\ngQdXoQdXoRdXgSers8snGmOEV+/Daj66KZ68Xi8VFRXU1tYSi3X/52YWeCicMxR3sfeojnUkhmng\nrQrhrQphJywSdVHitRHiB9qoa6qjdkMNGzasO+gxbreboUOHUVU1nOHDRzB8+AiqqoYzZMhQPJ6B\nOUAm32U1xJRSzwNf0VpvVEp9BagAfgP8L7Av9TPAzUqpuYALuAT4KHA88E1AA0uABUAYuAAIAf+d\n2p8L+KrWeoNS6krg+tRtPwa8wFzgKaXUWcA1wBU4lxr8RWt9r1JqGvA/wE5gT6ruMaRalUqpFcBS\n4BSgGrhAa72jr5+rdNi23fEVj8e7nE+u/VyAYRgHfXW330Mf21f1JpNJ4vE4jY0W9fUNJBIJEokE\nyWQy9btYgIFpmrhcJqbpwuVy4XK5U99NTNPEMMxOv0vnY7TXb2NZznNjWVbqK9nxczKZxLKSJJNJ\nEokE8XicWCxGW1sbbW0RIpEIra0ttLS0YNtx6usbaW1tTbWcnNaT03KKEo93/QZtuE3MAjfeghCu\nkAcz5Mb0uzF9Lgyf6QSXywTzw+e65c0DxHa1kAzHobatz57/3rIiCTjKBpjX6+Xaa69l0aJFLFu2\njAceeKDbILOa4zQ+txMzkKW3JJeBGXBhWzgvGsvG8Lux3Qa79zndt2vXru7Y3DAMKioqqaoaRkFB\nMaWlpYRChYRCIQKBIF6vF6/Xi9vtxuVy43a7MU0T0zQOea0aqdevkbrfPOzf8OHfZ/tr+cPX9cE6\nH6N9P4Pt3F9/aYmdAIzUWtcppf4LeFNr/W2l1A+Bq3DCCq11Uik1FnhEa32zUmo1MA24EHhaa/3f\nSqmpwD1KqY8B3wFmAn7gt1rri5VS3wMWA1XApcBpqRpWKqX+CtwC3KK1fkIpdT9O8HWWBJq01ouV\nUnen9vHTTDwpjzzyW5555ulM7FocCwMnhDwmhEzcbr/zb68L0+/CFXJjBt24Qh4Mvysv31Rs2z7q\nAAOoqKhg0aJFACxatIglS5awe/fuHg7qHDdrz5dhYLgAnON5q4KEppU7H3wiSZJNMZLhGMlwnGQ4\nTm1DLTU1+7NTWwbceOO3mDp1Wq7L6HP9JcS2aq3rOv17eer7GuB0YG2n+5q01htSP+8ASoCTgeFK\nqatSt/uBian9tgFtwMWHHPNEQHU6ViEwBpgCtH8EewE47wj1ruh0/PI0fr+jUlJSmqldi2Nhg9WW\nxIhb4DIxPAZ20sZMWGB1euc3DFwuA6OXFxmHppUTmpaxl1Xa6v+546i7Emtra1m2bFlHS6y2trbH\nx5gFHko/MvKojteX7JiF1RrHak0c9GXH83fCYZfLRTA4MC+5yHaIdf5s1/nYh/YztG9ncPjnwUNP\nLrR/bLtBa72y/Ual1In0PCPJU1rrazrfoJTqfMyuHt+5hox9bDzvvIs477yL0tq2srKQmppwpkrp\nc+31tnftOeeM7I4uE9N0pboUXR3dJH2lvYsxmUySTCY6uhPj8RhtbdFUd2IrLS0ttLa2YBhJamsb\niERaU92I0U4DMqJEIq2Ew2HiicMHYwAYXhNXgQcz5MEVdGP6XRh+F6bX9eF5MLcJ7T/3k5Zb4Zyh\nR31OLBaL8cADD7BkyZJenRPLFjthOS2sZufLamn/OYEdSx62fUlpKcNGVzFiRDXBYBElJaUUFDjd\niX5/AJ/P16k7sb37++Bu7/YBI9kcOJJv7wtHI9sh1siHLZdZwNYutjsN+CswG3g7jf2uxmlprVRK\nTQHOAX4FTFRKhXC6AJ8AFgEW4ANeA36olAoCEeBenFGIOlXb08CZvfz9RC+1nwfI5klzwzBSbzQu\nDu8tPlw6bwS2bdPW5gyLP3CghpoaZ2DHvn172Lt3DzU1+0nUHTnkDqvPYzpB53Ph6jSww13izerS\nKe5iL6UfGXlMoxNbgSBD6a4N0NejE48k2RInXhMhUdtG/EAbVsvhA21M02RI5RCGDauiqqqa6mpn\nYMewYdUEAs6aa4MhFPJNpv8iVGowR7vngHuVUmtxguNIH0lcwFSl1HU4LaLbcc47dec+4DepQRdu\nnIEdzUqpW4BnU8f5qdbaTtWzHFgI/ASny9AG/k9rHVFK3QH8Wil1PfAe0P9XDBQ5ZxgGgUCAQCBA\nVVX1Yfcnk8mOYfaNjY2Ew42Ew2FisWhqMElbx8/hcJjGxnqaa5tJHDKwwwy4cZf6cFf68VQGcBV6\nMt5yy6c1xzqzokmiO5uJfdBMov7DDxChUIiRkyZSXT2cqqpqhgwZxpAhQygvr8Ttzs/fdTAzjjTi\nRfSdmppwVp7gfPuEmE/15qrWeDzO/v37DrrY+b1tW2lqbOzYxgy4ncUih4dwl/n6TVdkLiVbE7Rt\naSC6PYyddAaKTJlyPCecMAulJlNdPfyou/Ty6XUL+V1vZWVhWi9m+dghRD/l8Xg6rlWaNWs24HRb\n1tTs5513NvH222+xYcM6Iu820vZuI65CD/7xxfhGFTjD9gcZK24R2VRH27YwWDZlZeUsWnQuc+cu\noLi4JNfliQyREBMijxiG0TG7xGmnnUk8HmfTpo288spK1qx5hZZ1tUQ21ROYXIrvuMJB0TKzbZvY\nrhZaNxzAaksyZMhQLrzwEubMmS/dg4OA/B8WIo95PB5mzJjJjBkzufzyK3n22X+yfPkyWtbX0rat\nidAJFXjK/bkuM2PspEXLulqiHzTjdru56KOXsXjxhTK7xiAy+PochBigysrKufzyK/nlL3/JvHmn\nkGyM0fTCblo21mFbA+/cd7I1QeMLu4l+0Mxxx43je9/7IRdddKkE2CAjLTEhBpiysjKuueY6zjjj\nLB566BfUbN5PojZCwclDBswCmYmmGOEVe7CiSU455QyuuupqPJ6+m3dR5A9piQkxQE2YoLjttjuZ\nO3c+iboojc/tIravNddlHbNka4Lwyr1Y0SRXXvlpPvvZayTABjEJMSEGsEAgyDXXfJmrr74G0zYJ\nv7yXyOaGI04mmw+sWJLwyj1YkQSXXXYFixadOygGr4iuSYgJMcAZhsFpp53Jzd/8DsXFJbRurKN5\nzX7sRH7NBWjbNuFX9pEMx/nIRxazePGFuS5J9AMSYkIMEuPGjee2W+9k/PiJxHa20Lh8F4mmtJfV\ny7notjCJ2jZOPPFkPv7xT0kLTAASYkIMKsXFJdx007dZtGgxyXCcpud3E30/3O+7F622BK1v1REI\nBLjqqs/K6suig7wShBhk3G43V155Fddeez1el4fm12poXr0PK3r47O39Rcubddhxi4997AqZfUMc\nREJMiEFq9uy53H773UyYoIjtbqXxmZ3E9rTkuqzDxPdHiO1oZsxxYznjjLNyXY7oZyTEhBjEKiuH\n8M1v3sLll1+JkTQIr9pH8+s1/WYBSNu2adlYh2EYfObTn5NuRHEYeUUIMciZpsnixRdy63fuYOTI\nUUS3h2l4bheJhvTWP8ukRF2UZEOUmTNPYvTo43JdjuiHJMSEEACMGDGKW265g/POuwirJU7TC7uJ\nfpDbZTza3nWWnVm06Nyc1iH6LwkxIUQHt9vNZZddwfXX34jP46N5bQ0tGw7kZPRisjVObHcLo0aN\nZuLESVk/vsgPEmJCiMOccMIsvvOd71NVPZy2dxtpfnU/djK758natjaBDYsWLZZrwkSXJMSEEEc0\nbFgV//6tW5k4cRKxXS00rdyLFcvOMHw7YRHdHqawsIjZs+dl5ZgiP0mICSG6FAoVcOONN3PSSbNJ\n1LbR9OJukq2JjB83+kEzdtxi4cJFsrSK6JaEmBCiWx6Pl2uvvZ6zzjqHZJMz4CPT01VF3w+n5nxc\nmNHjiPwnISaE6JFpmnzyk5/mssuuwIokaHpxD/HaSEaOlQzHSNRHmTp1GqWlpRk5hhg4JMSEEGkx\nDIPzzruIz33uWoyETdNLezMyBD/6QTMA8+ef1uf7FgOPhJgQolcWLDiNG2/8FgFfgOa1NbRuquuz\nIfi2bRPd0Yzf72fmzFl9sk8xsEmICSF6bfLkqXz729+loqKSyDsNtKyr7ZMgS9S2YbUmOOmkufh8\nvj6oVAx0EmJCiKNSVTWcb3/7dkaNGk10ezh1LdmxBVn0fad7csGCU/uiRDEISIgJIY5aUVExN910\nS8e1ZOFX9mJbRxdkdsIitruV8vIKJkxQfVypGKgkxIQQxyQYDPKv/3oz06bNIL4vctRdi9GdzdgJ\ni/nzT5XZ6kXa5JUihDhmXq+X6667gdGjjyP6fpiIbujV423bpu29ptS1YWdmqEoxEEmICSH6hM/n\n54YbvkFZWTmRTfVEdzan/dhEfZRkQ4yZM0+ivLwig1WKgUZCTAjRZ0pKSvna127C5/fT8notyXB6\nM3u0bW0CYOHCRZksTwxAEmJCiD41YsRIrv7M57ETFuE0Zr+32hLEdrUwrKqayZOnZqlKMVBIiAkh\n+tycOfM57bQzSTbGaHmzrttt27aHwbI5a+EiWXJF9JqEmBAiI6688tMMHz6C6HtNXU5PZcUtotvC\n+Hw+5s+Xa8NE70mICSEywufz8aUv3UAgEKT5tVpie1sPut+2bZrX7MeKJFi0aDGBQDBHlYp8JiEm\nhMiY6urh3HDDN3C73TSv3k+8rq3jvsimeuJ7WznhhBO4+OKP5bBKkc8kxIQQGTVx4iS+dO31YNmE\nX9pL44rdhNfsJ6IbqKgcwk033YTL5cp1mSJPSYgJITJu5sxZXHPNdZSXlJOsjRLb0YzX5+P6r95I\nYWFhrssTecyd6wKEEIPD3LkLmDt3AdFolH379hIMBqmoqMx1WSLPSYgJIbLK5/MxatToXJchBgjp\nThRCCJG3JMSEEELkLQkxIYQQeUtCTAghRN6SEBNCCJG3JMSEEELkLQkxIYQQeUtCTAghRN6SEBNC\nCJG3JMSEEELkLcO27VzXIIQQQhwVaYkJIYTIWxJiQggh8paEmBBCiLwlISaEECJvSYgJIYTIWxJi\nQggh8paEmBBCiLzlznUB4ugopVzAz4HjAQP4lNZ62yHbfB9YmLr//7TWP8h6oaRd63TgV4AL+JvW\n+ntZL/TDWnqst9O2fwCiWuurs1fhYTWk8/xeDnwj9c/lWuubs1slKKVuB84C/MAXtdZrO903D/hx\n6r5HtdZ3ZLu+Q/VQ7+nAXYANvAt8Vmtt5aRQuq+10zZ3AfO01mdkubzD9PDcjgB+DwSAdVrra7vb\nl7TE8tenAUtrvQC4E/hu5zuVUscDZ2mt5wHzgc8qpaqyXybQQ60p9wBXAbOBqUqpYBbrO1Q69aKU\nWgSMy2ZhXejpteAHfojzpjEXOCP1+sgapdSZwMmpGj+D8/+7s98CnwBOAi5USuX0eU2j3geBy1P3\nB4DzslxihzRqRSk1BTgt27UdSRr1fh+4TWs9B7CUUqO725+EWP46E/hb6uelwBmH3N8ABFNvYH6c\nT4wtWavuYN3WqpSqANxa681aa0trfYXWujXLNXbW03OLUsoH/AeQ8xYDPdSrtW4DTtBaN2utbaAO\nKMpqhZ1q1FpvBKrbP6gopcYCdVrrHanWzBPAR7Jc36G6rDdljtZ6V+rnWrL/fHbWU60APwL+PduF\ndaGnemdprZ9P3X+d1vr97nYmIZa/qoAaAK11AnClupVI3bYT+AvwHrAN+LnWuikXhdJDrcAIoF4p\n9d9KqZeUUl/LRZGd9FQvwLeA+4FcPaed9Viv1roROlroI4HDupuyVWNKDTC0i/v2A8OyVFdXuqsX\nrXUDQKp342zg6axWd7Bua1VKXQ0sB7oNgyzqsl6lVAkQVkr9RCn1olLqLqWU0d3O5JxYHlBKfR74\n/CE3zzjCph0TYaa6Yy4GJuD8f16plPqT1npfxgrl6GoFfMDM1FcUWKWUelZr/WZmqvzQUT63E4Dp\nWuvblFJnZLC8wxzl89v+2AnAH4GrtNaxDJTXnUOPZ/Bhjd3dlys91qSUGoLTarxea30gW4UdQZe1\nKqXKgH8BzsX5sNgfdPfc+oCpwBXALuBJ4Hyc5/mIJMTygNb6IeChzrcppR4ChqR+9gLxQ04snwSs\n0lq3pLZ5E+fEf0ZD7Chr3Qu8pbWuT22zApgMZDzEjrLe84FxSqlXcLqRKpVSN2mtf9hP620/Wf44\n8Gmt9bpM13kEe0jVmFLJh6/FQ+8bBuzOUl1d6a5elFJFOF23t2itl2a5tkN1V+tCnJbPSzgBMU4p\n9ROt9dezW+JBuqu3FtjW3oWolFoGTKGbEJPuxPz1FPDR1M8XAMsOuX8rcKJSykx1LU1J3ZYL3daa\nesEWKaVKU7WeBOjslniQnuq9V2s9Q2s9F7gOeDIbAdaNnl4LAA8D12mt12StqoM9hdMzgFLqROA9\nrXUEOrq+PUqpUan//xekts+lLutN+THwX1rrJ3NR3CG6e26XaK2npl6rlwCv5zjAoPt6k8D7qfOk\nAHPo4b1AlmLJU6k/9odxmt6twCe11juVUjcDL2itVymlvgcsSj3kT1rrn/TjWucAPwBCwD+01rfl\notZ06+207RnA1f1giH2X9QIHgPXAq50edo/W+vEs13k3zusxAXwOmAU0aq0fU0qdBvwUp1vp91rr\nw0bYZVtX9eKc/6oHVnXa/BGt9YNZLzKlu+e20zZjgN/0kyH23b0WxgO/wHkv2IgzBL/LoJIQE0II\nkbekO1EIIUTekhATQgiRtyTEhBBC5C0JMSGEEHlLQkwIIUTekhATIguUUv/Sh/v6pFIqY3+7Sqmg\nUurSXj7mT0qp9UqpEUqp/1RKva2UmnUUx+6z50kMDhJiQmRY6jqu7xzh9qP9+/sumf3bnQn0KsSA\ny4C5qQuXLwUu0Vq/1psdKKWGA90uuyHEoeQ6MSEyTCn1W5y54F4AvoAz/dPrODOo3IGzTMpsnLXU\nXgduSD30fuCE1O2rtdbXK6W+ixOIL+KExfvA7Thz4xXirHF1DaCAL2itn1FKHZfaV/uKBndorf+h\nlPod8AEwHZiEc8H0vcA6oBT4rdb6pk6/h9FFrb/CuWD1xdTv9EngDeCrONNyfQfnolYL+JLWeotS\najbOzOo2EAY+lXpeTsBZT+7TR/2Ei0FFWmJCZN6tQI3Wun15kSnA3amFPy8DyrXWp2utT8GZ5+5S\noAQnEBbgrAF2jlLqeK31ral9nJWadDYErNVaLwSagfO11otx1mT6YmrbnwE/SG3zUeCB1ByLSWCC\n1vpCnLXGvpWa/ucHwLLOAZZyxFq11u0TEp+ltf5/OHNhfgpn7sufARenjv0TPlw76rc402CdDqwE\nFqeepzclwERvyATAQmRfvdb67dTPC4BTlFLPp/5dBIzBCaSRwAqcVswwoKKL/b2c+r6LD6dC2oUT\nhO3HuEMp1T4pcBtOAIGzRAda6w+UUoVHWHKms65q7YoCqoHHlFLgfGj2pJbbGJJaSwqt9V3QMYWX\nEL0iISZE9kU7/WwDD2qtf9R5g9QaUDOBhVrrmFJqfTf7S3Txc/s6TDZOi6n2kGMAxA/ZV3drNx2x\n1h62/+DQufqUUqVIL5DoI/JCEiLzLJxzUUfyEvBRpZQbQCn1baXUZKAMZ3bvWGpy5ONwltIAJxwC\nvTj+S8Dlqf2XKaX+K416j7T/rmrtymagQik1NbX9AqXUdakld/amzouhlLpRKfXlbo4rRJckxITI\nvN3ALqXUqzjnsDp7FKc78GWl1GpgFPAu8CfghNTaapfhDKi4J9WKWYqzyOm4NI//VeASpdSLwD9x\nBmB051VgvlLqV2nWekSp82ufAh5WSr0A3A08n7r7M8BPUrefAfweeAsoV0rlen0ukUdkdKIQQoi8\nJS0xIYQQeUtCTAghRN6SEBNCCJG3JMSEEELkLQkxIYQQeUtCTAghRN6SEBNCCJG3/j+zwHpnJ19h\ntgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa648038cf8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"effect = trace.treatment_sd * trace.treatment_effect\n", | |
"sb.violinplot(x='treatment effect', y='treatment',\n", | |
" data=effect.to_dataframe('treatment effect').reset_index())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.text.Text at 0x7fa647fd6048>" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAAEGCAYAAACn2WTBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XNd55/Hv9AIM+qCygPWQoihRtCSKlixRkmVLchw3\nKXZsx3ZiZzf2erObbJ60TdZexRsnLvGuYyWOHskldmwn7nLUIskqphpV2EUeFhBEIUD0Dky9+8cd\nQCAIYIbAYO6dmffzPHwATP1hgHl5cO4573UYhoEQQgh7clodQAghxMKkSAshhI1JkRZCCBuTIi2E\nEDYmRVoIIWzMne0H7O0dtdVykcrKIIODE1bHWJRkzA67Z7R7PpCM2bDUfOFwyDHf5QU/kna7XVZH\nSEsyZofdM9o9H0jGbMh2voIv0kIIkc+kSAshhI1JkRZCCBuTIi2EEDYmRVoIIWxMirQQQtiYFGkh\nhLAxKdJCCGFjUqSFEMLGsr4tXIh89fSBzkWv37OjKUdJhHiDjKSFEMLGpEgLIYSNSZEWQggbkyIt\nhBA2JkVaCCFsTIq0EELYmBRpIYSwMSnSQghhY1KkhRDCxqRICyGEjUmRFkIIG5MiLYQQNiZFWggh\nbEyKtBBC2JgUaSGEsDEp0kIIYWNSpIUQwsbkzCxCAENjEV5vHcDpdBDwuqmp8FPi91gdSwgp0qK4\n9Q9P8Yvnz/D8kW7iCWPmcrfLwXXb6lnfWGZhOiGkSIsidvzsIP/wsyOMTcaorQzQXB/C53UxNhHj\nSMsAew910Ts0yTVbanE6HVbHFUUqoyKtlAoAR4F7tNbfWtFEQuTA0/s7+ZfHTwDw4bdtZs+OJp49\ndG7m+rX1IZ7e34luG8LncbFjU41VUUWRy/TA4V8A/SsZRIhcMAyDB587wz8/pgn43PzRB3Zwy85V\nF42Uy0q83L5rDSV+N4db+ukbmrQosSh2aUfSSqktwFbgoZWPI8TCnj7Quej1d9+2ZdHrDcPgh0+d\n5tF9bdSU+/mjD+ygtjK44O29HhfXb2/gP15uZ++hLt55/Tp8HteSsguxVJlMd3wJ+DTwsUwesLIy\niNttr1/kcDhkdYS0JGN6oVJ/2tsslDEWT3Lvjw7w5MvtrKot5XO/92aqywNpHz9U6uf80CQHT/bx\n2CsdfPzXL19a+DT57EQyLl828y1apJVSHwGe1Vq3KqUyesDBwYls5MqacDhEb++o1TEWJRkzMzo2\nlfY282WcmIpx70+PcOzsIM31If773VeSjMYvuu1Cj7+tuZJT7UM89NwZbtpeT3mpb0n57fAapiMZ\nl2+p+RYq7OnmpN8B3KWUehH4BPCXSqm3XvKzC2GR053D/NW3X+HY2UGu2lTDn3xwJ2Ul3kt6DLfL\nyeXrq4nFkzz2cvsKJRVifouOpLXW75/+XCn1WaBVa/3ESocSYrkmpuI89EIrj+5rAwNu37WGu27a\nsOSldBubytBtgzz1Wid37FpDKHhphV6IpZJ10qKgDIxM8dT+Tn75WgeTkQThCj+/c+dW1JrKZT2u\ny+Xkjl1r+f6TJ3n8lQ7ee+P6LCUWYnEZF2mt9WdXMIcQSzYZiXP2/Ch/eu9ejraYK0VDQQ/vu2kt\nt75pFX6v+WuebnVIOjfuaOShF1p58tV27ti1hoBPxjhi5clvmchLyaRBW88YJ9uH6O6fwAAcDti8\nuoLrLqtj9+X1WV8u5/O4uGXnKn629wwvH+/hxisbs/r4QsxHirTIK8mkwfG2QV4/M8hEJA5ATbmf\n5oYQn/6Nq0hG4yv6/Ddc0cDPnzvDswfPSZEWOSFFWthGuumI7v4JXjp2nuGxKG6Xgy1rKlBrKikv\nNQ/iVZcHVnxpVlWZn+3rqzl0up+OnjFW1Zau6PMJIUVa2F7SMDh4so/DLQMAbF5dzo5NYfxeazZN\n3XhlI4dO9/PswXN88LbNlmQQxUOa/gtbi8YSPPVaJ4dbBggFPdy5ey3Xbau3rEADXLGhmrISLy8c\n7SYWT1iWQxQHKdLCtiKxBP/xcjudveM0VAe5c/daasrTbw1faW6Xk+u31zM+FefVE71WxxEFTqY7\nxIzF5oRDpX7etLE6Z1misQRPvNLBwEiEjavKuW5bHU6HfXo637C9gUdebOOlo+e57rJ6q+OIAiZF\nWthOPJHkyVc76B+eYkNTGbu31eHIoEA/+kJrRv09sqGhuoTVtaUcOTPA+FRMTrUlVoxMdwhbMQyD\nF4500zs0RXNDiN2X12dUoK1w7dZaEkmD12TKQ6wgGUmLjKVbIrdnR9Oyn+NIywBnukYJV/i5fnu9\nraY45rpmax0/fqaFl4/18JYrZM20WBlSpIVtdPSMsf9kH0G/mz1XNeFy2usPvfn+k6ou93O0dYBH\n953l9mvXWpBKFDp7vQtE0eofnmLv4S5cTgc372zKm74YzfUhDAPausesjiIKlBRpYbl4IsnXHzxC\nNJbkmq21VJdZv8wuU831ZqP21m77NqEX+U2KtLDcT55t4XTnCM0NITatKrc6ziUpCXioKfdzfnCC\nscmY1XFEAZIiLSx18FQfj77URl1lgN3b7LuSYzGr60oxDDh0us/qKKIASZEWlhkYmeL+f38dt8vJ\nJ999OR53fv46rk41Wdp/Uoq0yL78ODojCsLs1RHJpMFj+9oZn4qz67I6WrpGLEy2POUlXkJBD0da\nBojFE3jc1vUVEYUnP4cuIu/tO9ZD79Aka+tDbF6dX/PQczkcDlbXlhKJJTh2dsjqOKLASJEWOXe8\nbZAT7UNUhny82cY7Ci/F9JTHgVMy5SGyS4q0yKnO3nFePtaD3+vi5p1NeTsPPVe4IkBpwMOBk70k\nDcPqOKKAyJy0yJmWcyM8f7gLBw72XNVEaaBwmhI5nQ5qKwO0nBvhJ8+epqY8cNFt7r5tiwXJRL6T\nIi2WpKt/nLbzY/QNTxGJJmisCVJd5mfr2krcrgtHx9FYgsf2tbH3UBcet5Obr2qitvLiIpbvVtWW\n0nJuhHO94/MWaSGWQoq0uGSdvWM8+aq5UsPpMJvgn2gf5kT7QQI+F9vXV7OhqRy3y8ngaIRnDnQy\nOhEj4HPz1qtXURnyWfwdrIyG6iAOoLNvnCs21lgdRxQIKdLikoyMR3n2YBdOp4M9OxrNwuRw0Ds0\nSTIJ+0/2su9YD/uO9czcJ+hz847dawn63XnTk2MpfB4XNRV++oamiMQS+DyyFE8sX+G+Y0TWxeJJ\nnnqtk1g8yfXb6y84U3ZdVZA9O5r4wK0bae8Z4/zgJMmkgdvlYNu6Kvxed9pWp4WgqaaE3qEpuvsn\nWJvq6yHEckiRFhk7fnaQ4fEoW9dWsqFp/rXNDoeDNXUh1tQVZ4FqDJdw4FQ/nX3jUqRFVhTG+iex\n4gzD4FTnMC6ngytzeK7DfFNV5sfncXGubxxDluKJLJAiLTLS3T/B6ESMNXWleGWudUFOh4OGmiAT\nU3GGx6JWxxEFQIq0yMix1gGABac5xBuaakoAc5WHEMslRVqkFYsnOdUxRNDvpqE6aHUc22tMFelz\nUqRFFkiRFmm1nR8lFk+yoam8IPpsrLSAz01FqZeewUkSSZmXFssjRVqk1XLObCO6sanM4iT5o746\nSCJp0Dc0aXUUkeekSItFJZIGPYOTVJf7CQW9VsfJG/VV5rRQ98CExUlEvpMiLRY1MDxFImnMzLOK\nzNRXmVvEu/ulSIvlkSItFnV+0CwyDVKkL4nX46KqzE/v0CTxRNLqOCKPSZEWi+oZNOdUG2tK09xS\nzFVfHSRpvPEaCrEUUqTFggzDnI8OBT2UFFDv51yZmZeWKQ+xDGl7dyilgsC3gDqgBLhHa/3gCucS\nNjA0FiEaT7K6TkbRS1FbGcDhgC45eCiWIZOR9K8Dr2itbwLeB3xpZSMJuzg/YP6ZXlcpG1iWwuN2\nEq4IMDA8RTSWsDqOyFNpR9Ja6x/M+nIV0LFycYSdnE/NpRbiWVRypa4yQM/gJL2yXlosUcatSpVS\nLwH1wJ2L3a6yMojbba8GPOGw/VtG2iFjqNQ/87lhGPQOTRL0u2msDV10/XzSfQ/p7p8NuXiOS9Hc\nWM7hlgEGx2KAPX7O6UjG5ctmvoyLtNZ6l1JqJ/ADpdSVWut51xUNDtpr/i0cDtHbO2p1jEXZJePo\n2NQbn09EmZiKs7Y+xNh4hFCp/4Lr55Pue0h3/+XKJGOulfhdOICOHvO1scPPeTF2+V1cjN0zLjXf\nQoU97Zy0UupqpdQaAK31a6n7yAncCtzASASAmnJ7jUzzjdftorLMR9+QzEuLpclkJP1moBn4Q6VU\nHRAC+lYylLDewKhZpC/lpLHFcHqspairDDIwEuFE2yB1ZYV5El6xcjJZ3fFPQL1S6lfAL4BPLTTV\nIQrH4BKKtJjf9IHXo2f6LU4i8lEmqzsiwAdzkEXYyODIFH6vq6DP7p0r00X69ZYBbrmy0eI0It/I\njkNxkWgswfhUXEbRWRLwuSkr8XKsdYCk9JcWl0iKtLjI9FRHlcyfZk1tZYDJSJz2njGro4g8I0Va\nXETmo7OvLjXlcaJ9yOIkIt9IkRYXeaNIy/K7bJmelz7VOWxxEpFvpEiLiwyORnA6oLxEzsSSLaUB\nDxUhnxRpccmkSIsLJA2DwdEI5aU+nE456Wy2OBwOtjZXMTgaYWDEXrsihb1JkRYXGJuIkUgaMh+9\nArasrQJkykNcGinS4gLTOw2rpEhn3dbmVJHukCItMidFWlxg+qBhhRTprNuwqhy3yyEjaXFJpEiL\nCwyPpYp0qRTpbPN6XKytD9F2foxIVJoticxIkRYXGB6P4nE7Cfjs1RO8UGxsKidpGLR2j1gdReQJ\nKdJiRjJpMDoepbzEi8MhKztWwsamckAOHorMSZEWM8YmYyQNWR+9kjZMF2k5eCgyJEVazBgejwJQ\nVipFeqVUlPqoKfdzqnOYpCHNlkR60odSzBhJFWkZSa+MR19oZXRsilDQQ9/wFL947gzlsw7Q7tnR\nZF04YVsykhYzZkbSUqRXVDjVx6NnSHYeivSkSIsZw2NRHA4IBaVIr6TaCrNI9w5NWpxE5AMp0mLG\nyHiUUMCDS3p2rKiKkA+3y0HvoBRpkZ4UaQHA6ESUSCxBmWxiWXFOh4NwRYDh8ahsahFpSZEWAHT1\nTwBy0DBXwtNTHsMymhaLkyItAOgeMIu0HDTMjZkiLVMeIg0p0gKAbhlJ51S4wjzrTa+s8BBpSJEW\nAHT1jwMyks4Vr8dFRamXvuFJOYO4WJQUaQFA18AEfq8Lv1caK+VKuCJAPGHMtIcVYj5SpAWxeJLe\noUkZRefY9MlpZb20WIwUaUHP4ASGNFbKuemDhz1SpMUipEiLmeV3MpLOrVDQg8/jkhUeYlFSpMXM\n8jsZSeeWw+EgXBlgfCrOxFTM6jjCpqRIizc2skiL0pyrlaV4Ig0p0oLugXHcLgclAY/VUYrOzLy0\nTHmIBUiRLnKGYdDVP0FdVRCnnDIr56rL/TgcssJDLEyKdJEbGosyFU3QUBW0OkpRcrucVJf5GRiZ\nIhqTZkviYlKki1x3aqdhfbUUaauEKwIkDWjtHrU6irAhKdJFbnplR0NVicVJitf0mVrkDOJiPlKk\ni9z0yg4ZSVtnutmSnEFczEeKdJHrSo2k62VO2jIlfg8lfjenOocx5AziYo6MzhaulPpr4GbAA/yt\n1vqHK5pK5Ex3/ziVIR8Bn5w43krhigCt3aP0DE5SJ/9hilnSjqSVUjcCO7TWu4G3AV9Z8VQiJyLR\nBP0jERlF24DMS4uFZDLd8TzwG6nPhwCvUkqmSQrA9EFDmY+23vQZxKVIi7nS/o2rtY4DY6kvPwE8\nrLVOLnT7ysogbre9ehKHwyGrI6RlRcbX282CsGlNFeFwiFCpf9Hbp7veDuyecaF8waAPn9dFa/eo\n5b+vVj9/JuyeMZv5Mp6IVEq9C/hd4LbFbjc4OLHcTFkVDofo7bX3+lOrMp5o7Qcg5HPR2zvK6NjC\n/SNCpf5Fr7cDu2dMl29dfQjdNsTZ9gGCfmu26Mv7ZfmWmm+hwp7RtIVS6u3A/wJu11oPXfKzC1ua\nWSMt0x22sHFVOQbQcm7E6ijCRjI5cFgO/B1wp9a6f+UjiVzp6p/A53FREfJZHUUAG5vKAZmXFhfK\nZLrj/UAl8K9KqenLPqK1bluxVGLFJQ2D7oEJGqqlsZJdrG+UIi0ulsmBw/uA+3KQReTQwPAUsXiS\nhmrZDm4XpQEPDdVBTp8bIZFM4nLKIiohOw6LVtdMzw6Zj7aTzasriEQTtHbZ98CYyC0p0kWqW3p2\n2NK25ioAjrYOWJxE2IUU6SI1M5KW6Q5b2bK2Egfw+hkp0sIkRbpIdfeP4wDqUtuRhT2UBjw0N4Q4\nfW6EyUjc6jjCBqRIF6mu/gmqy/14PfbaHSrgsuYqEkkD3S5bEoQU6aI0MRVjeDwq89E2NT0vLVMe\nAqRIF6UuORuLrW1oKsfrccrBQwFIkS5K0ys7ZDu4PXncTtTqSrr6JxgcjVgdR1hMinQRkp4d9ret\nuRKAozLlUfSkSBehN85rKNMddrV9QzUA+0/2WpxEWE2KdBHq7Bsn6HNTFrSmHaZIr6G6hIbqIEfP\nDBCJJayOIywkRbrIRGIJegYmWFVbikMaK9nazs1hovEkR1pkyqOYSZEuMuf6xjGAVWGZ6rC7nZvD\nALx2QqY8ipkU6SLT0WueCW1VuNTiJCKd5voQlSEfh073EU8seMY6UeCkSBeZzt5xAFbVSpG2O4fD\nwc5NYcan4pyQ3YdFS4p0kWnvMUfSTTUy3ZEPdm6uAWTKo5hJkS4ynb1j1JT7CfgyPgexsNDmNRWU\nBjy8ontJJGXKoxhJkS4iw+NRRiZiMh+dR1xOJ9durWVkPMphWeVRlKRIF5GZg4a1MtWRT264ogGA\n5w51WZxEWEGKdBHp7JGVHflobV2IVeESDpzqY3QianUckWNSpItIx/TKDinSecXhcHDD9gYSSYMX\nj563Oo7IMSnSRaS9dwy3y0ldlZyNJd9cd3k9LqeDvYdlyqPYyCH+IpFMGpzrG6exOojLKf8329HT\nBzoXvf6KDdXsP9nHma4R1jWU5SiVsJq8W4vE+cEJYvEkTTLVkbduvqoJgMdfbrc4icglKdJForVr\nFDC3Gov8tG1dFU3hEvYd62FgZMrqOCJHZLqjSJzpGgFgaCyS9s9qYU8Oh4O3XbOabz58nCde7eA3\nbt5odSSRAzKSLhJnukdwOKCyzGd1FLEM111WT3mJl2cOnGMyErc6jsgBKdJFIJ5I0nZ+jIpSH26X\n/Mjzmcft5JY3rWIyEudXB89ZHUfkgLxji0Bn7zixeJKacr/VUUQW3HxVEz6Pi0f2tRGVs7YUPCnS\nReBMtzkfLUW6MJQGPLz16lUMj0V5+oCMpgudFOki0Jo6aFgtRbpgvP3aNfi9Lh5+oZVIVEbThUxW\ndxSBlnOjeN1OKkrloGE+m7sqZ9PqCg6f7uf+h15n27oq9uxosiiZWEkyki5wkViCc33jrKkP4XTK\niWcLyWXNlXjcTo60DBCLS6/pQiVFusC1nR8laRisl23EBcfncbGtuZJILMHrrdJrulBJkS5wZ86Z\n89HNDbLTsBBtba7C73Vx9MwAI9LGtCBJkS5wJzuGAVjfWG5xErESPG4n2zdUE08YPPT8WavjiBUg\nRbqAJQ2D422DVJf5CMvKjoK1ebV5HsSn9nfQNzxpdRyRZRkVaaXU5Uqp00qpT690IJE9HT1jjE/F\n2bKmEodDDhoWKpfTwY5N5mj65786Y3UckWVpi7RSqgT4e+DJlY8jsul42xAAW9ZWWpxErLTmhjJW\nhUt4/kj3zLksRWHIZCQdAe4EZGtTnjl+dhCALWukSBc6p8PB+27agAH85JkWq+OILEq7mUVrHQfi\nSqmMHrCyMojb7VpurqwKh+2/siHbGRNJg5MdQzRUl7BlYxiAUOny5qWXe/9csHvGlcx363VrefzV\nDg6c6qNvLMbWdVVLepxifL9kWzbzZX3H4eDgRLYfclnC4RC9vaNWx1jUSmQ80zXC+FScN6nwzGOP\nji29UXyo1L+s++eC3TOudL6+vjHedX0zr58Z4P6fHeJPPrTzko9FFOv7JZuWmm+hwi6rOwrU8TaZ\n6ihGm1ZVsGNjDSc6hjnc0m91HJEFUqQL1PGzctCwWL33xvU4gB893ULSMKyOI5Yp7XSHUupNwJeB\nZiCmlLoLeK/WWvah2lQsnuBE+xD1VUFpqlREZjdgWtdYRsu5Eb71yHHWN5otAaQBU37K5MDhq8Ce\nlY8isuX11kEisQRXbqy2OoqwyI6NNbR2jXDgZB9r60O4pLlW3pLpjgL02oleAHZuDlucRFilNOhh\n85oKxiZjnGwfsjqOWAYp0gUmmTQ4cKqPshIvG5qkX0cx276+GrfLwaHT/dLKNI9JkS4wpzqHGZ2I\ncdWmGpyyFbyoBXxuLmuuYiqa4FhqY5PIP1KkC8z0VMdVm2SqQ8Bl6yrxeVwcbRlgVFqZ5iUp0gXE\nMAxeO9GL3+tiqyy9E4DX7eKKDdXEEkkeekFameYjKdIFpL1njL7hKa7YUI3HLT9aYdq8ppwSv5tf\nvtbJwIh9d2SK+cmJaAvIvz11CjDnIueetFQUL5fTyZUba3j+SDcPPneGj92x1epI4hLIcKtAxBNJ\nTneO4PO4WFVbYnUcYTPrG8toqA6y91A33QP26q8jFidFukAcONlHJJZgfWMZLqf8WMWFnE4H73nL\nepKGwU+flVam+UTezQXi2UNmu+9Nq2RttJjfm1SY5voQLx/v4Wy3fbvIiQtJkS4AAyNTHG0ZoKbc\nT0VIenWI+TlSJwYA+ImMpvOGFOkCsPdQFwawabWMosXiLmuuZMuaCg639HNCtovnBVndkedi8SRP\nHejE53XRXF9mdRxhY9MrftY1lnG8bYgHHjrG7btWz5wYQLrk2ZOMpPPcc0e6GB6LcvOOJlkbLTIS\nrgiwqraU3qFJOnvHrY4j0pB3dR5LJg0efbENt8vBbdestjqOyCM7N9XgAF7VvSSTcmIAO5Mincde\n0T30DE1y/fYGKuWAobgEFSEfG1eVMzwe5WSHzE3bmRTpPGUYBg+/cBaHA+7YtcbqOCIP7dhUg9vl\n4MDJfqKxhNVxxAKkSOepV3QvbT1jXLOlltrKoNVxRB4K+NxsX19NJJbgcIucDc+upEjnoVg8wQ+f\nOoXL6eA9N663Oo7IY1ubKynxuznWOkBXvxxEtCNZgpdHppdQHWnpp294isuaKzl2dlAauoslc7uc\nXL2llmcOnONfHj/BdlVndSQxh4yk88xkJM7h0wP4PGafYCGWa01dKY01JbzeOsjeg+esjiPmkCKd\nZ17VvcQSSa7cWI3X47I6jigADoeDa7fW4nY5uf/nR5iMxK2OJGaRIp1H2nvGaDk3QnWZj82rK6yO\nIwpIWYmXd+xey8DIFD948qTVccQsUqTzxNhkjBePduN0OHjz9gacTjnJrMiud+xey7rGMn51qItD\np/usjiNSpEjnAcMw+N4TJ5iMJLhyY7VsXBErwu1y8ge/uROX08E3HznO2GTM6kgCKdJ54en9nbx4\n9Dw15X62rauyOo4oYOsay3n3W9YxPBbl248cxzBky7jVpEjb3In2Ib73xElCQQ837miUaQ6x4m7f\ntYYtayp49UQvj7zUZnWcoidF2sb6hif5h58exjDgk++6nNKAx+pIogi4nE5+712XUxny8eNnTnO0\nVXYjWkmKtE31D0/xhe/tZ2Qixgdu3ciWtZVWRxJFpKzEy6feczkup4Ov/+wIHT1jVkcqWrLj0IYG\nRqb44vf30zc8xbtvWMdbr5Y2pGLlPX2gk1Cpn9GxqZnLdl1Wx3OHu/nr777K//rYNdRXSZ+YXJOR\ntM2c6Rrh/3znVXqGJnnnm5v59RvWWR1JFLENTeVce1ktU9EEX/z+froHJqyOVHSkSNuEYRg8d7iL\nz3/3NYZGI9y1ZwPvfosUaGG9LWsq2anCDI5G+Ny3X+HImX6rIxUVKdI20DMwwVd/dIgHHjqGx+3k\nv919JXdet3bm3HNCWO3ydVV8/B1bicYTfOXfDvLQC63EE0mrYxUFmZO20PB4lCdeaeeJVzuIRBNs\nWVPBR+/YQp30hxY2dP32BuqrgnztJ4f58TMtvHj0PB+6bbMc1F5hUqRzLGkYnOoY5vkjXbxw9Dyx\neJKKkI/fettmdm+rl9GzsLUNTeX81Sd28eNnTvPsgXN84fv7WddQxi07m9i5OUzAJyUl2+QVzYHJ\nSBzdPsRj+9ro6BljfMrsMlYa8HDV5hquUnVMTkalQIu8UBrw8NHbt/CWKxr59+dbOXiqjwceGuGb\nDx9nXWOITU0V1FcHqa0IEAp6KAl4KPG78bila+NSSJHOolg8weBohL7hKTp7x+noHaOla4RzveNM\nb671uJysbyxjfWMZ9dVBnA4Hbpd5aGC6qb8Q+WB9Yxm/f9cV9A1NsvdwF0dbBzhzbpTTnSPz3t7l\ndOD1uPB6nHjdTvPzWR+3rK2kxO+hNGD+K5n+6HfPvEeKUUZFWil1D3Ar4Af+s9b6lRVNlWOJZJJI\nNMnTBzqJJ5Iz/2JxY9bXBmvrQkxF40RiCaai5r/JSJyhsQiDoxFGJy5uSON2OaitDBCuDNBUU0K4\nIiBbu0VBqakI8O63rKci5OOarbUMjUYYGY8xOhElEksQjSUv+DgVSTAyHmVuW5DFzrPocTspL/FS\nGvBQEfLjwMDndeHzmP+8HhedfWO4Xc7UP8ecj05u2N5A0O8m4HXn1XswbZFWSt0MXKO1vl4pdTnw\nD8CN2Q6SNAxGJ2IYhoFhQDJpYBgGScBIGiSnLzcMYvEksXiSaCxBNJ4kGjd/AWKzPo/GEkRiCRwu\nJ8OjEfPraIKpWGLmukg0QSSWzPgo9Uuvn5/3cq/HSWXIb/5Z53MTDHioKPVSUeqjvMSbV78QQiyH\n1+2itjJIbZpjiYZhEE8Yb7xfUx/N9+Ts9+cbn8cTSTp6x2ntHl1Stl881zrzecDnIujzEPS7Cfrc\n5ke/+43LZl1e4vfgcTtxOhy4XA5cTgdOp/nR5XTicIAD8Hld+L3Zn5zI5BFvBn4OoLU+opRqVEoF\ntdZZXdUHZN2UAAAJ+ElEQVT+9Z8f5ZXjPdl8yHm5nLP+h3U7CfjcF/2PO33d3Muv2liD3+vC73Pj\n87jwe10EfG78XhcOh0OmK0RBy+bvt8PhwON24HE7KfFnfj/DMCgJ+hgcniQ266/c2X/xJhLJ1HXm\n59OX15T5mYjEmZiKpz7G6BueZDKSyMr35HY5uefj1xIOh7LyeDOPm8FtGoCDs77uBeqAM/PdOBwO\nLWnY+Jnf3b2Uu9nK3bdtsTqCEMIGslmoM5mNj8752gFIk1khhMiBTIp0F1A76+swMP/krBBCiKzK\npEg/ArwLQCm1E2jRWk+uaCohhBAAODI5PY5S6m+B24A48HGt9eGVDiaEECLDIi2EEMIaxbuNRwgh\n8oAUaSGEsLGC692hlHJh7oq8HHO54Ie01mfm3OZu4I9SXz6ltf5TG2asBH4AjGqt78phtgVbACil\ndgNfTl33E63153KV6xIy+oH7gMu01ldbkS+VY7GMNwGfx1zKegr4ba11Tpszp8n3n4DfSeU7BPye\n1jrn86KZtKNQSn0e2K213pPjeNPPv9jruB8YnnXzD2mtL3lHUCGOpD8CJLXW1wN/Dfzv2Vem3sRf\nwHxhrwP2pLa72yZjyteBZ3MZanYLAOCjwN/Nucm3gfcDVwPvVEptyGU+yCjjF4H9uc41WwYZ7wPu\nTl0fAO60Sz6lVBD4APAWrfVuYBOQ851mGbyGKKUuYwVaVGQqk4xa6z2z/i1py2YhFumZbezAo8Ce\n2VdqraeAHVrrsdToYAAoy2nCNBlTPgE8l6tAKRe0AAAaU29alFLrgQGtdXtq1PfvwNtynG/RjCl/\nDvzUglyzpcu4a9Ybtg8Lf//m5tNaT2itb9Fax1KXhYDuHOdbNOMsX8L8eVslXcasbDssxCLdgLl1\nHa11HHClphdmaK2HAVIj6NVArrv6ZZJxaV1kspQrZboFwHzX9QD1Oco122IZrXrd5kqXcQhAKdUA\nvBV4LKfp0uQDUEr9KWbrh3/VWrfkMNu0RTMqpT4GPAWczW2sC6R7HauVUj9QSu1VSn1OKbWklhl5\nPSetlPoE5ohztivnuelF82lKqU2Yc76/pbWeu/U9a5aT0QKLtQCwS3sAu+RYTNqMSqlazL9Gfl9r\nneszu6bNp7X+G6XUV4GHlFL7tNY5nXpjkYxKqSrgw8DtwKoc55ot3ev458C/AqPAj4H3AT+61CfJ\n6yKttb4fuH/2ZUqp+0ltY1dKeYHY3IMySqlVwIPAR7TWKzp/udSMFlmsBcDc6+qBcznKNVs+tClY\nNKNSqgxzmusvtdaP5jgbLJIvVQCv0Fo/rbWeUEo9jHnsJtdFerHX8BbMUexewAdsUEp9RWv9B7mN\nuPjPWWv9j9OfK6UeAbazhCJdiNMdjwDvTn3+a8Dj89zmG8CntNYv5yzVhTLJaIUFWwBorTsAj1Jq\nTWpq5tdSt7dNRhtJl/HLwFe11g9ZEY7F8zmBB5RSJamvdwE69xEX/V38kdZ6m9b6OuA9wGsWFOhF\nMyqlqpRSjyqlPKnb3gQcWcqTFNyOw1QB+QawDZgAPqi17kjNsT0D9AMHgH2z7vZ3WusHbZRxH/Ak\nUAE0AUeBe7TWv8xBtgtaAABvAoa11j9VSt0I/D/MP+m+q7W+6Gh2LqTJ+EPM4wzbgFeB+7TW37NL\nRsz550HghVk3/57W+j475Eu9hh8BPp267iDmgMaKJXgLZpx1m2bgWxYuwVvsdfwD4INADPN38feX\n8joWXJEWQohCUojTHUIIUTCkSAshhI1JkRZCCBuTIi2EEDYmRVoIIWwsrzeziOVRSt2BuSsqBpQC\nLZgdz4ay8Njvw1wPfI/W+huXeN+PAS6t9QNKKQPwpLbPX2qGZmCv1npJu9KUUnuAz2mtb5hzeT3w\n91rru5fyuAs815uB7ky3YCul3JiboByzX69s5RH2IUW6SKV2Ov4LsE1r3ZW67AuYLSrTrn9WSjnT\n7JK8E/ibSy3QAFrrb13qfbJNKbXgX5la624gawU65bcxtxBfcp8MO7xeYuVIkS5efqAEs1NXF4DW\n+o+nr1RK7cIs1tMj2P+itT6ilHoaeA24Uin1Nsyi/glgKvXv/ZhNg94B3KCUSmLuqLw39Zx+zNHp\nw0qp7wBtwBXAFuAbWuvPK6U+C7i11n+Reu4/U0pdj7kF9yOpjmNLNneEPfv5lFLDwD8BQcwtvF6l\n1AOYLTsngbuA6un7L/I9BICvAetT3/ODqcudmBuCrsRsU/qV1OPeDVyb2gBxZoHXSwHfxezc+Pys\n7+ezmO/lz6Su+yvMHaF1wAe01geX83oJa8mcdJHSWo8Afwm8opR6XCn1P1NFYNo/A3+otb4Jc9ri\n3lnXTWqtb9VaJzALzbtStzsLfFhr/SPM3hRfTO2k+xrmqPoWzO3wX0+N5BPAJq31OzH7e//ZAnGP\naa1vTz3OZ7PyAiwsBDyhtf506usrgM9orW/E7Mvw0Tm3X+h7+DRwVmt9M3A98C6l1NWYxbgh9Xi/\nBvwWZh+ZA8D/SO0qXej1+gzwgNb67ZjN+C+Q+nmUYb5ee4DvY/4nKvKYFOkiprX+ArAOeABYC7yk\nlPqkUqoCqNVav5S66ZOY212nPT/r8yngh0qpZ4C3AzXzPNX1wOdSo/B/S92nIXXdU6ksbUBobsvW\nlCdSH1/A3O69khxc2Mf7eKpvyWLPP9/3cD1wV+p7/iXmyHwDZgP9Z1K3P6+1viNVXGdb6PXaPivb\nk4t8D9PtA9qAqsW+WWF/Mt1RxJRSwVSbzB8AP0j1vfhS6uvZ5rZgjKTuvw7zzDLbtdZdSqn/u8BT\nGcB7tdZ9c54fzIOWc59rrum5bycXt/xswpxbB7P38T+S3txeCHPfB5F5nnve50+Z73swMA+aXtD1\nLHWAMN3gaKHXa/Zrs9hjzM6zpB7Gwj5kJF2klFJvxxw5zz4ryFrglNZ6EOhWSl2buvx24MV5HqYS\n8xyMXUqpGsxGM755breX1IG2VHewr15i3FtTH28ADs++Qmvdqd84PVEmBRrMBkflqSkEgGsWue3W\nVHP+eZ9/EXsx569RSjmVUl9O9ZB+ntQZbZRSZUqpfakcScypo+n7zvd6vc4bp7J6e4Y5RJ6TkXSR\n0lo/ljrxwZNKqfHUxV3Ap1KffxT4ilIqjnnw8JPzPMwB4KBS6mXMP63/AviaUmpuC87/CtynlPpN\nzD/7/yaTjKlpgwSwTSn1ScwDdh/O9HtMCaemDabt01r/sVLqm8B/KKVeB9qZf8Diwuxe9nml1EbM\nLnbfYf4pnbnuBe5VSr2A+T57TGvdk/pr5Qal1HOAF7MDY1Qp9Tjw96nWlgu9XvcA31FK3YVZyGOL\nrUIRhUG64AkhhI3J/8JCCGFjUqSFEMLGpEgLIYSNSZEWQggbkyIthBA2JkVaCCFsTIq0EELY2P8H\n3nn9rbrunFcAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa645376710>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"diff = effect.sel(treatment='Sorafenib') - effect.sel(treatment='Lurbinectedin')\n", | |
"sb.distplot(diff.values.ravel())\n", | |
"plt.xlabel('Sorafenib - Lurbinectedin')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<xarray.DataArray ()>\n", | |
"array(0.885)" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(diff > 0).mean()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<xarray.DataArray 'true_treatment_effect' (treatment: 2)>\n", | |
"array([ 0.131061, -0.09077 ])\n", | |
"Coordinates:\n", | |
" * treatment (treatment) <U13 'Sorafenib' 'Lurbinectedin'" | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data.true_treatment_effect" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa6477bedd8>" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAEGCAYAAAA9unEZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8XFd58PHfXWdG0mjfd8u2rvc13uItJnH2BAjQQCk0\nfQMkBfrSQikQSMPeQvsGSqGvA5TtZWnaBAJkI4rjJN7ieF9k+1qyrM1aR/tIs9/7/jGyvNuSrJFG\n0vl+PuOxZu6de45mdJ855z7nHMm2bQRBEARhspAnugCCIAiCMBIicAmCIAiTighcgiAIwqQiApcg\nCIIwqYjAJQiCIEwq6kQXYKprb++bdGmbaWkJdHUNTHQxxo2o79Q23eoLU6POWVlu6WrPiRaXcBlV\nVSa6CONK1Hdqm271halfZxG4BEEQhElFBC5BEARhUhGBSxAEQZhUROASBEEQJhURuARBEIRJRQQu\nQRAEYVIRgUsQBEGYVETgEgRBECYVMXOGIEwTkUgEn28A2/bR0eHF6XSSkJCILIvvr8LkIgKXIExB\noVCIqiqT6upT1NScprmliQ6PB8uKXLSdqqrk5uZTUlLKvHkLmD9/EcnJyRNUakEYHhG4BGGKCAQC\nHD58gD17dlNZeZRgMDD0nKQ6kRypqIoTFC36YCSEFfbR2HSWxsZ6du58E1mWmTdvIWvWrGX58pXo\nuj5BtRGGq7e3l29/++skJCTS3d3Nhg0b2bHjdebMWUBl5VHuuONubrvtDn71q59z4sRxent7eOih\njzBrVvlF+33qU58hLS2dJ574AhkZmWRkZHL06GG+970tPP30rzh27Ci2bbNp023ceutmPvShP+OO\nO+6ms7ODtrZWvv71b1NdXcUPf/gfpKenA/DZzz6Gooz99FMicAnCJHfmTA1vvLGVPXt2Ewj4AZB1\nN1p6CWpCDrIrA1l1XnV/27axAt2Evc2E+xo5duwwx44d5pe//Bk337yOjRvfQWFh8XhVRxihP/zh\nt6xcuYb77383e/fu4cknv0VJSTEPPfQRampOs2XL91myZDl79uzme9/bgsfTTmXl0cv2+9Wvfs7C\nhYuZM2ceDz/8CC+//ALHjh3F4/GwbdtWtmz5CZZl8dGP/iWbNt2Kz+fjrrvuJSMjk4985MP09HSz\nZcu/84lP/C0zZpTx4x9vYdeu7axff8uY11kELkGYhMLhMPv3v01FxUvU1JwGQNIS0DPmoaaUoDhS\nhv1akiShONNQnGk4MudhBXoJ9ZzB33OGrVtfYevWV5g1azYbN97KihWrRSsszjQ3NzFv3gIA8vML\naG1tZdWqlQC4XC4CgQAtLc1kZ+cAkJmZxcaN7+Bf/uWbl+2Xl9dOXl4+AOXlc3jppRdobW2hq6uT\nb3zjywA4HA683j4URSEjIxMAp9NJIBCgubmJX//6FwD09fWSn18QkzqLwCUIk0gg4OfNN1/nlVde\npKPDA4CSlI+eNhslMQdJuvFEC9mRjCN7MXrWQsJ9TYS6q6murqK6uopf//oXrFmzlg0bNlFcXHrD\nxxJuXH5+AY2NDSxbdhNNTWfJz8+/bJvc3DzOnm0EwONpZ9euHZftl5eXT1paGm1trQBUV1cN7ptL\nbm4+X/zilwGoqTlNcvKVvxjl5xfw8MOPkJubR0tLS8yul4rAJQiTgNfbx9atr/Dqqy/T39+PJCto\nabPR08uRdXdMjilJMlpyIVpyIVbQS6i7Bn9PDa+9VsFrr1VQUlLK+vWbWLVqDYmJSTEpg3B999//\nAN/61teprDxKb28vH/zgX2Kaxy7aJjMzk3XrNvDYY5/F6+3joYc+wuzZxkX7fepTf09CQgKPP/55\nOjq+RWpqKpIEGRmZrF59M0888RiRSJiyslmUlc28Ylk+9rGP82//9q8kJCQyMDDA5z73JRISEsa8\nzpJtT7p1DieVybiQZFaWm/b2vokuxriJ5/q2t7fxyisvsX37NoLBIJKio6XNRksrR1Yd414e27aI\neJsJddcQ9jYBNqqqsnz5Stat28jcufPjLr0+nt/fWBltnXt7ezlzpobFi5dw+PBB/vCH3/L441+L\nQQmv71oLSYoWlyDEGdu2OX26ildeeZH9+/di2zaSloAjez5aWhmSrE1Y2SRJRnUXoLoLsMI+Qj21\nhLtr2LNnF3v27CI1NY2bb17PmjXrKCgonLByCqPjcOj813/9kueee4be3l7++q//ZqKLdEWixRVj\nosUV/+KlvqFQiH379vDqqy9z5kwNALIjDT3DQE0uHpPrV7Fg2zaWr4NQzxnCvfXYVgiAkpJS1qxZ\nx8qVa0hNTZuw8sXL+zuepkKdRYtLEOJYa2sz27e/wZvbt+Hti55s1KQCtPRylIRsJOmqf79xQZIk\nlIRMlIRM7JylhL1NhHpqqauvo66ulqef/hVz5sxj1aqbWbZsBUlJ4nqYcGNEiyvGRIsr/k1EfT2e\ndg4e3MfevXuorj4FgKToqCll6GmzkPXJf3K3wn7CvQ2EeuuwfIMZkIrCvHkLWLr0JpYsWTYuLbHp\n9nmGqVHna7W4ROCKMRG44l8s62vbNt3d3bS0NNHQUE99fS2nTp3E42kf2kZJyEZLLUN1FyLJU7MT\nxAp6CfU2EO6txwp0DT1eWFjM/PkLMYw5zJplxKQ1Nt0+zzA16iy6CgUhxsLhMG1trTQ1naWpqZHm\n5iZaWpppbW3G7/dftK2k6KhJBShJuajuQmTVdUPHtsI+uGQOwpiQlVGXVdaTcGTOxZE5FyvoJew9\nS9jbTOPZRhob6/nTn14AICcnlxkzZlJSUkpxcSn5+YUkJyfHfXepML5EiyvGRIsr/l2vvpFIhIGB\nfrxeL319vXR3d9HZ2UlHhwePp42Wlhba29sum8AWSUbW3YO3ZGRHCrIzDVlPGpNEi4i/G9/ZndjB\nkb1Xuq6TmZmJx+MhGAyOaF9Jd+MqWIviTB3RfldjW2Eivg4iA+1EfO1Yvs6h5I5zXAkJZGdlk5GR\nRXJyMm53Mi6XC4fDia7raJo2eNMHf9YveFwnJyeF7m4/iiIjywqyLCPL8qQMhl96/At093RfdztJ\nkhjOuT01JZWvf+2frrlNc3MTH/7w+zGMOQD4/X4+9KGH2LjxHbz22qv80z99haee+illZbMA2LHj\nTX7+8/9EVRVuu+0O3vOeB4dRs8uJFpcw5XV2drBly78PXS8ad5IMkgqSFA1KkgxI2FaIiL+TiL9z\nzA9ph3zAyL4X6brOo48+yubNm6moqGDLli0jCl52sI+BM39C0m6slXhVsoYkq9i2BYM334CPurpa\n6upqY3PMyUTWcBvvGbOXa61+Dr/fj9N59bksAYqLS/j+938IQF9fHw899AGSk1N4662dzJw5e2i7\nSCTCk09+i5/85Fe43W4+8YmPsn79LUPTTY2V+MyvFYQRamxsmJigJSkga9ETrqJFx1jJCkgSxPAL\nffTb9Mgb85mZmWzevBmAzZs3k5mZOZqjD+vb/KhIRIO/rCDJg79PJfr7RVKI6S91GopEInR1dYxo\nH7fbTUZGJsnJKTz22BOo6vn2T09PN4mJiaSmpqIoCosWLWbfvrfHutiixSVMDYsWLeHb3/43+vou\n7DaziZ7oLrwHy7KxbQvLsgBITU2gq6s/Oh7JsohEIoRCQYLBIH6/H59vAK/XS3+/l97eHrq7u+nq\n6qSnpxvsSPR27tUlGVlLQnYkR7sHdTeyI9pVKCljOzmt9/QLI+4m9Hg8VFRUDLW4PB7PiI8r624S\nZ94z4v2uxY4Eo12Gvg4i/k6sQDd2eOCK22qahsuVgMPhQNcdaJp2UdegrmsXdRe63QkEAhEU5Vw3\noYKiyCiKgqqqqKqGqqpomj54H+16VBQVWZa48LMTdfln6vLHL6rdFfa51mtc9bfEv/yfb1/nNzky\nLpeLvLyRTYTb1HSWnp5uSkpKL3suNTWNgYEBGhsbyM7O4dChg1ed1/BGiMAlTBmZmVlkZmaNeL/R\nXtMLhYJ4PO20trbQ0tJMU1MTTU2NNDWdxd/XeNn2kupCdqahONNREnNQXOlI0ujXKnIVrMV/difW\nCIJXMBhky5YtPPPMM6O6xiXrbpwFa0da1MvYVoTIQBvh/hYi/W1YgW4uPIGnpKRSVDSbgoJC8vLy\nycrKJiMjk5SUFByOa3drXWoqXbMd6+m0hnudr76+jk9+8mNAdPHRxx//6kUtrQvL9/nPP843vvEE\nbncKM2aUxWQ1ARG4BGGUNE0nL6/gsm+s51LgW1ubaWlppqWliaamJhob6+nubiLibQLPMSRFR0nK\nR0suRknMHXHChuJMJXHmPaPKKuwBtCIY0eRRN5BVCGBHQtFswr5GIv0t2FYYiJ4IZ5UbzJ5tDE3g\nmpIyNskfwti48BrX9axYsYoVK1YB8K//+k/k5OSOeXlE4BKEMSZJEmlpaaSlpTFnzryLnuvt7aGq\nyuTEiUoOHjxAV1ct4Z5aJNWFllqGljoTWRvZbNo3mk4fS7YVIextItxbR9jbPNStmp2dw5Ily1m4\ncDHl5QaaJtb4mir+/u//N1/84lfQdY39+/fy8Y9/asyPIQKXIIyj5OQUli9fyfLlK/ngBx+ipuY0\nu3a9ye7dO/F7Kgl6jqO6C6PTPbkyJ2XKtm3b0W7AnjrCfQ1D6e25ufmsXLmaFStWk59fMCnrNtFS\nU1LpbnjputuNJB1+tJ5//jlefvlFqqtP8c1vfpWSklIef/yr3Hffu/j0pz+BZdk8/PAjYlmTyUiM\n44p/8VDfQCDAnj272Lr1TzQ01AMgO9PR08vjeoLdC0VXTq4l1FuLHYomVqSmprF69c2sXr2WoqKS\nCQlW8fD+jrepUGcxjksQ4pzD4WDDhk2sX38Lp06dpKLiZQ4e3Ie/6S2ktiPo6eVoqTORlIlb0uRK\n7EiIUG89oZ4zQ/MROp1Oblp1C2vWrMUw5sbd+lzC5CcClyDEEUmSMIy5GMZc2tpaqah4me3btxFo\nO0Sw4zha6iy09HJkdWSZdWPJtm0ivnZC3TVE+hqxrTCSJDF//kLWrt3A0qU34XCM/yKXwvQhugpj\nTHQVxr94r6/X28e2ba9SUfEyXm8fSApa6gz0dANZd49bOaywP7rmVnfNUAp+ZmYW69ffws03rycj\nYzSDmWMv3t/fWJgKdRZdhYIwiSUlubnvvndz++13s2PHG7z88vN0dFQT6jqN6h5ct8uVFZPrR9FE\ni1ZCXacJe8+CbaFqGitXr2XDhk2Ul88RXYHCuBOBSxAmCYfDwa233s4tt9zKvn17eOnl56mvqyXc\n14isJ6OlzURNLhmTbkQr7CfUfYZwz2msoBeAgoJCNm68lTVr1pKYOPnXCxMmLxG4BGGSURSFVatu\nZuXKNVRVmWzd+goHDuwl0HqQQOshlMTocilqUt6IxoTZVnho9eJIfzPYNpqmsWbtBjZufAczZ84W\nKexCXBCBSxAmKUmSKC+fQ3n5HHp7e3nrrR289dYuamtriPQ3EyA6RZPsTEd2piJrSUiqMzpxLWBb\nIeywDyvQM7isiCc6IztQVFTChg2bWLNmLQkJiUPHjM7jGEKSQNcdIpCNsy99+R/o7r7+siayLGFZ\nwxjHlZrK17987fkPm5ubeN/77ueHP/wZ8+YtGHr8ox/9MJmZWZw+Xc0Pf/hzUlOjY8K2bn2F119/\nja997Z/p7OzgO9/5F86ebURVVQoKCvn0pz+H231j12ZF4BKEKSA5OZnbb7+b22+/m9bWFo4cOcTR\no4c5fboKX28d9NZd9zWKi0tZtGgJq1bdTF5ePg0NdezY8QbV1adoaWmmvb2NQCAwtL0sy7jdyeTn\nF1BUVMzChUswjLlXnMNOGBvd3d24bsseu9d7tW1Y2+XnF/Daa68OBa6WlmZ6e3spLS3jwQf/nJ/9\n7Ef87d9+llAoxE9/+mO+/e3vAPDVrz7O3Xffx+233wXAr3/9C5588ls88cTXb6jc4hMmCFNMTk4u\nmzffyebNd2JZ1tCciW1trXi9fUiShc8XxOl04nanUFBQSFFRMUlJbk6dOslrr1Vw8OA+uru7hl5T\nUmXkBBU12YmkyGDb2CGLPr+XEycqOXGikldeeQlXQgLr123kHe+4fczXYBImzoIFi9i//21s20aS\nJLZt28qKFasJBPy8853v4eGH/4LGxgZ27drO2rXryc8voLb2DP39/UNBC+DBBz940Zef0RKBSxCm\nMFmWL5sI+MJU6XA4jGme4Pe/f5b9B/bS29MDgKTLOIqT0LJdqBlO5AT1qt2Cdtgi3Bkg2NxP4Gw/\nr7zyEhUVL7Nq1Rruu+8B8vLyY19RIaYURWH2bIPKymMsWLCQXbu28/73/wWvv74VVVX52Mc+wXe/\n+y+0tDTz1FM/BaIzys+eXX7Z64zFFFAicAnCNBMIBNi/fy8HDuzl8OGDDAz0AyDpCo4ZbhwFSaiZ\nTiR5eNevJFVGy3ahZbtIWJhBsNGLr6qHt97axZ49u1mzZh333/+AaIFNcps23cq2bRVkZ2fjdifj\ncp2f3Hnt2vX8+te/4J3vfM9Qxmk4HB5a826sicAlCNOAbduY5gnefHMbBw/uG+qukV0qjrJkHAWJ\nqBnDD1ZXI8kSjmI3elESwaYBfCe62LVrO2+9tZN16zZyzz3vJCtr7K7RCONnxYrVPPXUf5CTk8fG\njZsuez4/v4D8/PMt+xkzyvj5z//zsu1OnjzBnDlzb6gsInAJwhQWCoXYvXsHL7/8PC0tzQDIiSrO\nklQcBYkoqXpMMgMlScJRkIien0DwbD++4128+eY2dux4g9Wr13LHHfdQVFQ85scVYkdVVWbPLueF\nF37PD37wY06dOnnN7WfMKCM1NZVnn32a97znQQCefvpXnDhxnC9/+Rs3VpYb2lsQhLgUCoXYvv11\nnn/+uWiShSyhFyXhnOGOtqzGKY1dkiQchUnoBYkEG/vxnYy2wHbt2s6cOfNYv/4Wli1bIeY2HKbU\n1NRhZQKOJB1+JDZtuo3u7i6SkoY3AP1rX/tnnnzy27z44vNomkZZ2Uw+//nHR3TMKxFzFcaYmKsw\n/k2l+obDYXbufJM//vF3dHZ2ICkSjrJknLNSUFwT/z3Vtm1CLQP4qnoIe/wA6A4HCxcsYtGipcyf\nv5D09IwxPeZUen+HayrUWcxVKAhTXCDgZ8eONwfnMfQgKRLOWSm4ylORncpEF2+IJEnoeYnoeYlE\nvCECdX0Ezvazf/9e9u/fC0RXR543b8HgbWFMFiIUJjfR4oox0eKKf5O1vrZtU1t7ht27o11vAwMD\n0eSIGe5owIqDFtZwRfqCBFsGCLX7CXf4sUPRbDRZlikvn8OSJctZunT5qBI7Juv7eyOmQp2v1eIS\ngSvGROCKf5Opvj09PVRXmxw/fowjRw/R4Yku3ig7oqnszrJkZOfkCVhXYls24e4AoVYfwZYBIl3n\nB6zm5xeyaNFi5s9fxMyZs3E6rz+h8GR6f8fKVKiz6CoUhEkoHA7T0FBHdXUVNTXV1NRU095+/sK8\npMnohYk4ipLQchJuOJU9XkiyhJbuREt3kjA3DcsXJtgyQLCpn+bWszS93MjLL7+ALMsUFRVTWlpG\nSckMiotLKCgoEoke00DcBy7DMP4a+BAQBBKAz5um+dooXysd2Ak8Z5rmF0aw30NAD9AFfNI0zfeO\n5viCcDWRSIS2tlbq6mqpra2hpqaaurozhEKhoW0kTUbLic5koWW6UNMdNxysLH8YOxL7TgFJkUbd\nEpRdKs4ZyThnJGNHLELtfkIeH2GPn7qGOurqas8fR5LIycmlsLCYwsIiCgoKmTt3FpqWhKbpY1Qb\nYaLFdeAyDKMU+BiwwjTNsGEY5cBTwDUDl2EYsmmaVxqyPR84NZKgBWCa5s8GX/eWkewnTF+WZREK\nBQkEAvj9fnw+HwMD/QwM9NPX10dfXy/d3d10dnpob2+jta2VSDh8/gUkUJJ1HOnJaBkO1DQHcpI2\nZmns4Z4gfXtasbyh6298AV3XyczMxOPxEAwGR7SvnKThXpWDmjL6ACIpMnpuAnpuNGHDtmwivUHC\n3QEiPUHC3UFaO1ppaWlm37495/eTJJKTU0hPT8ftTiEpKQmXKwGn04GuO3E4dHTdgcPhQNcdOJ1O\nnE4XTqcTl8uFw+HA4XCKCYTjRFxf4zIMYxHw38By0zT7L3h8IfADwAZ6gb8EFgF/TzQY/yOwDngf\nIAMvmqb5FcMw9gPFwI+Bfwd+BDiBMPARoAkwgWeAtUAfcO/g63mAY8DjQDswm2jL7WvXqoO4xhX/\nLqxvKBTiZz/7Ebt37xjfQsiAJEVbULKENPhzrFi+cPSvZwR0XefRRx9l8+bNVFRUsGXLlhEHLyTG\nJWnEtmywbbAu+L/NiOscbzQkxvJTYQOhYfxSent7aWlpYebMmSiKgsfjQVEU0tLSsG2b5uZmEhIS\n0DSNzs5OAHw+H9nZ2eTm5vPJT/7tRUuiDMekvcZlmuYRwzB2A2cMw3gJeAH4LfBvwOdM09xtGMZn\ngL8l2gpbAJSbphk0DGM98A7AD5w2DOM7wGeIdvV9wTCMHwNPmqa51TCMe4Avmab5iGEYZcCvTdP8\nvGEYe4CFlxRrITATCAAnDcP4gWmanbH+XQjjw+vtG9+gpUjR+HQuYEkSY3pmugL73El8hDIzM9m8\neTMAmzdv5plnnqGpqWmEB2dohvFYinahSiDbYEtg2UPHxmbo58lGAh5OG7txbv/Z1TGs7fr6+tB1\nnb6+vssGLXd0dKCq6tDjiYnR9duqq6tJTU3l8ce/OuYTLcd14AIwTfOvBrsI7wb+AfhrYJ5pmrsH\nN9kOfIlo4Dpimua5r4Ah4BUgAmQB6Ze89ApgjmEYjwMKcO6qd69pmkcG/98AXDq0fJ9pmn0AhmGc\nAMoAEbimiLS0dL73vafo7OzAtqONnuh99ERr2zbhcJhwOEQkErngPjy0yGI4HB7sJgwSDPqHugp9\nvgH6+6Ndhb29PfT3eyFiD54/B/+VJRS3hpruQE13oqWPbRfhOV2vNIy4m9Dj8VBRUTHU4vIMZjSO\nhJykkXZ70Yj3ux7btrH6w4R7gkR6AtHuw94QVv+1W5a6Hu0ijN7rOBxOHA7HJd2ETpxO51A34rlt\ndV1HVTU0TUNVVRRFQZaVCz4z5+/Pl/Pyx89/vuwrbnPhtk/+8zU7eEbM6XTy2OBMFhd2vl143L6+\nPj772U/x8Y9/iueff44vfemrPPvs07jdyaSmpvLGG9v4zGc+h6IoF5X5kUf+iu9+9/+SnJwypmWG\nOA9chmFIgMM0zVPAKcMw/h04CVw4mEMCzl3PCg7uVwb8b2CpaZp9gwHmSh40TfPsJY+FL/n50jOG\nfclzk/B7m3AtSUlukpJubIXW4QiFQnR1ddLe3kZLSxNnzzZSV1dLQ0MdgZ4+Amei3ZeSLqOmRQPZ\nuYAma/INHdu9KmfE17iCwSBbtmzhmWeeuaFrXGPB8oUJdfgJdwai17e6g9jhiy9rJyYmUjB7JjNm\nlJCcnE5GRhZpaWmkpKSSmJiIy5WALN/Y73G8jXV5ZVmmuLj0mts899wzrF9/C/fe+05+8pMfkpCQ\nQEpKKm1trfzP//wXv/zlf19x5n9FkWMStCDOAxfR6063GobxAdM0bcBN9GrAa4Zh3Gya5i6i3YH7\nLtkvDWgbDFqrgULg0ivCe4B3Av9hGMY7gBzTNH8zjDItNwwjgWhLbg5werSVE6Y3TdPIzs4hOzuH\n+fPP90hH0+DrOX26ipqaKqqrq/C0thNq9UU3kEBJ0dFzEtDyElDTHCNukakpOmm3F40qq3AASCCH\nkcxncSNZhRC9ThVq9xFqHSDU4iNyQcCVJInc3DyKi0spKiqmqKiEwsJiUlNTkSRp2l2zHWsVFX/i\noYc+gqIobNp0K6+9VgFEZ3l/8ME/5/vf/y5f/eo/jWuZ4j1w/QQoB942DMNLNGh9HDhLNODYRJMm\n/gpYdsF+h4Cewetju4gmcvw7cOFv98vAzwzDeD/RVtNDwyiPAhwAfko0OeMp0zS7R1s5QbgSVVWZ\nMaOMGTPKgDsA6O3toaammurqKqqqTGpqqvF1d+Mzu5ETNRzF0Ql0Rxoc4nmwshWMRAchN/cTavUN\nzaahOxzMX7SE2bPnMHt2OcXFpcMaiCyMXGtrCydOVPL9738XSZLw+/243UmsXr2W++9/F+95z4P8\nwz/8HX/4w++4//53j1u54vdTC5imGQE+e5WnN1zy8+uDt3P73cWVndumCbj9CsfMvOD/771wn0Fb\nr1loQYiB5OQUlixZzpIly4FoxtbJk5Xs2/c2+/e/je9EFz6zG0dRIq7yVBT35BuzZEcswh2BaMuq\nzUe4OzDUEZ+RkcmyZStYvHgps2cbaJo2sYWdJl599U+8+93v42/+5u+A6LXE97//3TQ1NQ4lY3zh\nC//Ixz72EAsWLKKsbOa4lCuuA5cgCFfmcrlYuvQmli69iQ996H+xe/cO/vTKi7TVtRCo9+IoSsI1\nNw0lMb5P8JYvTLCpn2DzACGPP5rtR/Tay6yZ5SxatITFi5dRWFg0bkuxxLOU1DR+09113e0kWYoO\nAxjG613Lq6/+iccf/+r515Uk7rrrXn760x8NpbenpaXxmc98jq985Yv88Ic/w+GIfes3rsdxTQVi\nHFf8myr1tSyLAwf28txzz9LU1AiShKMkCZeRGlcBzLZtQs0D+Gv7CLUODLWqCguLmT9/IXPmzKO8\nfM5FS8PfiKny/o7EVKjzpB3HJQjC8MmyzE03rWLZshXs3fsWv//9s7TUNhOo60MvTMI1KwU1beLm\n8bMjNoG6PvzVPUPJFaWlZdx883qWLl1ORkbmdV5BEKJE4BKEKUaWZVatupmbblrF22/v5sUX/8DZ\nhkaCDV6UVB1HiRtHfuK4LXtiR2wCtb34TvVg+cIoqsr69bdw2213UlRUPC5lEKYWEbgEYYpSFIU1\na9axevVajh49zBtvvMbhwwcYONzBwOEO1Awnen4Cel4iStLYdyXalk2gvg/fyW6sgTC6rrPpjnu4\n8857SEkZ2ZLxgnAhEbgEYYqTJIlFi5awaNESenq6OXnyMNu2vUFVlclAh5+Bo53RcWH5iegFiajJ\nN5aRaFvB5ENvAAAgAElEQVQ2gQYvvpNdWP1hVFXlttvv5u6774vZgFRhehGBSxCmkZSUVO69915W\nrdpIb28Phw4d4MCBfVQePxpNqT/RhZKsR1ti+YkoKfqws/ki/SECDV4CNb1Y/giKqvKOd2zmnnve\nSVrapTOuCcLoicAlCNNUcnIKGzZsYsOGTfh8Axw6dIB9+/Zw5OhhfCe78Z3sRtIV1AwHarKOnKgi\nO5TohMCAHbKw/JHovICdfiK90YQLp9PJ+s23c8cdd5OePnYTwgrCOSJwCYKAoqjk5eWzYsUaCgqK\nOHPmNM3NTfT19RJqHiDUPHDN/TVNY8HipSxZspyVK9eMWSq7IFyJCFyCMM3Ytk1rawunTp2kquoU\nNTXVtLQ0YVlXWnv16mRZJicnlwULFrNu3UaRISiMGxG4BGEaGBgY4Pjxoxw5chjTrKS9vX3oOU2S\nyJYVMh06qbJCsqKQJMu4JBlNkpCBMDYBy8ZrWfRYETyRMC3hEC3NTTQ3N1FR8RIzZ87mlltuZeXK\n1Wja5JtySpg8ROAShCnK6/Wyb98e9u9/mxMnKodaVA5JokzTKVA1clWNdEVBvk4ChoKEQ4FkRSGf\n86nzPsuiLhTkdDDA6dNVnD5dxW+ffZp773sX69bdIuYUFGJCTPkUY2LKp/g3lepr2zYnTx5n27ZX\nOXRwP+FIdHm5LEWlRNMp0TSyFDUm8/71RiIcC/ipDPoJ2zZZmdn82YMfZNmymyZ0nsGp9P4O11So\ns5jySRCmOMuy2LNnFy+99DyNjfUApCkKhiuBWZoDt6LEvAzJisLNCYkscbo44B+g0tPGD37wHQxj\nLu9//4coKSmNeRmE6UG0uGJMtLji32Sur2VZvP32bv7wh9/S0tKMBMzUdBY6XeTEqGU1XF2RMLt9\nA9SFgkiSxM03r+e++959xdVyY2kyv7+jNRXqLFpcgjDF2LbN0aOHeOaZp2lsrEcG5ulOljpdJI9D\n62o40hSVu5OSaQwF2enrZ+fON9m9ewdr1qzjttvuoKRkxkQXUZikROAShEnEtm1M8wS//e3TVFdX\nAVCuO1jhTIibgHWpQk3nfarG6VCQ/b4Bdu58k50736S0tIxVq9awfPlKMjOzJrqYwiQiApcgTAKW\nZXH48AFefPGPnD4dDVilms5KVwIZSvz/GcuSxGzdwUxNpyEc4njAT11tDbW1NTz99K8oLCxm4cLF\nLFiwiFmzykU2onBN8f+JF4RprLW1hbfe2sn2N7fR2dUJRAPWMqeLHHXyndxlSRrMbtQZsCxqQ0Fq\nggGaGhtobKznpZf+iKZplJfPYd68BcyZM5/i4hKUOG1NChNDBC5BiCPhcJiammqOHz/GwYP7aWio\nA6KDhOfpThY6naRPghbWcCTIMvMcTuY5nIRsm6ZwiMZQkIZQiMrKo1RWHgXAoTsomzmLkpJSCguL\nycnJJTMzm+Tk5AlNPhEmztT4CxCESSYUCtHZ6cHj8dDS0kRTUxP19Weor68jFIpOVisDxarGTN3B\nTN2BdoMn6QHLIjwOWcSqJJEgyyPaR7ugJQbRsjaGgzSFQrSEw5w4UcmJE5UXH0dVSUtLJz09g4yM\nTLKzc8jNzSc/P5/c3HxUVZzepirxzgrCDbAsi0DAj9frpb/fO3Q/MNBPf38/AwMDg/+PPuf19tHd\n3UV/f/9lryUD6YpCjsNJkaqRr2k4pJEFgCvpiIT5k7ePHisyov10XSczMxOPx0MwGBzRvimywh1J\n7lFff0uQZcp1J+W6E4CAbdERjtAZCdNrWfRaEfotC6/HQ3t722X7n5tHMS+vgJkzS3E63aSnZ+B2\nu0lMTMLpdKJpGoqiIssykiRddhPilxjHFWNiHNfEsiyLX/7yp7z++taJLsoQGZAGbzISshR9TEYi\nFudLr2Ux0g+hrus8+uijbN68mYqKCrZs2TLi4CUDiSNseY2GbYMNWNhYgGXbRICRTRksjMYHPvAh\nNm++Kyavfa1xXLH/VAnCBAoE/OzatWNCyyABCqABOhKaFL3pg/cqEooUm6Bl2/aIgxZAZmYmmzdv\nBmDz5s1kZmaO+DWswePHmiRFlwhTJQmN879bHUmc4GJs167tE3Jc0VUoTGkuVwJPPvkDOjs7AIa6\ngGzbRpIkbNsmPT2Rzs7+ocfP3cDGss7fW1aESCRCOBwiGAwSCAQGuwIH6O/3Dt283gu7CvsJhUJE\ngGhH3WDzYIiNQ5JIlRQyFJVsVSVXVUmVlTHrrvp1T9eIuwk9Hg8VFRVDLS6PxzPi46bKCh9ISRvx\nftdi2dEZ6nutCF7LinYXWhZ9VoQeK4LXvrx16XK5SE/PJD09Hbc7mYSExKGuQlVVkSQZWT7XPSgh\ny9F7RVGQZRlVVVEUZXB7DU3ThvZVBmcnOfdZirKJfl0570qfuyvvc/m+o3HhZ/pilx/nwrJdWv6L\ny2pdtm9ubt4Nl3U0RFdhjImuwvgX6/qGQiEGBvrxer309vbQ29tDd3cXHR0deDzttLQ00dbWetF6\nWImyTJGqUaY7KFQ1lBsIYh2RMK94++gex2tcqbLC7TdwjQuiJ9LOSITmcIjWSJiOSJiuSOSqXYBu\nt5u8vAJyc/MoLCymoKCQvLx8Zs0qwuPxjrock9FU+BsWUz4JwgTSNI2UlFRSUlIpKCi84jbhcJjG\nxnrOnDmNaZ7g+PFjnPR6ORkM4BgcvDtPd5Ixiky5DEXlAylpo8sq9PrAmRi9DdNosgohGqh6B7MJ\nG0MhmsJh/Pb5MKXrOqUlMwbT4bPIyMgkNTVtKKvwaqsui0SLqee6fwWGYfyzaZqfv+Sxp0zTfCR2\nxRKE6UVVVUpLyygtLWPTps1YlkVNTTX79u1hz1u7ONbbw7GAnwJVY6nTRaGqjfiEPJpgEmth26Yx\nFKI+HKQ+FKTvglZnenoGy+fOp7x8DrNmzSYnJw85DusgjL+rBi7DMN4NPADcZhhG/gVPJQBrYl0w\nQZjOZFlm1qxyZs0q573v/QBHjhxk69ZXOHGikrPeENmKyipXAgWjCGATzbZtGsMhTgb81IVDhAZb\ngU6ni2XzFjB//gLmzVtAdnbupKubMD6u1eJ6GWgDbgIuzCW2gC/GslCCIJynqirLlq1g2bIV1NbW\n8MILv2f//r380dtLvqqx2pUwKaZ/Cts2JwJ+jgR89A62rLKyslm+fCVLliyjrGyWGDQsDMt1kzMM\nw3Capuk3DOPc0BMATNMUwySGQSRnxL/JWN/a2hp++9v/4dixwwDM0HRuciaQGYcnfsu2OR70c8Dv\no9+y0DSNVatuZuPGWykrmxnzVtVkfH9v1FSo840mZ3zKMIzHgKTBn8/lQ4pZLwVhgpSWlvHpT38O\n0zzBM8/8F6dPV3EmFKRU01nscJGnTuwikufUh4Ls8vXTFYng0B3cdevt3HHHPSQnJ0900YRJbDiB\n638BC0zTbIh1YQRBGBnDmMtjj32ZysojPPfcs9TUVFMbCpKpKMx1OJmtOXBMQEJDVyTMroF+6sMh\nJEliw4ZNvPvd7yMlJXXcyyJMPcMJXKYIWoIQvyRJYsGCxcyfv4iqKpOKipc4cGAf2wf62Uk/RZpO\n2eAEtq4YB7GeSIT9/gFOBQPYwJw583n/+/+C4uKSmB5XmF6GE7iOGIbxX8A2IHTuQdM0fxKzUgmC\nMGKSJFFePofy8jl0dXXx1ls72L1rB3VnG6gLRQcQZysqRZpGgaqRe4MDm8+JDGYJVgb81IeC2EBB\nQSEPPPAgS5Ysi4suS2FqGU7gKgZ8wOoLHrMBEbgEIU6lpaVx1133cddd99Ha2syBA/s4cuQQVVUm\nbX4f+/GhIJGlKOSoGlmqSqaikCwr1w1mtm3TbUVoDYdpDIeoDwUJDCZ5zZhRxh133MNNN60SY66E\nmBnWlE+GYahAnugyHDmRVRj/plN9fb4BWlrq2L17L1VVJ6mvr7toIlwJcMsyibKMS5LRpOhEtRGi\nS4t4LYueS2bgSE9LZ+mym1i7dgOlpWXjXqfrmU7v7zlToc43lFVoGMadwFPAADDXMIx/A143TfN3\nY1dEQRDGg8uVwMqVK5kxYy4APp+P+vpa6upqaWioo7W1hba2Vlr6erHt8GX7O3QH+QV5FBQUMnPm\nbGbNKqeoqFh0BwrjajhdhV8iOgj5vwd//grRwckicAnCJOdyuTCMuRjG3Isej0QieL19BINBwuEw\nuq6TkJCA0+kSQUqYcMPphPabptl+7gfTNDuJXvMSBGGKUhSFlJRUsrKyycvLH5zENkEELSEuDKfF\nFTAMYx0gGYaRBjwI+GNbLEEQBEG4suEErk8A3wcWA6eB7cDHYlkoQRAEQbia6wYu0zRrgXtjXxRB\nEARBuL7hZBW+A3gESOXiSXZvj2G5BEEQBOGKhtNV+EPgm8DZGJdFEARBEK5rOIHrlJjeSRAEQYgX\nwwlcPzIM40fAbmBoRKJpmr+IWakEQRAE4SqGE7i+AHgB5wWP2YAIXIIgCMK4G07g6jNN89aYl0QQ\nBEEQhmE4geslwzA2cnlXoRWzUgmCIAjCVQwncD0BJA7+3yaaEm8DSqwKJQiCIAhXM5zAVTI4P+EQ\nwzDib+0CQRAEYVq4ZuAyDEMGnh0chHyupZUA/BZYEvviCYIgCMLFrjo7vGEYHwBOAhuJriMXHrzv\nRQxGFgRBECbIVVtcpmn+BviNYRhfNk3zyxc+ZxhGSqwLJgiCIAhXMpxJdr9sGMY8IHPwIQfwJLAw\nlgUTBEEQhCsZziS73wXuBHKAWqAU+HZMSyUIgiAIVzGcFZBXmaY5BzhkmuZSokEsNbbFEgRBEIQr\nG046fOTctoZhKKZp7jEMQ7S4BGGSsCyL7u4uWltbGBjoJz3djWVpFBcXo2n6RBdPEEZsOIHrsGEY\nfwfsA141DKMGcMe2WIIgjFY4HKaurhbTPM6pUyZV1Sa+gYHLtpNlhZkzZ7FhwyZWrFiNrosgJkwO\nkm3b193IMIxUohPtfhBIB542TbMpxmWbEtrb+67/C44zWVlu2tv7JroY42ay1te2bXp7e2htbaG5\nuYmzZxupqztDbe0ZQqHg0HaSloTiSkfWkpBUB9g2VqifiK8Dyx+dW8DtTuZd73ovGzZsQlGm1qQ4\nk/X9vRFToc5ZWW7pas8Np8UFsAkoNU3zO4ZhGEDrmJRMEIRh8/v9mOYJTpyopLa2hobG+iu0pCRk\nRwpaahFKYg6KKwtZc131Na2gl1D3abxdVfy///cTtm59hb/6q48xc+as2FZGEG7AcLMK84Ey4DvA\ne4Ei4NHYFk0QBMuyOHLkILt27eDw4QOEQqHBZyRkPQnVXYisJyHryciOFGRHMpKsDfv1ZT0JR/Zi\ntPRygu1HaWqq4ZvffILbb7+bBx54n7gGJsSl4bS4lpmmucEwjG0Apml+wzCM3TEulyBMa319vbz5\n5ja2bXuVzs4OAGTdjZ4xCyUxF8WVgSQPt8Pk+mTVhTNvJWpyKYGWt/nTn17gyJGDfOQjH2fGDDE1\nqRBfRpJVaAMYhqEwvDR6QRBGqK7uDK+9VsHut3YSDoWQZBUtdRZaahmyMw1Jumq3/5hQE7NRZtxJ\noO0wzc1VfOMb/8idd97LO9/5gGh9CXFjOIFrr2EYPwbyDcP4NPAuYFtsiyUI04fX62Xv3t3s2PEG\nZ87UACBrSThyFqClzEBSxjdgSLKKM3c5qruAQPNeXnzxD+zb9zZ//ucfYtGipeNaFkG4kuFmFb4X\nWEu01bXDNM3fxrpgU4XIKox/E1Ffr7ePQ4cOsG/fHiorjxKJRAAJJSkPPS3aHShJE9+xYVshAm1H\nCXVVATbz5y/k/vsfYPZsY6KLNmzT7fMMU6POo84qNAxDAh4zTfMbwDNjXTBBmE66u7s4eHAf+/fv\n5eTJ41hWdBFx2ZmGI6MYNbn0mhmAE0GSNZy5y9BSywi0HaSy8iiVlUeZPdvglltu5aabVoouRGHc\nXbfFZRjGT4B/Nk3z1PgUaWoRLa74F8v6ejztHDiwl3373ub06SrO/b3JznRUdxFaciGyPnnG84cH\n2gh6ThDpbwbA5Upg+fIVrFy5mjlz5qOqY5cwMlam2+cZpkadb3Qc13Kg0jCMTiBAdEFJl2mamdfe\nTRCmn2AwyOnTVVRWHuXo0UM0NNQPPiOhJGSiuotQ3QXIWuKElnO01IRs1OJsrGAfoe4a/D217Njx\nBjt2vIHLlcCSJctYtuwmFixYhMPhnOjiClPUcAJXM3Af51dAloC3Y1koQZgMAoEATU1naWysH5qx\noq7uzOD1KkCSURLzUN2F0WClju5EboV9YEWuv+GNkBVkdfjdlLLuxpG9GD1rERGfh3BvA35vI7t3\n72D37h2oqsq8eQtZvHgp8+cvJDs7J4aFF6abqwYuwzA+CPwjUAzsuOApJ2IFZGGKC4VCeL1e+vp6\n6evrpbu7i+7uLjyedjyedlpamuno8Fy8kyQhO9LQUrJQE3JQErNvaKxVxN+N7+xO7ODIu3x0XScz\nMxOPx0MwGLz+DoCku3EVrEVxDn/xB0mSUBOyUBOysO2lWP4uwn2NhL1nOXLkIEeOHAQgIzOL2bNm\nU1o6k/z8AnJycklNTUPThj9YWhDOueY1rsExW/8JPHHBwxbQZJpmjL8CTg3iGtf4sG2bSCRCKBQa\nvAUJBoND94FAAL/fTyDgx+/34/P58PkGGBjoJxIJcvz4Cbq7u7Ftayhp4tokkCSQZECOZgBKcrQ/\nYqzqFPIxOHxyRHRd59FHH2Xz5s1UVFSwZcuWYQcvkJDGKkHEtrGtCNiDtysdTZKuecvNzWfx4qU4\nHE6cTicOh2PwFv2/pulomoaqqiiKgizLQ/tC9D4ry01X1wCyrKAoMrJ8frupajL+DV/qWte4hpUO\nL4zedAlcdXVn+MpXvhijEo2nwb+VwRPf0P3gSTAaqKQxDVBXYts2hH2j2jc/P5+nnnpq6OdHHnmE\npqYRzImtusb+pG5H/7FtC87dsMG2GU1wnow+97nHMYy543KsqR644i8FSJiUdN1BUpIbr3dy/7EA\nSIqOpDjO36vOwZsLWUtE1hKR9EQkKbazqHtPvzCqbkKPx0NFRcVQi8vj8Vx/p0Gy7iZx5j0jPub1\n2JEQEX8nlr8LK9iLFfRih33YkQB2ZLitwclL0zScTpGsMlZEiyvGpkuLK95YlnVRN2EwGMTv9w12\nGfou6Cr0YdtBPJ4uvF4vXm/f4M1Lf7+Xq/99SEh6EoqejOxMRXakobjSkNSEMWutRPzd+M/uxBqn\na1yy7sY5wmtcV2PbFhFfBxFvM+H+Fix/F5e2rJKS3KSkpJKYmIjT6bqkK/B8d+C5e6fTdcnjDjRN\nu6CrUL2gm/C8qfB5HqmpUGfR4hKmHVmWB09wTtzXGSZ1tT9yy7IYGOint7eXnp5uuro68XjaaW9v\nG1wD6yz93rPgPZ+rJKkuFFcmSmIOalLeDaW9K85UEmfeM+qswh5AK4JhpT+MMKvwSmwrTLi/hXBf\nIxFvM3YkEH1pWWH27HJmzSqntHQG+fmFZGdni4HLwqiJwCUIVyHLMklJbpKS3OTnF1z2/LmFHBsa\n6qmrq6W2toaqKpPe3gbCfQ0EANmRMpgOX4jsSB1Va+xGA0os2VaYcN9Zwn0NRPpbsK0wACkpqSxZ\nspbFi5diGPNwueK3DsLkIwKXIIySJEmkpKSSkpLKggWLgGgwa21tobLyCEeOHOL48UqCnuhN0pLQ\nkgtR3UXIzvRJm9Vm2zaRgXZC3aeJeM8OBavsnFyWL1vBsmUrmDGjDFme+LkWhalJBC5BGEPRFO48\ncnPzuPXWO/D5fBw9epgDB97m0KGDBDtOEuw4iaS6hlpiSkJWXEyoez22bRHuayToOY4V6AYgOzuH\nVatuZsWK1RQUFE7aYCxMLiJwCUIMuVwuVq5czcqVqwkGg1RWHmX//rc5dOgAA11VhLqqkFQnqrsY\nLXXGqLsTYy3c30Kg9SBWoAdJkli5cg2bNt1GefmcuCyvMLWJwCUI40TXdZYuXc7SpcsJh8OY5gn2\n7n2L/fv30t91ilDXKWRHKlrabLSUkjFd4Xi0rLCPQMt+wn2NSJLEunUbuffed4kpnIQJJdLhY0yk\nw8e/ia5vOBzm6NHD7NjxBocPH8CyLCRFR00pQ0+bhawnjXuZbNsm3FtHoPUAdiTIrFnlfPCDD1FS\nUjruZblRE/3+ToSpUGeRDi8IcUxV1aGWWFdXJ2+88Rqvv76V3s6ThDpPoiTlo6fOREnKjfmgZwAr\n7CfQso9wXyO67uB973+ITZtuE8kWQtwQLa4YEy2u+BeP9Q2FQrz99m62baugpuY0EJ3RQ0nKR03M\nQXFlIWmJY3p9KdrKqh9sZQUoL5/Dww8/SlZW9pgdYyLE4/sba1OhzqLFJQiTjKZprF27gbVrN1BX\nd4bdu3ewZ89uenpqCffUAiDJKpKejKy7kR3JyHoyijMVSUsacUCLBHoItB4i0t+Mpum8531/wW23\n3SlaWUJcEoFLEOJcSckMSkpm8Gd/9kEaG+s5caKS2tozNDTU09raTNjfedH2kuJAdmWgJmSjJGQj\nO1OvmG5v2zYRn4dQVzXh3nrAZu7c+Xz4ww+Tk5M7TrUThJETgUsQJglZlikuLqW4uHToMcuy6Ojw\n0Nx8lrNnG6mrO8Pp06fp6Ggi4o3OCC/JajTNXncjKQ7Awg4NEPF1YA/OQJ+Xl8/73vfnLF689Ia7\nH30+H21trXg8bfT39xMKBdE0nYSERLKyssnNzcPhcNzQMYTpTQQuQZjEZFkmKyubrKxsFi1aOvR4\nZ2cHJ08ep6rKpKrKpLm5Cdt38SzxyckpzJmzhA0bNjFnzrxRdQvatk1LSxMnT56guvoUNTXVtLW1\nXmNy4miZS0pmsHjxUlasWE1eXv6IjytMbyI5I8ZEckb8mw71DYfDeDztDAz0k5mZTDiskJY2ummn\nQqEQlZVHOXRoP0eOHKK7u2voOUmTUVJ0lGQdJVFF1hVQJLBsrECESH+YSFeAcHdgaLL4+fMXctdd\n9zFv3oKxqu5FpsP7e6mpUGeRnCEI05yqquTm5gGjO6nZtk1VlcmOHW+yf/8efL5oF6OkK+iFiWhZ\nLtQMJ4pbG1YwtEIWoeZ+/LV9VFYepbLyKAsWLOYDH/gL8vIun9BYEC4kApcgCFfV1dXFrl3b2b59\nG21trQDILhXnrBT0gkTUdMfoZrzXZBzFbhzFbsJdAQaOdXLs2GH+8YlK7r/v3dx1132oqjg9CVcm\nPhmCIFzE5/Nx6NB+du/eSWXlEWzbRlIk9KIknCVu1CznmI4fU9McuNflEmwaYOCwh9/97n84cGAf\nH/nIX1NQUDhmxxGmDhG4BEFgYGCAw4cPsG/f2xw9eohwOLpUiZrmwFHiRi9MjF6vihFJknAUJKJl\nORk40kFd3Rm+8pXHeOCBB7n99rvEeDLhIiJwCcI0FQwGOXhwH3v27OboscNEBoOV4tZwFabhKEpC\nSRrW+sljRtYVkm7KRs9PpP+gh//+719x4MBeHnroo1dczFOYnkRWYYyJrML4N93q6/V6+N3v/shb\nb+0YSrJQknX0gsTodatkfYJLGGUFIvQf8hA824+iKNx5573cfff9I15Nebq9vzA16iyyCgVhmguF\nguzb9zbbtlVQXV0FgOxUcJan4ihOiptgdSHZoeBelUOwqZ/+wx288MLv2b59G/fc8y42bNgkBjFP\nYyJwCcIUZds29fW17Ny5nd27t9Pf3w+AluPCOSMZLTcBSY7/RSD1/ES0bBe+qh76TnXzm9/8gj8+\n/zvWrd3I2rUbyM8vEItZTjOiqzDGRFdh/JtK9bUsi9raGg4dOsC+/W/T0hyd9kl2KOglSThLk8f9\nutVYsgIR/NU9+M/0YQcjAGRn5zB//iJmzZpNaekMcnLyLkrmmErv73BNhTpfq6swZoHLMIxS4BnT\nNG8a4X61wALTNL0XPHYnMMM0zf87BuW6H3jZNM3gMLa9F3gv8HngK6ZpPjLS44nAFf8mc30ty+Ls\n2Uaqq01OnjzBiROVeL3RukiKhJaTgKM46YZaV5Y/jB2J3cdYUiRk58g6f+yIRbB5gGCjl1CbHzts\nDT2naRp5eQUUFBSSn1/IvHmzSU7OIj09Y9q0zCbzZ/qcSXONyzCMK+a8mqb58hge5tPAa8B1A9cF\nx28BRhy0BOFGRSIRBgb68Xr76Ovro7u7i44ODy0tzTQ1NdLQUE8weP6jLDsVHCVutFwXek4Ckjr6\nNPJwT5C+Pa1Y3tCI9tN1nczMTDwez0VluxY5ScO9Kgc1ZXjX2iRFxlGYhKMwCduyCXcHCHcGiHQH\nCPcEaThbR319LQDPPhvdx+l0UVBQQF5eAbm5eeTk5JGdnUNmZtaIEz6EiTWugcswjNeBT5qmecww\njE8CmcDPgF8Brf+/vTuPjuq6Ezz+fWtpB6EFhMRiBFywYwPGwWBsDDbCKzZ2xz12OnaSmWTGJ6c7\nc/qc7pkkHc9JZzKdiWeSOL1Mu3uSnmRmjqdnmk56PE5sjOONxRZmxyxXIJDEboldUu3vzR/vSRSY\nRUKqkkr6fc6pU4+31PtdFVW/uvfdd2+4DPANpdRCwAKeAFYBnwH+LaCB1cBi4ALwKFAM/Cx8PQv4\nA631TqXUM8DXw3U/BFxgIfC6Uup+4KvA04AJ/IPW+iWl1K3AfweOAMfDuKcS1h6VUuuAN4C7gYnA\no1rrw4P9txLDm+d5eJ5HKpUinU6RSvU8kiSTwSORSITLid51yWQyY78UyWSCeDxOLBalqWkfp0+f\nwvM8fN/H83x6B/S7GgOwDAzLADN4JNujJNujdO86fe1jr1fGaOq6p7+c67o8//zzNDQ0sHbtWl5+\n+eU+JS+vM8m5t49gFg7OV5IRscDzg4cPvucTi0dpbj5Ac/OBT+9vGJim2fuoqall3rz5FBQU4Dgu\ntm1jWRaGYWKaBoZh9C6bpoVt2ziOg207uK6L6zo4jtu7zrYtTNMKjzNGTc0vW4ZLjWsuMElrfVop\n9bEGraYAABh7SURBVOfALq31t5VSLwLPEiQotNZppdQ04BWt9TeUUo3ArcBKYI3W+mdKqVuAHyml\nfgf4d8A8oAD4hdb6caXUvwceAmqAJ4ElYQwblFL/CLwAvKC1fk0p9VcEyS5TGjivtX5IKfWD8DV+\nkqW/ixhEJ04c59vf/mM8z7v+zsOB0fMIvuSMnmUDCL88ydL3n+/7/U5aAJWVlTQ0NADQ0NDA6tWr\nOXbsWB9PGpx3sL7UjTCRQ8afKTxHb0LzffDCucnSadLp4LpZS8tBWloODkocg+Gee5by5S//y6EO\nY9gYLomrWWud+fPwnfD5I+BeYHPGtvNa653h8mFgLPBZoFYp9Wy4vgCYGb5uDIgBj192ztsBlXGu\nUmAqcDPQGK57D3j4CvGuyzh/RR/KJ4YB13WpqKikvf2ToQ6lTwzbxHBMDNfEdC2MiIVZYGEW2VjF\nDlapg1lkZ+3X+5k3D/e7mbCjo4O1a9f21rg6Ojquf1DILHEoXzGpv2H2me/7eNEU6fNJ0p3Bw+tK\n4nWn8Lqzex1voMrLxw11CMNKrhNX5v+MzHNf3pbQs5/Bp3/3pS77d8+n9l9rrTf0rFRK3U7QBHgt\nr2utv5q5QimVec6rHZ8Zg9T588S4cRX84AcvfWr9YF3I7vnVntk8mNlcmEqlwqbCZO9yInGxqTAa\njdLV1UV3dxddXZ10dYXP3V0kzkaveE7DMbHGujjjCrArC3AqCgZ0XStT6Z3j+32NK5FI8PLLL7N6\n9eobusY1GHzfx4+nSZ9PkjqfIH0uQfp8gvSF5CWdOHoUFxdTWVfLuHEVjB1bTlnZGEpKSigqKiYS\nieC6LpYVNBWapnlJc1/PuqA5MGgudBwH143IIMFZlOu/7Dku1lDmA81X2W8J8I/AAmBvH163kaBG\ntUEpdTPwAPBfgZlKqWKC5r3XgAbAAyLAFuBFpVQREAVeIug9qMPY1gDL+lk+MYoZhoFt29i2PegX\n+5PJBOfPn+/tnHHy5AmOHj1CW1sLJ04cJ9UeC/7nmgZORUHQOWNiMVbxjXd9t8e4lK+YdEO9CruB\nIsZT1Id9b6RXYSYvmiJ5KkbqVIxUmKT8xKUJyjRNJtZM7O1pGHTOmEBV1XiKivoSpRhOsp24VNgh\no8fbwEtKqc0EyeJKPw0t4Bal1NcIaj7fJbiOdC1/Afw87DhhE3TO6FRKvQD8NjzPT7TWfhjPO8B9\nwI8JmgN94J+01lGl1PeA/6aU+jpwEJDuRmLIOU7QzFlRUUl9/YxLtnV1ddLcvB+t97F79y7a2lp6\nO2dYYyNEJpcQmVSCGbmxQXIHklSyxYuliLd1Ej/SSfrsxVqdYRhUV4+ntnYSEycGXeJvvXUWrlsm\nNaARRG5AzjK5j2v4G2nlPXfuLDt2bGPz5kb27Pk46IxiGrgTiyi4qQy7cnCnJcml1PkE0aazJA53\ngg+WZaHUbG655Vbq62cwZcpUIpGCS44Zae9vX4yEMufNfVxCiIEbM2YsS5YsY8mSZZw7d47Gxg28\n//47HDtylMSRLqxSh8hNZUQml2R1qpLB5EVTdO85Tbw1GJdg4sQ6li1bzsKFd1FcXDLE0YlckxpX\nlkmNa/gbDeX1fZ/9+zXvvvsWH33USDqdDkbWqCkiMrkUp7pwWI5b6Ps+sebzRPecwU951NZN4skn\nfpc5c+b1eY6u0fD+Xm4klHlIhnwSAUlcw99oK6/jpHn11d+wbt27nDhxHADDNXFrgmlNhksSS19I\n0Lm5ndSZOEVFRXzuc8+wZMmyfk8qOdreXxgZZZamQiFEr7Fjx/LQQyt58MFHOXjwAI2NG9n00Yec\nbz1HvPUChmPi1hThTioJkliOr4f11rJ2n8ZP+9x5510888yzlJWNyWkcYviSxCXEKGUYBvX1M6iv\nn8HTTz9Lc/N+Pvqokc2bGznbdoZ4WydmgYU7uZSCKSVYpdmfsyvdlaRzazup9hglJSU899xXuOOO\nBVk/r8gvkriEEJimyYwZihkzFE8//QUOHGjiww830Ni4kWjTWWJNZ7ErCohMKSFSW4LhDM5Nzj18\nzyd28GIta+7c+Xzxi19hzBipZYlPk8QlhLiEaZrMnDmLmTNn8fTTz7J162bWrXuHvXt3kzoVo3vH\nKZzxRcH1sPGFA+qZ6Ps+iWNdRPecIX0hSVFxMb/3+S+ycOHivO2yL7JPEpcQ4qpc12XhwrtYuPAu\nOjra2bhxHR82buTEsWMkjnWBAXZ5BKeqELuiAHtc5LqJzPd9vM4k8aNdxFs78bqSGIbB0qX3s2rV\nU5SVleWodCJfSeISQvRJZWUVjz32JCtXPsHRo4fZtm0ru3Zt5+DBA0RPx3v3M4tsrDIXq9jGcC0M\ny8D3wvEDu1Kkz8Tx4sEo7LZtc/eSZTzwwCPU1EwcqqKJPCOJS4gBSqfTnDx5ghMnjtHR0cG5c2eJ\nxWL4vodtO5SWllJePo4JE2qorZ2U95MWGoZBXd1k6uoms3LlKqLRKAcONLF/v+bQoWZaW1voPHGB\nqw3NO3ZsOTNuU8yZM4+5c+fLWIGi3yRxCdFP3d1d7Nu3h6amfTQ376etrZVksm8jqBuGQW1tHbNm\n3cycObej1Oy8H0OvsLCQW2+dw623zuld19nZSUfHJ3R3d5NIxHEcl6KiYqqqqikpkZEuxMDk9ydG\niBzp6Ghny5ZNbN26mebm/b2TUZpAuWVR6UYotyzKTIti08QxDEwg5UPM97jgeZxJp2hPpzhx9AhH\njhzmrbfWUFpSyl2Ll7Bs2XKqqwdnWo/hoKSkRBKUyBpJXEJcRXd3N5s2fcAHH6xn/34NBJOvVVs2\nkwoKmGjbjLcd7H72fkv7PsdTSVqSCfZ3dbFmza95883fsGDBIlaufIKJE2uzUBohRg5JXEJk8DwP\nrfeyfv17bN7c2NsEWGs7THcj3OS4FPZzyKHLWYZBneNS57gsKvQ5mEywLdYdjGCx6QMWL76XVat+\nh3HjZHJtIa5EEpcQQHv7J2zcuI4NG96no6MdgDGmhSooQkUilJjZGUXdMgxmuBGmOy4tyQSNsW7W\nr3+Xxg83sLzhQR5+eKWMfi7EZSRxiVHrzJkzbN26iS1bGtm3bx8AtmGg3Aiz3AJqbDtnN8EahsFN\nboQpjktTIs6mWDevv/7/ePfdt3jwwZUsX76CwkLpfScESOISo4jv+xw/fowdO7aybdtmmpsP0DM7\nQq3tMNONMM11cY3BHc6oP0zDYFakgOluhI/jUbbFYvzqV/+HNW+8xvKGB7n//hWUlsoNumJ0k8Ql\nRrTTp0/R1LSPffv2sHv3Lk6d6gCCThYTbJt6J0hWxVlqCrxRtmEwt6CImyMF7IrF2BmL8eqrv+SN\nN17jnnuWsWLFQ1RVVQ91mEIMCUlcYsTo7LxAa2sLra2HaGk5yMHmA5w+c7p3e8QwqHdcJjsuUwah\nk0UuuIbJ/MIibisoZG88xo54lN/+dg1vv/0m8+cvYMWKh6ivnyHj+olRRRKXyEs9Saql5SAtLQdp\nbTlER1ib6lFomNzkuIy3bWpth0rLxszTL3jHMLitoJBbIgU0J+PsiEXZvDmYgmTq1GksXXo/CxYs\noqCgYKhDFSLrZAbkLJMZkAfG933Onj1Da2sLbW0ttLW10tp6qLfJr0ehYVJpWVTZNpWWTbVtU2KY\nN1QT6fY8Ujn6XNiGQdEN1Px83+dYKsnOeIzWZAIfcByH226bx7x585k9+zOUl5df8djh9P7mwmgr\nL4yMMssMyGLY832frq5OTpw4zvHjxzh69DCHD7dx+HAbnZ2XfgALDZNJtkOVbVNl2VQNIEllOpVO\nsabzAue8dL+PdV2XyspKOjo6SCQS/Tp2jGnxQEkpFVbfP46GYVDruNQ6Lp1emr3xOAcScbZs2cSW\nLZuAYFDcKVOmUls7iQkTJlJdXU1FRRUVFcX9ik+I4UZqXFmWbzUu3/epqCjm5MlzeF6adNq75Nnz\nPNLpNL7vkU4Hy+l0ilQq85EklUqTSqUytiVJJpMkEgl27NjG8eNH8Twf3/d6X/NKDMACTAwsI3g2\ngGy0+HV6HjfyZrmuy/PPP09DQwNr167l5Zdf7nfyMoHiAV5z833w8EkDKT94vur5TBPDMDFNI+M5\nWA6eDaZPn8m9996Hbds4joNl2dh2z8PK+LeDZVlYlhW+bnC87/u9vTZ937vk/ME5L+6bTSOh9tFf\nI6HMUuPKU6+88gveemvNUIeREyZBkjIJuoT3JKtcXZLyff+GkhZAZWUlDQ0NADQ0NLB69WqOHTvW\nr9fwwhgG8iVuGGAR/O1cw8D3wSdIZh7ghWX0AN/z8PC4yu8FALZv38L27VtuOJ6Bmj59Bt/85nek\n44n4FElcw1h5+bihDiFnTMOg1DAZY1mMNS3GWRYVlk25ZWHl6IvrlXNnbqiZsKOjg7Vr1/bWuDo6\nOq5/0GXGmhbPjLnyNakbFfc9OlIpzqTTnPXSnPc8Or00XZ5P7LIa0HBUVTVyBh0Wg0uaCrMs35oK\noW/NDJ53sYkvnU6HzYOXNxemwubCNMlkklQqSSKRJJGIE41209XVRWfnBc6ePcvp0x20t39CNBq9\n5Dw9o69XWEGniyrLpsK2iGThJuFT6RRvdl7gbI6vcY01LVb08xrXlaR8n8PJBIdTSY4mk1csRyQS\noaqqipKSMsrKxlBaWkpxcQnFxcUUFhZRWFhIQUEhkUgE13VxHAfHcbEsG8exsSyrt2nQzIPbCWBk\nNJv110goszQVikFnmsE1isGcS8r3fS5cuMDx40c5evQIR460cfhwK4cPt3EqEaeJi7PsjjEtqsJe\nhFWWTaVtDziZVVg2z4wpv/FehZ1RKCgOHn10o70Ke/i+z/FUir2JGIeSCZJh3JFIhNnTZjFlyk1M\nmjSZCRNqqKoaT3FxMdXVZXn/pSZGN0lcYtgwDIOysjLKyspQanbves/zOHnyOK2trbS1BTcYt7a2\ncKC7iwPJi7WbnmRWGSazatu+oeGbBpJIciXl+zQl4uyMRzkTXqiqqqrmjjvuZN68+UydOi3vJ6gU\n4mrkf7YY9kzTpKamlpqaWhYuvAsIahrt7Z+Eo2Qc6r0J+UC0+5JkNs60mGA7THQcam0nL5LStUQ9\nj93xGB/HY0R9D9M0WbBgIUuXLkep2dKRQYwKkrhEXjIMg+rq8VRXj+ezn10IBMmso6M9HE3jEAcP\nHuDQoWb2JGLsScQAqLQspjguUx2XKit3o78P1IV0mu3xKPsScVK+T1FhEY/ct5z77lsxqjrxCAGS\nuMQIYhgGVVXVVFVV9yazVCpFa2sL+/btYc+eXTQ17aMjFmVLLEqxaTLNcZnuRhg/TJPY+XSaLbFu\nmhJxPGDcuAoeeOBh7rlnmQzvJEYtSVxiRLNtm/r66dTXT+eRRx4jFouxe/dOtm3bwvZtW9gV7WZX\nPEapaTLDjaDcAsZaQz9SfJeXZnM0yr5EDA+omTCRRx59nAULFsm1KzHqySdAjCoFBQXMn7+A+fMX\nkEql2LPnY3bu3MyGDRvYGouyNRZlgm0z2y2g3o3g5LgWFvc9dsSi7IjHSPk+48dP4IknnuKOO+7M\nm+7nQmSb3MeVZSP1Pq6RpKqqlCNHOti69SPWr3+PvXt3A8GI7PWOi8rBbMhJ32dPPMbWWJSY7zF2\nzFhWPfEUixcvwRrkGuBofH9HU3lhZJRZ7uMS4joikQiLFt3NokV309HRzvr177Fhw/vsO9XBvkSc\nUtPsnXSyehCvh3V5HnvjMXbFY8R8j8LCQp58aCUNDQ8Sicg1LCGuRBKXEJeprKxi1arP8dhjT6L1\nXjZuXMfmzY1sj0fZHo8Go9M7DjW2Q41tM9a0+pzIfN+n0/NoSyVoSQSjXPhAUWERj96/ghUrHqak\npCS7BRQiz0niEuIqTNNk9uxbmD37Fp577p/z8cc72bp1Mx/v2kHT+XM0JYKRPFzDoCIcY3GMZVFk\nmLhGMIp9Coj5HhfSHme9NO3pFF3exXECp06dxj33LGXhwsUUFhYOTUGFyDOSuIToA8dxmTfvDubN\nuwPP8zh27AhNTZoDB5pobTnEiZPHOZ5KXfd1xpSN4fbpM5k162Zuu20u1dUykKwQ/SWJS4h+Mk2T\nurrJ1NVN5r77gulMkskEJ0+epKPjE86fP0802o3vg+PYlJSUUl4+jgkTJlJaWjos7xcTIp9I4hJi\nEDiOS13dJOrqJg11KEKMeHJjiBBCiLwiiUsIIURekcQlhBAir0jiEkIIkVckcQkhhMgrkriEEELk\nFUlcQggh8ookLiGEEHlFEpcQQoi8IvNxCSGEyCtS4xJCCJFXJHEJIYTIK5K4hBBC5BVJXEIIIfKK\nJC4hhBB5RRKXEEKIvCKJSwghRF6RGZBHOaWUBfwX4DOAAfye1vrQVfb9X0Bca/2l3EU4+PpSZqXU\nU8Afhf98R2v9jdxGOTiUUt8F7gcKgH+ltd6csW0R8MNw2y+11t8bmigHz3XKey/wfcAHDgBf1lp7\nQxLoILlWeTP2+T6wSGu9NMfhZY3UuMRzgKe1Xgz8GfCnV9pJKdUA1OcysCy6ZpmVUgXAiwRfCAuB\npUqpz+Q8ygFSSi0DPhuW84vAjy7b5RfAPwPuAFYqpfL6/e1Def8WeCrcXgg8nOMQB1UfyotS6mZg\nSa5jyzZJXGIZ8H/D5TeApZfvoJSKAH8C5P0v8tA1y6y1jgFztdadWmsfOA2U5TTCwdFbTq31x8BE\npVQRgFJqGnBaa304rHW8BqwYskgHx1XLG7pTa300XO4gP9/TTNcrL8B/Br6V68CyTRKXqAHaAbTW\nKcAKm9IyfRP4K+B8jmPLluuWWWt9DiCsaU0CPtUEkwd6yxlqB8ZfZdsnwIQcxZUt1yovWuuzAEqp\nGmA5sCan0Q2+a5ZXKfUl4B2gNbdhZZ9c4xpFlFJfAb5y2eo5V9i1dwBLpdQM4Dat9XeUUkuzGF5W\n3EiZM46dAfw98KzWOpGF8LLt8pgNLpbzWtvy1XXLpJSqJqhdfl1rfSpXgWXJVcurlBoHfAF4EKjL\ncVxZJ4lrFNFa/xT4aeY6pdRPgepw2QWSl12wfgSoV0p9SNC0UqWU+jda6xdzFPaA3GCZUUrVAa8C\nz2mtt+Uo3MF2nLCcoSrg5FW2TQCO5SiubLlWeVFKlRE0Db+gtX4jx7Flw7XKex9BjWw9ECH4DP9Y\na/2HuQ0xO6SpULwOrAqXHwXWZm7UWr+ktZ6jtV4IfA34db4krWu4ZplDfwd8TWv9Uc6iGnyvA48D\nKKVuBw5qraMAWusjgKOUmhw2kz4a7p/Prlre0A+BP9da/3oogsuCa72/q7XWt4Sf2yeArSMlaYFM\nazLqhV9afwfcAnQDn9daH1FKfQN4T2v9Qca+S4EvjZDu8FctM3AK2A5syjjsR1rrV3Me7AAppX4A\nNAAp4F8A84FzWutfKaWWAD8haF76n1rrT/VKyzdXKy/B9awzwAcZu7+itf7bnAc5iK71/mbsMxX4\n+UjqDi+JSwghRF6RpkIhhBB5RRKXEEKIvCKJSwghRF6RxCWEECKvSOISQgiRVyRxCTFMKaXmKqX+\n4hrbJyql7styDA+HozCglPp7pVRtNs8nRF9I4hJimNJab9da/8E1dllGMEJCnyilbuTz/ofAuDCe\npzMGqRViyMh9XEIMU+EN398juEH4deBuQAHfIRjK5x2C8el+Avw18JfANIK5mV7VWn8/HGj1YaAY\n+BtgD8HN12mgFPgTrfUapVQxwbQftQRTfnwLmAn8GNgBfBn4DcHgtIeAlwimQ4FgvrJvKaXuB/4Y\nOAzcBiSBB7TWXYP+xxGjmtS4hBj+0sBYrfXDBAnkj8KJL38O/I9wxIvfB1q11suAxcDjSqmexDIf\neDIc+aMW+LNwv68D/yHc5/eB4+HoCl8lGCHlr4ETBBNt7smI53cJ5ma7C7gHWB7ODZUO172gtb6T\nYBDYfJ8qRQxDMsiuEPnhnfC5jbDp7jKLgWkZ17yKuDjx51atdTxcPgX8R6XUtwgGX60M1y8Cfgag\ntd4JPHuNWO4E1oRzlaWUUu8R1L4+AvZqrU9cJ1YhBkQSlxD5IZmxbFxhuw98V2u9OnNl2FQYz1j1\nl4Rj9Cml5gL/lPGafW2Bufz8BtAzun7yOvsKMWDSVChE/vIIrkdBcM3rcxB0wlBK/TCce+py4wAd\nLn+eoNYFsBF4IDx+qlLq7Sucg4x9VyilDKWUQ9BB5MNBKI8QfSKJS4j8tQ74glLqTwlmqO5SSn0A\nNAJRrfUnVzjmPwF/o5R6B3gbOK2UepGgJjZWKfU+8L+5eO1rDbBaKXVXxmv8A9AMbCBImL/UWm8Y\n/OIJcWXSq1AIIURekRqXEEKIvCKJSwghRF6RxCWEECKvSOISQgiRVyRxCSGEyCuSuIQQQuQVSVxC\nCCHyyv8HZBmdnzOoLLAAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa667b59b00>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"interaction = trace.interaction_sd * trace.interaction\n", | |
"sb.violinplot(x='interaction', y='treatment', hue='oncogene',\n", | |
" data=interaction.to_dataframe('interaction').reset_index())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
"<script src=\"https://code.jquery.com/ui/1.10.4/jquery-ui.min.js\" type=\"text/javascript\"></script>\n", | |
"<script type=\"text/javascript\">function HoloViewsWidget(){\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.comms = {};\n", | |
"HoloViewsWidget.comm_state = {};\n", | |
"\n", | |
"HoloViewsWidget.prototype.init_slider = function(init_val){\n", | |
"\tif(this.load_json) {\n", | |
"\t\tthis.from_json()\n", | |
"\t} else {\n", | |
"\t\tthis.update_cache();\n", | |
"\t}\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.populate_cache = function(idx){\n", | |
" this.cache[idx].html(this.frames[idx]);\n", | |
" if (this.embed) {\n", | |
" delete this.frames[idx];\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.process_error = function(msg){\n", | |
"\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.from_json = function() {\n", | |
"\tvar data_url = this.json_path + this.id + '.json';\n", | |
"\t$.getJSON(data_url, $.proxy(function(json_data) {\n", | |
"\t\tthis.frames = json_data;\n", | |
"\t\tthis.update_cache();\n", | |
"\t\tthis.update(0);\n", | |
"\t}, this));\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.dynamic_update = function(current){\n", | |
"\tif (current === undefined) {\n", | |
"\t\treturn\n", | |
"\t}\n", | |
"\tif(this.dynamic) {\n", | |
"\t\tcurrent = JSON.stringify(current);\n", | |
"\t}\n", | |
"\tfunction callback(initialized, msg){\n", | |
"\t\t/* This callback receives data from Python as a string\n", | |
"\t\t in order to parse it correctly quotes are sliced off*/\n", | |
"\t\tif (msg.content.ename != undefined) {\n", | |
"\t\t\tthis.process_error(msg);\n", | |
"\t\t}\n", | |
"\t\tif (msg.msg_type != \"execute_result\") {\n", | |
"\t\t\tconsole.log(\"Warning: HoloViews callback returned unexpected data for key: (\", current, \") with the following content:\", msg.content)\n", | |
"\t\t\tthis.time = undefined;\n", | |
"\t\t\tthis.wait = false;\n", | |
"\t\t\treturn\n", | |
"\t\t}\n", | |
"\t\tthis.timed = (Date.now() - this.time) * 1.1;\n", | |
"\t\tif (msg.msg_type == \"execute_result\") {\n", | |
"\t\t\tif (msg.content.data['text/plain'].includes('Complete')) {\n", | |
"\t\t\t\tthis.wait = false;\n", | |
"\t\t\t\tif (this.queue.length > 0) {\n", | |
"\t\t\t\t\tthis.time = Date.now();\n", | |
"\t\t\t\t\tthis.dynamic_update(this.queue[this.queue.length-1]);\n", | |
"\t\t\t\t\tthis.queue = [];\n", | |
"\t\t\t\t}\n", | |
"\t\t\t\treturn\n", | |
"\t\t\t}\n", | |
"\t\t}\n", | |
"\t}\n", | |
"\tthis.current = current;\n", | |
"\tvar kernel = IPython.notebook.kernel;\n", | |
"\tcallbacks = {iopub: {output: $.proxy(callback, this, this.initialized)}};\n", | |
"\tvar cmd = \"holoviews.plotting.widgets.NdWidget.widgets['\" + this.id + \"'].update(\" + current + \")\";\n", | |
"\tkernel.execute(\"import holoviews;\" + cmd, callbacks, {silent : false});\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.update_cache = function(force){\n", | |
" var frame_len = Object.keys(this.frames).length;\n", | |
" for (var i=0; i<frame_len; i++) {\n", | |
" if(!this.load_json || this.dynamic) {\n", | |
" frame = Object.keys(this.frames)[i];\n", | |
" } else {\n", | |
" frame = i;\n", | |
" }\n", | |
" if(!(frame in this.cache) || force) {\n", | |
"\t\t\tif ((frame in this.cache) && force) { this.cache[frame].remove() }\n", | |
"\t\t\tthis.cache[frame] = $('<div />').appendTo(\"#\"+\"_anim_img\"+this.id).hide();\n", | |
"\t\t\tvar cache_id = \"_anim_img\"+this.id+\"_\"+frame;\n", | |
"\t\t\tthis.cache[frame].attr(\"id\", cache_id);\n", | |
"\t\t\tthis.populate_cache(frame);\n", | |
" }\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.update = function(current){\n", | |
" if(current in this.cache) {\n", | |
" $.each(this.cache, function(index, value) {\n", | |
" value.hide();\n", | |
" });\n", | |
" this.cache[current].show();\n", | |
"\t\tthis.wait = false;\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.init_comms = function() {\n", | |
"\tif ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel !== undefined)) {\n", | |
"\t\tvar widget = this;\n", | |
"\t\tcomm_manager = Jupyter.notebook.kernel.comm_manager;\n", | |
" comm_manager.register_target(this.id, function (comm) {\n", | |
"\t\t\tcomm.on_msg(function (msg) { widget.process_msg(msg) });\n", | |
"\t\t});\n", | |
"\t}\n", | |
"}\n", | |
"\n", | |
"HoloViewsWidget.prototype.process_msg = function(msg) {\n", | |
"}\n", | |
"\n", | |
"function SelectionWidget(frames, id, slider_ids, keyMap, dim_vals, notFound, load_json, mode, cached, json_path, dynamic){\n", | |
" this.frames = frames;\n", | |
" this.id = id;\n", | |
" this.slider_ids = slider_ids;\n", | |
" this.keyMap = keyMap\n", | |
" this.current_frame = 0;\n", | |
" this.current_vals = dim_vals;\n", | |
" this.load_json = load_json;\n", | |
" this.mode = mode;\n", | |
" this.notFound = notFound;\n", | |
" this.cached = cached;\n", | |
" this.dynamic = dynamic;\n", | |
" this.cache = {};\n", | |
"\tthis.json_path = json_path;\n", | |
" this.init_slider(this.current_vals[0]);\n", | |
"\tthis.queue = [];\n", | |
"\tthis.wait = false;\n", | |
"\tif (!this.cached || this.dynamic) {\n", | |
"\t\tthis.init_comms()\n", | |
"\t}\n", | |
"}\n", | |
"\n", | |
"SelectionWidget.prototype = new HoloViewsWidget;\n", | |
"\n", | |
"\n", | |
"SelectionWidget.prototype.get_key = function(current_vals) {\n", | |
"\tvar key = \"(\";\n", | |
" for (var i=0; i<this.slider_ids.length; i++)\n", | |
" {\n", | |
" val = this.current_vals[i];\n", | |
" if (!(typeof val === 'string')) {\n", | |
" if (val % 1 === 0) { val = val.toFixed(1); }\n", | |
" else { val = val.toFixed(10); val = val.slice(0, val.length-1);}\n", | |
" }\n", | |
" key += \"'\" + val + \"'\";\n", | |
" if(i != this.slider_ids.length-1) { key += ', ';}\n", | |
" else if(this.slider_ids.length == 1) { key += ',';}\n", | |
" }\n", | |
" key += \")\";\n", | |
"\treturn this.keyMap[key];\n", | |
"}\n", | |
"\n", | |
"SelectionWidget.prototype.set_frame = function(dim_val, dim_idx){\n", | |
"\tthis.current_vals[dim_idx] = dim_val;\n", | |
" var current = this.get_key(this.current_vals);\n", | |
" if(current === undefined && !this.dynamic) {\n", | |
" return\n", | |
" }\n", | |
"\tif (this.dynamic || !this.cached) {\n", | |
"\t\tif (this.time === undefined) {\n", | |
"\t\t\t// Do nothing the first time\n", | |
"\t\t} else if ((this.timed === undefined) || ((this.time + this.timed) > Date.now())) {\n", | |
"\t\t\tvar key = this.current_vals;\n", | |
"\t\t\tif (!this.dynamic) {\n", | |
"\t\t\t\tkey = this.get_key(key);\n", | |
"\t\t\t}\n", | |
"\t\t\tthis.queue.push(key);\n", | |
"\t\t\treturn\n", | |
"\t\t}\n", | |
"\t}\n", | |
"\tthis.queue = [];\n", | |
"\tthis.time = Date.now();\n", | |
"\tthis.current_frame = current;\n", | |
" if(this.dynamic) {\n", | |
" this.dynamic_update(this.current_vals)\n", | |
" } else if(this.cached) {\n", | |
" this.update(current)\n", | |
" } else {\n", | |
" this.dynamic_update(current)\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"\n", | |
"/* Define the ScrubberWidget class */\n", | |
"function ScrubberWidget(frames, num_frames, id, interval, load_json, mode, cached, json_path, dynamic){\n", | |
" this.slider_id = \"_anim_slider\" + id;\n", | |
" this.loop_select_id = \"_anim_loop_select\" + id;\n", | |
" this.id = id;\n", | |
" this.interval = interval;\n", | |
" this.current_frame = 0;\n", | |
" this.direction = 0;\n", | |
" this.dynamic = dynamic;\n", | |
" this.timer = null;\n", | |
" this.load_json = load_json;\n", | |
" this.mode = mode;\n", | |
" this.cached = cached;\n", | |
" this.frames = frames;\n", | |
" this.cache = {};\n", | |
" this.length = num_frames;\n", | |
"\tthis.json_path = json_path;\n", | |
" document.getElementById(this.slider_id).max = this.length - 1;\n", | |
" this.init_slider(0);\n", | |
"\tthis.wait = false;\n", | |
"\tthis.queue = [];\n", | |
"\tif (!this.cached || this.dynamic) {\n", | |
"\t\tthis.init_comms()\n", | |
"\t}\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype = new HoloViewsWidget;\n", | |
"\n", | |
"ScrubberWidget.prototype.set_frame = function(frame){\n", | |
"\tthis.current_frame = frame;\n", | |
"\twidget = document.getElementById(this.slider_id);\n", | |
" if (widget === null) {\n", | |
" this.pause_animation();\n", | |
" return\n", | |
" }\n", | |
" widget.value = this.current_frame;\n", | |
" if(this.cached) {\n", | |
" this.update(frame)\n", | |
" } else {\n", | |
" this.dynamic_update(frame)\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"\n", | |
"ScrubberWidget.prototype.process_error = function(msg){\n", | |
"\tif (msg.content.ename === 'StopIteration') {\n", | |
"\t\tthis.pause_animation();\n", | |
"\t\tthis.stopped = true;\n", | |
"\t\tvar keys = Object.keys(this.frames)\n", | |
"\t\tthis.length = keys.length;\n", | |
"\t\tdocument.getElementById(this.slider_id).max = this.length-1;\n", | |
"\t\tdocument.getElementById(this.slider_id).value = this.length-1;\n", | |
"\t\tthis.current_frame = this.length-1;\n", | |
"\t}\n", | |
"}\n", | |
"\n", | |
"\n", | |
"ScrubberWidget.prototype.get_loop_state = function(){\n", | |
" var button_group = document[this.loop_select_id].state;\n", | |
" for (var i = 0; i < button_group.length; i++) {\n", | |
" var button = button_group[i];\n", | |
" if (button.checked) {\n", | |
" return button.value;\n", | |
" }\n", | |
" }\n", | |
" return undefined;\n", | |
"}\n", | |
"\n", | |
"\n", | |
"ScrubberWidget.prototype.next_frame = function() {\n", | |
"\tif (this.dynamic || !this.cached) {\n", | |
"\t\tif (this.wait) {\n", | |
"\t\t\treturn\n", | |
"\t\t}\n", | |
"\t\tthis.wait = true;\n", | |
"\t}\n", | |
"\tif (this.dynamic && this.current_frame + 1 >= this.length) {\n", | |
"\t\tthis.length += 1;\n", | |
" document.getElementById(this.slider_id).max = this.length-1;\n", | |
"\t}\n", | |
" this.set_frame(Math.min(this.length - 1, this.current_frame + 1));\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.previous_frame = function() {\n", | |
" this.set_frame(Math.max(0, this.current_frame - 1));\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.first_frame = function() {\n", | |
" this.set_frame(0);\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.last_frame = function() {\n", | |
" this.set_frame(this.length - 1);\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.slower = function() {\n", | |
" this.interval /= 0.7;\n", | |
" if(this.direction > 0){this.play_animation();}\n", | |
" else if(this.direction < 0){this.reverse_animation();}\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.faster = function() {\n", | |
" this.interval *= 0.7;\n", | |
" if(this.direction > 0){this.play_animation();}\n", | |
" else if(this.direction < 0){this.reverse_animation();}\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.anim_step_forward = function() {\n", | |
" if(this.current_frame < this.length || (this.dynamic && !this.stopped)){\n", | |
" this.next_frame();\n", | |
" }else{\n", | |
" var loop_state = this.get_loop_state();\n", | |
" if(loop_state == \"loop\"){\n", | |
" this.first_frame();\n", | |
" }else if(loop_state == \"reflect\"){\n", | |
" this.last_frame();\n", | |
" this.reverse_animation();\n", | |
" }else{\n", | |
" this.pause_animation();\n", | |
" this.last_frame();\n", | |
" }\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.anim_step_reverse = function() {\n", | |
" this.current_frame -= 1;\n", | |
" if(this.current_frame >= 0){\n", | |
" this.set_frame(this.current_frame);\n", | |
" } else {\n", | |
" var loop_state = this.get_loop_state();\n", | |
" if(loop_state == \"loop\"){\n", | |
" this.last_frame();\n", | |
" }else if(loop_state == \"reflect\"){\n", | |
" this.first_frame();\n", | |
" this.play_animation();\n", | |
" }else{\n", | |
" this.pause_animation();\n", | |
" this.first_frame();\n", | |
" }\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.pause_animation = function() {\n", | |
" this.direction = 0;\n", | |
" if (this.timer){\n", | |
" clearInterval(this.timer);\n", | |
" this.timer = null;\n", | |
" }\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.play_animation = function() {\n", | |
" this.pause_animation();\n", | |
" this.direction = 1;\n", | |
" var t = this;\n", | |
" if (!this.timer) this.timer = setInterval(function(){t.anim_step_forward();}, this.interval);\n", | |
"}\n", | |
"\n", | |
"ScrubberWidget.prototype.reverse_animation = function() {\n", | |
" this.pause_animation();\n", | |
" this.direction = -1;\n", | |
" var t = this;\n", | |
" if (!this.timer) this.timer = setInterval(function(){t.anim_step_reverse();}, this.interval);\n", | |
"}\n", | |
"\n", | |
"function extend(destination, source) {\n", | |
" for (var k in source) {\n", | |
" if (source.hasOwnProperty(k)) {\n", | |
" destination[k] = source[k];\n", | |
" }\n", | |
" }\n", | |
" return destination;\n", | |
"}\n", | |
"\n", | |
"function update_widget(widget, values) {\n", | |
"\tif (widget.hasClass(\"ui-slider\")) {\n", | |
"\t\twidget.slider('option',\n", | |
"\t\t\t\t\t {'min': 0, 'max': values.length-1,\n", | |
"\t\t\t\t\t 'dim_vals': values, 'value': 0,\n", | |
"\t\t\t\t\t 'dim_labels': values})\n", | |
"\t\twidget.slider('option', 'slide').call(widget, event, {'value': 0})\n", | |
"\t} else {\n", | |
"\t\twidget.empty();\n", | |
"\t\tfor (var i=0; i<values.length; i++){\n", | |
"\t\t\twidget.append($(\"<option>\", {\n", | |
"\t\t\t\tvalue: i,\n", | |
"\t\t\t\ttext: values[i]\n", | |
"\t\t\t}))};\n", | |
"\t\twidget.data('values', values);\n", | |
"\t\twidget.data('value', 0);\n", | |
"\t\twidget.trigger(\"change\");\n", | |
"\t};\n", | |
"}\n", | |
"\n", | |
"// Define MPL specific subclasses\n", | |
"function MPLSelectionWidget() {\n", | |
"\tSelectionWidget.apply(this, arguments);\n", | |
"}\n", | |
"\n", | |
"function MPLScrubberWidget() {\n", | |
"\tScrubberWidget.apply(this, arguments);\n", | |
"}\n", | |
"\n", | |
"// Let them inherit from the baseclasses\n", | |
"MPLSelectionWidget.prototype = Object.create(SelectionWidget.prototype);\n", | |
"MPLScrubberWidget.prototype = Object.create(ScrubberWidget.prototype);\n", | |
"\n", | |
"// Define methods to override on widgets\n", | |
"var MPLMethods = {\n", | |
"\tinit_slider : function(init_val){\n", | |
"\t\tif(this.load_json) {\n", | |
"\t\t\tthis.from_json()\n", | |
"\t\t} else {\n", | |
"\t\t\tthis.update_cache();\n", | |
"\t\t}\n", | |
"\t\tthis.update(0);\n", | |
"\t\tif(this.mode == 'nbagg') {\n", | |
"\t\t\tthis.set_frame(init_val, 0);\n", | |
"\t\t}\n", | |
"\t},\n", | |
"\tpopulate_cache : function(idx){\n", | |
"\t\tvar cache_id = \"_anim_img\"+this.id+\"_\"+idx;\n", | |
"\t\tif(this.mode == 'mpld3') {\n", | |
"\t\t\tmpld3.draw_figure(cache_id, this.frames[idx]);\n", | |
"\t\t} else {\n", | |
"\t\t\tthis.cache[idx].html(this.frames[idx]);\n", | |
"\t\t}\n", | |
"\t\tif (this.embed) {\n", | |
"\t\t\tdelete this.frames[idx];\n", | |
"\t\t}\n", | |
"\t},\n", | |
"\tprocess_msg : function(msg) {\n", | |
"\t\tif (!(this.mode == 'nbagg')) {\n", | |
"\t\t\tvar data = msg.content.data;\n", | |
"\t\t\tthis.frames[this.current] = data;\n", | |
"\t\t\tthis.update_cache(true);\n", | |
"\t\t\tthis.update(this.current);\n", | |
"\t\t}\n", | |
"\t}\n", | |
"}\n", | |
"// Extend MPL widgets with backend specific methods\n", | |
"extend(MPLSelectionWidget.prototype, MPLMethods);\n", | |
"extend(MPLScrubberWidget.prototype, MPLMethods);\n", | |
"</script>\n", | |
"\n", | |
"\n", | |
"<link rel=\"stylesheet\" href=\"https://code.jquery.com/ui/1.10.4/themes/smoothness/jquery-ui.css\">\n", | |
"<style>div.hololayout {\n", | |
" display: flex;\n", | |
" align-items: center;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
"div.holoframe {\n", | |
"\twidth: 75%;\n", | |
"}\n", | |
"\n", | |
"div.holowell {\n", | |
" display: flex;\n", | |
" align-items: center;\n", | |
" margin: 0;\n", | |
"}\n", | |
"\n", | |
"form.holoform {\n", | |
" background-color: #fafafa;\n", | |
" border-radius: 5px;\n", | |
" overflow: hidden;\n", | |
"\tpadding-left: 0.8em;\n", | |
" padding-right: 0.8em;\n", | |
" padding-top: 0.4em;\n", | |
" padding-bottom: 0.4em;\n", | |
"}\n", | |
"\n", | |
"div.holowidgets {\n", | |
" padding-right: 0;\n", | |
"\twidth: 25%;\n", | |
"}\n", | |
"\n", | |
"div.holoslider {\n", | |
" min-height: 0 !important;\n", | |
" height: 0.8em;\n", | |
" width: 60%;\n", | |
"}\n", | |
"\n", | |
"div.holoformgroup {\n", | |
" padding-top: 0.5em;\n", | |
" margin-bottom: 0.5em;\n", | |
"}\n", | |
"\n", | |
"div.hologroup {\n", | |
" padding-left: 0;\n", | |
" padding-right: 0.8em;\n", | |
" width: 50%;\n", | |
"}\n", | |
"\n", | |
".holoselect {\n", | |
" width: 92%;\n", | |
" margin-left: 0;\n", | |
" margin-right: 0;\n", | |
"}\n", | |
"\n", | |
".holotext {\n", | |
" width: 100%;\n", | |
" padding-left: 0.5em;\n", | |
" padding-right: 0;\n", | |
"}\n", | |
"\n", | |
".holowidgets .ui-resizable-se {\n", | |
"\tvisibility: hidden\n", | |
"}\n", | |
"\n", | |
".holoframe > .ui-resizable-se {\n", | |
"\tvisibility: hidden\n", | |
"}\n", | |
"\n", | |
".holowidgets .ui-resizable-s {\n", | |
"\tvisibility: hidden\n", | |
"}\n", | |
"</style>\n", | |
"\n", | |
"\n", | |
"\n", | |
"</div>\n" | |
], | |
"text/plain": [ | |
"<IPython.core.display.HTML object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import holoviews as hv\n", | |
"hv.notebook_extension(logo=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"interaction = hv.Dataset(trace.interaction)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div class=\"hololayout row row-fluid\">\n", | |
" <div class=\"holoframe\" id=\"display_area4f87c68e52a84076a7560314ea60d29b\">\n", | |
" <div id=\"_anim_img4f87c68e52a84076a7560314ea60d29b\">\n", | |
" \n", | |
" \n", | |
" \n", | |
" </div>\n", | |
" </div>\n", | |
" <div class=\"holowidgets\" id=\"widget_area4f87c68e52a84076a7560314ea60d29b\">\n", | |
" <form class=\"holoform well\" id=\"form4f87c68e52a84076a7560314ea60d29b\">\n", | |
" \n", | |
" \n", | |
" <div class=\"form-group control-group holoformgroup\" style=''>\n", | |
" <label for=\"textInput4f87c68e52a84076a7560314ea60d29b_treatment\"><strong>treatment:</strong></label>\n", | |
" <select class=\"holoselect form-control\" id=\"_anim_widget4f87c68e52a84076a7560314ea60d29b_treatment\" >\n", | |
" </select>\n", | |
" </div>\n", | |
" <script>\n", | |
" var vals = ['Lurbinectedin', 'Sorafenib'];\n", | |
" var labels = ['Lurbinectedin', 'Sorafenib'];\n", | |
" function init_dropdown() {\n", | |
" var widget = $(\"#_anim_widget4f87c68e52a84076a7560314ea60d29b_treatment\");\n", | |
" widget.data('values', vals)\n", | |
" for (var i=0; i<vals.length; i++){\n", | |
"\t\t\tif (false) {\n", | |
"\t\t var val = vals[i];\n", | |
"\t\t\t} else {\n", | |
"\t\t\t var val = i;\n", | |
"\t\t\t}\n", | |
" widget.append($(\"<option>\", {\n", | |
" value: val,\n", | |
" text: labels[i]\n", | |
" }));\n", | |
" };\n", | |
" widget.data(\"next_vals\", {});\n", | |
" widget.on('change', function(event, ui) {\n", | |
"\t\t if (false) {\n", | |
" var dim_val = parseInt(this.value);\n", | |
"\t\t\t} else {\n", | |
"\t\t\t var dim_val = $.data(this, 'values')[this.value];\n", | |
"\t\t\t}\n", | |
" var next_vals = $.data(this, \"next_vals\");\n", | |
" if (Object.keys(next_vals).length > 0) {\n", | |
" var new_vals = next_vals[dim_val];\n", | |
" var next_widget = $('#_anim_widget4f87c68e52a84076a7560314ea60d29b_oncogene');\n", | |
" update_widget(next_widget, new_vals);\n", | |
" }\n", | |
"\t\t\tif (anim4f87c68e52a84076a7560314ea60d29b) {\n", | |
" anim4f87c68e52a84076a7560314ea60d29b.set_frame(dim_val, 0);\n", | |
" }\n", | |
"\n", | |
" });\n", | |
" }\n", | |
" $(document).ready(init_dropdown)\n", | |
" </script>\n", | |
" \n", | |
" \n", | |
" \n", | |
" <div class=\"form-group control-group holoformgroup\" style=''>\n", | |
" <label for=\"textInput4f87c68e52a84076a7560314ea60d29b_oncogene\"><strong>oncogene:</strong></label>\n", | |
" <select class=\"holoselect form-control\" id=\"_anim_widget4f87c68e52a84076a7560314ea60d29b_oncogene\" >\n", | |
" </select>\n", | |
" </div>\n", | |
" <script>\n", | |
" var vals = ['AKT', 'MYC', 'P19'];\n", | |
" var labels = ['AKT', 'MYC', 'P19'];\n", | |
" function init_dropdown() {\n", | |
" var widget = $(\"#_anim_widget4f87c68e52a84076a7560314ea60d29b_oncogene\");\n", | |
" widget.data('values', vals)\n", | |
" for (var i=0; i<vals.length; i++){\n", | |
"\t\t\tif (false) {\n", | |
"\t\t var val = vals[i];\n", | |
"\t\t\t} else {\n", | |
"\t\t\t var val = i;\n", | |
"\t\t\t}\n", | |
" widget.append($(\"<option>\", {\n", | |
" value: val,\n", | |
" text: labels[i]\n", | |
" }));\n", | |
" };\n", | |
" widget.data(\"next_vals\", {});\n", | |
" widget.on('change', function(event, ui) {\n", | |
"\t\t if (false) {\n", | |
" var dim_val = parseInt(this.value);\n", | |
"\t\t\t} else {\n", | |
"\t\t\t var dim_val = $.data(this, 'values')[this.value];\n", | |
"\t\t\t}\n", | |
" var next_vals = $.data(this, \"next_vals\");\n", | |
" if (Object.keys(next_vals).length > 0) {\n", | |
" var new_vals = next_vals[dim_val];\n", | |
" var next_widget = $('#_anim_widget4f87c68e52a84076a7560314ea60d29b_');\n", | |
" update_widget(next_widget, new_vals);\n", | |
" }\n", | |
"\t\t\tif (anim4f87c68e52a84076a7560314ea60d29b) {\n", | |
" anim4f87c68e52a84076a7560314ea60d29b.set_frame(dim_val, 1);\n", | |
" }\n", | |
"\n", | |
" });\n", | |
" }\n", | |
" $(document).ready(init_dropdown)\n", | |
" </script>\n", | |
" \n", | |
" \n", | |
" </form>\n", | |
" </div>\n", | |
"</div>\n", | |
"\n", | |
"\n", | |
"<script language=\"javascript\">\n", | |
"/* Instantiate the MPLSelectionWidget class. */\n", | |
"/* The IDs given should match those used in the template above. */\n", | |
"(function() {\n", | |
"\tif (jQuery.ui !== undefined) {\n", | |
"\t\t$(\"#display_area4f87c68e52a84076a7560314ea60d29b\").resizable({\n", | |
"\t\t\tresize: function(event, ui) {\n", | |
"\t\t\t\t$(\"#widget_area4f87c68e52a84076a7560314ea60d29b\").width($(this).parent().width()-ui.size.width);\n", | |
"\t\t\t}\n", | |
"\t\t});\n", | |
"\t\t$(\"#widget_area4f87c68e52a84076a7560314ea60d29b\").resizable();\n", | |
"\t}\n", | |
" var widget_ids = new Array(2);\n", | |
" \n", | |
" widget_ids[0] = \"_anim_widget4f87c68e52a84076a7560314ea60d29b_treatment\";\n", | |
" \n", | |
" widget_ids[1] = \"_anim_widget4f87c68e52a84076a7560314ea60d29b_oncogene\";\n", | |
" \n", | |
" var frame_data = {\"0\": \"<img src='' style='max-width:100%; margin: auto; display: block; '/>\", \"1\": \"<img src='' style='max-width:100%; margin: auto; display: block; '/>\", \"2\": \"<img src='' style='max-width:100%; margin: auto; display: block; '/>\", \"3\": \"<img src='' style='max-width:100%; margin: auto; display: block; '/>\", \"4\": \"<img src='' style='max-width:100%; margin: auto; display: block; '/>\", \"5\": \"<img src='' style='max-width:100%; margin: auto; display: block; '/>\"};\n", | |
" var dim_vals = ['Lurbinectedin', 'AKT'];\n", | |
" var keyMap = {\"('Lurbinectedin', 'AKT')\": 0, \"('Lurbinectedin', 'MYC')\": 1, \"('Lurbinectedin', 'P19')\": 2, \"('Sorafenib', 'AKT')\": 3, \"('Sorafenib', 'MYC')\": 4, \"('Sorafenib', 'P19')\": 5};\n", | |
" var notFound = \"<h2 style='vertical-align: middle>No frame at selected dimension value.<h2>\";\n", | |
" function create_widget() {\n", | |
" setTimeout(function() {\n", | |
" anim4f87c68e52a84076a7560314ea60d29b = new MPLSelectionWidget(frame_data, \"4f87c68e52a84076a7560314ea60d29b\", widget_ids,\n", | |
"\t\t\t\tkeyMap, dim_vals, notFound, false, \"default\",\n", | |
"\t\t\t\ttrue, \"./json_figures/\", false);\n", | |
" }, 0);\n", | |
" }\n", | |
" \n", | |
"\n", | |
"\n", | |
" create_widget();\n", | |
" \n", | |
"\n", | |
"\n", | |
"})();\n", | |
"</script>" | |
], | |
"text/plain": [ | |
"b':HoloMap [treatment,oncogene]\\n :Distribution [sample,chain] (interaction)'" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"interaction.to(hv.Distribution, ['sample', 'chain'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment