Created
March 18, 2020 05:59
-
-
Save ashishpatel26/00de3eca0912b63cdb4f023e89603760 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Stacking.ipynb", | |
"provenance": [], | |
"authorship_tag": "ABX9TyP6uxGd1ww4vJjfbwztW4cP", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/github/ashishpatel26/Ensemble-Learning-Algorithm-Medium/blob/master/Stacking.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "COhWmSXqImMq", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Import\tIRIS\tdataset\tfrom\tsklearn" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "LmAaNZs-In8M", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"from\tsklearn\timport\tdatasets" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "ZG42X93cIqS-", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Impoert\tRandom\tforest\tLogistic\tregression,\tnaive\tbayes\tand\tknn\tclassifier\tclasses\tfor\tcreating\tstacking" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "gfrzPwfZIpD1", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"from sklearn.ensemble\timport RandomForestClassifier\n", | |
"from sklearn.linear_model\timport LogisticRegression\n", | |
"from sklearn.naive_bayes\timport GaussianNB\n", | |
"from sklearn.neighbors import KNeighborsClassifier" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "9QJhDmDaJYE7", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Import numpy for array based operations" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "puO_NK5LJWvT", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"import numpy as np" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "gUjuiqWTJe2L", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Load the dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "J5FFTMLiJdRK", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"iris = datasets.load_iris()" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "cTcZm1U2Jmfb", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# Extract data and target out of dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "RuxlCFJrJlGx", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"X,y = iris.data[:,1:3], iris.target" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Z5CHi94aJ8rw", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"# We will define a method to calculate accuracy of prericted output with known lables" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "a30zMP9XJyiR", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"def CalculateAccuracy(y_test, pred_label):\n", | |
" nnz = np.shape(y_test)[0] - np.count_nonzero(pred_label - y_test)\n", | |
" acc = 100*nnz / float(np.shape(y_test)[0])\n", | |
" return acc" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "T_ej07aBKYPo", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Create\ta\tKNN\tclassifier\twith\t2\tnearest\tneighbors" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "dbbkJNMRJ5Oo", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"clf1\t=\tKNeighborsClassifier(n_neighbors=2)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "vIRqPjz1KcFs", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#We\twill\tcreate\ta\trandom\tforest\tclassifier\twith\t2\tdecision\ttrees" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ib8tYBIfKZuG", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"clf2\t=\tRandomForestClassifier(n_estimators\t=\t2,random_state=1)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "cLXFrxIvKgMz", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Create\ta\tNaive\tbayes\tclassifier" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "dnC5KuMaKd0u", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"clf3\t=\tGaussianNB()" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "7cxS0kTwKk2f", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Finally\tcreate\ta\tlogistic\tregression\tclassifier\tto\tcombine\tprediction\tfrom\tabove\tclassifiers." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "hRhzOv5lKhqW", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"lr\t=\tLogisticRegression()" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "2tedDwXAKrit", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Now\twe\twill\tTrain\tall\tfirst\tlevel\tclassifiers" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "4s4fzZhiKmr1", | |
"colab_type": "code", | |
"outputId": "80486c43-76f8-4168-f895-3c7eb8a51a0a", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"clf1.fit(X,\ty) \n", | |
"clf2.fit(X,\ty) \n", | |
"clf3.fit(X,\ty)" | |
], | |
"execution_count": 11, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"GaussianNB(priors=None, var_smoothing=1e-09)" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 11 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "8EhDjAnnKx1z", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Predict\tthe\tlabels\tfor\tinput\tdata\tby\tall\tthe\tclassifier;\tprint\ttheir\taccuracy\tand\tstore\tthe\tprediction\tinto\tan\tarray\t(f1,f2,f3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "aOF0lKoFKs_F", | |
"colab_type": "code", | |
"outputId": "c9bcebee-2c3f-4fa3-c4e0-6d663c540f49", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"f1 = clf1.predict(X) \n", | |
"acc1 = CalculateAccuracy(y,\tf1) \n", | |
"print(\"accuracy from KNN: \"+str(acc1))" | |
], | |
"execution_count": 12, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"accuracy from KNN: 96.66666666666667\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "F_JMQ-Z2K8Zc", | |
"colab_type": "code", | |
"outputId": "4a6b046e-fda7-4fb0-dd53-0881e4395d6f", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"f2 = clf2.predict(X) \n", | |
"acc2 = CalculateAccuracy(y,\tf2) \n", | |
"print(\"accuracy from Random Forest: \"+str(acc2))" | |
], | |
"execution_count": 13, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"accuracy from Random Forest: 94.66666666666667\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "EmBxIl3RLKfb", | |
"colab_type": "code", | |
"outputId": "29af354b-159a-48d1-c8c3-7eb4929a3f47", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"f3 = clf3.predict(X) \n", | |
"acc3 = CalculateAccuracy(y,\tf3) \n", | |
"print(\"accuracy from Naive Bayes: \"+str(acc3))" | |
], | |
"execution_count": 14, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"accuracy from Naive Bayes: 92.0\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "1xHG9NGDLatn", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Combine\tthe\tpredictions\tinto\ta\tsingle\tarray\tand\ttranspose\tthe\tarray\tto\tmatch\tinput\tshape\tof\tor\tclassifier. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Aa8W_r6ULPTk", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"f\t=\t[f1,f2,f3] \n", | |
"f\t= np.transpose(f)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "8Lf29p2-LiEO", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Now train the classifier" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "YWaO4ygrLeK6", | |
"colab_type": "code", | |
"colab": {} | |
}, | |
"source": [ | |
"lr.fit(f,\ty) \n", | |
"final\t=\tlr.predict(f)" | |
], | |
"execution_count": 0, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Ep5EeixqLn1Z", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"#Calculate\tand\tprint\tthe\taccuracy\tof\tfinal\tclassifier." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "2gbjrT4VLlCa", | |
"colab_type": "code", | |
"outputId": "086bdc20-1f87-49e0-b072-fb9c86334433", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
} | |
}, | |
"source": [ | |
"acc4 = CalculateAccuracy(y,\tfinal) \n", | |
"print(\"accuracy from Stacking:\"+str(acc4))" | |
], | |
"execution_count": 17, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"accuracy from Stacking:97.33333333333333\n" | |
], | |
"name": "stdout" | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment